WO2020138083A1 - 焼却灰を原料とするレドックスフロー電池用電解液の製造方法 - Google Patents

焼却灰を原料とするレドックスフロー電池用電解液の製造方法 Download PDF

Info

Publication number
WO2020138083A1
WO2020138083A1 PCT/JP2019/050604 JP2019050604W WO2020138083A1 WO 2020138083 A1 WO2020138083 A1 WO 2020138083A1 JP 2019050604 W JP2019050604 W JP 2019050604W WO 2020138083 A1 WO2020138083 A1 WO 2020138083A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
filtrate
alkaline earth
earth metal
solution
Prior art date
Application number
PCT/JP2019/050604
Other languages
English (en)
French (fr)
Inventor
満 久畑
良潤 關根
靖訓 田中
一誠 河本
元月 張
浩一 神
Original Assignee
住友電気工業株式会社
リマテックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, リマテックホールディングス株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020138083A1 publication Critical patent/WO2020138083A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electrolytic solution for a redox flow battery using incineration ash as a raw material.
  • AMV ammonium metavanadate
  • Patent Document 1 ammonium metavanadate obtained by the method for treating dust collector ash described in Patent Document 1 ( It is conceivable that NH 4 VO 3 ) may be used as a raw material for the electrolytic solution through a complicated process in which it is used as an intermediate product.
  • Patent Document 1 first, sodium hydroxide along with water is added to neutralize incinerated ash made of dust collector ash, and a reducing agent is further added, followed by solid-liquid separation into a first filtrate and a first filtered solid content.
  • the first filtered solid matter is oxidized by adding water, sodium hydroxide and an oxidizing agent to produce sodium vanadate, and then the sodium vanadate-containing solution is neutralized by adding an acid to the second filtrate. And solid-liquid separation into a second filtered solid content. Then, ammonium salt is added to the second filtrate containing sodium vanadate, and after heating and cooling, solid-liquid separation is performed to generate ammonium metavanadate in the third filtered solid content.
  • Patent Document 2 a manufacturing method described in Patent Document 2 has been proposed.
  • Patent Document 2 first, using a dust collector ash as a raw material, an aqueous solution containing tetravalent vanadium is extracted through an acid extraction and reduction process, and vanadium hydroxide (VO(OH) 2 ) is solid-liquid as an intermediate product. By separating, it is separated and collected as a filtered solid content. Then, the recovered vanadium hydroxide is separately heated with sulfur as a reducing agent to synthesize a trivalent vanadium compound, and the tetravalent vanadium compound (VO(OH) 2 ) and the trivalent vanadium compound are mixed. An electrolytic solution is manufactured by adding sulfuric acid and then heating.
  • the present invention has been made by paying attention to the above-mentioned problems, and it is possible to easily and efficiently recover vanadium of high purity to produce an electrolytic solution, and an incinerated ash-based redox flow battery electrolytic solution. It is intended to provide a manufacturing method.
  • the method for producing an electrolyte for a redox flow battery of the present invention comprises a first step of adding an aqueous alkaline solution to incineration ash as a raw material, and alkali-extracting a metal compound containing vanadium in the incineration ash, and a reaction by the first step.
  • a second step of solid-liquid separating the product into a first filtrate and a first filtered solid content, and an alkaline earth metal salt is added to the first filtrate separated in the second step to obtain an alkali metal in the first filtrate.
  • a fourth step of solid-liquid separation into a filtered solid matter and a reducing agent and an acid are added to the second filtered solid matter containing the compound of the alkaline earth metal and vanadium separated in the fourth step to dissolve/reduce.
  • the fifth step of causing the reaction and the reaction solution obtained in the fifth step are used as a third filtrate containing vanadium acidic solution as a main component and a third filtered solid content containing an alkaline earth metal salt as a main component.
  • a sixth step of solid-liquid separation, and the first characteristic is that the vanadium acid solution obtained in the sixth step is used as an electrolyte for a redox flow battery.
  • an alkaline earth metal salt even if ammonium metavanadate (AMV) is not produced as an intermediate product as in the prior art, an alkali metal is used.
  • An acidic solution of vanadium can be produced from a compound of vanadium via a compound of alkaline earth metal and vanadium. Therefore, since complicated steps are not performed, it is possible to reduce capital investment and manufacturing cost.
  • nickel, iron, calcium, carbon, etc. as impurities can be easily separated by solid-liquid separation, and the recovery rate and purity of vanadium can be increased.
  • the chemicals used are only alkaline aqueous solution, acid, reducing agent, and alkali metal salt, and the alkaline earth metal salt can be recycled many times, which is economical.
  • the alkali extraction, metal conversion reaction, and dissolution/reduction reaction proceed at temperatures below the boiling point of the aqueous solution. Therefore, not only the equipment cost for the reaction equipment can be reduced, but also the treatment can be performed with relatively little energy, which is more economical.
  • the alkaline earth metal salt separated in the sixth step can be added to the first filtrate in the third step.
  • the method for producing an electrolytic solution for a redox flow battery of the present invention has the effect of being able to reuse the alkaline earth metal salt added to the first filtrate because it has the second characteristic.
  • a third feature of the method for producing a redox flow battery electrolyte of the present invention is that the alkaline earth metal is at least one selected from calcium, magnesium, strontium, and barium.
  • the method for producing an electrolyte for a redox flow battery of the present invention has the above-mentioned third feature, and in addition, it is possible to use a metal other than calcium as an alkaline earth metal, which has the effect of improving diversity.
  • the alkaline earth metal salt added in the third step is a sulfate, a phosphate, a carbonate, a bicarbonate and a shushu. It can be at least one selected from acid salts.
  • the method for producing an electrolytic solution for a redox flow battery of the present invention has the effect of improving the variety by increasing the number of types of salts that can be used by providing the fourth characteristic.
  • the incinerated ash is a dust collector ash produced by incineration
  • the dust ash is washed with water and ammonium sulfate (A preliminary solid-liquid separation step of performing solid-liquid separation into a filtrate containing a (NH 4 ) 2 SO 4 ) solution and a filtered solid content can be performed.
  • the method for producing an electrolyte for a redox flow battery of the present invention has the above-mentioned fifth characteristic. Further, in the case where the incinerated ash is a dust collector ash produced by incineration, since it contains ammonium sulfate, the first step Before the above, by washing the dust collector ash with water to remove the filtrate containing the ammonium sulfate solution in advance, it is possible to smoothly proceed the treatments of the first step and thereafter.
  • the present invention relates to a method for extracting vanadium mainly from incinerated ash to produce an electrolyte solution for a redox flow battery.
  • the incineration ash includes, for example, heavy oil, tar, asphalt, coal, etc., as well as incineration solids generated by combustion of fossil fuels such as fuels obtained by emulsifying these, dust collector ash contained in exhaust gas, etc. Included in incineration ash.
  • the method for producing an electrolyte for a redox flow battery is a first step in which an alkaline aqueous solution is added to incineration ash as a raw material, and a metal compound containing vanadium in the incineration ash is alkali-extracted.
  • the first step by adding an aqueous solution of an alkali such as sodium hydroxide (NaOH) aqueous solution ash, metal compound containing vanadium soluble vanadium sodium salt of the aqueous solution (NaVO 3, Na 6 V 2 O 8 , Na 4 V 2 O 7, etc.) are alkali-extracted, while other metals (eg, nickel (Ni), iron (Fe), calcium (Ca)) and carbon (C) are insoluble materials. Present in the aqueous solution as.
  • an alkali such as sodium hydroxide (NaOH) aqueous solution ash
  • metal compound containing vanadium soluble vanadium sodium salt of the aqueous solution NaVO 3, Na 6 V 2 O 8 , Na 4 V 2 O 7, etc.
  • other metals eg, nickel (Ni), iron (Fe), calcium (Ca)
  • C carbon
  • the reaction product from the first step is solid-liquid separated.
  • the first filtrate containing the sodium salt of vanadium and the first filtered solid matter containing nickel, iron, calcium, carbon, etc. are separated.
  • an alkaline earth metal salt such as calcium sulfate (CaSO 4 ) is added to the first filtrate collected in the second step.
  • CaSO 4 calcium sulfate
  • a metal conversion reaction occurs, so that sodium (Na) in the sodium salt of vanadium in the first filtrate is replaced with calcium (Ca), and calcium salts of vanadium (Ca(VO 3 ) 2 and Ca 3 (VO) are generated. 4 ) 2 , Ca 2 V 2 O 7 etc.).
  • the metal conversion product obtained in the third step is subjected to solid-liquid separation into a second filtrate and a second filtered solid content while being washed with water.
  • the second filtrate is discarded as an alkaline waste liquid containing sodium sulfate (Na 2 SO 4 ), and the second filtered solid content composed of vanadium calcium salt is recovered.
  • the second filtered solid content composed of the calcium salt of vanadium recovered in the fourth step was treated with a reducing agent, sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), carbonic acid (H 2 CO 2 ). 3 ) A dissolution/reduction reaction is performed with an acid such as bicarbonate.
  • the reaction solution obtained in the fifth step was treated with a third filtrate containing vanadium acid solution (VO(SO 4 )) as a main component and an alkaline earth metal salt (calcium sulfate (CaSO 4 )).
  • VO(SO 4 ) vanadium acid solution
  • CaSO 4 alkaline earth metal salt
  • Solid-liquid separation is performed with the third filtered solid content as the main component.
  • the main component means that the content in the third filtrate and the third filtered solid content is the highest, respectively.
  • the vanadium acidic solution (VO(SO 4 )) in the third filtrate recovered in the sixth step is electrolytically reduced to be used as an electrolytic solution for a redox flow battery.
  • the alkaline earth metal salt (calcium sulfate (CaSO 4 )) recovered as the third filtered solid content in the sixth step is supplied to the third step and regenerated as an alkaline earth metal salt to be added to the first filtrate. Used.
  • ammonium metavanadate does not have to be produced as an intermediate product as in the prior art.
  • An acidic solution of vanadium can be produced from a compound of an alkali metal and vanadium via a compound of an alkaline earth metal and vanadium. Therefore, since complicated steps are not performed, it is possible to reduce capital investment and manufacturing cost.
  • the chemicals used are only alkaline aqueous solution, acid, reducing agent, and alkali metal salt, and the alkaline earth metal salt can be recycled many times, which is economical.
  • the alkali extraction, metal conversion reaction, and dissolution/reduction reaction proceed at temperatures below the boiling point of the aqueous solution. Therefore, not only the equipment cost for the reaction equipment can be reduced, but also the treatment can be performed with relatively little energy, which is more economical.
  • a potassium hydroxide (KOH) aqueous solution can be used in addition to the sodium hydroxide (NaOH) aqueous solution.
  • alkaline earth metal In addition to calcium (Ca), magnesium (Mg), strontium (Sr), and barium (Ba) can be used as the alkaline earth metal, and the alkaline earth metal salt added in the second step.
  • alkaline earth metal sulfate a sulfate, a phosphate, a carbonate, a bicarbonate, an oxalate or the like can be used.
  • the reducing agent used in the fifth step is an organic acid (oxalic acid, acetic acid, formic acid, etc.), hydrogen peroxide (H 2 O 2 ), hydrogen gas (H 2 ), sulfurous acid gas (H 2 S), or the like. Can be used.
  • organic acid oxalic acid, acetic acid, formic acid, etc.
  • hydrogen peroxide H 2 O 2
  • hydrogen gas H 2
  • sulfurous acid gas H 2 S
  • the dust collector ash When the incinerator ash as a raw material is a dust collector ash generated by incineration, the dust collector ash is washed with water and a filtrate containing an ammonium sulfate ((NH 4 ) 2 SO 4 ) solution and filtered before the first step.
  • a preliminary solid-liquid separation step of performing solid-liquid separation into solids can be performed. Since the dust collector ash contains ammonium sulfate, by washing the dust collector ash with water and removing the filtrate containing the ammonium sulfate solution in advance before the first step, it is possible to smoothly proceed the treatments of the first step and thereafter. It will be possible.
  • Example 1 Regarding the metal conversion reaction in the third step, when the difference in reaction time depending on temperature was confirmed, the metal conversion reaction proceeds at room temperature (25 to 40° C.), and as shown in FIG. It was confirmed that at 40° C., the reaction proceeded faster than at 25° C., and the reaction was completed in 1 hour. In this reaction, it is not necessary to add a chemical such as pH adjustment.
  • Example 2 Regarding the dissolution/reduction reaction in the fifth step, it is possible to proceed completely at a low temperature at which the aqueous solution does not boil, but since the reaction rate depends on the reaction temperature, the reaction time is 1 to 4 hours when the reaction temperature is 60°C to 90°C. The degree is enough.
  • the reaction temperature proceeds at 60° C. or higher, and in a practical reaction time, 70° C. to 90° C. is appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Fuel Cell (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

高純度のバナジウムを容易にかつ効率よく回収して電解液を製造することができる焼却灰を原料とするレドックスフロー電池用電解液の製造方法を提供する。 焼却灰にアルカリ水溶液を添加してバナジウムを含む金属化合物をアルカリ抽出する第1工程、第1工程による反応物を第1濾液と第1濾過固形分とに分離する第2工程、第1濾液にアルカリ土類金属塩を添加して第1濾液中のアルカリ金属とバナジウムとの化合物を、アルカリ土類金属とバナジウムとの化合物に転換する第3工程、金属転換物を水洗いしながら第2濾液と第2濾過固形分とに分離する第4工程、アルカリ土類金属とバナジウムとの化合物を含む第2濾過固形分に還元剤及び酸を添加して溶解・還元反応を行わせる第5工程、及び、第5工程による反応液をバナジウム酸性液主成分とする第3濾液とアルカリ土類金属塩主成分とする第3濾過固形分とに分離する第6工程を有する。

Description

焼却灰を原料とするレドックスフロー電池用電解液の製造方法
 本発明は、焼却灰を原料とするレドックスフロー電池用電解液の製造方法に関する。
 焼却灰を原料とし、焼却灰からバナジウムを抽出してレドックスフロー電池用電解液を製造する製造方法として、例えば特許文献1に記載の集塵機灰の処理方法で得られるAMVと略称するメタバナジン酸アンモニウム(NHVO)を、中間生成物とした複雑な工程を経て電解液の原料とすることが考えられる。特許文献1では、まず、集塵機灰からなる焼却灰に、水とともに水酸化ナトリウムを添加して中和し、さらに還元剤を添加した後、第1濾液と第1ろ過固形分とに固液分離している。そして、第1ろ過固形分に、水、水酸化ナトリウム及び酸化剤の添加によって酸化してバナジン酸ナトリウムを生成した後、このバナジン酸ナトリウム含有液に、酸の添加によって中和して第2濾液と第2ろ過固形分とに固液分離する。そして、バナジン酸ナトリウムを含む第2濾液に、アンモニウム塩を添加し、加熱及び冷却した後に固液分離することによって、第3ろ過固形分中にメタバナジン酸アンモニウムを生成している。
 また、例えば特許文献2に記載の製造方法が提案されている。特許文献2では、まず、集塵機灰を原料として、酸抽出及び還元プロセスを経て、4価のバナジウムを含有する水溶液を抽出し、中間生成物として水酸化バナジウム(VO(OH))を固液分離によりろ過固形分として分離回収している。そして、回収した水酸化バナジウムに別途、硫黄を還元剤として加熱して3価のバナジウム化合物を合成し、4価のバナジウム化合物(VO(OH))と3価のバナジウム化合物とを混合して硫酸を加えてから加熱することにより、電解液を製造している。
特許第3917222号公報 特許第4567254号公報
 しかしながら、上述した特許文献1に記載の集塵機灰の処理方法で得られるメタバナジン酸アンモニウムを電解液の原料とすると、アンモニウム成分が多いために、その除去に多くの手間がかかり、しかも、還元剤や酸化剤などの多くの薬剤が必要となる。そのため、処理設備や処理コストが多くかかるという問題がある。
 また、特許文献2に記載の製造方法では、還元反応及び酸性域での抽出のために、バナジウム以外にニッケルや鉄などの金属も抽出され、バナジウムの高純度化が困難である。しかも、中間生成物である水酸化バナジウムが微粒子であるために、固液分離が困難で分離工程でのロスが大きくなりやすいという問題がある。
 本発明は、上記課題に着目してなされたものであり、高純度のバナジウムを容易にかつ効率よく回収して電解液を製造することができる焼却灰を原料とするレドックスフロー電池用電解液の製造方法を提供することを目的とする。
 本発明のレドックスフロー電池用電解液の製造方法は、原料の焼却灰にアルカリ水溶液を添加して、焼却灰中のバナジウムを含む金属化合物をアルカリ抽出する第1工程と、前記第1工程による反応物を第1濾液と第1濾過固形分とに固液分離する第2工程と、前記第2工程で分離した第1濾液にアルカリ土類金属塩を添加して、第1濾液中のアルカリ金属とバナジウムとの化合物をアルカリ土類金属とバナジウムとの化合物に転換する金属転換反応を行わせる第3工程と、前記第3工程によって得られた金属転換物を水洗いしながら第2濾液と第2濾過固形分とに固液分離する第4工程と、前記第4工程で分離したアルカリ土類金属とバナジウムとの化合物を含む第2濾過固形分に還元剤及び酸を添加して、溶解・還元反応を行わせる第5工程と、前記第5工程によって得られた反応液を、バナジウム酸性液を主成分とする第3濾液とアルカリ土類金属塩を主成分とする第3濾過固形分とに固液分離する第6工程と、を有しており、前記第6工程によって得られたバナジウム酸性液をレドックスフロー電池用電解液に利用するところに第1の特徴がある。
 本発明のレドックスフロー電池用電解液の製造方法によれば、アルカリ土類金属塩を用いることにより、従来技術のようにメタバナジン酸アンモニウム(AMV)を中間生成物として生成しなくても、アルカリ金属とバナジウムとの化合物からアルカリ土類金属とバナジウムとの化合物を経由してバナジウム酸性液を生成することができる。よって、複雑な工程(プロセス)を経ることがないので、設備投資の低減、製造コストの低減を可能とできる。
 加えて、第2工程において、不純物としてニッケル、鉄、カルシウム、炭素などが固液分離により簡単に分離でき、バナジウムの回収率及び純度を上げることができる。
 また、使用する薬剤としては、アルカリ水溶液、酸、還元剤、アルカリ金属塩のみで、しかも、アルカリ土類金属塩は、何度でもリサイクルできるために、経済的である。
 アルカリ土類金属塩としては、特に地下資源として豊富なカルシウム塩を使用すれば、安価で且つ安全である。
 その上、アルカリ抽出、金属転換反応、及び溶解・還元反応は、それぞれ水溶液が沸騰する温度以下で反応が進む。そのため、反応設備にかける設備費を低減できるばかりか、比較的少ないエネルギーで処理を行うことができるので、より経済的である。
 本発明のレドックスフロー電池用電解液の製造方法では、第2の特徴として、前記第6工程で分離したアルカリ土類金属塩を、前記第3工程において第1濾液に添加することができる。
 本発明のレドックスフロー電池用電解液の製造方法は、上記第2の特徴を備えることにより、さらに、第1濾液に添加するアルカリ土類金属塩を再利用することができるとの効果を奏する。
 本発明のレドックスフロー電池用電解液の製造方法は、第3の特徴として、前記アルカリ土類金属を、カルシウム、マグネシウム、ストロンチウム及びバリウムの中から選択された少なくとも1種とすることができる。
 本発明のレドックスフロー電池用電解液の製造方法は、上記第3の特徴を備えることにより、さらに、アルカリ土類金属としてカルシウム以外の金属も使用でき、多様性が向上するとの効果を奏する。
 本発明のレドックスフロー電池用電解液の製造方法では、第4の特徴として、前記第3工程で添加されるアルカリ土類金属塩を、硫酸塩、リン酸塩、炭酸塩、重炭酸塩及びシュウ酸塩の中から選択された少なくとも1種とすることができる。
 本発明のレドックスフロー電池用電解液の製造方法は、上記第4の特徴を備えることにより、さらに、使用できる塩の種類が多く多様性が向上するとの効果を奏する。
 本発明のレドックスフロー電池用電解液の製造方法は、第5の特徴として、前記焼却灰が焼却により生じた集塵機灰の場合、前記第1工程の前に、前記集塵機灰を水洗いして硫酸アンモニウム((NHSO)溶液を含む濾液と、濾過固形分とに固液分離する予備固液分離工程を行うことができる。
 本発明のレドックスフロー電池用電解液の製造方法は、上記第5の特徴を備えることにより、さらに、前記焼却灰が焼却により生じた集塵機灰の場合は、硫酸アンモニウムを含むために、前記第1工程の前に、前記集塵機灰を水洗いして硫酸アンモニウム溶液を含む濾液を予め除去しておくことで、前記第1工程以下の処理をスムーズに進行できるとの効果を奏する。
 本発明によれば、焼却灰を原料にしても、高純度のバナジウムを容易にかつ効率よく回収して、レドックスフロー電池用電解液を製造することができる。
本発明の一実施形態に係るレドックスフロー電池用電解液の製造方法の処理工程を表すフロー図である。 金属転換反応における処理温度と時間の変化を示すグラフである。 溶解・還元反応における反応温度、反応時間vs反応率の変化を表すグラフである。
 以下に本発明の実施形態について添付図面を参照して説明する。本発明は、焼却灰から主にバナジウムを抽出してレドックスフロー電池用電解液を製造する方法に関するものである。なお、本発明において、焼却灰とは、例えば重油、タール、アスファルト、石炭など、並びにこれらをエマルジョン化した燃料などの化石燃料の燃焼により生じる焼却固形分の他、排ガスに含まれる集塵機灰なども焼却灰に含まれる。
 本実施形態のレドックスフロー電池用電解液の製造方法は、図1に示すように、原料の焼却灰にアルカリ水溶液を添加して、焼却灰中のバナジウムを含む金属化合物をアルカリ抽出する第1工程と、第1工程による反応物を第1濾液と第1濾過固形分とに固液分離する第2工程と、前記第2工程で分離した第1濾液にアルカリ土類金属塩を添加して、第1濾液中のアルカリ金属とバナジウムとの化合物を、アルカリ土類金属とバナジウムとの化合物に転換する金属転換反応を行わせる第3工程と、第3工程によって得られた金属転換物を水洗いしながら第2濾液と第2濾過固形分とに固液分離する第4工程と、第4工程で分離したアルカリ土類金属とバナジウムとの化合物を含む第2濾過固形分に還元剤及び酸を添加して、溶解・還元反応を行わせる第5工程と、第5工程によって得られた反応液を、バナジウム酸性液を主成分とする第3濾液とアルカリ土類金属塩を主成分とする第3濾過固形分とに固液分離する第6工程と、を有しており、第6工程によって得られたバナジウム酸性液を電解還元してレドックスフロー電池用電解液に利用するものである。
 第1工程では、焼却灰に水酸化ナトリウム(NaOH)水溶液などのアルカリ水溶液を添加することによって、バナジウムを含む金属化合物は水溶液に可溶なバナジウムのナトリウム塩(NaVO、Na、Naなど)としてアルカリ抽出されるのに対して、その他の金属(例えば、ニッケル(Ni)、鉄(Fe)、カルシウム(Ca))や、炭素(C)は、不溶物として水溶液中に存在する。
 第2工程では、第1工程による反応物を固液分離する。これにより、バナジウムのナトリウム塩を含む第1濾液と、ニッケル、鉄、カルシウム、炭素などを含む第1濾過固形分とに分離される。
 第3工程では、第2工程で回収した第1濾液に、例えば硫酸カルシウム(CaSO)などのアルカリ土類金属塩を添加する。これにより金属転換反応が生じて、第1濾液中のバナジウムのナトリウム塩は、ナトリウム(Na)がカルシウム(Ca)に置換されて、バナジウムのカルシウム塩(Ca(VO、Ca(VO、Caなど)の金属転換物に変化する。
 第4工程では、第3工程によって得られた金属転換物を水洗いしながら第2濾液と第2濾過固形分とに固液分離する。これにより、第2濾液は硫酸ナトリウム(NaSO)を含むアルカリ廃液として廃棄されるとともに、バナジウムのカルシウム塩からなる第2濾過固形分が回収される。
 第5工程では、第4工程で回収したバナジウムのカルシウム塩からなる第2濾過固形分を、還元剤と、硫酸(HSO)、リン酸(HPO)、炭酸(HCO)、重炭酸などの酸とによって、溶解・還元反応を行わせる。
 第6工程では、第5工程によって得られた反応液を、バナジウム酸性液(VO(SO))を主成分とする第3濾液と、アルカリ土類金属塩(硫酸カルシウム(CaSO))を主成分とする第3濾過固形分とに固液分離する。なお、主成分とは、それぞれ第3濾液や第3濾過固形分中の含有量が最も多いことを意味する。
 第6工程で回収した第3濾液中のバナジウム酸性液(VO(SO))は、電解還元することで、レドックスフロー電池用電解液に利用される。また、第6工程において第3濾過固形分として回収されたアルカリ土類金属塩(硫酸カルシウム(CaSO))は、第3工程に供給され、第1濾液に添加するアルカリ土類金属塩として再利用される。
 上述した本実施形態のレドックスフロー電池用電解液の製造方法によれば、アルカリ土類金属塩を用いることにより、従来技術のようにメタバナジン酸アンモニウム(AMV)を中間生成物として生成しなくても、アルカリ金属とバナジウムとの化合物からアルカリ土類金属とバナジウムとの化合物を経由してバナジウム酸性液を生成することができる。よって、複雑な工程(プロセス)を経ることがないので、設備投資の低減、製造コストの低減を可能とできる。
 また、使用する薬剤としては、アルカリ水溶液、酸、還元剤、アルカリ金属塩のみで、しかも、アルカリ土類金属塩は、何度でもリサイクルできるために、経済的である。
 アルカリ土類金属塩としては、特に地下資源として豊富なカルシウム塩を使用すれば、安価で且つ安全である。
 その上、アルカリ抽出、金属転換反応、及び溶解・還元反応は、それぞれ水溶液が沸騰する温度以下で反応が進む。そのため、反応設備にかける設備費を低減できるばかりか、比較的少ないエネルギーで処理を行うことができるので、より経済的である。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。
 例えば、第1工程で添加されるアルカリ水溶液は、水酸化ナトリウム(NaOH)水溶液の他に、水酸化カリウム(KOH)水溶液を使用することができる。
 また、アルカリ土類金属としては、カルシウム(Ca)の他に、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)を使用することができ、第2工程で添加されるアルカリ土類金属塩としては、上記アルカリ土類金属の硫酸塩、リン酸塩、炭酸塩、重炭酸塩、シュウ酸塩などを使用することができる。
 また、第5工程で使用する還元剤は、有機酸(シュウ酸、酢酸、蟻酸など)、過酸化水素(H)、水素ガス(H)、亜硫酸ガス(HS)などを使用することができる。
 また、原料となる焼却灰が、焼却により生じた集塵機灰の場合には、第1工程の前に、集塵機灰を水洗いして硫酸アンモニウム((NHSO)溶液を含む濾液と、濾過固形分とに固液分離する予備固液分離工程を行うことができる。集塵機灰は、硫酸アンモニウムを含むために、第1工程の前に、集塵機灰を水洗いして硫酸アンモニウム溶液を含む濾液を予め除去しておくことで、第1工程以下の処理をスムーズに進行することが可能となる。
 以下、本発明の実施例について説明する。なお、本発明は、以下の実施例に限定される
ものではない。
 [実施例1]
 第3工程における金属転換反応について、温度による反応時間の違いを確認したところ、金属転換反応は、常温(25~40℃)で反応が進行するものであるが、図2に示すように、特に40℃では25℃よりも反応が早く進行し、1時間で反応が完結することが確認された。なお、この反応では、pH調整などの薬剤を加える必要がない。
 [実施例2]
 第5工程における溶解・還元反応について、水溶液が沸騰しない低温で完全に進行可能であるが、反応速度は反応温度に依存するため、反応温度60℃~90℃の時に反応時間は1~4時間程度でよい。
 つまり、図3に示すように、反応温度は60℃以上で進行し、実用的な反応時間では70℃~90℃が適切である。
 なお、50℃では2時間以内に溶けて水溶液にならなかった。また、100℃では沸騰して気化してしまうおそれがあるために不適切である。

Claims (5)

  1.  焼却灰にアルカリ水溶液を添加して焼却灰中のバナジウムを含む金属化合物をアルカリ抽出する第1工程と、
     前記第1工程による反応物を第1濾液と第1濾過固形分とに固液分離する第2工程と、
     前記第2工程で分離した第1濾液にアルカリ土類金属塩を添加して、第1濾液中のアルカリ金属とバナジウムとの化合物を、アルカリ土類金属とバナジウムとの化合物に転換する金属転換反応を行わせる第3工程と、
     前記第3工程によって得られた金属転換物を水洗いしながら第2濾液と第2濾過固形分とに固液分離する第4工程と、
     前記第4工程で分離したアルカリ土類金属とバナジウムとの化合物を含む第2濾過固形分に還元剤及び酸を添加して溶解・還元反応を行わせる第5工程と、
     前記第5工程によって得られた反応液を、バナジウム酸性液を主成分とする第3濾液とアルカリ土類金属塩主成分とする第3濾過固形分とに固液分離する第6工程と、を有し、
     前記第6工程によって得られたバナジウム酸性液をレドックスフロー電池用電解液に利用する、焼却灰を原料とするレドックスフロー電池用電解液の製造方法。
  2.  前記第6工程で分離したアルカリ土類金属塩を、前記第3工程において第1濾液に添加する、請求項1に記載の焼却灰を原料とするレドックスフロー電池用電解液の製造方法。
  3.  前記アルカリ土類金属は、カルシウム、マグネシウム、ストロンチウム及びバリウムの中から選択された少なくとも1種である、請求項1又は2に記載の焼却灰を原料とするレドックスフロー電池用電解液の製造方法。
  4.  前記第3工程で添加されるアルカリ土類金属塩は、硫酸塩、リン酸塩、炭酸塩、重炭酸塩及びシュウ酸塩の中から選択された少なくとも1種である、請求項1~3のいずれか1項に記載の焼却灰を原料とするレドックスフロー電池用電解液の製造方法。
  5.  前記焼却灰が焼却により生じた集塵機灰の場合、前記第1工程の前に、前記集塵機灰を水洗いして硫酸アンモニウム溶液を含む濾液と、濾過固形分とに固液分離する予備固液分離工程を行う、請求項1~4のいずれか1項に記載の焼却灰を原料とするレドックスフロー電池用電解液の製造方法。
PCT/JP2019/050604 2018-12-27 2019-12-24 焼却灰を原料とするレドックスフロー電池用電解液の製造方法 WO2020138083A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-244516 2018-12-27
JP2018244516A JP2022042519A (ja) 2018-12-27 2018-12-27 焼却灰を原料とするレドックスフロー電池用電解液の製造方法

Publications (1)

Publication Number Publication Date
WO2020138083A1 true WO2020138083A1 (ja) 2020-07-02

Family

ID=71127142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050604 WO2020138083A1 (ja) 2018-12-27 2019-12-24 焼却灰を原料とするレドックスフロー電池用電解液の製造方法

Country Status (3)

Country Link
JP (1) JP2022042519A (ja)
TW (1) TW202034572A (ja)
WO (1) WO2020138083A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL441757A1 (pl) * 2022-07-18 2024-01-22 Re-Solve Spółka Z Ograniczoną Odpowiedzialnością Sposób odzyskiwania metali, zwłaszcza wanadu, z popiołów lotnych ze spalania produktów z ropy naftowej

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917222B2 (ja) * 1995-11-14 2007-05-23 新興化学工業株式会社 集塵機灰の処理方法
WO2017208471A1 (ja) * 2016-06-03 2017-12-07 昭和電工株式会社 バナジウム化合物の製造方法、バナジウム溶液の製造方法及びレドックスフローバッテリー電解液の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917222B2 (ja) * 1995-11-14 2007-05-23 新興化学工業株式会社 集塵機灰の処理方法
WO2017208471A1 (ja) * 2016-06-03 2017-12-07 昭和電工株式会社 バナジウム化合物の製造方法、バナジウム溶液の製造方法及びレドックスフローバッテリー電解液の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL441757A1 (pl) * 2022-07-18 2024-01-22 Re-Solve Spółka Z Ograniczoną Odpowiedzialnością Sposób odzyskiwania metali, zwłaszcza wanadu, z popiołów lotnych ze spalania produktów z ropy naftowej

Also Published As

Publication number Publication date
TW202034572A (zh) 2020-09-16
JP2022042519A (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
CN109075407B (zh) 再循环锂电池电极材料的方法
CN104357660B (zh) 一种清洁生产五氧化二钒的方法
CN101760651B (zh) 一种石煤酸浸提钒工艺
CN112342389A (zh) 一种从废弃化工催化剂中回收有价金属的方法
CN108707748B (zh) 一种净化石煤酸浸液并回收铝、钾和铁的方法
US20220364204A1 (en) Method and apparatus for producing vanadium compound, and method and apparatus for producing redox-flow battery electrolyte
WO2023229045A1 (ja) 廃リチウムイオン電池からリチウムを回収する方法
CN113045060B (zh) 海水资源综合利用方法
WO2023195533A1 (ja) 廃リチウムイオン電池からリチウムを回収する方法
KR102710458B1 (ko) 리튬 함유 폐액으로부터 리튬 성분을 회수하는 방법
WO2020138083A1 (ja) 焼却灰を原料とするレドックスフロー電池用電解液の製造方法
JP2019046723A (ja) レドックスフロー電池用電解液の製造方法
CN110229964B (zh) 一种提取飞灰中铷的方法
CN104630485A (zh) 从钒酸铁泥中提取钒的方法
JP3831805B2 (ja) 石油系燃焼灰の処理方法
WO2004090179A1 (en) Method of recovering vanadium oxide flake from diesel oil fly-ash or orimulsion fly-ash
JP6860628B2 (ja) バナジウム化合物の製造方法及び製造装置並びにレドックス・フロー電池用電解液の製造方法及び製造装置
CN115852177A (zh) 一种从熔盐氯化收尘渣中回收钪的方法
JP2011089176A (ja) モリブデンの精錬方法
JP3780359B2 (ja) 石油系燃焼灰の処理方法
AU2012297573A1 (en) Method for the recovery of magnesium sulphate and production of magnesium oxide
KR102544969B1 (ko) 탄산리튬 및 바륨화합물을 이용한 수산화리튬 제조방법
KR102597336B1 (ko) 리튬 함유 수용액과 탄산나트륨을 이용한 탄산리튬 제조 및 그 부산물을 활용한 탄산나트륨 제조방법
CA3211531C (en) Method for producing secondary battery material from black mass
CN117303330B (zh) 利用磷酸铁锂废料回收制备电池级磷酸二氢锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP