WO2023195533A1 - 廃リチウムイオン電池からリチウムを回収する方法 - Google Patents

廃リチウムイオン電池からリチウムを回収する方法 Download PDF

Info

Publication number
WO2023195533A1
WO2023195533A1 PCT/JP2023/014342 JP2023014342W WO2023195533A1 WO 2023195533 A1 WO2023195533 A1 WO 2023195533A1 JP 2023014342 W JP2023014342 W JP 2023014342W WO 2023195533 A1 WO2023195533 A1 WO 2023195533A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solution
aqueous solution
acid
extraction
Prior art date
Application number
PCT/JP2023/014342
Other languages
English (en)
French (fr)
Inventor
慶太 山田
幸雄 佐久間
太郎 平岡
Original Assignee
株式会社アサカ理研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=81390820&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023195533(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社アサカ理研 filed Critical 株式会社アサカ理研
Publication of WO2023195533A1 publication Critical patent/WO2023195533A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/28Amines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/30Oximes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering lithium from waste lithium ion batteries.
  • the waste lithium ion batteries are subjected to heat treatment (roasting) or are crushed, classified, etc. without being subjected to heat treatment.
  • Cobalt, nickel, manganese, and lithium are separated and purified from the obtained powder containing the valuable metal (hereinafter referred to as active material powder) by a wet process (see, for example, Patent Documents 1 and 2).
  • waste lithium-ion batteries refer to used lithium-ion batteries that have reached the end of their lifespan as battery products, lithium-ion batteries that were discarded as defective products during the manufacturing process, and lithium-ion batteries that were used for commercialization during the manufacturing process. It means the remaining positive electrode and negative electrode materials, etc.
  • a compound other than the lithium compound to be recovered is used as the alkali source, so the concentration of cations other than lithium increases and at the same time the concentration of lithium ions decreases.
  • the recovery rate of the target lithium is significantly reduced, and compounds other than the lithium compound used as an alkali source are discharged as salts, making it impossible to recycle resources.
  • examples of compounds other than the lithium compound include sodium hydroxide, sodium carbonate, ammonia, and the like.
  • An object of the present invention is to provide a method for recovering valuable metals from waste lithium ion batteries, which can eliminate such disadvantages, recover lithium at a high recovery rate, and enable resource recycling.
  • the present inventors have repeatedly studied in view of the above problems, and dissolved active material powder obtained by pretreating waste lithium ion batteries in mineral acid, neutralized the solution with lithium hydroxide, and dissolved lithium hydroxide. It has been found that the above-mentioned inconvenience can be overcome by adding again and filtering the precipitate to obtain the first lithium salt aqueous solution as a filtrate.
  • the present inventors dissolved the active material powder in a mineral acid, neutralized the solution with lithium hydroxide, and then used a plurality of specific organic solvents from the solution obtained by solid-liquid separation. It has been found that the above-mentioned disadvantages can be overcome by extracting manganese, cobalt, and nickel in a specific order.
  • the present inventors dissolved the active material powder in a mineral acid, neutralized the solution with lithium hydroxide, and then performed solid-liquid separation. From the solution obtained, using a specific organic solvent, manganese, It has been found that the above-mentioned disadvantages can be overcome by extracting cobalt and nickel.
  • the present inventors dissolved the active material powder in a mineral acid, neutralized the solution with lithium hydroxide, and then performed solid-liquid separation. From the solution obtained, using an organic solvent, manganese, cobalt, and It has been found that when extracting nickel, the above-mentioned disadvantages can be overcome by mixing an aqueous alkali solution and the organic solvent, and then mixing the alkali-containing organic solvent obtained by oil-water separation with the acid solution.
  • the present inventors have discovered that the above-mentioned disadvantages can be overcome by dissolving the active material powder in mineral acid, neutralizing the solution with lithium hydroxide, and then adding sulfide to remove the metal sulfide. Ta.
  • the present inventors have discovered that the above-mentioned disadvantages can be resolved by carbonating the lithium hydroxide aqueous solution and lithium salt aqueous solution obtained in the membrane electrolysis process.
  • the present inventors dissolved the active material powder in a mineral acid, neutralized the solution with lithium hydroxide, and then performed solid-liquid separation. From the solution obtained, using an organic solvent, manganese, cobalt, and It has been found that the above-mentioned disadvantages can be overcome by extracting nickel to obtain a lithium salt aqueous solution, then mixing the lithium salt aqueous solution with an alkali to remove the nickel contained in the lithium salt aqueous solution.
  • the present invention has been completed based on these findings.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization step of neutralizing the solution with lithium hydroxide, and adding lithium hydroxide again to the acid solution to which lithium hydroxide has been added, filtering the precipitate, and using the first lithium salt aqueous solution as the filtrate.
  • the lithium hydroxide re-adding step to obtain a lithium hydroxide aqueous solution, and membrane electrolysis of the first lithium salt aqueous solution using an ion exchange membrane to produce a lithium hydroxide aqueous solution, an acid, and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution.
  • the lithium hydroxide aqueous solution obtained in the membrane electrolysis step is subjected to at least one selected from the group consisting of the neutralization step and the lithium hydroxide re-addition step.
  • a method for recovering lithium from waste lithium ion batteries hereinafter referred to as "the lithium recovery method of the present invention", in which the acid obtained in the membrane electrolysis step is reused as the mineral acid used in the dissolution step. 1).
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization and solid-liquid separation step of neutralizing the solution with lithium hydroxide to separate the resulting insoluble matter and solution A into solid-liquid separation, and adding an organic phosphorus compound extraction solvent to the solution A.
  • a manganese extraction step in which manganese is extracted and separated and a solution B is obtained; a cobalt extraction step in which an organic phosphorus compound extraction solvent is added to the solution B to extract and separate cobalt and a solution C is obtained;
  • a nickel extraction step in which nickel is extracted and separated by adding a compound extraction solvent and a first lithium salt aqueous solution is obtained, and the first lithium salt aqueous solution is subjected to membrane electrolysis using an ion exchange membrane to form a lithium hydroxide aqueous solution.
  • a membrane electrolysis step for obtaining an acid and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution, and the lithium hydroxide aqueous solution obtained in the membrane electrolysis step is subjected to the neutralization and solid-liquid
  • the acid obtained in the membrane electrolysis step is reused in at least one selected from the group consisting of the separation step, the manganese extraction step, the cobalt extraction step, and the nickel extraction step, and the acid obtained in the membrane electrolysis step is used in the dissolution step.
  • the present invention relates to a method for recovering lithium from waste lithium ion batteries (hereinafter sometimes referred to as "lithium recovery method 2 of the present invention"), which is reused as the mineral acid.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization and solid-liquid separation step of neutralizing the solution with lithium hydroxide to separate the resulting insoluble matter and solution A into solid-liquid separation, and adding an organic phosphorus compound extraction solvent to the solution A.
  • a manganese extraction step in which manganese is extracted and separated and a solution D is obtained;
  • a nickel extraction step in which a hydroxyme extraction solvent is added to the solution D to extract and separate nickel and a solution E is obtained; and an organic phosphorus compound is added to the solution E.
  • a cobalt extraction step in which cobalt is extracted and separated by adding an extraction solvent and a first lithium salt aqueous solution is obtained, and the first lithium salt aqueous solution is electrolyzed using an ion exchange membrane to form a lithium hydroxide aqueous solution and an acid and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution.
  • the manganese extraction step, the nickel extraction step, and the cobalt extraction step relates to a method for recovering lithium from waste lithium ion batteries (hereinafter sometimes referred to as "lithium recovery method 3 of the present invention"), which is reused as an acid.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization and solid-liquid separation step of neutralizing the solution with lithium hydroxide to separate the resulting insoluble matter and solution A into solid-liquid separation, and adding an organic amine compound extraction solvent to the solution A.
  • a cobalt extraction step in which cobalt is extracted and separated and a solution F is obtained; a manganese extraction step in which an organic phosphorus compound extraction solvent is added to the solution F to extract and separate manganese and a solution G is obtained;
  • a nickel extraction step in which nickel is extracted and separated by adding a compound extraction solvent and a first lithium salt aqueous solution is obtained, and the first lithium salt aqueous solution is subjected to membrane electrolysis using an ion exchange membrane to form a lithium hydroxide aqueous solution.
  • a membrane electrolysis step for obtaining an acid and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution, and the lithium hydroxide aqueous solution obtained in the membrane electrolysis step is subjected to the neutralization and solid-liquid
  • the acid obtained in the membrane electrolysis step is reused in at least one selected from the group consisting of a separation step, the cobalt extraction step, the manganese extraction step, and the nickel extraction step, and the acid obtained in the membrane electrolysis step is used in the dissolution step.
  • the present invention relates to a method for recovering lithium from waste lithium ion batteries (hereinafter sometimes referred to as "lithium recovery method 4 of the present invention"), which is reused as the mineral acid.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization and solid-liquid separation step of neutralizing the solution with lithium hydroxide to separate the resulting insoluble matter and solution A into solid-liquid separation, and adding an organic amine compound extraction solvent to the solution A.
  • a cobalt extraction step in which cobalt is extracted and separated and a solution H is obtained
  • a nickel extraction step in which a hydroxyme extraction solvent is added to the solution H to extract and separate nickel and a solution I is obtained, and an organic phosphorus compound is added to the solution I.
  • a manganese extraction step of adding an extraction solvent to extract and separate manganese and obtaining a first lithium salt aqueous solution; membrane electrolyzing the first lithium salt aqueous solution using an ion exchange membrane to obtain a lithium hydroxide aqueous solution; a membrane electrolysis step for obtaining an acid and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution, and the lithium hydroxide aqueous solution obtained in the membrane electrolysis step is subjected to the neutralization and solid-liquid separation.
  • the acid obtained in the membrane electrolysis step is recycled in at least one selected from the group consisting of the cobalt extraction step, the nickel extraction step, and the manganese extraction step, and the acid obtained in the membrane electrolysis step is used in the dissolution step.
  • the present invention relates to a method for recovering lithium from waste lithium ion batteries (hereinafter sometimes referred to as "lithium recovery method 5 of the present invention") for reuse as mineral acid.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization and solid-liquid separation step of neutralizing the solution with lithium hydroxide to separate the resulting insoluble matter and solution A into solid-liquid separation, and adding a hydroxyme extraction solvent to the solution A.
  • a nickel extraction step in which nickel is extracted and separated and a solution J is obtained; a manganese extraction step in which an organic phosphorus compound extraction solvent is added to the solution J to extract and separate manganese and a solution K is obtained;
  • a cobalt extraction step of adding an extraction solvent to extract and separate cobalt and obtaining a first lithium salt aqueous solution; membrane electrolyzing the first lithium salt aqueous solution using an ion exchange membrane to obtain a lithium hydroxide aqueous solution; a membrane electrolysis step for obtaining an acid and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution, and the lithium hydroxide aqueous solution obtained in the membrane electrolysis step is subjected to the neutralization and solid-liquid separation.
  • the acid obtained in the membrane electrolysis step is recycled in at least one selected from the group consisting of the nickel extraction step, the manganese extraction step, and the cobalt extraction step, and the acid obtained in the membrane electrolysis step is used in the dissolution step.
  • the present invention relates to a method for recovering lithium from waste lithium ion batteries (hereinafter sometimes referred to as "lithium recovery method 6 of the present invention"), which is reused as mineral acid.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization and solid-liquid separation step of neutralizing the solution with lithium hydroxide to separate the resulting insoluble matter and solution A into solid-liquid separation, and adding a hydroxyme extraction solvent to the solution A.
  • a nickel extraction step in which nickel is extracted and separated and a solution L is obtained, a cobalt extraction step in which an organic amine compound extraction solvent is added to the solution L to extract and separate cobalt and a solution M is obtained, and an organic phosphorus compound is added to the solution M.
  • a manganese extraction step of adding an extraction solvent to extract and separate manganese and obtaining a first lithium salt aqueous solution; membrane electrolyzing the first lithium salt aqueous solution using an ion exchange membrane to obtain a lithium hydroxide aqueous solution; a membrane electrolysis step for obtaining an acid and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution, and the lithium hydroxide aqueous solution obtained in the membrane electrolysis step is subjected to the neutralization and solid-liquid separation.
  • the acid obtained in the membrane electrolysis step is recycled in at least one selected from the group consisting of the nickel extraction step, the cobalt extraction step, and the manganese extraction step, and the acid obtained in the membrane electrolysis step is used in the dissolution step.
  • the present invention relates to a method for recovering lithium from waste lithium ion batteries (hereinafter sometimes referred to as "lithium recovery method 7 of the present invention") for reuse as mineral acid.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization step of neutralizing the solution with lithium hydroxide, and removing at least one metal other than lithium among the metals contained in the active material powder from the acid solution to which lithium hydroxide has been added is removed using an organic solvent.
  • a solvent extraction step of separating by extraction and obtaining a first lithium salt aqueous solution as a residual liquid of the solvent extraction; and a lithium hydroxide aqueous solution by membrane electrolyzing the first lithium salt aqueous solution using an ion exchange membrane; a membrane electrolysis step for obtaining an acid and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution, the lithium hydroxide aqueous solution obtained in the membrane electrolysis step is
  • the acid obtained in the membrane electrolysis step is reused as the mineral acid used in the dissolution step, and the organic solvent is an organic phosphorus compound. , hydroxyme, and an organic amine compound. .
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization step of neutralizing the solution with lithium hydroxide, and a solvent extraction of at least one metal other than lithium among the metals contained in the active material powder from the acid solution to which lithium hydroxide has been added. a solvent extraction step in which a first lithium salt aqueous solution is obtained as a residual liquid of the solvent extraction; and a lithium hydroxide aqueous solution and an acid and a second lithium salt aqueous solution that is more dilute than the first lithium salt aqueous solution.
  • Lithium recovery method 9 of the present invention A method for recovering lithium from waste lithium ion batteries (hereinafter referred to as "Lithium recovery method 9 of the present invention"), which involves mixing the organic solvent and the alkali-containing organic solvent obtained by oil-water separation and the acid solution. ).
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization step of neutralizing the solution with lithium hydroxide, and mixing the acid solution to which lithium hydroxide has been added and sulfide in a pH range of 2 to 6 to form a group consisting of copper, cadmium, lead, and mercury. A metal sulfide removal step of generating at least one metal sulfide selected from and removing the metal sulfide, and removing the metal contained in the active material powder from the acid solution from which the metal sulfide has been removed.
  • a solvent extraction step in which at least one metal other than lithium is separated by solvent extraction to obtain a first aqueous lithium salt solution as a residual liquid of the solvent extraction; a membrane electrolysis step to obtain an aqueous lithium hydroxide solution, an acid, and a second aqueous lithium salt solution that is more dilute than the first aqueous lithium salt solution,
  • the lithium hydroxide aqueous solution is reused in at least one selected from the group consisting of the neutralization step and the solvent extraction step, and the acid obtained in the membrane electrolysis step is used as the ore to be used in the dissolution step.
  • the present invention relates to a method for recovering lithium from waste lithium ion batteries (hereinafter sometimes referred to as "lithium recovery method 10 of the present invention”), which is reused as an acid.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization step of neutralizing the solution with lithium hydroxide, and a solvent extraction of at least one metal other than lithium among the metals contained in the active material powder from the acid solution to which lithium hydroxide has been added.
  • the present invention relates to a method for recovering lithium from waste lithium ion batteries (hereinafter sometimes referred to as "lithium recovery method 11 of the present invention”), which is reused as the mineral acid used in the dissolution step.
  • the present invention is a method for recovering lithium from waste lithium ion batteries, comprising a dissolving step of dissolving active material powder obtained by pretreating the waste lithium ion batteries in mineral acid to obtain a solution; A neutralization step of neutralizing the solution with lithium hydroxide, and a solvent extraction of at least one metal other than lithium among the metals contained in the active material powder from the acid solution to which lithium hydroxide has been added. a solvent extraction step to obtain a first aqueous lithium salt solution as a residual liquid of the solvent extraction, and a step of mixing the first aqueous lithium salt solution with an alkali to remove nickel contained in the first aqueous lithium salt solution.
  • a membrane electrolysis step for obtaining a third lithium salt aqueous solution more dilute than the membrane electrolysis step is at least A method for recovering lithium from waste lithium ion batteries (hereinafter referred to as "the present invention's Lithium Recovery Method 12).
  • the second lithium salt aqueous solution or the third lithium salt aqueous solution is preferably concentrated and added to the first lithium salt aqueous solution or the second lithium salt aqueous solution.
  • the mineral acid preferably includes at least one selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid, and more preferably includes hydrochloric acid.
  • Hydrochloric acid produced by reacting chlorine and hydrogen obtained in the membrane electrolysis step is preferably used as the mineral acid.
  • the electric power used in the membrane electrolysis step preferably includes electric power obtained by renewable energy, and more preferably includes electric power obtained by at least one selected from the group consisting of solar power generation and wind power generation. .
  • FIG. 1 is an explanatory diagram showing the configuration of one embodiment of the lithium recovery method 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing the configuration of one embodiment of lithium recovery methods 2 to 9 of the present invention.
  • FIG. 1 is an explanatory diagram showing the configuration of one embodiment of the lithium recovery method 10 of the present invention.
  • FIG. 1 is an explanatory diagram showing the configuration of one embodiment of the lithium recovery method 11 of the present invention.
  • FIG. 1 is an explanatory diagram showing the configuration of one embodiment of the lithium recovery method 12 of the present invention.
  • 1 is an explanatory cross-sectional view showing the structure of an ion exchange membrane electrolytic cell used in the method of recovering lithium from waste lithium ion batteries according to the present inventions 1 to 12.
  • Embodiments 1 to 12 of the present inventions 1 to 12 will be described in more detail with reference to the accompanying drawings. As shown in FIGS. 1 to 12, each of the lithium recovery methods of Embodiments 1 to 12 uses active material powder 1 as a starting material.
  • active material powder 1 is dissolved in mineral acid to obtain an acid solution of active material powder 1 containing at least lithium.
  • the mineral acid preferably includes at least one acid selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid, more preferably hydrochloric acid, and still more preferably hydrochloric acid.
  • the active material powder 1 contains valuable metals such as iron, aluminum, manganese, cobalt, and nickel.
  • lithium hydroxide LiOH
  • LiOH lithium hydroxide
  • STEP 2 lithium hydroxide
  • Valuable metals in the acid solution for example, at least one selected from the group consisting of manganese, cobalt, and nickel, are removed as precipitates 2, and a first lithium salt aqueous solution can be obtained as a filtrate.
  • the precipitate 2 may be a mixture of hydroxides of the two or more metals, or a mixture of the two or more metals. It may be a hydroxide.
  • the lithium salt contained in the first lithium salt aqueous solution becomes lithium chloride when hydrochloric acid is used in the acid dissolution in STEP 1.
  • the mineral acid in the acid solution is then neutralized by adding lithium hydroxide (LiOH) in STEP 2.
  • LiOH lithium hydroxide
  • the acid solution is neutralized with lithium hydroxide, and solid-liquid separation is performed into the generated insoluble matter and solution A.
  • An organic phosphorus compound extraction solvent is added to the solution A to extract and separate manganese and obtain a solution B (manganese extraction step).
  • An organic phosphorus compound extraction solvent is added to the solution B to extract and separate cobalt and obtain a solution C (cobalt extraction step).
  • An organic phosphorus compound extraction solvent is added to the solution C to extract and separate nickel and obtain a first lithium salt aqueous solution (nickel extraction step).
  • the separation coefficients of these extraction steps are high, that is, the separation of the metals is good in these extraction steps. Furthermore, these extraction steps can be easily controlled by pH.
  • the solvent used in the manganese extraction step, cobalt extraction step, and nickel extraction step is an organic phosphorus compound such as phosphoric acid ester, phosphonic acid ester, phosphinic acid, or phosphine oxide.
  • organic phosphorus compounds are commercially available, such as D2EHPA (di(2-ethylhexyl) phosphate) as an acidic phosphoric acid ester, PC-88A manufactured by Daihachi Kagaku Kogyo Co., Ltd. as a phosphonic acid ester, and Solvay as a phosphinic acid.
  • CYANEX 272 manufactured by Co., Ltd. includes TBP (tributyl phosphate) as a neutral phosphate ester, and tri-n-octylphosphine (TOPO) as a phosphine oxide.
  • D2EHPA is used as an extraction solvent in the manganese extraction process
  • CYANEX272 is used in the cobalt extraction process and nickel extraction process.
  • the pH of CYANEX 272 used in the cobalt extraction process and the nickel extraction process is different.
  • the acid solution to which lithium hydroxide is added is subjected to solid-liquid separation into insoluble matter and solution A.
  • An organic phosphorus compound extraction solvent is added to the solution A to extract and separate manganese, and a solution D is obtained.
  • a hydroxyme extraction solvent is added to the solution D to extract and separate nickel, and a solution E is obtained.
  • An organic phosphorus compound extraction solvent is added to the solution E to extract and separate cobalt and obtain a first lithium salt aqueous solution.
  • the acid solution to which lithium hydroxide is added is subjected to solid-liquid separation into insoluble matter and solution A.
  • An organic amine compound extraction solvent is added to the solution A to extract and separate cobalt, and a solution F is obtained.
  • An organic phosphorus compound extraction solvent is added to the solution F to extract and separate manganese, and a solution G is obtained.
  • An organic phosphorus compound extraction solvent is added to the solution G to extract and separate nickel and obtain a first lithium salt aqueous solution.
  • the acid solution to which lithium hydroxide is added is subjected to solid-liquid separation into insoluble matter and solution A.
  • An organic amine compound extraction solvent is added to the solution A to extract and separate cobalt, and a solution H is obtained.
  • a hydroxyme extraction solvent is added to the solution H to extract and separate nickel, and a solution I is obtained.
  • An organic phosphorus compound extraction solvent is added to the solution I to extract and separate manganese and obtain a first lithium salt aqueous solution.
  • the acid solution to which lithium hydroxide is added is subjected to solid-liquid separation into insoluble matter and solution A.
  • a hydroxyme extraction solvent is added to the solution A to extract and separate nickel and obtain a solution J (nickel extraction step).
  • An organic phosphorus compound extraction solvent is added to the solution J to extract and separate manganese and obtain a solution K (manganese extraction step).
  • An organic phosphorus compound extraction solvent is added to the solution K to extract and separate cobalt and obtain a first lithium salt aqueous solution (cobalt extraction step).
  • Hydroximes include 7-hydroxy-5,8-diethyl-6-dodecanone oxime (LIX-63), 5-dodecyl-2-hydroxybenzaldehyde oxime (LIX 860), and 2-hydroxy-5-nonylbenzophenone oxime (LIX 65N). ), 2-hydroxy-5-nonylacetophenone oxime (SME 529), and 2-hydroxy-5-nonylphenylbenzyl ketone oxime (Acorga P-17).
  • the solvent used in the manganese extraction process and the cobalt extraction process is an organic phosphorus compound such as a phosphoric acid ester, a phosphonic acid ester, a phosphinic acid, or a phosphine oxide.
  • organic phosphorus compounds are commercially available, such as D2EHPA (di(2-ethylhexyl) phosphate) as an acidic phosphoric acid ester, PC-88A manufactured by Daihachi Kagaku Kogyo Co., Ltd. as a phosphonic acid ester, and Solvay as a phosphinic acid.
  • CYANEX 272 manufactured by Co., Ltd. includes TBP (tributyl phosphate) as a neutral phosphate ester, and tri-n-octylphosphine (TOPO) as a phosphine oxide.
  • LIX 860 is used as an extraction solvent in the nickel extraction process
  • D2EHPA is used in the manganese extraction process
  • CYANEX272 is used in the cobalt extraction process.
  • the acid solution to which lithium hydroxide is added is subjected to solid-liquid separation into insoluble matter and solution A.
  • a hydroxyme extraction solvent is added to the solution A to extract and separate nickel and obtain a solution L (nickel extraction step).
  • An organic amine extraction solvent is added to the solution L to extract and separate cobalt and obtain a solution M (cobalt extraction step).
  • An organic phosphorus compound extraction solvent is added to the solution M to extract and separate manganese and obtain a first lithium salt aqueous solution (manganese extraction step).
  • the solvent used in the nickel extraction process is hydroxyme. Hydroximes include 7-hydroxy-5,8-diethyl-6-dodecanone oxime (LIX-63), 5-dodecyl-2-hydroxybenzaldehyde oxime (LIX 860), and 2-hydroxy-5-nonylbenzophenone oxime (LIX 65N). ), 2-hydroxy-5-nonylacetophenone oxime (SME 529), and 2-hydroxy-5-nonylphenylbenzyl ketone oxime (Acorga P-17).
  • the solvent used in the cobalt extraction process is an organic amine compound.
  • organic amine compounds examples include Primene (registered trademark) JM-T manufactured by Dow Chemical Co., which is a primary amine, Amberlite (registered trademark) LA-2 manufactured by Sigma-Aldrich Company which is a secondary amine, and tertiary amine.
  • Examples include Alamine 336 (trioctylamine) manufactured by Sigma-Aldrich Co., Ltd., and Aliquat (registered trademark) 336 manufactured by Sigma-Aldrich Co., which is a quaternary ammonium salt.
  • the solvent used in the manganese extraction process is an organic phosphorus compound such as phosphoric acid ester, phosphonic acid ester, phosphinic acid, or phosphine oxide.
  • organic phosphorus compounds are commercially available, such as D2EHPA (di(2-ethylhexyl) phosphate) as an acidic phosphoric acid ester, PC-88A manufactured by Daihachi Kagaku Kogyo Co., Ltd. as a phosphonic acid ester, and Solvay as a phosphinic acid.
  • CYANEX 272 manufactured by Co., Ltd. includes TBP (tributyl phosphate) as a neutral phosphate ester, and tri-n-octylphosphine (TOPO) as a phosphine oxide.
  • LIX 860 is used as an extraction solvent in the nickel extraction process
  • trioctylamine is used in the cobalt extraction process
  • CYANEX 272 is used in the manganese extraction process.
  • lithium hydroxide LiOH
  • the acid solution after neutralization is then subjected to organic solvent extraction in STEP3.
  • organic solvent extraction among the valuable metals, manganese, cobalt, and nickel, excluding lithium, are extracted with an organic solvent separately, or iron and aluminum are separated and removed as the respective metal sulfate aqueous solutions 2, and the first A lithium salt aqueous solution can be obtained.
  • the lithium salt contained in the first lithium salt aqueous solution becomes lithium chloride when hydrochloric acid is used in the acid dissolution in STEP 1.
  • the organic solvent is at least one selected from the group consisting of organic phosphorus compounds such as phosphoric acid esters, phosphonic acid esters, phosphinic acids, and phosphine oxides, hydroxymes, and organic amine compounds.
  • the organic solvent preferably does not contain reducing agents and oxidizing agents.
  • organic solvent does not contain an oxidizing agent, metals, especially manganese, contained in the acid solution after neutralization will not precipitate and cause pipe clogging. Furthermore, the problem that the organic solvent is degraded by an oxidizing agent does not occur.
  • Organic phosphorus compounds are commercially available; for example, D2EHPA (di(2-ethylhexyl) phosphate) is an acidic phosphoric acid ester, PC-88A (manufactured by Daihachi Kagaku Kogyo Co., Ltd.) is a phosphonic acid ester, and PC-88A (manufactured by Solvay) is a phosphonic acid ester.
  • Examples of CYANEX272 include TBP (tributyl phosphate) as a neutral phosphate ester, and tri-n-octylphosphine (TOPO) as an oxidized phosphine.
  • Hydroximes include 7-hydroxy-5,8-diethyl-6-dodecanone oxime (LIX-63), 5-dodecyl-2-hydroxybenzaldehyde oxime (LIX 860), and 2-hydroxy-5-nonylbenzophenone oxime (LIX 65N). ), 2-hydroxy-5-nonylacetophenone oxime (SME 529), and 2-hydroxy-5-nonylphenylbenzyl ketone oxime (Acorga P-17).
  • organic amine compounds examples include Primene (registered trademark) JM-T manufactured by Dow Chemical Co., which is a primary amine, Amberlite (registered trademark) LA-2 manufactured by Sigma-Aldrich Company which is a secondary amine, and tertiary amine.
  • Examples include Alamine 336 (trioctylamine) manufactured by Sigma-Aldrich Co., Ltd., and Aliquat (registered trademark) 336 manufactured by Sigma-Aldrich Co., which is a quaternary ammonium salt.
  • lithium hydroxide LiOH
  • the acid solution after neutralization is then subjected to solvent extraction in STEP3.
  • solvent extraction among the valuable metals, manganese, cobalt, and nickel, excluding lithium, are individually solvent extracted, or iron and aluminum are separated and removed as an aqueous solution 2 of each metal sulfate, and the first lithium salt is extracted. Aqueous solutions can be obtained.
  • the lithium salt contained in the first lithium salt aqueous solution becomes lithium chloride when hydrochloric acid is used in the acid dissolution in STEP 1.
  • an aqueous alkali solution and the organic solvent are mixed, and then the alkali-containing organic solvent obtained by oil-water separation is mixed with the acid solution.
  • the mineral acid is neutralized by adding lithium hydroxide (LiOH) to the acid solution in STEP 2A.
  • the acid solution after the neutralization is then mixed with sulfide in a pH range of 2 to 6 in STEP 2B to generate a sulfide of at least one metal selected from the group consisting of copper, cadmium, lead, and mercury.
  • the metal sulfide is removed.
  • the sulfide to be mixed with the acid solution include hydrogen sulfide gas, sodium hydrosulfide, and sodium sulfide.
  • the acid solution from which the metal sulfide has been removed is subjected to solvent extraction in STEP 3.
  • solvent extraction among the valuable metals, manganese, cobalt, and nickel, excluding lithium, are individually solvent extracted, or iron and aluminum are separated and removed as an aqueous solution 2 of each metal sulfate, and the first lithium salt is extracted.
  • Aqueous solutions can be obtained.
  • the lithium salt contained in the first lithium salt aqueous solution becomes lithium chloride when hydrochloric acid is used in the acid dissolution in STEP 1.
  • lithium hydroxide LiOH
  • the acid solution after neutralization is then subjected to solvent extraction in STEP3.
  • solvent extraction among the valuable metals, manganese, cobalt, and nickel, excluding lithium, are individually solvent extracted, or iron and aluminum are separated and removed as an aqueous solution 2 of each metal sulfate, and the first lithium salt is extracted. Aqueous solutions can be obtained.
  • the first lithium salt aqueous solution and an alkali are mixed, the pH of the aqueous solution is preferably adjusted to 8 to 14, more preferably 10 to 12, and a trace amount of nickel contained in the first lithium salt aqueous solution is hydroxylated. It is removed as nickel to obtain a second lithium salt aqueous solution.
  • the alkali mixed with the first lithium salt aqueous solution preferably contains at least one selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and francium, and more preferably contains lithium, sodium, and potassium. It contains at least one kind selected from the group consisting of lithium, more preferably at least one kind selected from the group consisting of lithium, sodium, and potassium, and particularly preferably lithium.
  • the alkali may be a solid or an aqueous solution.
  • Nickel hydroxide is separated from the second lithium salt aqueous solution in a solid-liquid separation process such as filtration.
  • a flocculant may be used in the solid-liquid separation process of nickel hydroxide.
  • the lithium salt contained in the second lithium salt aqueous solution becomes lithium chloride when hydrochloric acid is used in the acid dissolution in STEP 1.
  • a trace amount of nickel contained in the first lithium salt aqueous solution is removed as nickel hydroxide, so nickel is not accumulated.
  • step 4 the second lithium salt aqueous solution is subjected to membrane electrolysis using an ion exchange membrane.
  • the membrane electrolysis in step 4 can be performed using, for example, an electrolytic cell 11 shown in FIG. 6.
  • the electrolytic cell 11 is equipped with an anode plate 12 on one inner surface, and a cathode plate 13 on the inner surface opposite to the anode plate 12, the anode plate 12 is connected to the anode 14 of the power source, and the cathode plate 13 is connected to the cathode of the power source. 15. Further, the electrolytic cell 11 is divided by an ion exchange membrane 16 into an anode chamber 17 including an anode plate 12 and a cathode chamber 18 including a cathode plate 13.
  • chloride ions generate chlorine gas (Cl 2 ) on the anode plate 12, while lithium Ions move to the cathode chamber 18 via the ion exchange membrane 16.
  • water (H 2 O) is ionized into hydroxide ions (OH ⁇ ) and hydrogen ions (H + ), and the hydrogen ions generate hydrogen gas (H 2 ) on the cathode plate 13.
  • the hydroxide ions combine with lithium to produce an aqueous lithium hydroxide solution 3.
  • the electric power used in the membrane electrolysis step preferably includes electric power obtained by renewable energy, and more preferably includes electric power obtained by at least one selected from the group consisting of solar power generation and wind power generation.
  • hydrochloric acid as the mineral acid 4 can be obtained by reacting hydrogen gas (H 2 ) generated by the membrane electrolysis with chlorine gas (Cl 2 ), and the mineral acid 4 is It can be used to dissolve the active material powder 1 in STEP 1.
  • the lithium hydroxide aqueous solution 3 obtained by the membrane electrolysis can be recovered as lithium hydroxide monohydrate (LiOH.H 2 O) by crystallization in STEP 5, and lithium carbonate can be recovered by carbonation in STEP 6. It can also be recovered as (Li 2 CO 3 ).
  • the carbonation can be performed by reacting the lithium hydroxide aqueous solution 3 with carbon dioxide gas (CO 2 ).
  • At least one part of the lithium salt aqueous solution is carbonated in STEP 8, and lithium carbonate 7 is separated by a solid-liquid separation process such as filtration. The filtrate separated from the lithium carbonate 7 is discarded. Therefore, in the lithium recovery method 11 of the present invention, impurities contained in the lithium hydroxide aqueous solution 3 and at least one ion selected from the group consisting of sodium ions and sulfate ions contained in the second lithium salt aqueous solution, etc. impurities are not accumulated but are reduced.
  • the lithium hydroxide aqueous solution 3 is used for solvent extraction in STEP 3
  • the lithium hydroxide aqueous solution 3 is added to the extraction solvent.
  • the extraction solvent used for solvent extraction in STEP 3 is a cation-exchange extractant, so if it is used continuously, the liquid will become more acidic and the extraction rate will decrease, but by adding lithium hydroxide aqueous solution 3, the extraction It is possible to suppress a decrease in the rate.
  • the lithium hydroxide aqueous solution 3 when used for solvent extraction in STEP 3, the lithium hydroxide aqueous solution 3 can be used for at least one of the solvent extractions of manganese, cobalt, and nickel, which are performed separately.
  • the third lithium salt aqueous solution is concentrated in STEP 7 and added to the first lithium salt aqueous solution. Concentration in STEP 7 can be performed using, for example, a reverse osmosis membrane (RO membrane).
  • RO membrane reverse osmosis membrane
  • Embodiments 1 to 12 since no alkaline source other than lithium is supplied, a highly concentrated lithium salt aqueous solution can be obtained. Furthermore, in Embodiments 1 to 12, lithium hydroxide can be obtained by electrolyzing the highly concentrated lithium salt aqueous solution, so the recovery rate of lithium can be improved. Furthermore, in Embodiments 1 to 12, since there is no unnecessary alkali source other than lithium, lithium hydroxide obtained by electrolysis and electrolysis can be returned to the process as it is, making it possible to recycle resources.
  • Active material powder 2... Metal sulfate aqueous solution, 3... Lithium hydroxide aqueous solution, 4... Mineral acid, 11... Electrolytic cell, 16... Ion exchange membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Processing Of Solid Wastes (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本発明は、高い回収率でリチウムを回収でき、資源循環が可能である廃リチウムイオン電池から有価金属を回収する方法を提供する。廃リチウムイオン電池からリチウムを回収する方法が、この廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、この溶解液を水酸化リチウムで中和する中和工程と、水酸化リチウムを添加した該酸溶解液に水酸化リチウムを再度添加して析出物を濾過し、濾液として第1のリチウム塩水溶液を得る水酸化リチウム再添加工程と、この第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、この第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、この膜電解工程で得られるこの水酸化リチウム水溶液を、この中和工程、及びこの水酸化リチウム再添加工程からなる群から選ばれる少なくとも1つで再利用し、この膜電解工程で得られるこの酸を、この溶解工程で使用される該鉱酸として再利用する。

Description

廃リチウムイオン電池からリチウムを回収する方法
 本発明は、廃リチウムイオン電池からリチウムを回収する方法に関する。
 近年、リチウムイオン電池の普及に伴い、廃リチウムイオン電池からコバルト、ニッケル、マンガン、リチウム等の有価金属を回収し、前記リチウムイオン電池の材料として再利用する方法が検討されている。
 従来、前記廃リチウムイオン電池から前記有価金属を回収する際には、前記廃リチウムイオン電池を加熱処理(焙焼)に付し、又は加熱処理に付さずに、粉砕、分級する等して得られた前記有価金属を含む粉末(以下、活物質粉という)からコバルト、ニッケル、マンガン、リチウムを湿式プロセスにて分離精製することが行われている(例えば、特許文献1、2参照)。
 なお、本願において、廃リチウムイオン電池とは、電池製品としての寿命が消尽した使用済みのリチウムイオン電池、製造工程で不良品等として廃棄されたリチウムイオン電池、製造工程において製品化に用いられた残余の正極及び負極材料等を意味する。
特許第6835820号公報 特許第6869444号公報
 しかしながら、前記従来の湿式プロセスでは、アルカリ源として回収目的物であるリチウム化合物以外の化合物を使用しているため、リチウム以外の陽イオン濃度が高くなり、同時にリチウムイオン濃度が低下する。この結果、前記従来の湿式プロセスでは、目的物であるリチウムの回収率が著しく低下し、また、アルカリ源として用いたリチウム化合物以外の化合物は、塩として排出されてしまい、資源循環することができないという不都合がある。ここで、前記リチウム化合物以外の化合物としては、水酸化ナトリウム、炭酸ナトリウム、アンモニア等を挙げることができる。
 本発明は、かかる不都合を解消して、高い回収率でリチウムを回収することができ、資源循環が可能である廃リチウムイオン電池から有価金属を回収する方法を提供することを目的とする。
 本発明者らは前記課題に鑑み検討を重ね、廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を水酸化リチウムで中和し、水酸化リチウムを再度添加して析出物を濾過し、濾液として第1のリチウム塩水溶液を得ると、前記不都合を解消できることを見出した。
 本発明者らは、前記活物質粉を鉱酸中に溶解して溶解液を水酸化リチウムで中和し、次いで固液分離して得られる溶液から、特定の複数の有機溶媒を用いて、マンガン、コバルト、及びニッケルを特定の順番で抽出すると、前記不都合を解消できることを見出した。
 本発明者らは、前記活物質粉を鉱酸中に溶解して溶解液を水酸化リチウムで中和し、次いで固液分離して得られる溶液から、特定の有機溶媒を用いて、マンガン、コバルト、及びニッケルを抽出すると、前記不都合を解消できることを見出した。
 本発明者らは、前記活物質粉を鉱酸中に溶解して溶解液を水酸化リチウムで中和し、次いで固液分離して得られる溶液から有機溶媒を用いて、マンガン、コバルト、及びニッケルを抽出する際、アルカリ水溶液と該有機溶媒を混合し、次いで油水分離して得られるアルカリ含有有機溶媒と該酸溶解液を混合すると、前記不都合を解消できることを見出した。
 本発明者らは、前記活物質粉を鉱酸中に溶解して溶解液を水酸化リチウムで中和し、次いで硫化物を添加して金属硫化物を除去すると、前記不都合を解消できることを見出した。
 本発明者らは、膜電解工程で得られた水酸化リチウム水溶液及びリチウム塩水溶液を炭酸化すると、前記不都合を解消できることを見出した。
 本発明者らは、前記活物質粉を鉱酸中に溶解して溶解液を水酸化リチウムで中和し、次いで固液分離して得られる溶液から有機溶媒を用いて、マンガン、コバルト、及びニッケルを抽出してリチウム塩水溶液を得、その後該リチウム塩水溶液とアルカリを混合し、該リチウム塩水溶液に含まれるニッケルを除去すると、前記不都合を解消できることを見出した。
 本発明はこれらの知見に基づき完成されるに至ったものである。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
 該溶解液を水酸化リチウムで中和する中和工程と、水酸化リチウムを添加した該酸溶解液に水酸化リチウムを再度添加して析出物を濾過し、濾液として第1のリチウム塩水溶液を得る水酸化リチウム再添加工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該水酸化リチウム再添加工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法1」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、該溶液Aに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Bを得るマンガン抽出工程と、該溶液Bに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Cを得るコバルト抽出工程と、該溶液Cに有機リン化合物抽出溶媒を添加してニッケルを抽出分離すると共に第1のリチウム塩水溶液を得るニッケル抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該マンガン抽出工程、該コバルト抽出工程、及び該ニッケル抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法2」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、該溶液Aに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Dを得るマンガン抽出工程と、該溶液Dにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Eを得るニッケル抽出工程と、該溶液Eに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に第1のリチウム塩水溶液を得るコバルト抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該マンガン抽出工程、該ニッケル抽出工程、及び該コバルト抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法3」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、該溶液Aに有機アミン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Fを得るコバルト抽出工程と、該溶液Fに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Gを得るマンガン抽出工程と、該溶液Gに有機リン化合物抽出溶媒を添加してニッケルを抽出分離すると共に第1のリチウム塩水溶液を得るニッケル抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該コバルト抽出工程、該マンガン抽出工程、及び該ニッケル抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法4」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、該溶液Aに有機アミン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Hを得るコバルト抽出工程と、該溶液Hにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Iを得るニッケル抽出工程と、該溶液Iに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に第1のリチウム塩水溶液を得るマンガン抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該コバルト抽出工程、該ニッケル抽出工程、及び該マンガン抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法5」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、該溶液Aにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Jを得るニッケル抽出工程と、該溶液Jに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Kを得るマンガン抽出工程と、該溶液Kに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に第1のリチウム塩水溶液を得るコバルト抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該ニッケル抽出工程、該マンガン抽出工程、及び該コバルト抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法6」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、該溶液Aにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Lを得るニッケル抽出工程と、該溶液Lに有機アミン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Mを得るコバルト抽出工程と、該溶液Mに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に第1のリチウム塩水溶液を得るマンガン抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該ニッケル抽出工程、該コバルト抽出工程、及び該マンガン抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法7」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和する中和工程と、水酸化リチウムを添加した該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を有機溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用し、該有機溶媒が有機リン化合物、ヒドロオキシム、及び有機アミン化合物からなる群から選択される少なくとも1つである、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法8」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和する中和工程と、水酸化リチウムを添加した該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用し、該溶媒抽出工程において、アルカリ水溶液と該有機溶媒を混合し、次いで油水分離して得られるアルカリ含有有機溶媒と該酸溶解液を混合する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法9」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和する中和工程と、水酸化リチウムを添加した該酸溶解液と硫化物を、pH2~6の範囲で混合し、銅、カドミウム、鉛、水銀からなる群から選ばれる少なくとも1つの金属の硫化物を生成させ、該金属硫化物を除去する金属硫化物除去工程と、該金属硫化物が除去された該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法10」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和する中和工程と、水酸化リチウムを添加した該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程と、該水酸化リチウム水溶液及び該第2のリチウム塩水溶液を炭酸化する炭酸化工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法11」と称する場合がある)に関する。
 本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、該溶解液を水酸化リチウムで中和する中和工程と、水酸化リチウムを添加した該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、該第1のリチウム塩水溶液とアルカリを混合し、該第1のリチウム塩水溶液に含まれるニッケルを除去し、第2のリチウム塩水溶液を得るニッケル除去工程と、該第2のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第2のリチウム塩水溶液よりも希薄な第3のリチウム塩水溶液とを得る膜電解工程を含み、該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法(以下、「本発明のリチウム回収方法12」と称する場合がある)に関する。
 前記第2のリチウム塩水溶液又は前記第3のリチウム塩水溶液は、好ましくは濃縮され、前記第1のリチウム塩水溶液又は前記第2のリチウム塩水溶液に添加される。
 前記鉱酸は、好ましくは、塩酸、硫酸、及び硝酸からなる群から選択される少なくとも1種を含み、より好ましくは塩酸を含む。
 前記膜電解工程で得られる塩素と水素が反応させられて生成された塩酸は、好ましくは前記鉱酸として用いられる。
 前記膜電解工程で用いられる電力は、好ましくは再生可能エネルギーによって得られた電力を含み、より好ましくは太陽光発電、及び風力発電からなる群から選択される少なくとも1つによって得られた電力を含む。
本発明のリチウム回収方法1の1実施形態の構成を示す説明図。 本発明のリチウム回収方法2~9の1実施形態の構成を示す説明図。 本発明のリチウム回収方法10の1実施形態の構成を示す説明図。 本発明のリチウム回収方法11の1実施形態の構成を示す説明図。 本発明のリチウム回収方法12の1実施形態の構成を示す説明図。 本発明1~12の廃リチウムイオン電池からリチウムを回収する方法に用いるイオン交換膜電解槽の構造を示す説明的断面図。
 本発明について更に詳細に説明する。
 なお、数値範囲の「~」は、断りがなければ、以上から以下を表し、両端の数値をいずれも含む。また、数値範囲を示したときは、上限値および下限値を適宜組み合わせることができ、それにより得られた数値範囲も開示したものとする。
 さらに図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 添付の図面を参照しながら本発明1~12のそれぞれの実施形態1~12について更に詳しく説明する。
 図1~12のそれぞれに示すように、本実施形態1~12のそれぞれのリチウム回収方法は、活物質粉1を出発物質とする。
 本実施形態1~12では、次に、STEP1で活物質粉1を鉱酸に溶解して、少なくともリチウムを含む活物質粉1の酸溶解液を得る。前記鉱酸は、好ましくは、塩酸、硫酸、硝酸からなる群から選択される少なくとも1種の酸を含み、より好ましくは塩酸を含み、更に好ましくは塩酸である。活物質粉1は、前記リチウムの他に、鉄、アルミニウム、マンガン、コバルト、ニッケル等の有価金属を含んでいる。
 本発明のリチウム回収方法1(図1)では、前記酸溶解液は、次に、STEP2で水酸化リチウム(LiOH)が添加されることにより前記鉱酸が中和される。前記中和後の前記酸溶解液には、次に、STEP3で再度水酸化リチウムが添加される。前記酸溶解液中の有価金属、例えばマンガン、コバルト、及びニッケルからなる群から選ばれる少なくとも1種が析出物2として除去され、濾液として第1のリチウム塩水溶液を得ることができる。前記有価金属として2種以上の金属が前記酸溶解液に含まれる場合、前記析出物2は、2種以上の金属それぞれの水酸化物の混合物であってもよく、2種以上の金属の混合物の水酸化物であってもよい。前記第1のリチウム塩水溶液に含まれるリチウム塩は、STEP1の酸溶解で塩酸を用いた場合には塩化リチウムとなる。
 前記各有価金属を中和し水酸化物として回収する場合、アルカリ源としては、水酸化ナトリウム、炭酸ナトリウム、アンモニア等を使用するが、本発明1においては、アルカリ源に水酸化リチウムを使用することでリチウム回収率を上げることができる。
 本発明のリチウム回収方法2~7(図2~7)では、前記酸溶解液は、次に、STEP2で水酸化リチウム(LiOH)が添加されることにより前記鉱酸が中和される。
 本発明のリチウム回収方法2(図2)では、前記酸溶解液が水酸化リチウムで中和され、生成する不溶解物と溶液Aに固液分離される。前記溶液Aに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Bを得る(マンガン抽出工程)。前記溶液Bに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Cを得る(コバルト抽出工程)。前記溶液Cに有機リン化合物抽出溶媒を添加してニッケルを抽出分離すると共に第1のリチウム塩水溶液を得る(ニッケル抽出工程)。これらの抽出工程の分離係数は高い、すなわちこれらの抽出工程において前記各金属の分離性がよい。さらにこれらの抽出工程をpHにより簡単に管理できる。
 マンガン抽出工程、コバルト抽出工程、及びニッケル抽出工程において使用される溶媒はリン酸エステル、ホスホン酸エステル、ホスフィン酸、酸化ホスフィン等の有機リン化合物である。これらの有機リン化合物は市販されており、例えば酸性リン酸エステルとしてD2EHPA(リン酸ジ(2-エチルヘキシル))が、ホスホン酸エステルとして第八化学工業株式会社製PC-88Aが、ホスフィン酸としてSolvay社製CYANEX272が、中性リン酸エステルとしてTBP(リン酸トリブチル)が、酸化ホスフィンとしてトリーn-オクチルホスフィン(TOPO)が挙げられる。
 例えばマンガン抽出工程においてD2EHPAが、コバルト抽出工程及びニッケル抽出工程においてCYANEX272が抽出溶媒として使用される。コバルト抽出工程及びニッケル抽出工程において使用されるCYANEX272のpHは異なる。
 本発明のリチウム回収方法3(図2)では、水酸化リチウムを添加した前記酸溶解液から、不溶解物と溶液Aに固液分離する。該溶液Aに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Dを得る。該溶液Dにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Eを得る。該溶液Eに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に第1のリチウム塩水溶液を得る。
 本発明のリチウム回収方法4(図2)では、水酸化リチウムを添加した前記酸溶解液から、不溶解物と溶液Aに固液分離する。前記溶液Aに有機アミン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Fを得る。前記溶液Fに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Gを得る。前記溶液Gに有機リン化合物抽出溶媒を添加してニッケルを抽出分離すると共に第1のリチウム塩水溶液を得る。
 本発明のリチウム回収方法5(図2)では、水酸化リチウムを添加した前記酸溶解液から、不溶解物と溶液Aに固液分離する。該溶液Aに有機アミン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Hを得る。該溶液Hにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Iを得る。該溶液Iに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に第1のリチウム塩水溶液を得る。
 本発明のリチウム回収方法6(図2)では、水酸化リチウムを添加した前記酸溶解液から、不溶解物と溶液Aに固液分離する。前記溶液Aにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Jを得る(ニッケル抽出工程)。前記溶液Jに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Kを得る(マンガン抽出工程)。前記溶液Kに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に第1のリチウム塩水溶液を得る(コバルト抽出工程)。
 ニッケル抽出工程において使用される溶媒はヒドロオキシムである。ヒドロオキシムとして7-ヒドロキシ-5,8-ジエチル-6-ドデカノンオキシム(LIX-63)、5-ドデシル-2-ヒドロキシベンズアルデヒドオキシム(LIX 860)、2-ヒドロキシ-5-ノニルベンゾフェノンオキシム(LIX 65N)、2-ヒドロキシ-5-ノニルアセトフェノンオキシム(SME 529)、2-ヒドロキシ-5-ノニルフェニルベンジルケトンオキシム(Acorga P-17)等が挙げられる。マンガン抽出工程及びコバルト抽出工程において使用される溶媒はリン酸エステル、ホスホン酸エステル、ホスフィン酸、酸化ホスフィン等の有機リン化合物である。これらの有機リン化合物は市販されており、例えば酸性リン酸エステルとしてD2EHPA(リン酸ジ(2-エチルヘキシル))が、ホスホン酸エステルとして第八化学工業株式会社製PC-88Aが、ホスフィン酸としてSolvay社製CYANEX272が、中性リン酸エステルとしてTBP(リン酸トリブチル)が、酸化ホスフィンとしてトリーn-オクチルホスフィン(TOPO)が挙げられる。
 例えばニッケル抽出工程においてLIX 860が、マンガン抽出工程においてD2EHPAが、コバルト抽出工程においてCYANEX272が抽出溶媒として使用される。
 本発明のリチウム回収方法7(図2)では、水酸化リチウムを添加した前記酸溶解液から、不溶解物と溶液Aに固液分離する。前記溶液Aにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Lを得る(ニッケル抽出工程)。前記溶液Lに有機アミン抽出溶媒を添加してコバルトを抽出分離すると共に溶液Mを得る(コバルト抽出工程)。前記溶液Mに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に第1のリチウム塩水溶液を得る(マンガン抽出工程)。
 ニッケル抽出工程において使用される溶媒はヒドロオキシムである。ヒドロオキシムとして7-ヒドロキシ-5,8-ジエチル-6-ドデカノンオキシム(LIX-63)、5-ドデシル-2-ヒドロキシベンズアルデヒドオキシム(LIX 860)、2-ヒドロキシ-5-ノニルベンゾフェノンオキシム(LIX 65N)、2-ヒドロキシ-5-ノニルアセトフェノンオキシム(SME 529)、2-ヒドロキシ-5-ノニルフェニルベンジルケトンオキシム(Acorga P-17)等が挙げられる。コバルト抽出工程で使用される溶媒は有機アミン化合物である。有機アミン化合物として、例えば第1級アミンであるダウ・ケミカル社製Primene(登録商標)JM-T、第2級アミンであるSigma-Aldrich社製Amberlite(登録商標)LA-2、第3級アミンであるSigma-Aldrich社製Alamine 336(トリオクチルアミン)、第4級アンモニウム塩であるSigma-Aldrich社製Aliquat(登録商標) 336等が挙げられる。マンガン抽出工程において使用される溶媒はリン酸エステル、ホスホン酸エステル、ホスフィン酸、酸化ホスフィン等の有機リン化合物である。これらの有機リン化合物は市販されており、例えば酸性リン酸エステルとしてD2EHPA(リン酸ジ(2-エチルヘキシル))が、ホスホン酸エステルとして第八化学工業株式会社製PC-88Aが、ホスフィン酸としてSolvay社製CYANEX272が、中性リン酸エステルとしてTBP(リン酸トリブチル)が、酸化ホスフィンとしてトリーn-オクチルホスフィン(TOPO)が挙げられる。
 例えばニッケル抽出工程においてLIX 860が、コバルト抽出工程においてトリオクチルアミン、マンガン抽出工程においてCYANEX272が抽出溶媒として使用される。
 本発明のリチウム回収方法8(図2)では、前記酸溶解液は、次に、STEP2で水酸化リチウム(LiOH)が添加されることにより前記鉱酸が中和される。前記中和後の前記酸溶解液は、次に、STEP3で有機溶媒抽出に供せられる。前記有機溶媒抽出では、前記有価金属のうち、リチウムを除く、マンガン、コバルト、ニッケルが各別に有機溶媒抽出され、あるいは鉄、アルミニウムが分離されそれぞれの金属硫酸塩水溶液2として除去され、第1のリチウム塩水溶液を得ることができる。前記第1のリチウム塩水溶液に含まれるリチウム塩は、STEP1の酸溶解で塩酸を用いた場合には塩化リチウムとなる。前記有機溶媒はリン酸エステル、ホスホン酸エステル、ホスフィン酸、酸化ホスフィン等の有機リン化合物、ヒドロオキシム、及び有機アミン化合物からなる群から選択される少なくとも1種である。前記有機溶媒は、好ましくは還元剤及び酸化剤を含まない。
 前記有機溶媒が酸化剤を含まない場合、前記中和後の前記酸溶解液に含まれる金属、特にマンガンが析出し、配管詰まりが発生したりしない。さらに前記有機溶媒が酸化剤により劣化されるという問題も発生しない。
 有機リン化合物は市販されており、例えば酸性リン酸エステルとしてD2EHPA(リン酸ジ(2-エチルヘキシル))が、ホスホン酸エステルとして第八化学工業株式会社製PC-88Aが、ホスフィン酸としてSolvay社製CYANEX272が、中性リン酸エステルとしてTBP(リン酸トリブチル)が、酸化ホスフィンとしてトリーn-オクチルホスフィン(TOPO)が挙げられる。ヒドロオキシムとして7-ヒドロキシ-5,8-ジエチル-6-ドデカノンオキシム(LIX-63)、5-ドデシル-2-ヒドロキシベンズアルデヒドオキシム(LIX 860)、2-ヒドロキシ-5-ノニルベンゾフェノンオキシム(LIX 65N)、2-ヒドロキシ-5-ノニルアセトフェノンオキシム(SME 529)、2-ヒドロキシ-5-ノニルフェニルベンジルケトンオキシム(Acorga P-17)等が挙げられる。有機アミン化合物として、例えば第1級アミンであるダウ・ケミカル社製Primene(登録商標)JM-T、第2級アミンであるSigma-Aldrich社製Amberlite(登録商標)LA-2、第3級アミンであるSigma-Aldrich社製Alamine 336(トリオクチルアミン)、第4級アンモニウム塩であるSigma-Aldrich社製Aliquat(登録商標) 336等が挙げられる。
 本発明のリチウム回収方法9(図2)では、前記酸溶解液は、次に、STEP2で水酸化リチウム(LiOH)が添加されることにより前記鉱酸が中和される。前記中和後の前記酸溶解液は、次に、STEP3で溶媒抽出に供せられる。前記溶媒抽出では、前記有価金属のうち、リチウムを除く、マンガン、コバルト、ニッケルが各別に溶媒抽出され、あるいは鉄、アルミニウムが分離されそれぞれの金属硫酸塩水溶液2として除去され、第1のリチウム塩水溶液を得ることができる。前記第1のリチウム塩水溶液に含まれるリチウム塩は、STEP1の酸溶解で塩酸を用いた場合には塩化リチウムとなる。該抽出工程において、アルカリ水溶液と該有機溶媒を混合し、次いで油水分離して得られるアルカリ含有有機溶媒と該酸溶解液を混合する。
 本発明のリチウム回収方法10(図3)では、前記酸溶解液は、次に、STEP2Aで水酸化リチウム(LiOH)が添加されることにより前記鉱酸が中和される。前記中和後の前記酸溶解液は、次にSTEP2Bで硫化物と、pH2~6の範囲で混合され、銅、カドミウム、鉛、水銀からなる群から選ばれる少なくとも1つの金属の硫化物が生成され、該金属硫化物が除去される。前記酸溶解液と混合される硫化物として、例えば硫化水素ガス、水硫化ナトリウム、硫化ナトリウム等が挙げられる。
 前記金属硫化物が除去された前記酸溶解液は、STEP3で溶媒抽出に供せられる。前記溶媒抽出では、前記有価金属のうち、リチウムを除く、マンガン、コバルト、ニッケルが各別に溶媒抽出され、あるいは鉄、アルミニウムが分離されそれぞれの金属硫酸塩水溶液2として除去され、第1のリチウム塩水溶液を得ることができる。前記第1のリチウム塩水溶液に含まれるリチウム塩は、STEP1の酸溶解で塩酸を用いた場合には塩化リチウムとなる。
 本発明のリチウム回収方法12(図5)では、前記酸溶解液は、次に、STEP2で水酸化リチウム(LiOH)が添加されることにより前記鉱酸が中和される。前記中和後の前記酸溶解液は、次に、STEP3で溶媒抽出に供せられる。前記溶媒抽出では、前記有価金属のうち、リチウムを除く、マンガン、コバルト、ニッケルが各別に溶媒抽出され、あるいは鉄、アルミニウムが分離されそれぞれの金属硫酸塩水溶液2として除去され、第1のリチウム塩水溶液を得ることができる。
 前記第1のリチウム塩水溶液とアルカリが混合され、当該水溶液のpHが好ましくは8~14、より好ましくは10~12に調整され、前記第1のリチウム塩水溶液に含まれる微量のニッケルが水酸化ニッケルとして除去され、第2のリチウム塩水溶液が得られる。前記第1のリチウム塩水溶液と混合されるアルカリは、好ましくはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムからなる群から選択される少なくとも1種を含み、より好ましくはリチウム、ナトリウム、カリウムからなる群から選択される少なくとも1種を含み、更に好ましくはリチウム、ナトリウム、カリウムからなる群から選択される少なくとも1種であり、特に好ましくはリチウムである。前記アルカリは固体であっても、水溶液であってもよい。水酸化ニッケルは濾過等の固液分離工程で第2のリチウム塩水溶液と分離される。水酸化ニッケルの固液分離工程において、凝集剤が使用されてもよい。前記第2のリチウム塩水溶液に含まれるリチウム塩は、STEP1の酸溶解で塩酸を用いた場合には塩化リチウムとなる。本発明のリチウム回収方法12では、前記第1のリチウム塩水溶液に含まれる微量のニッケルが水酸化ニッケルとして除去されるから、ニッケルは蓄積されない。
 本実施形態1~12の回収方法では、次に、ステップ4でイオン交換膜を用いて、前記第2のリチウム塩水溶液を膜電解する。前記ステップ4の膜電解は、例えば、図6に示す電解槽11を用いて行うことができる。
 電解槽11は、一方の内側面に陽極板12を備え、陽極板12と対向する内側面に陰極板13を備え、陽極板12は電源の陽極14に接続され、陰極板13は電源の陰極15に接続されている。また、電解槽11は、イオン交換膜16により、陽極板12を備える陽極室17と、陰極板13を備える陰極室18とに区画されている。
 電解槽11では、陽極室17に前記第2のリチウム塩水溶液として例えば塩化リチウムを供給して電解を行うと、塩化物イオンが陽極板12上で塩素ガス(Cl)を生成する一方、リチウムイオンはイオン交換膜16を介して陰極室18に移動する。
 陰極室18では水(HO)が水酸化物イオン(OH)と水素イオン(H)とに電離し、水素イオンが陰極板13上で水素ガス(H)を生成する一方、水酸化物イオンがリチウムと化合して水酸化リチウム水溶液3を生成する。
 前記膜電解工程で用いる電力は、好ましくは再生可能エネルギーによって得られた電力を含み、より好ましくは太陽光発電、及び風力発電からなる群から選択される少なくとも1つによって得られた電力を含む。
 本実施形態1~12では、前記膜電解で生成した水素ガス(H)と塩素ガス(Cl)とを反応させることにより、鉱酸4としての塩酸を得ることができ、鉱酸4はSTEP1で活物質粉1の溶解に用いることができる。
 前記膜電解により得られた水酸化リチウム水溶液3は、STEP5で晶析により水酸化リチウム一水和物(LiOH・HO)として回収することもでき、STEP6で炭酸化することにより、炭酸リチウム(LiCO)として回収することもできる。前記炭酸化は、水酸化リチウム水溶液3を、炭酸ガス(CO)と反応させることにより行うことができる。
 本発明のリチウム回収方法11(図4)では、前記膜電解により得られた水酸化リチウム水溶液3の一部、ならびに、ナトリウムイオン及び硫酸イオンからなる群から選ばれる少なくとも1つを含む前記第2のリチウム塩水溶液の一部の少なくとも1つを、STEP8で炭酸化し、濾過等の固液分離工程により炭酸リチウム7を分離する。当該炭酸リチウム7と分離された濾液は廃棄される。したがって、本発明のリチウム回収方法11では、前記水酸化リチウム水溶液3に含まれる不純物、ならびに、前記第2のリチウム塩水溶液に含まれるナトリウムイオン及び硫酸イオンからなる群から選ばれる少なくとも1つのイオン等の不純物は蓄積されずに低減される。
 水酸化リチウム水溶液3をSTEP3で溶媒抽出に用いる場合、水酸化リチウム水溶液3は抽出溶媒に添加される。STEP3で溶媒抽出に用いられる抽出溶媒は陽イオン交換抽出剤であるので、継続して使用すると液性が酸性側に偏り抽出率が低下するが、水酸化リチウム水溶液3を添加することにより、抽出率の低下を抑制することができる。
 また、水酸化リチウム水溶液3をSTEP3で溶媒抽出に用いる場合、水酸化リチウム水溶液3は、各別に行われるマンガン、コバルト、ニッケルの溶媒抽出の少なくとも1つの溶媒抽出に用いることができる。
 また、前記膜電解では、前記第1のリチウム塩水溶液が電解される結果、該第2のリチウム塩水溶液より希薄な第3のリチウム塩水溶液が生成する。そこで、本実施形態では、前記第3のリチウム塩水溶液をSTEP7で濃縮し、前記第1のリチウム塩水溶液に添加する。STEP7で濃縮は、例えば逆浸透膜(RO膜)を用いて行うことができる。
 本実施形態1~12では、リチウム以外のアルカリ源が供給されないので高濃度のリチウム塩水溶液を得ることができる。また、本実施形態1~12では、前記高濃度のリチウム塩水溶液を電解することにより水酸化リチウムを得ることができるため、リチウムの回収率を向上させることができる。さらに、本実施形態1~12では、リチウム以外の不要なアルカリ源が存在しないので電、解により得られた水酸化リチウムをそのまま工程に戻すことができ、資源循環を可能とすることができる。
 1…活物質粉、 2…金属硫酸塩水溶液、 3…水酸化リチウム水溶液、 4…鉱酸、 11…電解槽、 16…イオン交換膜。

Claims (18)

  1.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和する中和工程と、
     水酸化リチウムを添加した該酸溶解液に水酸化リチウムを再度添加して析出物を濾過し、濾液として第1のリチウム塩水溶液を得る水酸化リチウム再添加工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該水酸化リチウム再添加工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  2.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、
     該溶液Aに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Bを得るマンガン抽出工程と、
     該溶液Bに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Cを得るコバルト抽出工程と、
     該溶液Cに有機リン化合物抽出溶媒を添加してニッケルを抽出分離すると共に第1のリチウム塩水溶液を得るニッケル抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該マンガン抽出工程、該コバルト抽出工程、及び該ニッケル抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  3.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、
     該溶液Aに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Dを得るマンガン抽出工程と、
     該溶液Dにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Eを得るニッケル抽出工程と、
     該溶液Eに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に第1のリチウム塩水溶液を得るコバルト抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該マンガン抽出工程、該ニッケル抽出工程、及び該コバルト抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  4.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、
     該溶液Aに有機アミン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Fを得るコバルト抽出工程と、
     該溶液Fに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Gを得るマンガン抽出工程と、
     該溶液Gに有機リン化合物抽出溶媒を添加してニッケルを抽出分離すると共に第1のリチウム塩水溶液を得るニッケル抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該コバルト抽出工程、該マンガン抽出工程、及び該ニッケル抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  5.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、
     該溶液Aに有機アミン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Hを得るコバルト抽出工程と、
     該溶液Hにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Iを得るニッケル抽出工程と、
     該溶液Iに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に第1のリチウム塩水溶液を得るマンガン抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該コバルト抽出工程、該ニッケル抽出工程、及び該マンガン抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  6.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、
     該溶液Aにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Jを得るニッケル抽出工程と、
     該溶液Jに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に溶液Kを得るマンガン抽出工程と、
     該溶液Kに有機リン化合物抽出溶媒を添加してコバルトを抽出分離すると共に第1のリチウム塩水溶液を得るコバルト抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該ニッケル抽出工程、該マンガン抽出工程、及び該コバルト抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  7.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和して生成する不溶解物と溶液Aに固液分離する固液分離する中和及び固液分離工程と、
     該溶液Aにヒドロオキシム抽出溶媒を添加してニッケルを抽出分離すると共に溶液Lを得るニッケル抽出工程と、
     該溶液Lに有機アミン化合物抽出溶媒を添加してコバルトを抽出分離すると共に溶液Mを得るコバルト抽出工程と、
     該溶液Mに有機リン化合物抽出溶媒を添加してマンガンを抽出分離すると共に第1のリチウム塩水溶液を得るマンガン抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和及び固液分離工程、該ニッケル抽出工程、該コバルト抽出工程、及び該マンガン抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  8.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和する中和工程と、
     水酸化リチウムを添加した該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を有機溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用し、
     該有機溶媒が有機リン化合物、ヒドロオキシム、及び有機アミン化合物からなる群から選択される少なくとも1つである、廃リチウムイオン電池からリチウムを回収する方法。
  9.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和する中和工程と、
     水酸化リチウムを添加した該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用し、
     該溶媒抽出工程において、アルカリ水溶液と該有機溶媒を混合し、次いで油水分離して得られるアルカリ含有有機溶媒と該酸溶解液を混合する、廃リチウムイオン電池からリチウムを回収する方法。
  10.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和する中和工程と、
     水酸化リチウムを添加した該酸溶解液と硫化物を、pH2~6の範囲で混合し、銅、カドミウム、鉛、水銀からなる群から選ばれる少なくとも1つの金属の硫化物を生成させ、該金属硫化物を除去する金属硫化物除去工程と、
     該金属硫化物が除去された該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  11.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和する中和工程と、
     水酸化リチウムを添加した該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、
     該第1のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第1のリチウム塩水溶液よりも希薄な第2のリチウム塩水溶液とを得る膜電解工程と、
     該水酸化リチウム水溶液及び該第2のリチウム塩水溶液を炭酸化する炭酸化工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  12.  廃リチウムイオン電池からリチウムを回収する方法であって、
     該廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸中に溶解して溶解液を得る溶解工程と、
     該溶解液を水酸化リチウムで中和する中和工程と、
     水酸化リチウムを添加した該酸溶解液から、該活物質粉に含まれる金属のうち、リチウムを除く少なくとも1種の金属を溶媒抽出により分離し、該溶媒抽出の残液として第1のリチウム塩水溶液を得る溶媒抽出工程と、
     該第1のリチウム塩水溶液とアルカリを混合し、該第1のリチウム塩水溶液に含まれるニッケルを除去し、第2のリチウム塩水溶液を得るニッケル除去工程と、
     該第2のリチウム塩水溶液を、イオン交換膜を用いて膜電解して水酸化リチウム水溶液と、酸と、該第2のリチウム塩水溶液よりも希薄な第3のリチウム塩水溶液とを得る膜電解工程を含み、
     該膜電解工程で得られる該水酸化リチウム水溶液を、該中和工程、及び該溶媒抽出工程からなる群から選ばれる少なくとも1つで再利用し、
     該膜電解工程で得られる該酸を、該溶解工程で使用される該鉱酸として再利用する、廃リチウムイオン電池からリチウムを回収する方法。
  13.  請求項1~12のいずれか1項に記載された廃リチウムイオン電池からリチウムを回収する方法において、前記第2のリチウム塩水溶液又は前記第3のリチウム塩水溶液を濃縮し、前記第1のリチウム塩水溶液又は前記第2のリチウム塩水溶液に添加する、廃リチウムイオン電池からリチウムを回収する方法。
  14.  請求項1~12のいずれか1項に記載された廃リチウムイオン電池からリチウムを回収する方法において、前記鉱酸は、塩酸、硫酸、及び硝酸からなる群から選択される少なくとも1種を含む、廃リチウムイオン電池からリチウムを回収する方法。
  15.  請求項1~12のいずれか1項に記載された廃リチウムイオン電池からリチウムを回収する方法において、前記鉱酸は塩酸を含む、廃リチウムイオン電池からリチウムを回収する方法。
  16.  請求項1~12のいずれか1項に記載された廃リチウムイオン電池からリチウムを回収する方法において、前記膜電解工程で得られる塩素と水素とを反応させて生成した塩酸を前記鉱酸として用いる、廃リチウムイオン電池からリチウムを回収する方法。
  17.  請求項1~12のいずれか1項に記載された廃リチウムイオン電池からリチウムを回収する方法において、前記膜電解工程で用いる電力は、再生可能エネルギーによって得られた電力を含む、廃リチウムイオン電池からリチウムを回収する方法。
  18.  請求項17に記載された廃リチウムイオン電池からリチウムを回収する方法において、前記再生可能エネルギーによって得られた電力は、太陽光発電、及び風力発電からなる群から選択される少なくとも1つによって得られた電力を含む、廃リチウムイオン電池からリチウムを回収する方法。
     
PCT/JP2023/014342 2021-09-30 2023-04-07 廃リチウムイオン電池からリチウムを回収する方法 WO2023195533A1 (ja)

Applications Claiming Priority (25)

Application Number Priority Date Filing Date Title
JP2021161272 2021-09-30
JP2022-064732 2022-04-08
JP2022064733A JP2023051708A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022064729A JP2023051704A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022064722A JP2023051697A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022064727A JP2023051702A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022064725A JP2023051700A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022-064726 2022-04-08
JP2022064726A JP2023051701A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022-064733 2022-04-08
JP2022-064730 2022-04-08
JP2022064731A JP2023051706A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022-064722 2022-04-08
JP2022-064725 2022-04-08
JP2022064724A JP2023051699A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022064730A JP2023051705A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022-064724 2022-04-08
JP2022064723A JP2023051698A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022-064728 2022-04-08
JP2022-064723 2022-04-08
JP2022-064729 2022-04-08
JP2022-064731 2022-04-08
JP2022-064727 2022-04-08
JP2022064732A JP2023051707A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法
JP2022064728A JP2023051703A (ja) 2021-09-30 2022-04-08 廃リチウムイオン電池からリチウムを回収する方法

Publications (1)

Publication Number Publication Date
WO2023195533A1 true WO2023195533A1 (ja) 2023-10-12

Family

ID=81390820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014342 WO2023195533A1 (ja) 2021-09-30 2023-04-07 廃リチウムイオン電池からリチウムを回収する方法

Country Status (2)

Country Link
JP (13) JP7060899B1 (ja)
WO (1) WO2023195533A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060899B1 (ja) * 2021-09-30 2022-04-27 株式会社アサカ理研 廃リチウムイオン電池からのリチウム回収システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287864A (ja) * 1997-04-14 1998-10-27 Nippon Chem Ind Co Ltd リチウムイオン二次電池用正極活物質からの有価金属の回収方法
JP2001096236A (ja) * 1999-09-29 2001-04-10 Toshiba Corp バッテリーパックの分別装置
JP2010277868A (ja) * 2009-05-29 2010-12-09 Jx Nippon Mining & Metals Corp 金属の回収方法
JP2011032151A (ja) * 2009-08-04 2011-02-17 Kee:Kk 炭酸リチウムの水酸化リチウムへの転換方法
JP2015103320A (ja) * 2013-11-21 2015-06-04 Jx日鉱日石金属株式会社 リチウムイオン電池用正極材からの金属の回収方法
WO2021215521A1 (ja) * 2020-04-23 2021-10-28 Jx金属株式会社 混合金属塩の製造方法
JP7060899B1 (ja) * 2021-09-30 2022-04-27 株式会社アサカ理研 廃リチウムイオン電池からのリチウム回収システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016152A1 (en) * 1997-06-23 2000-07-05 Pacific Lithium Limited Lithium recovery and purification
JP7483700B2 (ja) * 2018-10-30 2024-05-15 アルベマール コーポレーション リチウムイオン電池から金属を抽出するためのプロセス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287864A (ja) * 1997-04-14 1998-10-27 Nippon Chem Ind Co Ltd リチウムイオン二次電池用正極活物質からの有価金属の回収方法
JP2001096236A (ja) * 1999-09-29 2001-04-10 Toshiba Corp バッテリーパックの分別装置
JP2010277868A (ja) * 2009-05-29 2010-12-09 Jx Nippon Mining & Metals Corp 金属の回収方法
JP2011032151A (ja) * 2009-08-04 2011-02-17 Kee:Kk 炭酸リチウムの水酸化リチウムへの転換方法
JP2015103320A (ja) * 2013-11-21 2015-06-04 Jx日鉱日石金属株式会社 リチウムイオン電池用正極材からの金属の回収方法
WO2021215521A1 (ja) * 2020-04-23 2021-10-28 Jx金属株式会社 混合金属塩の製造方法
JP7060899B1 (ja) * 2021-09-30 2022-04-27 株式会社アサカ理研 廃リチウムイオン電池からのリチウム回収システム

Also Published As

Publication number Publication date
JP2023051702A (ja) 2023-04-11
JP2023051657A (ja) 2023-04-11
JP2023051697A (ja) 2023-04-11
JP2023051699A (ja) 2023-04-11
JP7060899B1 (ja) 2022-04-27
JP2023051698A (ja) 2023-04-11
JP2023051707A (ja) 2023-04-11
JP2023051703A (ja) 2023-04-11
JP2023051700A (ja) 2023-04-11
JP2023051708A (ja) 2023-04-11
JP2023051704A (ja) 2023-04-11
JP2023051701A (ja) 2023-04-11
JP2023051705A (ja) 2023-04-11
JP2023051706A (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
CN109075407B (zh) 再循环锂电池电极材料的方法
WO2023229045A1 (ja) 廃リチウムイオン電池からリチウムを回収する方法
EP2832700B1 (en) Method for producing high-purity nickel sulfate
JP2015183292A (ja) コバルトおよびニッケルの回収方法
CN112375910A (zh) 废动力电池粉的回收处理方法
WO2023195533A1 (ja) 廃リチウムイオン電池からリチウムを回収する方法
KR100644902B1 (ko) 폐리튬 이차전지로부터 유가금속을 회수하는 방법
JP7097130B1 (ja) 廃リチウムイオン電池からリチウムを回収する方法
WO2023054667A1 (ja) 廃リチウムイオン電池からリチウムを回収する方法
WO2023132297A1 (en) Method for recovering metals from lithium ion battery waste
WO2023176545A1 (ja) リチウムイオン二次電池の処理方法
EP4245869A1 (en) Method for processing black mass to battery chemicals
AU2023222912A1 (en) Method for producing manganese(ⅱ) sulfate monohydrate from byproduct of zinc refining process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784817

Country of ref document: EP

Kind code of ref document: A1