WO2020137951A1 - N-ビニルカルボン酸アミド製造用組成物 - Google Patents

N-ビニルカルボン酸アミド製造用組成物 Download PDF

Info

Publication number
WO2020137951A1
WO2020137951A1 PCT/JP2019/050311 JP2019050311W WO2020137951A1 WO 2020137951 A1 WO2020137951 A1 WO 2020137951A1 JP 2019050311 W JP2019050311 W JP 2019050311W WO 2020137951 A1 WO2020137951 A1 WO 2020137951A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
acid amide
component
producing
carboxylic acid
Prior art date
Application number
PCT/JP2019/050311
Other languages
English (en)
French (fr)
Inventor
孝充 小林
田中 直行
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP19903898.5A priority Critical patent/EP3904334A4/en
Priority to KR1020217019064A priority patent/KR20210094005A/ko
Priority to CN201980086388.2A priority patent/CN113227043B/zh
Priority to US17/417,599 priority patent/US20220112155A1/en
Priority to JP2020563245A priority patent/JP7447806B2/ja
Publication of WO2020137951A1 publication Critical patent/WO2020137951A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/18Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/09Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an acyclic unsaturated carbon skeleton

Definitions

  • the present invention relates to a composition containing N-(1-alkoxyethyl)carboxylic acid amide used for producing N-vinylcarboxylic acid amide, and a method for producing N-vinylcarboxylic acid amide using the composition.
  • N-(1-alkoxyethyl)carboxylic acid amide which is an intermediate, is produced by using carboxylic acid amide, acetaldehyde, and alcohol as raw materials, and then the N-(1-alkoxyethyl)carboxylic acid amide is thermally decomposed or contacted.
  • Examples include a method of decomposing and synthesizing N-vinylcarboxylic acid amide. In general, when producing a polymerizable monomer, it is important to produce the synthesized monomer without polymerizing it in the process as much as possible.
  • Patent Document 1 defines the content of metal component in N-(1-alkoxyethyl)carboxylic acid amide.
  • the production amount of the polymerization inhibitor in the produced N-vinylcarboxylic acid amide is mentioned.
  • the N-vinylcarboxylic acid amide can be synthesized by subjecting the intermediate N-(1-alkoxyethyl)carboxylic acid amide to thermal decomposition or catalytic decomposition.
  • the raw material component may solidify in the pipe due to a malfunction of the temperature control mechanism of the supply pipe, or due to heating in the decomposition process.
  • Reactants generated by unintended reactions such as denaturation, side reactions, and polymerization may adhere to equipment piping and equipment, and in the worst case, piping may be blocked and production may stop. There was a nature.
  • an object of the present invention is to provide a composition for producing N-vinylcarboxylic acid amide, which enables more stable production of N-vinylcarboxylic acid amide. To do.
  • the present inventors have provided an embodiment of an N-(1-alkoxyethyl)carboxylic acid amide-containing composition to be supplied to a thermal decomposition or catalytic cracking step in the production of N-vinylcarboxylic acid amide, and an N-(1-alkoxyethyl)carboxylic acid amide containing composition. Focusing on the influence of vinylcarboxylic acid amide on the stability of production, it was found that the above problem can be solved by using the composition satisfying a specific condition. The present invention has been completed based on such findings.
  • the present invention relates to the following [1] to [10].
  • Component (A) N-(1-alkoxyethyl)carboxylic acid amide, and component (B) N-(1-alkoxyethyl)carboxylic acid amide and carboxylic acid other than N-vinylcarboxylic acid amide A composition for producing N-vinylcarboxylic acid amide, which comprises an amide and satisfies the following conditions (1) to (4).
  • the melting point of the composition is 0 to 30° C.
  • the content of water is 0 to 1.00 mass% in the total amount of the composition.
  • the molar ratio of the component (A) to the component (B) is 4.0 to 20.0.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 3 represents an alkyl group having 1 to 5 carbon atoms. Represents.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • component (A) is N-(1-methoxyethyl)carboxylic acid amide.
  • component (B) is acetamide.
  • the residual ratio (%) of the component (A) in the composition after holding the composition for 4 hours under atmospheric pressure and atmospheric pressure at 160° C. is 70% or more.
  • Composition for producing amide [9] In any one of [1] to [8] above, wherein the total content of the component (A) and the component (B) is 75.0 to 99.0 mass% in the total amount of the composition.
  • a composition for producing the N-vinylcarboxylic acid amide described above [10] A method for producing N-vinylcarboxylic acid amide, which comprises thermally or catalytically decomposing the composition for producing N-vinylcarboxylic acid amide according to any one of [1] to [9] above. ..
  • the present invention will be described in detail, but the present invention is not limited to the following embodiments.
  • the lower limit value and the upper limit value described stepwise can be independently combined.
  • suitable ranges are, for example, “10 to 70”, “30 to 70”, “40 to 80” It is also possible to select a range in which a lower limit value and an upper limit value selected independently of each other are combined.
  • a range in which one of the lower limit value and the upper limit value such as “40 or more” or “70 or less” is simply defined can be selected.
  • a preferable range selectable from the description “preferably 10 or more, more preferably 30 or more, further preferably 40 or more, and preferably 90 or less, more preferably 80 or less, further preferably 70 or less” Is also the same.
  • composition for producing N-vinylcarboxylic acid amide is a component (A), N-(1-alkoxyethyl)carboxylic acid amide (hereinafter, also simply referred to as “component (A)”) and a component (A).
  • a composition containing a carboxylic acid amide other than N-(1-alkoxyethyl)carboxylic acid amide and N-vinylcarboxylic acid amide (hereinafter, simply referred to as “component (B)”) which is B) (hereinafter, simply referred to as “component (B)”) Also referred to as a “composition”), and satisfies the following conditions (1) to (4).
  • the melting point of the composition is 0 to 30° C.
  • the content of water is 0 to 1.00 mass% in the total amount of the composition.
  • the molar ratio of the component (A) to the component (B) is 4.5 to 20.0.
  • the pH of a 5% by mass aqueous solution of the composition is 4.0 to 8.0.
  • N-(1-alkoxyethyl)carboxylic acid amide is preferably a compound represented by the following general formula (I), more preferably N-(1- Methoxyethyl)carboxylic acid amide.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and further preferably a methyl group.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, and further preferably a hydrogen atom.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and further preferably a methyl group.
  • Examples of the compound represented by the general formula (I) include N-(1-methoxyethyl)acetamide, N-(1-methoxyethyl)-N-methylacetamide, N-(1-ethoxyethyl)acetamide, N -(1-Ethoxyethyl)-N-methylacetamide, N-(1-propoxyethyl)acetamide, N-(1-isopropoxyethyl)acetamide, N-(1-butoxyethyl)acetamide, N-(1-iso Butoxyethyl)acetamide, N-(1-methoxyethyl)propionamide, N-(1-ethoxyethyl)propionamide, N-(1-propoxyethyl)propionamide, N-(1-isopropoxyethyl)propionamide, N-(1-butoxyethyl)propionamide, N-(1-isobutoxyethy
  • N-(1-methoxyethyl)acetamide N-(1-isopropoxyethyl)acetamide, N-(1-methoxyethyl)isobutyramide, and more preferably N-(1-methoxyethyl).
  • examples include acetamide.
  • the method for synthesizing the component (A) that can be used in the present invention is not particularly limited, and examples thereof include acid-catalyzed acetaldehyde, component (A) and condensation of a carboxylic acid amide other than N-vinylcarboxylic acid amide and an alcohol. Reaction; Substitution reaction of acetaldehyde acetal with component (A) and carboxylic acid amide other than N-vinyl carboxylic acid amide by acid catalyst; Acetaldehyde with component (A) and carboxylic acid amide other than N-vinyl carboxylic acid amide with base And the like, followed by a condensation reaction with an alcohol using an acid catalyst; and the like.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and further preferably a methyl group. That is, the alkyl and the group represented by the R 3, which corresponds to an alkyl group constituting the R 3 in the compound represented by the above general formula (I).
  • the acid catalyst may be either a homogeneous catalyst or a heterogeneous catalyst.
  • the homogeneous catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; heteropolyacids such as phosphotungstic acid; methanesulfone. Acid, organic acid such as p-toluic acid; and the like.
  • salts of strong acids and weak bases although not always homogeneously dissolved, can also be used.
  • Examples of the salt of a strong acid and a weak base include ammonium sulfate and ammonium chloride.
  • heterogeneous catalysts include gel type and porous type acidic ion exchange resins.
  • the base catalyst examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, cesium hydrogen carbonate, sodium phosphate, and phosphorus.
  • Inorganic bases such as potassium phosphate, sodium monohydrogen phosphate, potassium monohydrogen phosphate, sodium pyrophosphate, and potassium pyrophosphate; organic amines such as triethylamine, pyridine, and morpholine; ion exchange resins;
  • the N-(1-alkoxyethyl)carboxylic acid amide reaction solution obtained by the synthesis is neutralized with a base, preferably to a pH of 8.0 to 8.5.
  • N-(1-alkoxyethyl)carboxylic acid amide is purified.
  • the purification method of the component (A) is not particularly limited, but distillation purification is preferable from the viewpoint of separation from impurities. Examples of the distillation method include a simple distillation method and a precision distillation method using a distillation apparatus equipped with a rectification column.
  • the apparatus used when performing the simple distillation method it is effective to install a mist separator or the like in the gas line as a measure for suppressing the increase of impurities in the distillate accompanying the mist entrainment.
  • the component (A) may be modified by heat, it is preferable that heat history is not applied as much as possible. Therefore, the distillation is preferably performed at a pressure of 0.1 to 1.3 kPa (absolute pressure), more preferably 0.1 to 0.5 kPa (absolute pressure), still more preferably 0.1 to 0.4 kPa (absolute pressure), It is preferable to carry out under conditions of 100° C. or lower while appropriately distilling off the low boiling point component.
  • the content of the component (A) in the total amount of the composition is preferably 70.0 to 96.0% by mass, more preferably 75.0 to 92.0% by mass, and further preferably 78.0 to 88.%. It is 0 mass %.
  • the content is measured by the method described in Examples below.
  • Component (B) Carboxylic acid amide other than N-(1-alkoxyethyl)carboxylic acid amide and N-vinylcarboxylic acid amide>
  • the carboxylic acid amide used as the component (B) in the present invention is a carboxylic acid amide other than the N-(1-alkoxyethyl)carboxylic acid amide and the N-vinylcarboxylic acid amide.
  • the component (B) is preferably a compound represented by the following general formula (II).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and further preferably a methyl group.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, and further preferably a hydrogen atom.
  • Examples of the compound represented by the general formula (II) include acetamide and its N-alkyl derivative, propionamide and its N-alkyl derivative, butyramide and its N-alkyl derivative, isobutylamide and its N-alkyl derivative, and the like.
  • Preferable examples include acetamide and its N-alkyl derivative, isobutyramide and its N-alkyl derivative, more preferably acetamide and isobutyramide, and further preferably acetamide.
  • the content of the component (B) in the total amount of the composition is preferably 1.0 to 15.0 mass%, more preferably 1.5 to 10.0 mass%, and further preferably 2.0 to 9. It is 5% by mass.
  • the total content of the component (A) and the component (B) is preferably 75.0 to 99.0 mass%, more preferably 80.0 to 98.0 mass% in the total amount of the composition. More preferably, it is 85.0-98.0 mass %.
  • the composition for producing N-vinylcarboxylic acid amide makes the total content closer to 100% by mass from the viewpoint of improving the yield of N-vinylcarboxylic acid amide, and the component (A ) Is prepared so as to be contained in high purity.
  • the composition of the present invention has a melting point of 0 to 30°C. If the melting point is higher than 30° C., the temperature may be higher than 30° C. during the production of N-vinylcarboxylic acid amide, for example, in order to prevent the composition from solidifying in the pipe transferred to the next step. It becomes necessary to adjust the pipe temperature. Further, for example, even when the temperature of the pipe is controlled by a heat insulator or a heater, the composition may be solidified at a portion where the temperature control is insufficient or a thin pipe portion depending on the kind of the heat insulating material or the heater. Will increase. When the melting point is lower than 0°C, the composition is insufficient in quality.
  • insufficient in terms of quality means, for example, a composition in which the final yield of N-vinylcarboxylic acid amide decreases.
  • a composition in which the low-boiling-point component in the composition is insufficiently separated and, as a result, the content concentration of the component (A) is lowered may be mentioned.
  • the melting point is preferably 0 to 20°C, more preferably 5 to 15°C, and further preferably 8 to 13°C.
  • the melting point is measured by the method described in Examples below.
  • the melting point is affected by the composition of the composition. For example, as the content of the component (A) increases, the melting point value tends to increase.
  • the composition of the present invention has a water content (hereinafter, also referred to as “water content”) of 0 to 1.00% by mass based on the total amount of the composition. If the water content exceeds 1.00% by mass, for example, the component (A) is easily decomposed into the component (B), acetaldehyde and alcohol when the composition is heated in a vaporizer as described later. As a result, the thermal stability of the composition is reduced. As a result, undesired reactions such as modification, side reaction, and polymerization of the composition occur in the heating process of the vaporizer and the like, resulting in clogging of the production equipment and deterioration of the yield and quality of N-vinylcarboxylic acid amide.
  • water content hereinafter, also referred to as “water content”
  • the water is mainly water derived from the raw material or the like of the component (A) or water produced and mixed in the process of synthesis.
  • the content of the water is preferably 0 to 0.50% by mass in the total amount of the composition, more preferably 0.01 to 0.30% by mass in the total amount of the composition, and further preferably It is 0.01 to 0.20 mass% in the total amount of the composition.
  • the water content is measured by the method described in Examples described later.
  • the content ratio of the component (A) to the component (B) is 4.0 to 20.0 in terms of molar ratio.
  • the molar ratio is lower than 4.0, the ratio of the component (B) to the component (A) increases, and when the composition is heated by a vaporizer or the like, the component (A) and the component (B) are The reaction of and produces a by-product, which facilitates the progress of a side reaction.
  • the molar ratio is higher than 20, the melting point of the composition becomes high and the possibility that the composition solidifies in a pipe such as a supply pipe during the production of N-vinylcarboxylic acid amide increases.
  • the molar ratio is preferably 4.2 to 15.0, more preferably 4.5 to 9.0, and further preferably 4.8 to 8.0.
  • a composition containing the component (A) in high purity is used.
  • the concentration of the carboxylic acid amide other than the N-(1-alkoxyethyl)carboxylic acid amide and the N-vinylcarboxylic acid amide, which are the raw materials, should be reduced.
  • the productivity decreases, and the capital investment becomes large at a large production scale such as a continuous synthesis facility.
  • a multi-stage distillation column is required in order to separate the component (B) having a close boiling point, and in this case, too, the equipment investment becomes large.
  • the present inventors have found that the above-mentioned demerit can be avoided when the molar ratio is 20.0 or less. Therefore, it is possible to improve the operation stability during the production of N-vinylcarboxylic acid amide and, as a result, to contribute to the improvement of continuous operability, so that the production cost can be reduced, and the production can be performed with a simpler production facility.
  • the molar ratio is preferably 15.0 or less, more preferably 9.0 or less, and further preferably 8.0 or less. The molar ratio is measured by the method described in Examples below.
  • the pH of a 5% by mass aqueous solution of the composition is 4.0 to 8.0.
  • the pH is lower than 4, when the composition is heated in a vaporizer or the like, the component (A) and the component (B) react with each other to form a by-product, which facilitates the progress of a side reaction.
  • the region having a pH higher than 8.0 is the case where the neutralization step in synthesizing the component (A) in the method for obtaining the composition is carried out at the above-mentioned preferable range of pH 8.0 to 8.5. Is unlikely to happen.
  • the pH of a 5% by mass aqueous solution of the composition is preferably 4.3 to 7.8, more preferably 4.5 to 7.6, and further preferably 5.0 to 7.5. is there.
  • the pH of a 5% by mass aqueous solution of the composition is measured by the method described in Examples below.
  • the pH of a 5% by mass aqueous solution of the composition is affected by the composition of the composition. For example, it is affected by the type and amount of the acid catalyst used in synthesizing the component (A) and the base used in the neutralization step.
  • the pH of the reaction liquid containing the component (A) is set to a higher value in the neutralization step when synthesizing the component (A).
  • the pH value becomes higher when the pH value is adjusted to.
  • the composition may contain other components as long as the effects of the present invention are not impaired.
  • the other component include a component derived from each compound used when producing the component (A), or a decomposed product or by-product of the synthesized component (A).
  • a solvent used in the synthetic reaction an alcohol such as methanol used as a raw material component, an acetaldehyde acetal such as acetaldehyde dialkyl acetal, an ethylidene biscarboxylic acid amide, or an N-(1-alkoxyethyl)carboxylic acid amide is purified by distillation or the like.
  • N-vinylcarboxylic acid amide which is produced by decomposition when separated.
  • the composition is used for producing N-vinylcarboxylic acid amide.
  • the N-vinylcarboxylic acid amide can be synthesized by subjecting the above composition to known thermal decomposition or catalytic decomposition.
  • the conditions for carrying out the decomposition include, for example, a gas phase or a liquid phase, a reaction temperature of 60 to 600° C., a reaction time of 0.3 seconds to 2 hours, and an operating pressure of 0.1 kPa (absolute pressure) to atmospheric pressure.
  • the reaction in the gas phase under the conditions of a reaction temperature of 300 to 600° C., a reaction time of 0.3 seconds to 1 minute, and an operating pressure of 10 to 30 kPa (absolute pressure).
  • the composition is sent to a vaporizer in a liquid state, vaporized by a vaporizer having a pressure of 10 to 30 kPa (absolute pressure) and 120 to 200° C., and then a thermal decomposition apparatus having a reaction temperature of 300 to 600° C. Can be decomposed into N-vinylcarboxylic acid amide and alcohol.
  • the vaporizer is not particularly limited, but from the viewpoint of efficiently vaporizing the raw material, a falling liquid film evaporator and a forced liquid film evaporator are preferable.
  • the thermal decomposition reactor provided in the thermal decomposition apparatus preferably has a tubular structure from the viewpoint of efficiently performing thermal decomposition of the vaporized raw material.
  • the composition of the present invention satisfies the melting point of the above condition (1), as described above, it prevents solidification in the pipe even when there is a problem in the temperature control of the pipe. be able to.
  • the composition has sufficient thermal stability in a vaporizer, the supplied composition is substantially vaporized and supplied to the next reaction step. The possibility of a malfunction is reduced.
  • the thermal stability of the composition is insufficient and the composition undergoes denaturation, side reaction, or polymerization in the vaporizer and produces a by-product that becomes a solid even at high temperature, it may lead to blockage of the device. Will increase. This is the same regardless of the vaporizer as long as it is a facility for heating the composition in the process of synthesizing N-vinylcarboxylic acid amide.
  • the composition has a residual ratio of the component (A) calculated by the method described in Examples described later of preferably 70% or more, more preferably 75% or more, and further preferably 80%. % Or more.
  • the thermal stability of the composition is also affected by the water content of the composition, the content ratio (molar ratio) of the component (A) to the component (B), the pH of a 5% by mass aqueous solution, and the like. It also varies depending on the combination of conditions. Therefore, in one aspect, when evaluating the residual ratio of the component (A) calculated by the method described in the below-mentioned Example, at least the component (A) is modified by heating, a side reaction, or polymerization. From such a viewpoint, a suitable upper limit value of the remaining rate may be, for example, 85%, 90%, or 95%. Good.
  • N-vinylcarboxylic acid amide As the N-vinylcarboxylic acid amide produced using the composition of the present invention, a compound represented by the following general formula (III) is preferable.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and further preferably a methyl group.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, and further preferably a hydrogen atom.
  • Examples of the compound represented by the general formula (III) include N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinylpropionamide, N-methyl-N-vinylpropionamide, N-vinylisobutyramide. , N-methyl-N-vinylisobutyramide and the like, preferably N-vinylacetamide and N-vinylisobutyramide, and more preferably N-vinylacetamide.
  • the water content (water content) of the composition was measured using a Karl Fischer coulometric titration water content measuring device “CA-200” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the pH was measured using a personal pH meter "PH71" (manufactured by Yokogawa Electric Corporation) at a sample temperature of 20 to 25°C.
  • the 5 mass% aqueous solutions of the compositions shown in Tables 1 and 2 were prepared by adding pure water to the compositions prepared in the respective examples so that the composition concentration became 5 mass%. ..
  • the melting point of the composition is measured by filling a glass thin tube equipped with a thermometer with the composition as a measurement sample, immersing the glass tube in a water bath of ice water at 0° C., and setting the temperature in a circulating constant temperature bath at 5° C./h. The temperature was raised and measured. The point at which the solid began to melt and the liquid was confirmed was taken as the melting point.
  • thermal stability of composition was evaluated by the following method. 20 g of the composition prepared in each example was charged into a three-necked flask having an internal volume of 50 mL, and heated with stirring under a condition of atmospheric pressure and 160° C. for 4 hours while stirring with a stirring bar. The three-necked flask was equipped with a thermometer insertion tube, and the components distilled out by heating were collected via a cooling tube. From the content of N-(1-alkoxyethyl)carboxylic acid amide which is the component (A) in the composition after the heat treatment and the content of the component (A) in the composition before the heat treatment, the following formula is obtained.
  • the residual rate (%) of N-(1-alkoxyethyl)carboxylic acid amide which is the component (A) was calculated using the above.
  • Remaining rate of N-(1-alkoxyethyl)carboxylic acid amide (%) [[weight of composition after heat treatment ⁇ concentration of N-(1-alkoxyethyl)carboxylic acid amide in composition after heat treatment]/[ Weight of composition before heat treatment ⁇ concentration of N-(1-alkoxyethyl)carboxylic acid amide in composition before heat treatment]] ⁇ 100 (%)
  • concentrations of N-(1-alkoxyethyl)carboxylic acid amide before and after the heat treatment were confirmed by the same method as the above-mentioned GC analysis.
  • ⁇ Preparation Example 1> (Preparation of N-(1-methoxyethyl)acetamide-containing composition) Using a simple distillation apparatus and under the conditions of a temperature of 60 to 70° C. and a pressure of 33 kPa (absolute pressure), acetaldehyde and acetaldehyde were obtained from the N-(1-methoxyethyl)acetamide-containing liquid of pH 8.3 obtained in Synthesis Example 1-2. Low-boiling components such as dimethyl acetal were distilled off. Then, water and methanol were further distilled off under the conditions of a temperature of 70° C. and a pressure of 0.3 kPa (absolute pressure) to obtain a concentrated liquid.
  • the obtained concentrated liquid was further distilled under reduced pressure, and 345 g of a fraction having a temperature range of 80 to 100° C. (pressure 0.3 kPa (absolute pressure)) was added with N-(1-methoxyethyl)acetamide 78.3% by mass. It was obtained as a composition containing acetamide in an amount of 7.7% by mass.
  • the residual ratio of N-(1-methoxyethyl)acetamide determined by thermal stability evaluation was 75.1%.
  • the evaluation results of the obtained composition are shown in Table 1 below.
  • a mixture of N-vinylacetamide and methanol produced by the thermal decomposition reaction was condensed with a cooling tube installed at the outlet of the reactor to recover crude N-vinylacetamide.
  • production troubles such as solidification of the feed material in the supply pipe and blockage of the device due to generation of by-products in the vaporizer were not confirmed, and the yield of N-vinylacetamide was 90. Obtained in %.
  • Example 2 In Preparation Example 1 of Example 1, the low boiling point component (acetaldehyde dimethyl acetal 69% by mass, recovered by distillation of the N-(1-methoxyethyl)acetamide-containing solution having a pH of 8.3 and obtained in Synthesis Example 1-2, Acetaldehyde 16% by mass, methanol 13% by mass, water 2% by mass) 482 g, acetamide 240 g, and acetaldehyde 312 g were mixed and heated to 40° C., and then a solution prepared by dissolving 15 g of sulfuric acid in 460 g of methanol was added and reacted for 6 hours. Then, a reaction solution having a pH of 1.1 was obtained.
  • the low boiling point component acetaldehyde dimethyl acetal 69% by mass, recovered by distillation of the N-(1-methoxyethyl)acetamide-containing solution having a pH of 8.3 and obtained in Synthesis Example 1-2
  • Example 3 An N-(1-methoxyethyl)acetamide-containing composition was obtained in the same manner as in Example 2, except that the amount of acetamide mixed in Example 2 was changed to 217 g. The evaluation results of the obtained composition are shown in Table 1 below. Then, when N-vinylacetamide was synthesized in the same manner as in Synthesis Example 1-3 of Example 1 except that the composition was used, no production trouble was confirmed in the thermal decomposition step.
  • Example 4 An N-(1-methoxyethyl)acetamide-containing composition was obtained in the same manner as in Example 2, except that the amount of acetamide mixed in Example 2 was changed to 197 g. The evaluation results of the obtained composition are shown in Table 1 below. Then, N-vinylacetamide was synthesized in the same manner as in Synthesis Example 1-3 of Example 1 except that the composition was used, and no production trouble was confirmed in the thermal decomposition step.
  • Example 5 An N-(1-methoxyethyl)acetamide-containing composition was obtained in the same manner as in Example 2, except that the amount of acetamide mixed in Example 2 was changed to 181 g. The evaluation results of the obtained composition are shown in Table 1 below. Then, N-vinylacetamide was synthesized in the same manner as in Synthesis Example 1-3 of Example 1 except that the composition was used, and no production trouble was confirmed in the thermal decomposition step.
  • Example 6 After mixing 50 g of acetamide, 700 g of acetaldehyde dimethyl acetal, and 150 g of acetaldehyde and heating to 40° C., a solution prepared by dissolving 10 g of sulfuric acid in 180 g of methanol was added and reacted for 6 hours to obtain a reaction solution of pH 1.2. Then, a 48 mass% sodium hydroxide aqueous solution was added to this reaction solution to obtain an N-(1-methoxyethyl)acetamide-containing solution adjusted to pH 8.3. The same operation as in Preparation Example 1 of Example 1 was performed on the containing liquid to obtain an N-(1-methoxyethyl)acetamide-containing composition. The evaluation results of the obtained composition are shown in Table 1 below. Then, N-vinylacetamide was synthesized in the same manner as in Synthesis Example 1-3 of Example 1 except that the composition was used, and no production trouble was confirmed in the thermal decomposition step.
  • Example 7 50 g of acetamide, 1000 g of acetaldehyde dimethyl acetal and 170 g of acetaldehyde were mixed and heated to 40° C., then a solution of 14 g of sulfuric acid dissolved in 200 g of methanol was added and reacted for 6 hours to obtain a reaction solution having a pH of 1.1. Then, a 48 mass% sodium hydroxide aqueous solution was added to this reaction solution to obtain an N-(1-methoxyethyl)acetamide-containing solution adjusted to pH 8.3. The same operation as in Preparation Example 1 of Example 1 was performed on the containing liquid to obtain an N-(1-methoxyethyl)acetamide-containing composition. The evaluation results of the obtained composition are shown in Table 1 below. Then, N-vinylacetamide was synthesized in the same manner as in Synthesis Example 1-3 of Example 1 except that the composition was used, and no production trouble was confirmed in the thermal decomposition step.
  • Example 8 Pure water was further added to the N-(1-methoxyethyl)acetamide-containing composition obtained in the same manner as in Example 2 to obtain a composition having a water content of 0.5% by mass.
  • the evaluation results of the obtained composition are shown in Table 1 below.
  • N-vinylacetamide was synthesized in the same manner as in Synthesis Example 1-3 of Example 1 except that the composition was used, and no production trouble was confirmed in the thermal decomposition step.
  • Example 9 Pure water was further added to the N-(1-methoxyethyl)acetamide-containing composition obtained in the same manner as in Example 3 to obtain a composition having a water content of 0.96% by mass.
  • the evaluation results of the obtained composition are shown in Table 1 below.
  • N-vinylacetamide was synthesized in the same manner as in Synthesis Example 1-3 of Example 1 except that the composition obtained in Example 8 was used, and no production trouble was confirmed in the thermal decomposition step. ..
  • Example 10 After mixing 50 g of acetamide, 310 g of acetaldehyde dimethyl acetal, and 140 g of acetaldehyde and heating to 40° C., a solution prepared by dissolving 10 g of sulfuric acid in 160 g of methanol was added and reacted for 6 hours to obtain a reaction liquid having a pH of 1.2. Then, a 48 mass% sodium hydroxide aqueous solution was added to this reaction solution to obtain an N-(1-methoxyethyl)acetamide-containing solution adjusted to pH 8.3.
  • the conversion of acetamide was 98%, and the yield of N-(1-methoxyethyl)acetamide was 90%.
  • the reaction liquid obtained was distilled with a simple distillation apparatus, the low boiling point component was distilled off at 13 kPa (absolute pressure) and an oil bath temperature of 90° C., and the pH of the bottom of the kettle was measured. It was 430 ppm. After 1.1 equivalent of sodium carbonate was added to the residue of the acetic acid, 207 g of an N-(1-methoxyethyl)acetamide-containing composition was distilled at a pressure of 0.3 kPa (absolute pressure).
  • the N-(1-methoxyethyl)acetamide content was 98.1% by mass
  • the acetamide content was 1.1% by mass
  • the melting point was 32° C.
  • the water content was 0.03% by mass
  • the molar ratio of N-(1-methoxyethyl)acetamide to acetamide was 45.0
  • the pH of a 5% by mass aqueous solution was 7.4.
  • the residual rate of N-(1-methoxyethyl)acetamide determined by thermal stability was 83.6%.
  • the evaluation results of the obtained composition are shown in Table 2 below.
  • Example 5 A N-(1-methoxyethyl)acetamide-containing product was prepared in the same manner as in Example 2 except that the reaction time for synthesizing N-(1-methoxyethyl)acetamide in Example 2 was changed from 6 hours to 2 hours. A composition was obtained. The evaluation results of the obtained composition are shown in Table 2 below. Then, when N-vinylacetamide was synthesized in the same manner as in Synthesis Example 1-3 of Example 1 except that the composition was used, clogging of the vaporizer was confirmed in the thermal decomposition step.
  • the compositions containing the component (A) and the component (B) satisfying all the conditions (1) to (4) in Examples 1 to 10 did not cause troubles during production, and N-vinylcarboxylic It was confirmed that the acid amide can be stably produced.
  • the compositions containing the component (A) and the component (B) in Comparative Examples 1 to 6 do not satisfy any of the conditions (1) to (4), so that manufacturing troubles occur. It was confirmed that it was difficult to stably produce N-vinylcarboxylic acid amide.
  • the use of the composition of the present invention makes it possible to avoid production troubles such as solidification of raw material components in the supply pipe and blockage in the thermal decomposition tower, and the conventional N A more stable production is possible as compared with the case where a composition containing -(1-alkoxyethyl)carboxylic acid amide alone or N-(1-alkoxyethyl)carboxylic acid amide is used. Since the improvement and the improvement in productivity are due to the composition containing N-(1-alkoxyethyl)carboxylic acid amide which is a precursor of N-vinylcarboxylic acid amide, expensive temperature control equipment is required.
  • the N-(1-alkoxyethyl)carboxylic acid amide-containing composition of the present invention achieves more stable productivity in the conventional equipment, and has less restrictions in terms of operating conditions and equipment options. Since it is possible to lower the barrier for introducing new manufacturing equipment, it is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

成分(A)であるN-(1-アルコキシエチル)カルボン酸アミド、並びに成分(B)であるN-(1-アルコキシエチル)カルボン酸アミド及びN-ビニルカルボン酸アミド以外のカルボン酸アミドを含む組成物であって、次の(1)~(4)の条件、(1)前記組成物の融点が0~30℃、(2)水の含有量が、前記組成物全量中、0~1.00質量%、(3)前記成分(A)の前記成分(B)に対する含有量比が、モル比で4.0~20.0、(4)前記組成物の5質量%水溶液のpHが4.0~8.0、を満たす、N-ビニルカルボン酸アミド製造用組成物、並びに、該N-ビニルカルボン酸アミド製造用組成物を、熱分解又は接触分解することを特徴とする、N-ビニルカルボン酸アミドの製造方法に関する。

Description

N-ビニルカルボン酸アミド製造用組成物
 本発明は、N-ビニルカルボン酸アミドの製造に用いられるN-(1-アルコキシエチル)カルボン酸アミドを含有する組成物、及び該組成物を用いるN-ビニルカルボン酸アミドの製造方法に関する。
 N-ビニルカルボン酸アミドの製造方法については、これまで多くの方法が提案されている。例えば、カルボン酸アミド、アセトアルデヒド、アルコールを原料として中間体となるN-(1-アルコキシエチル)カルボン酸アミドを製造し、その後、該N-(1-アルコキシエチル)カルボン酸アミドを熱分解又は接触分解させ、N-ビニルカルボン酸アミドを合成する方法などが挙げられる。一般的に、重合性モノマーを製造する際は、合成したモノマーを工程内で出来るだけ重合させずに製造することが重要である。そのため、アクリル酸などの重合性の高い化合物は重合禁止剤を用いて製造を行い、製品中にも重合禁止剤が添加されている。一方、製品中に重合禁止剤を含まないN-ビニルカルボン酸アミドなどの一部の重合性モノマーを工業的に製造する際には、安定性の高い中間体を経由することや、極力低い温度で製造を行う等の工程管理が重要となる。
 これまで、N-ビニルカルボン酸アミドの製造におけるN-(1-アルコキシエチル)カルボン酸アミドが与える、N-ビニルカルボン酸アミドの品質への影響について、いくつかの提案がされている。例えば、特許文献1では、N-(1-アルコキシエチル)カルボン酸アミド中の金属成分含有量について規定している。当該文献では製造したN-ビニルカルボン酸アミド中の重合阻害物質の生成量について言及されている。
特開2002-167369号公報
 N-ビニルカルボン酸アミドは、中間体となるN-(1-アルコキシエチル)カルボン酸アミドを熱分解又は接触分解等する事により合成することができる。しかしながら、N-(1-アルコキシエチル)カルボン酸アミドを含む原料成分を分解工程に供給する際、供給配管の温度調節機構の不具合等により原料成分が配管内で固化したり、分解工程における加熱により変性や副反応、重合等の意図しない反応により生じた反応物が設備配管や装置内に付着したりすることがあり、最悪の場合、配管等が閉塞して生産がストップするといった問題が生じる可能性があった。また、このような不具合の発生を防止するためには、例えば、安定性の高い中間体を経由させること、熱分解器や供給配管の改良を行うこと、より優れた温度調節設備を導入することなど、設備面や工程管理での対策が必要とされており、製造設備や運転面での制約も多く存在していた。
 前記特許文献1では、製造されたN-ビニルカルボン酸アミド中の重合阻害物質の生成量については検討されているが、N-ビニルカルボン酸アミド製造時における原料成分と、生産の安定性との関係については検討されていない。
 このように、N-ビニルカルボン酸アミドの製造について、これまで、前駆体であるN-(1-アルコキシエチル)カルボン酸アミドを含む組成物が与える生産の安定性への影響についてはほとんど検討されていなかった。
 本発明は、このような状況下になされたもので、N-ビニルカルボン酸アミドの製造において、より安定した生産が可能となるN-ビニルカルボン酸アミド製造用組成物を提供することを目的とする。
 本発明者らは、N-ビニルカルボン酸アミドの製造における熱分解又は接触分解工程に供給する、N-(1-アルコキシエチル)カルボン酸アミド含有組成物の態様と、当該組成物が与えるN-ビニルカルボン酸アミドの生産の安定性への影響とに着目し、特定の条件を満たす前記組成物を用いることで、前記課題を解決できることを見出した。
 本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、次の〔1〕~〔10〕に関する。
〔1〕成分(A)であるN-(1-アルコキシエチル)カルボン酸アミド、並びに成分(B)であるN-(1-アルコキシエチル)カルボン酸アミド及びN-ビニルカルボン酸アミド以外のカルボン酸アミドを含む組成物であって、下記(1)~(4)の条件を満たす、N-ビニルカルボン酸アミド製造用組成物。
 (1)前記組成物の融点が0~30℃
 (2)水の含有量が、組成物全量中、0~1.00質量%
 (3)前記成分(A)の前記成分(B)に対する含有量比が、モル比で4.0~20.0
 (4)前記組成物の5質量%水溶液のpHが4.0~8.0
〔2〕前記成分(A)が、下記一般式(I)で表される化合物である、前記〔1〕に記載のN-ビニルカルボン酸アミド製造用組成物。
Figure JPOXMLDOC01-appb-C000003

(一般式(I)中、Rは炭素数1~5のアルキル基を表し、Rは水素原子又は炭素数1~5のアルキル基を表し、Rは炭素数1~5のアルキル基を表す。)
〔3〕前記成分(B)が、下記一般式(II)で表される化合物である、前記〔1〕又は〔2〕に記載のN-ビニルカルボン酸アミド製造用組成物。
Figure JPOXMLDOC01-appb-C000004

(一般式(II)中、Rは炭素数1~5のアルキル基を表し、Rは水素原子又は炭素数1~5のアルキル基を表す。)
〔4〕前記成分(A)が、N-(1-メトキシエチル)カルボン酸アミドである、前記〔1〕~〔3〕のいずれかに記載のN-ビニルカルボン酸アミド製造用組成物。
〔5〕前記成分(A)が、N-(1-メトキシエチル)アセトアミドである、前記〔1〕~〔4〕のいずれかに記載のN-ビニルカルボン酸アミド製造用組成物。
〔6〕前記成分(B)が、アセトアミドである、前記〔1〕~〔5〕のいずれかに記載のN-ビニルカルボン酸アミド製造用組成物。
〔7〕前記組成物を、大気下、常圧、160℃の条件下で、4時間保持した後の組成物中における、前記成分(A)の残存率(%)が、70%以上である、前記〔1〕~〔6〕のいずれかに記載のN-ビニルカルボン酸アミド製造用組成物。
〔8〕前記成分(A)の含有量が、前記組成物全量中、70.0~96.0質量%である、前記〔1〕~〔7〕のいずれかに記載のN-ビニルカルボン酸アミド製造用組成物。
〔9〕前記成分(A)及び前記成分(B)の合計含有量が、前記組成物全量中、75.0~99.0質量%である、前記〔1〕~〔8〕のいずれかに記載のN-ビニルカルボン酸アミド製造用組成物。
〔10〕前記〔1〕~〔9〕のいずれかに記載のN-ビニルカルボン酸アミド製造用組成物を、熱分解又は接触分解することを特徴とする、N-ビニルカルボン酸アミドの製造方法。
 本発明によれば、N-ビニルカルボン酸アミドの製造において、より安定した生産が可能となるN-ビニルカルボン酸アミド製造用組成物を提供することができる。
 以下、本発明を詳細に説明するが、本発明は下記の実施形態に限定されるものではない。
 また、本明細書中、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~80、更に好ましくは40~70」という記載から、好適範囲として、例えば、「10~70」、「30~70」、「40~80」といったそれぞれ独立に選択した下限値と上限値とを組み合わせた範囲を選択することもできる。また、同様の記載から、例えば、単に、「40以上」又は「70以下」といった下限値又は上限値の一方を規定した範囲を選択することもできる。また、例えば、「好ましくは10以上、より好ましくは30以上、更に好ましくは40以上、そして、好ましくは90以下、より好ましくは80以下、更に好ましくは70以下」という記載から選択可能な好適範囲についても同様である。
[N-ビニルカルボン酸アミド製造用組成物]
 本発明のN-ビニルカルボン酸アミド製造用組成物は、成分(A)であるN-(1-アルコキシエチル)カルボン酸アミド(以下、単に「成分(A)」ともいう。)、並びに成分(B)であるN-(1-アルコキシエチル)カルボン酸アミド及びN-ビニルカルボン酸アミド以外のカルボン酸アミド(以下、単に「成分(B)」ともいう。)を含む組成物(以下、単に「組成物」ともいう。)であって、下記(1)~(4)の条件を満たす。
 (1)前記組成物の融点が0~30℃
 (2)水の含有量が、前記組成物全量中0~1.00質量%
 (3)前記成分(A)の前記成分(B)に対する含有量比が、モル比で4.5~20.0
 (4)前記組成物の5質量%水溶液のpHが4.0~8.0
<成分(A):N-(1-アルコキシエチル)カルボン酸アミド>
 本発明で用いる前記成分(A)であるN-(1-アルコキシエチル)カルボン酸アミドとしては、好ましくは下記一般式(I)で表される化合物が挙げられ、より好ましくはN-(1-メトキシエチル)カルボン酸アミドである。
Figure JPOXMLDOC01-appb-C000005
 一般式(I)中、Rは炭素数1~5のアルキル基、好ましくは炭素数1~3のアルキル基、より好ましくはメチル基又はエチル基、更に好ましくはメチル基を表す。Rは水素原子又は炭素数1~5のアルキル基、好ましくは水素原子又は炭素数1~3のアルキル基、より好ましくは水素原子又はメチル基、更に好ましくは水素原子を表す。Rは炭素数1~5のアルキル基、好ましくは炭素数1~3のアルキル基、より好ましくはメチル基又はエチル基、更に好ましくはメチル基を表す。
 一般式(I)で表される化合物としては、例えば、N-(1-メトキシエチル)アセトアミド、N-(1-メトキシエチル)-N-メチルアセトアミド、N-(1-エトキシエチル)アセトアミド、N-(1-エトキシエチル)-N-メチルアセトアミド、N-(1-プロポキシエチル)アセトアミド、N-(1-イソプロポキシエチル)アセトアミド、N-(1-ブトキシエチル)アセトアミド、N-(1-イソブトキシエチル)アセトアミド、N-(1-メトキシエチル)プロピオンアミド、N-(1-エトキシエチル)プロピオンアミド、N-(1-プロポキシエチル)プロピオンアミド、N-(1-イソプロポキシエチル)プロピオンアミド、N-(1-ブトキシエチル)プロピオンアミド、N-(1-イソブトキシエチル)プロピオンアミド、N-(1-メトキシエチル)ブチルアミド、N-(1-エトキシエチル)ブチルアミド、N-(1-プロポキシエチル)ブチルアミド、N-(1-イソプロポキシエチル)ブチルアミド、N-(1-ブトキシエチル)ブチルアミド、N-(1-イソブトキシエチル)ブチルアミド、N-(1-メトキシエチル)イソブチルアミド、N-(1-エトキシエチル)イソブチルアミド、N-(1-プロポキシエチル)イソブチルアミド、N-(1-イソプロポキシエチル)イソブチルアミド、N-(1-ブトキシエチル)イソブチルアミド、N-(1-イソブトキシエチル)イソブチルアミド等が挙げられる。これらの中では、好ましくはN-(1-メトキシエチル)アセトアミド、N-(1-イソプロポキシエチル)アセトアミド、N-(1-メトキシエチル)イソブチルアミド、より好ましくはN-(1-メトキシエチル)アセトアミドが挙げられる。
 本発明に用いることができる成分(A)の合成方法については、特に制限はないが、例えば、酸触媒によるアセトアルデヒド、成分(A)及びN-ビニルカルボン酸アミド以外のカルボン酸アミド、アルコールの縮合反応;酸触媒によるアセトアルデヒドアセタールと成分(A)及びN-ビニルカルボン酸アミド以外のカルボン酸アミドとの置換反応;塩基によるアセトアルデヒドと成分(A)及びN-ビニルカルボン酸アミド以外のカルボン酸アミドとの縮合反応に続く酸触媒によるアルコールとの縮合反応;などが挙げられる。
 なお、これらの反応で使用されるアルコールとしては、例えば、R-OHで表されるアルコールが挙げられる。Rは、炭素数1~5のアルキル基、好ましくは炭素数1~3のアルキル基、より好ましくはメチル基又はエチル基、更に好ましくはメチル基を表す。すなわち、当該Rで表されるアルキル基とは、前述の一般式(I)で表される化合物中のRを構成するアルキル基に対応するものである。
 前記酸触媒としては、均一系触媒、不均一系触媒のいずれでもよく、均一系触媒としては、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸;リンタングステン酸等のヘテロポリ酸;メタンスルホン酸、p-トルエン酸等の有機酸;などが挙げられる。更に、必ずしも均一に溶解するとは限らないが、強酸と弱塩基との塩も使用できる。強酸と弱塩基との塩としては、硫酸アンモニウム、塩化アンモニウム等が挙げられる。不均一系触媒としては、例えば、ゲル型やポーラス型の酸性イオン交換樹脂が挙げられる。
 前記塩基触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム、リン酸ナトリウム、リン酸カリウム、リン酸一水素ナトリウム、リン酸一水素カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム等の無機塩基;トリエチルアミン、ピリジン、モルフォリン等の有機アミン;イオン交換樹脂;などが挙げられる。
 酸触媒を用いて、成分(A)を合成する場合、合成により得られるN-(1-アルコキシエチル)カルボン酸アミド反応液を塩基により、好ましくはpH8.0~8.5に中和した後、N-(1-アルコキシエチル)カルボン酸アミドを精製する。
 成分(A)の精製方法は特に制限はないが、不純物との分離の観点で蒸留精製が好ましい。蒸留方法としては、単蒸留法、精留塔を備えた蒸留装置による精密蒸留法などが挙げられる。また、単蒸留法で行う際の装置に特に制限はないが、ミスト同伴に伴う留出物中の不純物増加を抑えるための対策として、ガスラインにミストセパレーター等を設置することも有効である。そして、成分(A)は熱により変性する場合があるため、極力熱履歴をかけないことが好ましい。そのため、蒸留は、好ましくは圧力0.1~1.3kPa(絶対圧力)、より好ましくは0.1~0.5kPa(絶対圧力)、更に好ましくは0.1~0.4kPa(絶対圧力)、100℃以下の条件で、低沸点成分を適宜留去しながら行うことが好ましい。
 前記成分(A)の含有量は、前記組成物全量中、好ましくは70.0~96.0質量%、より好ましくは75.0~92.0質量%、更に好ましくは78.0~88.0質量%である。当該含有量は、後述する実施例に記載の方法により測定する。
<成分(B):N-(1-アルコキシエチル)カルボン酸アミド及びN-ビニルカルボン酸アミド以外のカルボン酸アミド>
 本発明で用いる前記成分(B)であるカルボン酸アミドは、前記N-(1-アルコキシエチル)カルボン酸アミド及びN-ビニルカルボン酸アミド以外のカルボン酸アミドである。前記成分(B)としては、好ましくは下記一般式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 一般式(II)中、Rは炭素数1~5のアルキル基、好ましくは炭素数1~3のアルキル基、より好ましくはメチル基又はエチル基、更に好ましくはメチル基を表す。Rは水素原子又は炭素数1~5のアルキル基、好ましくは水素原子又は炭素数1~3のアルキル基、より好ましくは水素原子又はメチル基、更に好ましくは水素原子を表す。
 一般式(II)で表される化合物としては、例えば、アセトアミド及びそのN-アルキル誘導体、プロピオンアミド及びそのN-アルキル誘導体、ブチルアミド及びそのN-アルキル誘導体、イソブチルアミド及びそのN-アルキル誘導体等が挙げられ、好ましくはアセトアミド及びそのN-アルキル誘導体、イソブチルアミド及びそのN-アルキル誘導体、より好ましくはアセトアミド、イソブチルアミド、更に好ましくはアセトアミドが挙げられる。
 前記成分(B)の含有量は、前記組成物全量中、好ましくは1.0~15.0質量%、より好ましくは1.5~10.0質量%、更に好ましくは2.0~9.5質量%である。
 また、前記成分(A)及び前記成分(B)の合計含有量は、前記組成物全量中、好ましくは75.0~99.0質量%、より好ましくは80.0~98.0質量%、更に好ましくは85.0~98.0質量%である。
 また、通常であれば、N-ビニルカルボン酸アミド製造用組成物は、N-ビニルカルボン酸アミドの収率向上の観点から、当該合計含有量をより100質量%に近づけ、かつ、成分(A)が高純度で含まれるように調製されるものである。しかし、本発明の組成物の場合、下記条件(3)の説明で後述するように、N-(1-アルコキシエチル)カルボン酸アミド含有組成物の合成及び精製を行う際の製造設備の制約を少なくすることもでき、かつ、N-ビニルカルボン酸アミドを安定に生産できるという観点から、当該合計含有量の好適な上限値が、前述した値であってもよい。
 これらの各含有量は、後述する実施例に記載の方法により測定する。
<条件(1)>
 本発明の組成物は、融点が0~30℃である。前記融点が30℃より高い場合、N-ビニルカルボン酸アミドの製造時に、例えば、前記組成物が次工程に移送される配管内で固化することを防ぐため、30℃よりも高温となるように配管温度を調節する必要が生じる。また、例えば、配管を保温又はヒーター等で温度調節した場合にも保温材やヒーターの種類によっては、一部温度調節が不十分な箇所や細い配管箇所等では、前記組成物が固化する可能性が高まる。前記融点が0℃未満の場合、前記組成物として品質的に不十分となる。ここで、「品質的に不十分となる」とは、例えば、最終的なN-ビニルカルボン酸アミドの収率が低下してしまう組成物となることをいう。例えば、組成物中の低沸点成分の分離が不十分であり、その結果、前記成分(A)の含有量濃度が低下している組成物などが挙げられる。
 このような観点から、前記融点は、好ましくは0~20℃、より好ましくは5~15℃、更に好ましくは8~13℃である。
 前記融点は、後述する実施例に記載の方法により測定する。
 なお、前記融点は、前記組成物の組成の影響を受ける。例えば、前記成分(A)の含有量が増加すると、前記融点の値は高くなる傾向がある。
<条件(2)>
 本発明の組成物は、水の含有量(以下、「水分」ともいう。)が、前記組成物全量中0~1.00質量%である。当該水分が1.00質量%を超えると、例えば、後述するように前記組成物が気化器で加熱された際に、前記成分(A)が前記成分(B)、アセトアルデヒド及びアルコールに分解され易くなり、前記組成物の熱安定性が低下してしまう。その結果、気化器等の加熱工程において、前記組成物の変性、副反応、重合等の意図しない反応が生じてしまい、製造装置の閉塞やN-ビニルカルボン酸アミドの収率や品質の低下といったトラブルに繋がる可能性が高まる。
 前記組成物が水を含む場合、当該水は、主に、前記成分(A)の原料等に由来する水又は合成の過程で生成、混入する水である。
 このような観点から、前記水の含有量は、前記組成物全量中、好ましくは0~0.50質量%、より好ましくは前記組成物全量中0.01~0.30質量%、更に好ましくは前記組成物全量中0.01~0.20質量%である。
 前記水の含有量は、後述する実施例に記載の方法により測定する。
<条件(3)>
 本発明の組成物は、前記成分(A)の前記成分(B)に対する含有量比が、モル比で4.0~20.0である。当該モル比が4.0より低いと前記成分(A)に対する前記成分(B)の比率が高まり、前記組成物が気化器等で加熱された際に、前記成分(A)と成分(B)とが反応して副生成物を生じる副反応の進行が起こり易くなる。前記モル比が20より高くなると、前記組成物の融点が高くなり、N-ビニルカルボン酸アミドの製造時に、供給配管等の配管中で前記組成物が固化する等の可能性が高まる。
 このような観点から、前記モル比は、好ましくは4.2~15.0、より好ましくは4.5~9.0、更に好ましくは4.8~8.0である。
 また、通常、N-ビニルカルボン酸アミドの収率を向上させる観点では、前記成分(A)を高純度で含む組成物を用いる。しかし、前記成分(A)を高純度で含む組成物を得るためには、原料となるN-(1-アルコキシエチル)カルボン酸アミド及びN-ビニルカルボン酸アミド以外のカルボン酸アミドの濃度を薄くすることが有効であり、バッチ反応の場合には生産性が低下し、連続合成設備等の生産規模の大きなスケールでは設備投資が大きくなる。また、前記成分(A)を高純度化する場合には、沸点の近い前記成分(B)を分離する為に、多段の蒸留塔が必要となり、この場合にも設備投資は大きくなる。しかし、本発明者らは、前記モル比が20.0以下であることで前述のデメリットを回避できることを見出した。そのため、N-ビニルカルボン酸アミド製造時の運転安定性を向上させ、結果、連続運転性の向上に寄与することで生産コストを低減できる観点、また、より簡易な製造設備での製造も可能となる観点からも、前記モル比は、好ましくは15.0以下、より好ましくは9.0以下、更に好ましくは8.0以下である。
 前記モル比は、後述する実施例に記載の方法により測定する。
<条件(4)>
 本発明の組成物は、当該組成物の5質量%水溶液のpHが、4.0~8.0である。当該pHが4より低いと、前記組成物が気化器等で加熱された際に、前記成分(A)と前記成分(B)とが反応して副生成物を生じる副反応の進行が起こり易くなる。なお、pH8.0よりも高い領域は、前記組成物を得る方法において、前記成分(A)を合成する際の中和工程を、前述の好ましい範囲であるpH8.0~8.5で行う場合には起こりにくい。
 このような観点から、前記組成物の5質量%水溶液のpHは、好ましくは4.3~7.8、より好ましくは4.5~7.6、更に好ましくは5.0~7.5である。
 前記組成物の5質量%水溶液のpHは、後述する実施例に記載の方法により測定する。
 なお、前記組成物の5質量%水溶液のpHは、当該組成物の組成に影響を受ける。例えば、前記成分(A)を合成する際に用いる酸触媒及び中和工程で使用する塩基の種類及び使用量による影響を受ける。そのため、酸触媒及び中和で用いる塩基以外が同様の組成であれば、前記成分(A)を合成する際の中和工程で、前記成分(A)を含有する反応液のpHをより高い値に調整した方が、前記pHの値はより高くなる。
<その他成分>
 前記組成物は、本発明の効果を損なわない範囲で、その他成分を含んでいてもよい。当該その他成分としては、例えば、前記成分(A)を製造する際に用いる各化合物由来の成分又は合成された前記成分(A)の分解物若しくは副生成物等が挙げられる。例えば、合成反応時に用いられる溶媒、原料成分として用いられるメタノール等のアルコール;アセトアルデヒドジアルキルアセタール等のアセトアルデヒドアセタール;エチリデンビスカルボン酸アミド;又はN-(1-アルコキシエチル)カルボン酸アミドを蒸留等で精製分離する際に分解等により生成するN-ビニルカルボン酸アミド;などが挙げられる。
[N-ビニルカルボン酸アミドの製造方法]
 前述のとおり、前記組成物は、N-ビニルカルボン酸アミドの製造に用いられるものである。N-ビニルカルボン酸アミドは、前記組成物に対し、公知の熱分解又は接触分解を行うことで合成することができる。それら分解を行う時の条件としては、例えば、気相又は液相で、反応温度60~600℃、反応時間0.3秒~2時間、操作圧力0.1kPa(絶対圧力)~大気圧が挙げられる。これらの条件の中でも、気相で、反応温度300~600℃、反応時間0.3秒~1分、操作圧力10~30kPa(絶対圧力)の条件で反応を行うことが好ましい。
 例えば、前記組成物を、液体の状態で気化器に送液し、圧力10~30kPa(絶対圧力)、120~200℃の気化器で気化させた後、反応温度300~600℃の熱分解装置に供給し、N-ビニルカルボン酸アミドとアルコールに分解することができる。
 気化器としては、特に制限はないが、原料を効率よく気化させる観点から、好ましくは、流下液膜式蒸発器、強制液膜式蒸発器が挙げられる。
 また、熱分解装置が備える熱分解反応器としては、気化した原料の熱分解を効率よく行う観点から、管状構造であることが好ましい。
 このように、前記組成物を液体で送液する観点から、配管内で固化しないよう、例えば、配管の温度調節に不具合が生じたりした際に、配管周囲温度の影響を受けても(例えば、常温で)液体状態を維持できるようにすれば、配管内での原料成分の固化を防止することができると考えられる。この点において、本発明の組成物は、前記条件(1)の融点を満たすため、前述のとおり、配管の温度調節に不具合が生じたりした場合であっても、配管内での固化を防止することができる。
 また、前記組成物は、気化器での熱安定性が十分であれば、供給した当該組成物がほぼ気化して次の反応工程へと供給されるため、連続運転を行っても装置上の不具合が生じる可能性が低くなる。しかし、前記組成物の熱安定性が不十分で、当該組成物が気化器で変性、副反応、又は重合などを起こし、高温でも固体となる副生成物を生じると装置の閉塞につながる可能性が高まる。これは、気化器に関わらず、N-ビニルカルボン酸アミドを合成する過程で、前記組成物を加熱する設備であれば同様である。
 このような観点から、前記組成物は、後述する実施例に記載の方法で算出される前記成分(A)の残存率が、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上である。
 また、前記組成物の熱安定性は、当該組成物中の水分、前記成分(A)の前記成分(B)に対する含有量比(モル比)、5質量%水溶液のpH等も影響し、これらの条件の組み合わせによっても変動する。そのため、ある一態様においては、後述する実施例に記載の方法で算出される前記成分(A)の残存率を評価する際に、少なからず前記成分(A)が加熱により変性や副反応、重合等といった反応を生じてしまうため、そのような観点から、前記残存率の好適な上限値としては、例えば、85%であってもよく、90%であってもよく、95%であってもよい。
<N-ビニルカルボン酸アミド>
 本発明の組成物を用いて製造されるN-ビニルカルボン酸アミドとしては、好ましくは下記一般式(III)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 一般式(III)中、Rは炭素数1~5のアルキル基、好ましくは炭素数1~3のアルキル基、より好ましくはメチル基又はエチル基、更に好ましくはメチル基を表す。Rは水素原子又は炭素数1~5のアルキル基、好ましくは水素原子又は炭素数1~3のアルキル基、より好ましくは水素原子又はメチル基、更に好ましくは水素原子を表す。
 一般式(III)で表される化合物としては、例えば、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド、N-ビニルプロピオンアミド、N-メチル-N-ビニルプロピオンアミド、N-ビニルイソブチルアミド、N-メチル-N-ビニルイソブチルアミド等が挙げられ、好ましくはN-ビニルアセトアミド、N-ビニルイソブチルアミド、より好ましくはN-ビニルアセトアミドが挙げられる。
 以下、実施例を通じて本発明を更に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に制約されるものではない。
 なお、組成物及び各成分の各性状等については、次の方法により、測定、評価した。
[水分測定]
 組成物の水分測定(水の含有量)は、株式会社三菱ケミカルアナリテック製のカールフィッシャー電量滴定法水分測定装置「CA-200」を用いて測定した。
[組成物中の各成分の含有量、及び成分(A)と成分(B)との含有量比(モル比)]
 組成物中の水を除く各成分の含有量は、ガスクロマトグラフィー(GC)分析(内部標準法、内部標準物質:ジエチレングリコールジメチルエーテル)により定量し、成分(A)と成分(B)との含有量比(モル比)は、定量した各成分の量から算出した。
 GC分析時の条件を以下に示す。
装置:高性能汎用ガスクロマトグラフ「GC-2014」(株式会社島津製作所製)
カラム:「HP-WAX」(φ0.25mm×30m、Agilent Technologies社製)
キャリアガス種類:He
キャリアガス流量:1mL/min
スプリット比:40
カラム温度:40℃(7分)→昇温(25℃/分)→130℃(15分)→昇温(30℃/分)→220℃(2分)の順で昇温プログラムを設定
インジェクション温度:200℃
検出器:水素炎イオン化検出器(FID)
検出器温度:230℃
[pH]
 pH測定は、パーソナルpHメータ「PH71」(横河電機株式会社製)を用いて、試料温度20~25℃で測定した。
 なお、表1及び2に示す組成物の5質量%水溶液は、各実施例で調製した組成物を、当該組成物濃度が5質量%となる水溶液になるように純水を添加して調製した。
[融点]
 組成物の融点測定は、温度計を備えたガラス細管に測定試料である組成物を充填した後、当該ガラス管を氷水による0℃の水浴に浸し、循環恒温槽の温度を5℃/hで昇温して測定した。固体が溶け始め、液体を確認できた点を融点とした。
[組成物の熱安定性評価]
 組成物の熱安定性評価は次の方法を用いて行った。
 各実施例で調製した組成物20gを、内容積50mLの三口フラスコに充填し、攪拌子を入れて攪拌しながら、大気下、常圧、160℃の条件下で、4時間加熱した。三口フラスコには、温度計用内挿管を設置し、加熱に伴い留出する成分は冷却管を経由して回収を行った。当該熱処理後の組成物中における成分(A)であるN-(1-アルコキシエチル)カルボン酸アミドの含有量と、熱処理前の組成物中における成分(A)の含有量とから次の式を用いて成分(A)であるN-(1-アルコキシエチル)カルボン酸アミドの残存率(%)を算出した。
 
・N-(1-アルコキシエチル)カルボン酸アミドの残存率(%)=[〔熱処理後組成物の重量×熱処理後組成物中のN-(1-アルコキシエチル)カルボン酸アミドの濃度〕/〔熱処理前組成物の重量×熱処理前組成物中のN-(1-アルコキシエチル)カルボン酸アミドの濃度〕]×100(%)
 
 なお、当該熱処理前後のN-(1-アルコキシエチル)カルボン酸アミドの濃度は、前述のGC分析と同様の方法を用いて確認した。
[酢酸濃度]
 比較例1に記載の反応液の酢酸濃度は、前述のGC分析と同様の方法を用いて確認した。
[実施例1]
<合成例1-1>(アセトアルデヒドジメチルアセタールの合成)
 メタノール420gに硫酸6.6gを添加して0℃に冷却した後、アセトアルデヒド230gを加えることで、収率75%でアセトアルデヒドジメチルアセタールを主成分とする液を合成した。この液を精製することなく、下記合成例1-2で使用した。
<合成例1-2>(N-(1-メトキシエチル)アセトアミドの合成)
 メタノール337g、アセトアルデヒド300g、及びアセトアミド230gを混合した混合液を調製した後、合成例1-1で得られたアセトアルデヒドジメチルアセタール含有液640gを40℃で前記混合液に添加した後、6時間反応させてpH1.2の反応液を得た。その後、この反応液に48質量%水酸化ナトリウム水溶液を加えて、pH8.3に調整したN-(1-メトキシエチル)アセトアミド含有液を得た。
<調製例1>(N-(1-メトキシエチル)アセトアミド含有組成物の調製)
 単蒸留装置を用い、温度60~70℃、圧力33kPa(絶対圧力)の条件で、合成例1-2で得られたpH8.3のN-(1-メトキシエチル)アセトアミド含有液からアセトアルデヒド、アセトアルデヒドジメチルアセタール等の低沸点成分を留去した。その後、更に、温度70℃、圧力0.3kPa(絶対圧力)の条件で水及びメタノールを留去して濃縮液を得た。
 得られた濃縮液を、更に減圧蒸留し、温度80~100℃(圧力0.3kPa(絶対圧力))の範囲の留分345gをN-(1-メトキシエチル)アセトアミドを78.3質量%、アセトアミドを7.7質量%で含む組成物として得た。
 得られたN-(1-メトキシエチル)アセトアミド含有組成物は、融点=8℃、水分=0.10質量%、N-(1-メトキシエチル)アセトアミドとアセトアミドとのモル比=5.1、5質量%水溶液のpH=4.3であった。また、熱安定性評価によるN-(1-メトキシエチル)アセトアミドの残存率は75.1%であった。得られた組成物の評価結果を下記表1に示す。
<合成例1-3>(N-ビニルアセトアミドの合成)
 調製例1で得られたN-(1-メトキシエチル)アセトアミド含有組成物を、160℃、20kPa(絶対圧力)に保たれた気化器(内径20mm、長さ240mm)に、30℃の温度に設定された供給配管を通して1.5g/分の供給速度で供給して気化させた後、400℃、20kPa(絶対圧力)の反応器(内径20mm、長さ240mmの管型反応器)に気化状態で導入して熱分解反応させた。
 反応器出口に設置された冷却管で、熱分解反応で生成したN-ビニルアセトアミド及びメタノールの混合物を凝縮して、粗N-ビニルアセトアミドを回収した。熱分解反応時には供給配管内での供給原料の固化や気化器内での副生成物の生成等による装置の閉塞等の製造トラブルは確認されず良好であり、N-ビニルアセトアミドの収率は90%で得られた。
[実施例2]
 実施例1の調製例1で、合成例1-2で得られたpH8.3のN-(1-メトキシエチル)アセトアミド含有液の蒸留で回収された低沸点成分(アセトアルデヒドジメチルアセタール69質量%、アセトアルデヒド16質量%、メタノール13質量%、水2質量%)482g、アセトアミド240g、及びアセトアルデヒド312gを混合して40℃に加温した後、硫酸15gをメタノール460gに溶解した液を添加し6時間反応させてpH1.1の反応液を得た。その後、この反応液に48質量%水酸化ナトリウム水溶液を加えてpH8.3に調整したN-(1-メトキシエチル)アセトアミド含有液を得た。当該含有液に実施例1の調製例1と同様の操作を行い、N-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[実施例3]
 実施例2で混合するアセトアミドの量を217gに変更した以外は、実施例2と同様に操作を行ってN-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[実施例4]
 実施例2で混合するアセトアミドの量を197gに変更した以外は、実施例2と同様に操作を行ってN-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[実施例5]
 実施例2で混合するアセトアミドの量を181gに変更した以外は、実施例2と同様に操作を行ってN-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[実施例6]
 アセトアミド50g、アセトアルデヒドジメチルアセタール700g、及びアセトアルデヒド150gを混合して40℃に加温した後、硫酸10gをメタノール180gに溶解した液を添加し6時間反応させてpH1.2の反応液を得た。その後、この反応液に48質量%水酸化ナトリウム水溶液を加えてpH8.3に調整したN-(1-メトキシエチル)アセトアミド含有液を得た。
 当該含有液に実施例1の調製例1と同様の操作を行い、N-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[実施例7]
 アセトアミド50g、アセトアルデヒドジメチルアセタール1000g、アセトアルデヒド170gを混合して40℃に加温した後、硫酸14gをメタノール200gに溶解した液を添加し6時間反応させてpH1.1の反応液を得た。その後、この反応液に48質量%水酸化ナトリウム水溶液を加えてpH8.3に調整したN-(1-メトキシエチル)アセトアミド含有液を得た。
 当該含有液に実施例1の調製例1と同様の操作を行い、N-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[実施例8]
 実施例2と同様にして得られたN-(1-メトキシエチル)アセトアミド含有組成物に、更に、純水を添加して、水分を0.5質量%に調製した組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[実施例9]
 実施例3と同様にして得られたN-(1-メトキシエチル)アセトアミド含有組成物に、更に、純水を添加して、水分を0.96質量%に調製した組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、実施例8で得られた組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[実施例10]
 アセトアミド50g、アセトアルデヒドジメチルアセタール310g、及びアセトアルデヒド140gを混合して40℃に加温した後、硫酸10gをメタノール160gに溶解した液を添加し6時間反応させてpH1.2の反応液を得た。その後、この反応液に48質量%水酸化ナトリウム水溶液を加えてpH8.3に調整したN-(1-メトキシエチル)アセトアミド含有液を得た。
 当該含有液に実施例1の調製例1と同様の操作を行い、N-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表1に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程における製造トラブルは確認されなかった。
[比較例1]
 アセトアミド120g、アセトアルデヒドジメチルアセタール3680g、メタノール200gを混合して均一溶液とし、反応原料とした。内径40mmの反応管に強酸性イオン交換樹脂「アンバーリスト(登録商標)15」を60mL充填し、反応管を55℃の温水に沈め、反応温度55℃とした。この反応管に毎時5mLで前記反応原料を導入し、流出した反応液を回収、分析を行った。アセトアミド転化率98%、N-(1-メトキシエチル)アセトアミド収率は90%であった。
 得られた反応液を単蒸留装置で蒸留し、13kPa(絶対圧力)、油浴温度90℃で低沸点成分を留出後、釜残のpHを測定したところpH=4.3、酢酸濃度は430ppmであった。この釜残に酢酸に対して、1.1当量の炭酸ナトリウムを添加した後、圧力0.3kPa(絶対圧力)で、N-(1-メトキシエチル)アセトアミド含有組成物を207g留出させた。得られた組成物中、N-(1-メトキシエチル)アセトアミド含有量が98.1質量%、アセトアミド含有量が1.1質量%であり、融点=32℃、水分=0.03質量%、N-(1-メトキシエチル)アセトアミドとアセトアミドとのモル比=45.0、5質量%水溶液のpH=7.4であった。また、熱安定性評価によるN-(1-メトキシエチル)アセトアミドの残存率は83.6%であった。得られた組成物の評価結果を下記表2に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドの合成を試みたところ、熱分解工程において原料供給配管での原料固化による閉塞によって、製造トラブルが確認された。
[比較例2~4]
 実施例2と同様にして得られたN-(1-メトキシエチル)アセトアミド含有組成物に、更に、純水を添加して、水分を、それぞれ、下記表2に示す含有量に調製した組成物を得た。得られた各組成物の評価結果を下記表2に示す。熱安定性評価によるN-(1-メトキシエチル)アセトアミドの残存率は、比較例2、3及び4の順に、65.6%、57.4%、47.5%と低下した。
 そして、比較例2、3及び4で得られた各組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、いずれも熱分解工程で副生成物の生成による気化器の閉塞が確認された。
[比較例5]
 実施例2でのN-(1-メトキシエチル)アセトアミド合成の反応時間を6時間から2時間に変更した以外は、実施例2と同様に操作を行ってN-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表2に示す。
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程で気化器の閉塞が確認された。
[比較例6]
 実施例1における合成例1-2のN-(1-メトキシエチル)アセトアミド合成後のpH調整値をpH8.3からpH7.5に変更した以外は同様に操作を行ってN-(1-メトキシエチル)アセトアミド含有組成物を得た。得られた組成物の評価結果を下記表2に示す
 そして、当該組成物を用いた以外は、実施例1の合成例1-3と同様にしてN-ビニルアセトアミドを合成したところ、熱分解工程で気化器の閉塞が確認された。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1に示すとおり、実施例1~10における条件(1)~(4)を全て満たす成分(A)及び成分(B)を含む組成物は、製造時におけるトラブルを生じず、N-ビニルカルボン酸アミドを安定して生産できることが確認された。
 それに対して、表2に示すとおり、比較例1~6における成分(A)及び成分(B)を含む組成物は、条件(1)~(4)のいずれかを満たさないため、製造トラブルが発生し、N-ビニルカルボン酸アミドを安定して製造することが困難であることが確認された。
 N-ビニルカルボン酸アミドの製造において、本発明の組成物を用いることにより、供給配管での原料成分の固化や熱分解塔内での閉塞といった製造トラブルを回避することが可能となり、従来のN-(1-アルコキシエチル)カルボン酸アミド単体又はN-(1-アルコキシエチル)カルボン酸アミドを含む組成物を用いるよりも、より安定した生産が可能となる。
 そして、この生産性の向上及び改善が、N-ビニルカルボン酸アミドの前駆体であるN-(1-アルコキシエチル)カルボン酸アミドを含む組成物に起因するものであるため、高額な温度調節設備の導入や熱分解反応器の改良を行わずに、より安定した生産を行うことが可能となり、それにより連続生産性も向上する。また、例えば、運転可能な供給配管温度の設定範囲も拡張することができる点、気化器を含む熱分解反応器における僅かな温度設定ムラ等よる不純物の生成も抑制されるため、従来よりも使用可能な設備の選択肢を拡げることが可能になる。更に、同様の理由から、製造設備の設置環境、例えば、配管温度等に影響する周囲温度の影響も受けにくくなることから、コスト的、地域的な観点からも、新たな製造設備の導入における障壁が少なくなるといったメリットも有している。
 このように、本発明のN-(1-アルコキシエチル)カルボン酸アミド含有組成物は、従来設備におけるより安定した生産性の実現に加えて、運転条件や設備の選択肢の面での制約を少なくすることが可能であるため、更に、新たな製造設備を導入する場合の障壁も低くすることが可能であり、産業上、非常に有用である。

Claims (10)

  1.  成分(A)であるN-(1-アルコキシエチル)カルボン酸アミド、並びに成分(B)であるN-(1-アルコキシエチル)カルボン酸アミド及びN-ビニルカルボン酸アミド以外のカルボン酸アミドを含む組成物であって、下記(1)~(4)の条件を満たす、N-ビニルカルボン酸アミド製造用組成物。
     (1)前記組成物の融点が0~30℃
     (2)水の含有量が、前記組成物全量中、0~1.00質量%
     (3)前記成分(A)の前記成分(B)に対する含有量比が、モル比で4.0~20.0
     (4)前記組成物の5質量%水溶液のpHが4.0~8.0
  2.  前記成分(A)が、下記一般式(I)で表される化合物である、請求項1に記載のN-ビニルカルボン酸アミド製造用組成物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(I)中、Rは炭素数1~5のアルキル基を表し、Rは水素原子又は炭素数1~5のアルキル基を表し、Rは炭素数1~5のアルキル基を表す。)
  3.  前記成分(B)が、下記一般式(II)で表される化合物である、請求項1又は2に記載のN-ビニルカルボン酸アミド製造用組成物。
    Figure JPOXMLDOC01-appb-C000002

    (一般式(II)中、Rは炭素数1~5のアルキル基を表し、Rは水素原子又は炭素数1~5のアルキル基を表す。)
  4.  前記成分(A)が、N-(1-メトキシエチル)カルボン酸アミドである、請求項1~3のいずれか1項に記載のN-ビニルカルボン酸アミド製造用組成物。
  5.  前記成分(A)が、N-(1-メトキシエチル)アセトアミドである、請求項1~4のいずれか1項に記載のN-ビニルカルボン酸アミド製造用組成物。
  6.  前記成分(B)が、アセトアミドである、請求項1~5のいずれか1項に記載のN-ビニルカルボン酸アミド製造用組成物。
  7.  前記組成物を、大気下、常圧、160℃の条件下で、4時間保持した後の、前記組成物中における前記成分(A)の残存率(%)が、70%以上である、請求項1~6のいずれか1項に記載のN-ビニルカルボン酸アミド製造用組成物。
  8.  前記成分(A)の含有量が、前記組成物全量中、70.0~96.0質量%である、請求項1~7のいずれか1項に記載のN-ビニルカルボン酸アミド製造用組成物。
  9.  前記成分(A)及び前記成分(B)の合計含有量が、前記組成物全量中、75.0~99.0質量%である、請求項1~8のいずれか1項に記載のN-ビニルカルボン酸アミド製造用組成物。
  10.  請求項1~9のいずれか1項に記載のN-ビニルカルボン酸アミド製造用組成物を、熱分解又は接触分解することを特徴とする、N-ビニルカルボン酸アミドの製造方法。
PCT/JP2019/050311 2018-12-27 2019-12-23 N-ビニルカルボン酸アミド製造用組成物 WO2020137951A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19903898.5A EP3904334A4 (en) 2018-12-27 2019-12-23 COMPOSITION FOR THE PREPARATION OF AN N-VINYL CARBONIC AMIDE
KR1020217019064A KR20210094005A (ko) 2018-12-27 2019-12-23 N-비닐카르복실산아미드 제조용 조성물
CN201980086388.2A CN113227043B (zh) 2018-12-27 2019-12-23 N-乙烯基羧酸酰胺制造用组合物
US17/417,599 US20220112155A1 (en) 2018-12-27 2019-12-23 Composition for producing n-vinyl carboxylic acid amide
JP2020563245A JP7447806B2 (ja) 2018-12-27 2019-12-23 N-ビニルカルボン酸アミド製造用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-246081 2018-12-27
JP2018246081 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137951A1 true WO2020137951A1 (ja) 2020-07-02

Family

ID=71127274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050311 WO2020137951A1 (ja) 2018-12-27 2019-12-23 N-ビニルカルボン酸アミド製造用組成物

Country Status (7)

Country Link
US (1) US20220112155A1 (ja)
EP (1) EP3904334A4 (ja)
JP (1) JP7447806B2 (ja)
KR (1) KR20210094005A (ja)
CN (1) CN113227043B (ja)
TW (1) TWI770453B (ja)
WO (1) WO2020137951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047854A (zh) * 2020-10-20 2020-12-08 中国科学院长春应用化学研究所 一种n-乙烯基烷基酰胺的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132363A1 (ja) * 2019-12-26 2021-07-01 昭和電工株式会社 高重合性n-ビニルカルボン酸アミド単量体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167369A (ja) * 2000-09-19 2002-06-11 Showa Denko Kk 高重合性n−ビニルカルボン酸アミドの製造方法
WO2010079774A1 (ja) * 2009-01-06 2010-07-15 昭和電工株式会社 N-(1-ヒドロキシエチル)カルボン酸アミド化合物及びその製造方法
WO2017145569A1 (ja) * 2016-02-22 2017-08-31 昭和電工株式会社 N-ビニルカルボン酸アミドの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2336977A1 (de) * 1973-07-20 1975-02-13 Hoechst Ag Verfahren zur herstellung von sekundaeren n-vinylcarbonsaeureamiden
DE2919755A1 (de) * 1979-05-16 1980-11-27 Hoechst Ag Verfahren zur herstellung von n-vinyl- n-alkyl-carbonsaeureamiden
US4554377A (en) * 1984-07-16 1985-11-19 Celanese Corporation Production of N-vinyl carboxylic acid amides
JPH0617351B2 (ja) * 1986-06-09 1994-03-09 昭和電工株式会社 N−(α−アルコキシエチル)−カルボン酸アミドの製造方法
JPH0816090B2 (ja) * 1988-06-22 1996-02-21 昭和電工株式会社 N−(α−アルコキシアルキル)カルボン酸アミドの安定化方法
ATE214690T1 (de) * 1995-12-28 2002-04-15 Showa Denko Kk Hochpolymerisierbares n-vinylcarbonsäureamid und dessen herstellungsverfahren
JP2986405B2 (ja) * 1996-04-25 1999-12-06 株式会社日本触媒 N−ビニル化合物の製造法
JPH10101631A (ja) * 1996-09-30 1998-04-21 Showa Denko Kk N−(1−アルコキシエチル)カルボン酸アミドとカルボン酸アミドの分離方法
US20090287020A1 (en) * 2005-08-11 2009-11-19 Hiroshi Uchida Process for producing high-purity n-vinylcarboxamides
EP2239250A1 (en) * 2007-12-27 2010-10-13 Showa Denko K.K. Method for producing n-methyl-n-vinylacetamide having improved stability and polymerizability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167369A (ja) * 2000-09-19 2002-06-11 Showa Denko Kk 高重合性n−ビニルカルボン酸アミドの製造方法
WO2010079774A1 (ja) * 2009-01-06 2010-07-15 昭和電工株式会社 N-(1-ヒドロキシエチル)カルボン酸アミド化合物及びその製造方法
WO2017145569A1 (ja) * 2016-02-22 2017-08-31 昭和電工株式会社 N-ビニルカルボン酸アミドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904334A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047854A (zh) * 2020-10-20 2020-12-08 中国科学院长春应用化学研究所 一种n-乙烯基烷基酰胺的制备方法
CN112047854B (zh) * 2020-10-20 2021-07-02 中国科学院长春应用化学研究所 一种n-乙烯基烷基酰胺的制备方法

Also Published As

Publication number Publication date
TWI770453B (zh) 2022-07-11
JP7447806B2 (ja) 2024-03-12
TW202030178A (zh) 2020-08-16
EP3904334A4 (en) 2022-10-19
CN113227043B (zh) 2024-05-07
KR20210094005A (ko) 2021-07-28
JPWO2020137951A1 (ja) 2021-11-18
US20220112155A1 (en) 2022-04-14
EP3904334A1 (en) 2021-11-03
CN113227043A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
JP6818005B2 (ja) N−ビニルカルボン酸アミドの製造方法
EP2451763B1 (en) Process for the manufacture of halogenated precursors of alkenones in the presence of a solvent
JP2012211122A (ja) 1,2−ジアルキルイミダゾールの製造方法、および1,2−ジアルキルイミダゾール
JP7447806B2 (ja) N-ビニルカルボン酸アミド製造用組成物
TWI362377B (en) Acetic anhydride and acetate ester co-production
EP3763696B1 (en) Production method for gamma, delta-unsaturated alcohols
JP6925978B2 (ja) エチレン性不飽和カルボン酸またはエステルを製造するためのプロセス
WO2011000804A1 (fr) Procede de preparation de l'acide difluoroacetique
JP4237062B2 (ja) スクシノニトリルの製造法
JP4102189B2 (ja) フルオロメチルヘキサフルオロイソプロピルエーテルの精製方法
JP2015504090A (ja) トリメチルアミンおよびエチレンオキシドからの水酸化コリンの製造方法
WO2017119458A1 (ja) ヒドロキシピバルアルデヒドの製造方法
JP5798871B2 (ja) イソプレンの製造方法
JPS6023334A (ja) 3.3.3−トリフルオロ−2−トリフルオロメチルプロペンの製造法および精製法
RU2258701C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ТЕТРАФТОРЭТАН-β-СУЛЬТОНА
JPS62195352A (ja) N−ビニルホルムアミドの回収法
JPH0559102B2 (ja)
AU2010270357B2 (en) Process for the manufacture of halogenated precursors of alkenones in the presence of a solvent
TW200409743A (en) Process for preparing succinonitrile and use of succinonitrile
JP2001187757A (ja) 長鎖アルキルホルマールの新規な製造方法
JPS6050774B2 (ja) 4−ヒドロキシ−2−ブタノンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563245

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217019064

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903898

Country of ref document: EP

Effective date: 20210727