WO2020137284A1 - 導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネル - Google Patents

導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネル Download PDF

Info

Publication number
WO2020137284A1
WO2020137284A1 PCT/JP2019/045774 JP2019045774W WO2020137284A1 WO 2020137284 A1 WO2020137284 A1 WO 2020137284A1 JP 2019045774 W JP2019045774 W JP 2019045774W WO 2020137284 A1 WO2020137284 A1 WO 2020137284A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transfer material
resin layer
photosensitive resin
conductive transfer
Prior art date
Application number
PCT/JP2019/045774
Other languages
English (en)
French (fr)
Inventor
豊岡 健太郎
正弥 鈴木
大介 平木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020562935A priority Critical patent/JPWO2020137284A1/ja
Priority to CN201980086064.9A priority patent/CN113316743A/zh
Publication of WO2020137284A1 publication Critical patent/WO2020137284A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present disclosure relates to a conductive transfer material, a method for manufacturing a patterned substrate, a method for manufacturing a circuit board, a laminate, and a touch panel.
  • an input device (hereinafter, also referred to as “touch panel”) that can input information corresponding to an instruction image by touching with a finger, a touch pen, or the like has been widely used.
  • a conductive film made of a material such as ITO (Indium Tin Oxide) is usually used.
  • various techniques for forming a conductive film using conductive fibers have been studied as a material replacing ITO or the like.
  • International Publication No. WO 2010/021224 includes a support film, a conductive layer containing conductive fibers provided on the support film, and a photosensitive resin layer provided on the conductive layer.
  • a conductive film is disclosed.
  • Means for solving the above problems include the following aspects.
  • ⁇ 1> A conductive transfer material having a temporary support, a layer containing silver nanowires, and an adhesion layer having a thickness of 1 nm to 250 nm in this order.
  • ⁇ 2> A conductive transfer material having a temporary support, a layer containing silver nanowires, and an adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ in this order.
  • ⁇ 3> The conductive transfer material according to ⁇ 1> or ⁇ 2>, wherein the adhesion layer contains an alkali-soluble resin.
  • ⁇ 4> The conductive transfer material according to any one of ⁇ 1> to ⁇ 3>, which has at least one resin layer between the temporary support and the layer containing the silver nanowires.
  • ⁇ 5> The conductive transfer material according to ⁇ 4>, wherein at least one selected from the group consisting of the silver nanowire-containing layer, the adhesion layer, and the resin layer contains a corrosion inhibitor.
  • ⁇ 6> The conductive transfer material according to ⁇ 4> or ⁇ 5>, wherein the resin layer is a photosensitive resin layer.
  • ⁇ 7> The conductive transfer material according to ⁇ 6>, wherein the photosensitive resin layer is a positive photosensitive resin layer.
  • a method for manufacturing a circuit board comprising: a step of developing a transfer material to form a pattern; and a step of removing a photosensitive resin layer or a cured product of the photosensitive resin layer in the pattern in this order.
  • ⁇ 11> A laminate having a substrate, an adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ , and a layer containing silver nanowires in this order.
  • ⁇ 12> The laminate according to ⁇ 10> or ⁇ 11>, in which the adhesion layer and the layer including the silver nanowires are transfer layers.
  • ⁇ 13> A touch panel having the laminate according to any one of ⁇ 10> to ⁇ 12>.
  • a conductive transfer material having excellent adhesion and conductivity between a layer containing silver nanowires and a substrate.
  • a touch panel having excellent adhesion and conductivity between a layer containing silver nanowires and a substrate.
  • FIG. 1 is a schematic diagram showing an example of a layer structure of a conductive transfer material according to the present disclosure.
  • FIG. 2 is a schematic diagram showing an example of the layer structure of the conductive transfer material according to the present disclosure.
  • FIG. 3 is a schematic diagram showing an example of the layer structure of the laminate according to the present disclosure.
  • FIG. 4 is a schematic diagram showing the pattern A.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another stepwise described numerical range.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • “(meth)acrylic” means both acrylic and methacrylic, or either
  • “(meth)acrylate” means both acrylate and methacrylate or either one.
  • (meth)acryloxy means both acryloxy and methacryloxy, or either one.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition, unless there is a plurality of substances corresponding to each component in the composition, unless otherwise specified. ..
  • the term “step” is included in the term as long as the intended purpose of the step is achieved not only as an independent step but also when it cannot be clearly distinguished from other steps. .. In the notation of a group (atomic group) in the present disclosure, notation that does not indicate substituted or unsubstituted encompasses not only those having no substituent but also those having a substituent.
  • an “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • “mass %” and “weight %” have the same meaning
  • “mass part” and “weight part” have the same meaning.
  • a combination of two or more preferable aspects is a more preferable aspect.
  • the chemical structural formula may be described as a simplified structural formula in which a hydrogen atom is omitted.
  • the ratio of the structural units in the resin represents a molar ratio unless otherwise specified.
  • the molecular weight in the case where there is a molecular weight distribution represents the weight average molecular weight (Mw) unless otherwise specified.
  • a conductive transfer material includes a temporary support, a layer containing silver nanowires (hereinafter, also referred to as “silver nanowire layer”), and an adhesion layer having a thickness of 1 nm to 250 nm. And in that order.
  • the conductive transfer material according to the above embodiment includes a temporary support, a layer containing silver nanowires, and an adhesion layer having a thickness of 1 nm to 250 nm. Since they are provided in order, when the conductive transfer material is attached to the substrate, the adhesion and the conductivity between the layer containing the silver nanowires and the substrate are excellent.
  • a conductive transfer material according to an embodiment of the present disclosure has a temporary support, a layer containing silver nanowires, and an adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ in this order.
  • the conductive transfer material according to the above embodiment includes a temporary support, a layer containing silver nanowires, and an adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ . Since they are provided in order, when the conductive transfer material is attached to the substrate, the adhesion and the conductivity between the layer containing the silver nanowires and the substrate are excellent.
  • FIG. 1 schematically shows an example of the layer structure of the conductive transfer material according to the present disclosure.
  • the conductive transfer material 100 shown in FIG. 1 has a temporary support 10, a layer 20 containing silver nanowires, and an adhesion layer 30 in this order. It should be noted that the scale of each element shown in the drawings of the present disclosure is not necessarily accurate.
  • each configuration of the conductive transfer material according to Embodiment 1A and Embodiment 1B will be described.
  • the configuration of the conductive transfer material according to Embodiment 1B is the same as the “adhesion layer having a thickness of 1 nm to 250 nm” in the conductive transfer material according to Embodiment 1A and the “adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ ”.
  • the configuration is the same as that of the conductive transfer material according to Embodiment 1A except that Therefore, unless otherwise specified, the embodiments described below mean both the embodiments 1A and 1B, and the preferred ranges are also the same.
  • the conductive transfer material according to the present disclosure has a temporary support.
  • the temporary support is a support that supports at least the layer containing the silver nanowires and the adhesion layer and can be peeled from the adherend (for example, the layer containing the silver nanowires).
  • the temporary support preferably has optical transparency from the viewpoint that pattern exposure can be performed via the temporary support.
  • “having optical transparency” means that the transmittance of the dominant wavelength of light used for pattern exposure is 50% or more. From the viewpoint of improving the exposure sensitivity, the transmittance of the main wavelength of light used for pattern exposure is preferably 60% or more, more preferably 70% or more. Examples of the method for measuring the transmittance include a method using a spectrophotometer (for example, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.).
  • the temporary support examples include a glass base material, a resin film, paper and the like.
  • the temporary support is preferably a resin film from the viewpoint of strength and flexibility.
  • the resin film include cycloolefin polymer film, polyethylene terephthalate film, cellulose triacetate film, polystyrene film, polycarbonate film and the like.
  • the temporary support is preferably a polyethylene terephthalate film from the viewpoint of optical characteristics.
  • the thickness of the temporary support is not limited and can be set appropriately according to the material.
  • the thickness of the temporary support is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 150 ⁇ m, from the viewpoints of easy handling, versatility and the like.
  • the conductive transfer material has an adhesion layer having a thickness of 1 nm to 250 nm. Since the conductive transfer material in Embodiment 1A has the adhesion layer having a thickness of 1 nm to 250 nm, it has high adhesion to the substrate and improves the conductivity between the silver nanowire layer and the substrate.
  • the thickness of the adhesion layer is 1 nm to 250 nm, preferably 1 nm to 150 nm, and more preferably 1 nm to 100 nm, from the viewpoint of adhesion and conductivity.
  • the thickness of the adhesion layer may be 1 nm to 70 nm or 1 nm to 20 nm.
  • the thickness of the adhesive layer is measured by the following method.
  • the arithmetic mean value of the thickness of the adhesion layer measured at 10 randomly selected points is calculated, and the obtained value is taken as the thickness of the adhesion layer.
  • the cross-section observation image in the thickness direction of the adhesive layer can be obtained using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • the conductive transfer material has an adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ .
  • the conductive transfer material according to Embodiment 1B has an adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ , and thus has high adhesion to the substrate and improves the conductivity between the silver nanowire layer and the substrate.
  • the contact resistance of the adhesion layer is preferably 1 ⁇ to 100 ⁇ , and more preferably 1 ⁇ to 50 ⁇ from the viewpoint of adhesion and conductivity.
  • the contact resistance of the adhesion layer may be 1 ⁇ to 25 ⁇ or 1 ⁇ to 20 ⁇ .
  • the contact resistance of the adhesion layer is measured by the TLM (Transmission Line Model) method.
  • the specific measuring method is as follows. Seven copper electrodes (thickness 300 nm, width 500 ⁇ m) arranged in parallel and independently at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm on a base material (for example, a cycloolefin polymer film). Form. Next, one conductive transfer material is bonded onto the seven copper electrodes to produce a test body having a structure in which a silver nanowire layer is laminated on the copper electrodes via an adhesion layer.
  • TLM Transmission Line Model
  • the silver nanowire layer is arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the silver nanowire layer is 90°.
  • the contact resistance of the adhesion layer can be obtained by measuring the resistance between the adjacent copper electrodes and plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the copper electrodes.
  • the device for measuring the resistance between the copper electrodes is not limited, and a resistivity meter (for example, Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) can be used.
  • the adhesive layer is preferably an adhesive layer containing an organic material (eg, organic resin) (hereinafter, also referred to as “organic layer”).
  • organic layer more preferably contains an alkali-soluble resin from the viewpoint of removing residues in pattern formation.
  • alkali-soluble means being soluble in a 1 mol/L sodium hydroxide solution at 25° C. Further, “soluble” means that 0.1 g or more is dissolved in 100 mL of solvent.
  • the alkali-soluble resin is preferably a resin having an acid value of 20 mgKOH/g or more, and a carboxylic group-containing (meth)acrylic resin having an acid value of 20 mgKOH/g or more, from the viewpoint of removing residues in pattern formation. More preferable.
  • (meth)acrylic resin means a resin containing at least one of a structural unit derived from (meth)acrylic acid and a structural unit derived from (meth)acrylic acid ester.
  • the total proportion of the structural units derived from (meth)acrylic acid and the structural units derived from (meth)acrylic acid ester in the (meth)acrylic resin is 30 mol% with respect to all the structural units of the (meth)acrylic resin. It is preferably not less than 50 mol% and more preferably not less than 50 mol %.
  • the upper limit of the total ratio of the structural unit derived from (meth)acrylic acid and the structural unit derived from (meth)acrylic acid ester is not limited.
  • the total proportion of the structural units derived from the (meth)acrylic acid and the structural units derived from the (meth)acrylic acid ester is appropriately 100 mol% or less with respect to all the structural units of the (meth)acrylic resin. Can be set.
  • “acid value” means a value measured according to the method described in JIS K0070:1992.
  • the acid value of the alkali-soluble resin is preferably 20 mgKOH/g or more, more preferably 45 mgKOH/g to 200 mgKOH/g, and more preferably 50 mgKOH/g or more to 150 mgKOH/g from the viewpoint of removing residues in pattern formation. It is particularly preferable that For the same reason, the acid value of the alkali-soluble resin may be 60 mgKOH/g or more, or 80 mgKOH/g or more.
  • the (meth)acrylic resin having a carboxy group contains a structural unit having a carboxy group.
  • the structural unit having a carboxy group contained in the (meth)acrylic resin may be one type or two or more types.
  • the content ratio of the carboxy group-containing structural unit in the carboxy group-containing (meth)acrylic resin is 3 mol% to 80 mols based on all the structural units of the carboxy group-containing (meth)acrylic resin. %, more preferably 3 mol% to 40 mol %, particularly preferably 3 mol% to 35 mol %.
  • the alkali-soluble resin may include a structural unit having an aromatic ring.
  • the monomer forming the structural unit having an aromatic ring include styrene, styrene compounds such as tert-butoxystyrene, methylstyrene and ⁇ -methylstyrene, and benzyl (meth)acrylate.
  • the constituent unit having an aromatic ring is preferably a constituent unit derived from a styrene compound.
  • the alkali-soluble resin may include a structural unit having an ethylenically unsaturated group.
  • the alkali-soluble resin preferably contains a constituent unit having an ethylenically unsaturated group in its side chain.
  • the “main chain” represents the relatively longest binding chain in the molecule of the polymer compound constituting the resin
  • the “side chain” represents an atomic group branched from the main chain.
  • a (meth)acryl group is preferable, and a (meth)acryloxy group is more preferable.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is preferably more than 3,000, more preferably more than 3,000 and not more than 60,000, particularly preferably 5,000 to 50,000. ..
  • the weight average molecular weight of the alkali-soluble resin is a polystyrene-equivalent weight average molecular weight measured by the following method.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Various commercially available devices can be used as the measuring device, and the contents of the device and the measuring technique are known to those skilled in the art.
  • HLC registered trademark
  • GPC manufactured by Tosoh Corporation
  • TSKgel registered trademark
  • Super HZM-M 4.6 mm ID ⁇ 15 cm, Tosoh Corporation
  • the calibration curve is "standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: "F-40", “F-20”, “F-4", “F-1”, "A-5000", " It can be manufactured using any one of the seven samples of "A-2500” and "A-1000".
  • the alkali-soluble resin As the alkali-soluble resin, the alkali-soluble resin described in the section "Negative photosensitive resin layer" described later can also be applied.
  • the adhesive layer may contain one kind of alkali-soluble resin or two or more kinds of alkali-soluble resin.
  • the content of the alkali-soluble resin in the adhesive layer is preferably 50% by mass or more, more preferably 60% by mass or more, with respect to the total mass of the adhesive layer. It is particularly preferably 80% by mass or more.
  • the upper limit of the content of the alkali-soluble resin in the adhesive layer is not limited.
  • the content of the alkali-soluble resin in the adhesive layer can be appropriately set within the range of, for example, 100% by mass or less based on the total mass of the adhesive layer.
  • the alkali-soluble resin in the adhesive layer may be a thermosetting resin.
  • the thermosetting resin is not limited, and known thermosetting resins can be applied.
  • the adhesive layer may contain, in addition to the above components, components (for example, a polymerizable compound, a polymerization initiator) that can be contained in a resin layer (preferably a negative photosensitive resin layer) described later. ..
  • the minimum transmittance of the adhesive layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, more preferably 90% or more.
  • the transmittance is measured by the same method as the method for measuring the transmittance of the temporary support.
  • the adhesive layer may be an organic layer, an alkali-soluble adhesive layer, a thermosetting adhesive layer, or a photosensitive adhesive layer.
  • the alkali-soluble adhesive layer is composed of at least an alkali-soluble resin as a component of the adhesive layer.
  • the thermosetting layer is composed of at least a thermosetting resin as a component of the adhesion layer.
  • Examples of the photosensitive adhesive layer include a negative photosensitive adhesive layer and a positive photosensitive adhesive layer.
  • the thermosetting adhesive layer or the photosensitive adhesive layer may further have alkali solubility.
  • the method for forming the adhesion layer is not limited and a known method can be applied.
  • Examples of the method for forming the adhesive layer include a method in which an adhesive layer-forming coating liquid containing each of the above components is applied onto an object to be coated and dried.
  • coating methods include slit coating, spin coating, curtain coating, inkjet coating, and the like.
  • the drying temperature can be set appropriately according to the type of volatile components such as solvent.
  • the drying temperature can be set, for example, in the range of 60°C to 120°C.
  • the coating liquid for forming the adhesive layer can be prepared by mixing the above-mentioned components and the solvent in arbitrary proportions.
  • the solvent is not limited, and known solvents can be applied.
  • the solvent include ethylene glycol monoalkyl ether solvent, ethylene glycol dialkyl ether solvent, ethylene glycol monoalkyl ether acetate solvent, propylene glycol monoalkyl ether solvent, propylene glycol dialkyl ether solvent, and propylene glycol monoalkyl ether.
  • Examples include system solvents, amide solvents, lactone solvents, and the like.
  • the solvent include the ester-based solvents, ether-based solvents, and ketone-based solvents described below.
  • ester solvent include ethyl acetate, propyl acetate, isobutyl acetate, sec-butyl acetate, t-butyl acetate, isopropyl acetate, n-butyl acetate, 1-methoxy-2-propyl acetate and the like.
  • ether solvents include diisopropyl ether, 1,4-dioxane, 1,2-dimethoxyethane, 1,3-dioxolane, propylene glycol dimethyl ether and propylene glycol monoethyl ether.
  • ketone solvent examples include methyl n-butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, and methyl isopropyl ketone.
  • the solid content concentration in the coating liquid for forming the adhesion layer is not limited, and can be set appropriately in the range of 0.5% by mass to 10% by mass, for example.
  • the conductive transfer material according to the present disclosure has a layer containing silver nanowires.
  • the diameter (that is, the minor axis length) of the silver nanowires is preferably 50 nm or less, more preferably 35 nm or less, and particularly preferably 20 nm or less.
  • the diameter of the silver nanowire is preferably 5 nm or more from the viewpoint of oxidation resistance and durability.
  • the length of the silver nanowire (that is, the major axis length) is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the length (long axis length) of the silver nanowires is preferably 1 mm or less from the viewpoint that aggregates are generated in the manufacturing process.
  • the diameter and length of the silver nanowire can be measured using, for example, a transmission electron microscope (TEM) or an optical microscope. Specifically, the diameter and length of each silver nanowire measured by observing 300 silver nanowires using a transmission electron microscope or an optical microscope are arithmetically averaged, and the obtained value is the silver nanowire.
  • TEM transmission electron microscope
  • optical microscope optical microscope
  • the shape of the silver nanowire examples include a columnar shape, a rectangular parallelepiped shape, and a columnar shape having a polygonal cross section.
  • the shape of the silver nanowire is preferably at least one of a columnar shape and a cross-sectional shape with rounded corners.
  • the cross-sectional shape of the silver nanowire can be observed using a transmission electron microscope (TEM).
  • the content of the silver nanowires in the layer containing the silver nanowires is preferably 1% by mass to 99% by mass with respect to the total mass of the layer containing the silver nanowires from the viewpoint of transparency and conductivity. More preferably, it is 10% by mass to 95% by mass.
  • the layer containing silver nanowires may contain a binder (also referred to as a matrix), if necessary.
  • the binder is a solid material in which silver nanowires are dispersed or embedded.
  • the binder can protect the silver nanowires from harmful environmental factors such as corrosion and abrasion.
  • binder for example, a polymer material, an inorganic material and the like can be mentioned, and a material having light transmittance is preferable.
  • the polymer material examples include (meth)acrylic resin (for example, poly(methyl methacrylate)), polyester (for example, polyethylene terephthalate (PET)), polycarbonate, polyimide, polyamide, polyolefin (for example, polypropylene), polynorbornene. , Cellulose compounds, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, and the like.
  • the cellulose compound include hydroxypropylmethyl cellulose (HPMC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC) and the like.
  • the polymer material may be a conductive polymer material. Examples of the conductive polymer material include polyaniline and polythiophene.
  • Examples of the inorganic material include silica, mullite, alumina and the like.
  • the materials described in paragraphs 0051 to 0052 of JP2014-212117A can be used. These descriptions are incorporated herein by reference.
  • the layer containing silver nanowires may contain one kind of binder or two or more kinds of binders.
  • the content of the binder in the layer containing silver nanowires may be 1% by mass to 99% by mass with respect to the total mass of the layer containing silver nanowires. It is more preferably 5% by mass to 80% by mass.
  • the thickness of the layer containing silver nanowires is preferably 1 nm to 400 nm, more preferably 10 nm to 200 nm, from the viewpoint of transparency and conductivity.
  • the thickness of the layer containing silver nanowires is measured by the method described in the above section "Adhesion layer".
  • the minimum transmittance of the layer containing silver nanowires at a wavelength of 400 nm to 700 nm is preferably 80% or more, and more preferably 90% or more.
  • the transmittance is measured by the same method as the method for measuring the transmittance of the temporary support.
  • the method for producing the silver nanowire is not limited, and a known method can be applied.
  • a method for producing the silver nanowires for example, a step of adding a silver complex solution to an aqueous solvent containing at least a halogen compound and a reducing agent and heating at a temperature of 150° C. or lower, and desalting as necessary. Examples include a method having a treatment step.
  • the halogen compound is not limited as long as it is a compound containing bromine, chlorine, or iodine.
  • the halogen compound include alkali halides such as sodium bromide, sodium chloride, sodium iodide, potassium iodide, potassium bromide and potassium chloride.
  • HTAB hexadecyltrimethylammonium bromide
  • HTAC hexadecyltrimethylammonium chloride
  • Examples of the reducing agent include borohydride metal salts such as sodium borohydride and potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, beryllium aluminum hydride, magnesium aluminum hydride, hydrogen Aluminum hydride salts such as calcium aluminum hydride; sodium sulfite, hydrazine compound, dextrin, hydroquinone, hydroxylamine, citric acid or its salt, succinic acid or its salt, ascorbic acid or its salt, etc.; diethylaminoethanol, ethanolamine, propanolamine , Alkanolamines such as triethanolamine and dimethylaminopropanol; aliphatic amines such as propylamine, butylamine, dipropyleneamine, ethylenediamine and triethylenepentamine; heterocyclic amines such as piperidine, pyrrolidine, N-methylpyrrolidine and morpholine Aromatic amines such as aniline, N-methylaniline,
  • Examples of the ligand of the silver complex include CN ⁇ , SCN ⁇ , SO 3 2 ⁇ , thiourea, ammonia and the like.
  • a silver ammonia complex is preferable.
  • the heating temperature is preferably 150° C. or lower, more preferably 20° C. to 130° C., further preferably 30° C. to 100° C., particularly preferably 40° C. to 90° C.
  • the desalting treatment can be performed by a method such as ultrafiltration, dialysis, gel filtration, decantation, and centrifugation after forming the silver nanowires.
  • the method for forming the layer containing silver nanowires is not limited, and a known method can be applied.
  • Examples of the method of forming the layer containing silver nanowires include a method of applying a coating liquid for forming a silver nanowire layer containing the above-mentioned components onto an object to be coated, and drying the coating solution.
  • the coating liquid for forming the silver nanowire layer can be prepared, for example, by mixing the above components and a solvent in an arbitrary ratio.
  • Water is mainly used as the solvent, and an organic solvent miscible with water can be used together in a proportion of 80% by volume or less with respect to the total amount of the solvent.
  • an alcohol compound having a boiling point of 50° C. to 250° C., more preferably 55° C. to 200° C. is preferable.
  • the alcohol compound include methanol, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol 200, polyethylene glycol 300, glycerin, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,2-butanediol.
  • Examples thereof include 1,4-butanediol, 1,5-pentanediol, 1-ethoxy-2-propanol, ethanolamine, diethanolamine, 2-(2-aminoethoxy)ethanol, 2-dimethylaminoisopropanol and the like.
  • the content of the silver nanowires in the coating liquid for forming the silver nanowire layer is preferably 0.01% by mass to 99% by mass with respect to the total mass of the coating liquid for forming the silver nanowire layer, It is more preferably from 05% by mass to 95% by mass.
  • coating methods include slit coating, spin coating, curtain coating, inkjet coating, and the like.
  • the drying temperature can be set appropriately according to the type of volatile components such as solvent.
  • the drying temperature can be set, for example, in the range of 60°C to 120°C.
  • the conductive transfer material according to the present disclosure preferably has at least one resin layer between the temporary support and the layer containing the silver nanowires. Since the conductive transfer material has at least one resin layer between the temporary support and the layer containing the silver nanowires, cushioning properties can be imparted to the conductive transfer material. Transferability to the substrate can be improved.
  • FIG. 2 schematically shows an example of the layer structure of the conductive transfer material according to the present disclosure.
  • the conductive transfer material 110 shown in FIG. 2 has a temporary support 10, a resin layer 40, a layer 20 containing silver nanowires, and an adhesion layer 30 in this order.
  • the resin layer is preferably a photosensitive resin layer from the viewpoint of patterning property.
  • the photosensitive resin layer include a positive photosensitive resin layer and a negative photosensitive resin layer.
  • the resin layer is preferably a positive photosensitive resin layer from the viewpoint of resist releasability.
  • the thickness of the resin layer is not limited and can be set appropriately according to the material.
  • the thickness of the resin layer can be, for example, in the range of 1 nm to 100 ⁇ m, and is preferably 1 ⁇ m to 20 ⁇ m and more preferably 2 to 15 ⁇ m from the viewpoint of achieving both laminating property and patterning.
  • the thickness of the resin layer is measured by the method described in the above "Adhesion layer".
  • the minimum transmittance of the resin layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, more preferably 90% or more.
  • the transmittance is measured by the same method as the method for measuring the transmittance of the temporary support.
  • the number of resin layers is not limited, and can be set as appropriate according to the process to which the conductive transfer material is applied.
  • the positive photosensitive resin layer is not limited, and a known positive photosensitive resin layer can be applied. From the viewpoint of sensitivity, resolution, and removability, the positive photosensitive resin layer contains a polymer containing a structural unit having an acid group protected by an acid-decomposable group, and a photo-acid generator. Is preferred.
  • the positive type photosensitive resin layer is described in paragraphs 0033 to 0130 of International Publication No. 2018/179640. These descriptions are incorporated herein by reference.
  • the positive photosensitive resin layer contains a polymer (hereinafter, also referred to as “polymer A”) containing a structural unit (hereinafter, also referred to as “structural unit A”) having an acid group that is acid-decomposable and protected. It is preferable to contain The acid group protected by the acid-decomposable group in the polymer A becomes an acid group by the action of a catalytic amount of acid generated by exposure (that is, deprotection reaction). The acid group generated by the deprotection reaction enables the positive photosensitive resin layer to be dissolved in the developing solution.
  • the polymer A is preferably an addition polymerization type polymer, and more preferably a polymer containing a structural unit derived from (meth)acrylic acid or its ester.
  • a structural unit other than the structural unit derived from (meth)acrylic acid or its ester for example, the structural unit derived from a styrene compound, the structural unit derived from a vinyl compound, etc.
  • the acid group in the structural unit A is not limited, and known acid groups can be applied.
  • the acid group is preferably a carboxy group or a phenolic hydroxyl group (also referred to as "phenolic hydroxy group").
  • the acid-decomposable group in the structural unit A is not limited, and known acid-decomposable groups can be applied.
  • the acid-decomposable group include groups that are relatively easily decomposed by acid (eg, acetal-type functional groups such as 1-alkoxyalkyl group, tetrahydropyranyl group, and tetrahydrofuranyl group), groups that are relatively difficult to be decomposed by acid. (For example, a tertiary alkyl group such as a tert-butyl group).
  • the acid-decomposable group is preferably a group having a structure that protects the acid group in the form of acetal.
  • the acid-decomposable group is preferably an acid-decomposable group having a molecular weight of 300 or less from the viewpoint of suppressing variation in the line width of the conductive wiring when applied to the formation of a conductive pattern.
  • the structural unit having an acid group protected by an acid-decomposable group is a structural unit represented by the following formula A1 and a structural unit represented by the following formula A2 from the viewpoints of suppressing deformation of the pattern shape, solubility in a developing solution, and transferability.
  • At least one structural unit selected from the group consisting of structural units represented by the following formula A3 and structural units represented by the following formula A3 is preferable, and structural units represented by the following formula A3 are preferable, A structural unit represented by formula A3-3 described later is particularly preferable.
  • the structural unit represented by the following formula A1 and the structural unit represented by the following formula A2 are structural units having a phenolic hydroxyl group protected by an acid-decomposable group.
  • the structural unit represented by the following formula A3 is a structural unit having a carboxy group protected by an acid-decomposable group.
  • R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group, or an aryl group, and R 13 is , R 11 or R 12 and R 13 may be linked to each other to form a cyclic ether, R 14 represents a hydrogen atom or a methyl group, and X 1 represents It represents a single bond or a divalent linking group, R 15 represents a substituent, and n represents an integer of 0 to 4.
  • R 21 and R 22 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 21 and R 22 is an alkyl group or an aryl group, and R 23 is an alkyl group.
  • R 21 or R 22 and R 23 may be linked to each other to form a cyclic ether, and R 24 is independently a hydroxy group, a halogen atom, an alkyl group or an alkoxy group.
  • R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is It represents an alkyl group or an aryl group, and R 31 or R 32 and R 33 may be linked to each other to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, and X 0 represents a single atom. It represents a bond or a linking group, and Y represents a sulfur atom or an oxygen atom.
  • R 31 or R 32 when R 31 or R 32 is an alkyl group, the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms.
  • the aryl group is preferably a phenyl group.
  • R 31 and R 32 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and at least one of R 31 and R 32 is preferably an alkyl group having 1 to 4 carbon atoms.
  • R 33 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group and aryl group for R 31 to R 33 may have a substituent.
  • R 31 or R 32 and R 33 are preferably linked to each other to form a cyclic ether.
  • the number of ring members of the cyclic ether is not limited, but is preferably 5 or 6, and more preferably 5.
  • X 0 is preferably a single bond or an arylene group, and more preferably a single bond.
  • the arylene group may have a substituent.
  • Y is preferably an oxygen atom from the viewpoint of exposure sensitivity.
  • R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the glass transition temperature (Tg) of the polymer A can be further lowered. More specifically, the content ratio of the structural unit in which R 34 in the formula A3 is a hydrogen atom is 20 mol% or more based on all the structural units represented by the formula A3 contained in the polymer A. preferable.
  • the content ratio (mol %) of the structural unit in which R 34 in the formula A3 is a hydrogen atom in the structural unit represented by the formula A3 is calculated by a conventional method from 13 C-nuclear magnetic resonance spectrum (NMR) measurement. Confirm by the intensity ratio of the peak intensity.
  • constitutional unit represented by the formula A3 is more preferable from the viewpoint of further increasing the sensitivity during pattern formation.
  • R 34 represents a hydrogen atom or a methyl group
  • R 35 to R 41 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 34 is preferably a hydrogen atom.
  • R 35 to R 41 are preferably hydrogen atoms.
  • R ⁇ 34 > in the following structural units represents a hydrogen atom or a methyl group.
  • the polymer A may have one type of structural unit A, or may have two or more types of structural unit A.
  • the content ratio of the structural unit A in the polymer A is preferably 10 mol% or more, more preferably 10 mol% to 90 mol%, and more preferably 20 mol% with respect to all the structural units of the polymer A. It is particularly preferable that the content is ⁇ 70 mol %.
  • the content ratio of the structural unit A in the polymer A is confirmed by the intensity ratio of peak intensities calculated by a conventional method from 13 C-NMR measurement.
  • the polymer A preferably contains a structural unit having an acid group (hereinafter, also referred to as “structural unit B”).
  • structural unit B a structural unit having an acid group
  • the acid group in the structural unit B means a proton dissociative group having a pKa of 12 or less.
  • the pKa of the acid group is preferably 10 or less, and more preferably 6 or less.
  • the pKa of the acid group is preferably ⁇ 5 or more.
  • Examples of the acid group in the structural unit B include a carboxy group, a sulfonamide group, a phosphonic acid group, a sulfonic acid group, a phenolic hydroxyl group, a sulfonylimide group, and the like.
  • the acid group is preferably a carboxy group or a phenolic hydroxyl group.
  • the introduction of the structural unit having an acid group into the polymer A can be carried out by copolymerizing a monomer having an acid group.
  • the constituent unit B is more preferably a constituent unit in which a constituent unit derived from a styrene compound or a constituent unit derived from a vinyl compound is substituted with an acid group, or a constituent unit derived from (meth)acrylic acid.
  • the structural unit B is preferably at least one structural unit selected from the group consisting of a structural unit having a carboxy group and a structural unit having a phenolic hydroxyl group, from the viewpoint of better sensitivity during pattern formation. ..
  • the polymer A may contain one type of structural unit B and may contain two or more types of structural unit B.
  • the content ratio of the structural unit B in the polymer A is preferably 0.1 mol% to 20 mol %, and 0.5 mol% with respect to all the structural units of the polymer A. It is more preferably from 15 to 15 mol %, particularly preferably from 1 to 10 mol %.
  • the content ratio of the structural unit B in the polymer A is confirmed by the intensity ratio of the peak intensities calculated by the usual method from 13 C-NMR measurement.
  • the polymer A is a constitutional unit other than the constitutional unit A and the constitutional unit B described above (hereinafter, also referred to as “constitutional unit C”) as long as the effect of the conductive transfer material according to the present disclosure is not impaired. May be included.
  • Examples of the monomer forming the structural unit C include styrene compounds, (meth)acrylic acid alkyl esters, (meth)acrylic acid cyclic alkyl esters, (meth)acrylic acid aryl esters, unsaturated dicarboxylic acid diesters, and bicyclo unsaturated compounds.
  • Maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides, unsaturated compounds having an aliphatic cyclic skeleton, other unsaturated compounds, etc. Are listed.
  • structural unit C specifically, styrene, tert-butoxystyrene, methylstyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, (meta ) Methyl acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, (meth ) Structural units formed by polymerizing benzyl acrylate, isobornyl (meth)acrylate, acrylonitrile, ethylene glycol monoacetoacetate mono(meth)acrylate and the like.
  • Other examples include structural units formed by polymerizing the compounds described in paragraphs 0021 to 00
  • the structural unit C at least one structural unit selected from the group consisting of a structural unit having an aromatic ring and a structural unit having an aliphatic cyclic skeleton from the viewpoint of improving the electrical characteristics of the resulting conductive transfer material.
  • the monomer forming the above structural unit include styrene, tert-butoxystyrene, methylstyrene, ⁇ -methylstyrene, dicyclopentanyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, benzyl (meth). ) Acrylate and the like.
  • the structural unit C is preferably a structural unit derived from cyclohexyl (meth)acrylate.
  • the monomer forming the structural unit C is preferably (meth)acrylic acid alkyl ester, and more preferably (meth)acrylic acid alkyl ester having an alkyl group having 4 to 12 carbon atoms. .. Specific examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
  • Polymer A may contain one type of structural unit C, or may contain two or more types of structural unit C.
  • the content ratio of the structural unit C in the polymer A is preferably 70 mol% or less, more preferably 60 mass% or less, particularly preferably 50 mass% or less, based on all the structural units of the polymer A.
  • the lower limit of the content ratio of the structural unit C in the polymer A may be 0 mol %.
  • the content ratio of the structural unit C in the polymer A is preferably 1 mol% or more, more preferably 5 mol% or more, based on all the structural units of the polymer A. Within the above range, the resolution and the adhesiveness are further improved.
  • the weight average molecular weight of the polymer A is preferably 60,000 or less.
  • the weight average molecular weight of the polymer A is 60,000 or less, it is possible to suppress the melt viscosity of the photosensitive resin layer to a low level and to realize the bonding at a low temperature (for example, 130° C. or less) when bonding the substrate. it can.
  • the weight average molecular weight of the polymer A is preferably 2,000 to 60,000, and more preferably 3,000 to 50,000.
  • the weight average molecular weight of the polymer A is a polystyrene equivalent weight average molecular weight measured by the method described above (that is, gel permeation chromatography).
  • the positive photosensitive resin layer may contain one type of polymer A or may contain two or more types of polymer A.
  • the content of the polymer A in the positive photosensitive resin layer is from 50% by mass to 99.% with respect to the total mass of the positive photosensitive resin layer from the viewpoint of exhibiting good adhesion to the substrate. It is preferably 9% by mass, and more preferably 70% by mass to 98% by mass.
  • the production method (synthesis method) of the polymer A is not limited, and known methods can be applied.
  • a method for producing the polymer A for example, a polymerizable monomer for forming the structural unit A, a polymerizable monomer for forming a structural unit B having an acid group, and a structural unit C are further added, if necessary.
  • the method of polymerizing the polymerizable monomer for forming in an organic solvent using a polymerization initiator is mentioned.
  • the positive photosensitive resin layer preferably contains a photoacid generator.
  • a photoacid generator is a compound that can generate an acid by being irradiated with radiation such as ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
  • the photoacid generator is preferably a compound which reacts with an actinic ray having a wavelength of 300 nm or more, preferably 300 nm to 450 nm to generate an acid.
  • a photo-acid generator which is not directly sensitive to an actinic ray having a wavelength of 300 nm or more, when used in combination with a sensitizer, it is a compound which is sensitive to an actinic ray having a wavelength of 300 nm or more and generates an acid. It can be preferably used in combination.
  • the photoacid generator is preferably a photoacid generator that generates an acid with a pKa of 4 or less, more preferably a photoacid generator that generates an acid with a pKa of 3 or less, and a light that generates an acid with a pKa of 2 or less. Acid generators are particularly preferred.
  • the lower limit of pKa is not specified.
  • the pKa is preferably, for example, -10.0 or more.
  • the photoacid generator includes, for example, an ionic photoacid generator and a nonionic photoacid generator. From the viewpoint of sensitivity and resolution, the photoacid generator preferably contains at least one compound selected from the group consisting of an onium salt compound described below and an oxime sulfonate compound described below, and contains an oxime sulfonate compound. More preferable.
  • the ionic photoacid generator examples include onium salt compounds such as diaryliodonium salt compounds and triarylsulfonium salt compounds, and quaternary ammonium salt compounds.
  • the ionic photoacid generator is preferably an onium salt compound, and more preferably at least one of a triarylsulfonium salt compound and a diaryliodonium salt compound.
  • the ionic photoacid generator described in paragraphs 0114 to 0133 of JP-A-2014-85643 can also be preferably used.
  • nonionic photoacid generator examples include a trichloromethyl-s-triazine compound, a diazomethane compound, an imide sulfonate compound, an oxime sulfonate compound and the like.
  • the nonionic photoacid generator is preferably an oxime sulfonate compound from the viewpoint of sensitivity, resolution, and adhesiveness.
  • Specific examples of the trichloromethyl-s-triazine compound and the diazomethane compound include the compounds described in paragraphs 0083 to 0088 of JP 2011-221494A.
  • oxime sulfonate compound that is, the compound having an oxime sulfonate structure
  • a compound having an oxime sulfonate structure represented by the following formula (B1) is preferable.
  • R 21 represents an alkyl group or an aryl group
  • * represents a bonding site with another atom or another group.
  • any group may be substituted, and the alkyl group for R 21 may be linear or branched, It may have a ring structure.
  • the permissible substituents are described below.
  • the alkyl group represented by R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the alkyl group represented by R 21 may be substituted with an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group, or a halogen atom.
  • the aryl group represented by R 21 is preferably an aryl group having 6 to 18 carbon atoms, and more preferably a phenyl group or a naphthyl group.
  • the aryl group represented by R 21 may be substituted with one or more groups selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group and a halogen atom.
  • the positive photosensitive resin layer may contain one type of photo-acid generator, or may contain two or more types of photo-acid generator.
  • the content of the photo-acid generator in the positive photosensitive resin layer is 0.1% by mass to 10% by mass based on the total mass of the positive photosensitive resin layer. Is preferred, and more preferably 0.5% by mass to 5% by mass.
  • the positive photosensitive resin layer may contain a component other than the above components (hereinafter, also referred to as “other component A”).
  • the other component A is not limited and can be appropriately selected depending on the purpose and the like.
  • Other components include, for example, a surfactant and a corrosion inhibitor described later.
  • surfactants include anionic surfactants, cationic surfactants, nonionic (nonionic) surfactants, and amphoteric surfactants.
  • the positive photosensitive resin layer contains a surfactant, the uniformity of the film thickness can be improved.
  • the surfactant is preferably a nonionic surfactant.
  • nonionic surfactants examples include polyoxyethylene higher alkyl ether surfactants, polyoxyethylene higher alkyl phenyl ether surfactants, higher fatty acid diester surfactants of polyoxyethylene glycol, and silicone surfactants. Agents, fluorine-based surfactants and the like. Specific examples of the nonionic surfactant include KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-top (manufactured by JEMCO), Megafac (registered trademark, for example, Megafac F551A, DIC).
  • the positive photosensitive resin layer may contain one kind of surfactant or may contain two or more kinds of surfactant.
  • the content of the surfactant in the positive photosensitive resin layer is 0.05% by mass to 10% by mass with respect to the total mass of the positive photosensitive resin layer from the viewpoint of uniformity of film thickness. It is preferable that the content is 0.05% by mass to 5% by mass.
  • the negative photosensitive resin layer is not limited, and a known negative photosensitive resin layer can be applied.
  • the negative photosensitive resin layer preferably contains a polymerizable compound, a polymerization initiator, and a binder polymer from the viewpoint of pattern formability.
  • the negative photosensitive resin layer preferably contains a polymerizable compound from the viewpoint of pattern formability.
  • the polymerizable compound includes a polymerizable compound such as a radical polymerizable compound and a cationic polymerizable compound.
  • the polymerizable compound is preferably a photopolymerizable compound, and more preferably an ethylenically unsaturated compound.
  • An ethylenically unsaturated compound is a compound that has one or more ethylenically unsaturated groups.
  • a (meth)acryloyl group is more preferable.
  • a (meth)acrylate compound is preferable.
  • the ethylenically unsaturated compound preferably contains a bifunctional or higher functional ethylenically unsaturated compound.
  • the bifunctional or higher functional ethylenically unsaturated compound means a compound having two or more ethylenically unsaturated groups in one molecule.
  • bifunctional ethylenically unsaturated compound examples include tricyclodecane dimethanol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
  • bifunctional ethylenically unsaturated compound examples include tricyclodecane dimethanol diacrylate (A-DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.), tricyclodecane dimethanol dimethacrylate (DCP, new Nakamura Chemical Co., Ltd.), 1,9-Nonanediol diacrylate (A-NOD-N, Shin-Nakamura Chemical Co., Ltd.), 1,6-hexanediol diacrylate (A-HD-N, New) Nakamura Chemical Co., Ltd.), polytetramethylene glycol #650 diacrylate (A-PTMG-65, Shin-Nakamura Chemical Co., Ltd.), ethoxylated bisphenol A dimethacrylate (BPE-500, Shin-Nakamura Chemical ( Co., Ltd.) and the like.
  • A-DCP tricyclodecane dimethanol diacrylate
  • DCP new Nakamura Chemical Co., Ltd.
  • Examples of the trifunctional or higher functional ethylenically unsaturated compound include dipentaerythritol (tri/tetra/penta/hexa)(meth)acrylate, pentaerythritol (tri/tetra)(meth)acrylate, trimethylolpropane tri(meth)acrylate.
  • Examples thereof include acrylate, ditrimethylolpropane tetra(meth)acrylate, isocyanuric acid (meth)acrylate, and (meth)acrylate compound having a glycerin tri(meth)acrylate skeleton.
  • (tri/tetra/penta/hexa)(meth)acrylate includes tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate. It is a concept. Further, the term “(tri/tetra)(meth)acrylate” is a concept including tri(meth)acrylate and tetra(meth)acrylate.
  • the ethylenically unsaturated compound preferably contains an ethylenically unsaturated compound having an acid group.
  • the acid group include a phosphoric acid group, a sulfonic acid group, a carboxy group and the like, and a carboxy group is preferable.
  • Examples of the ethylenically unsaturated compound having an acid group include a 3- to 4-functional ethylenically unsaturated compound having an acid group and a 5- to 6-functional ethylenically unsaturated compound having an acid group.
  • Examples of the bifunctional or higher functional ethylenically unsaturated compound having a carboxy group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix M-520 (manufactured by Toagosei Co., Ltd.), and Aronix M-. 510 (manufactured by Toagosei Co., Ltd.) is preferable.
  • the ethylenically unsaturated compound having an acid group is also preferably a polymerizable compound having an acid group described in paragraphs 0025 to 0030 of JP 2004-239942A. These descriptions are incorporated herein by reference.
  • the negative photosensitive resin layer may contain one type of polymerizable compound or may contain two or more types of polymerizable compounds.
  • the polymerizable compound preferably contains a bifunctional ethylenically unsaturated compound and a trifunctional or higher functional ethylenically unsaturated compound.
  • the mass ratio of the content of the bifunctional ethylenically unsaturated compound to the content of the trifunctional or higher functional ethylenically unsaturated compound is preferably 1:10 to 10:1.
  • the content of the polymerizable compound in the negative photosensitive resin layer is preferably 1% by mass to 70% by mass with respect to the total mass of the negative photosensitive resin layer.
  • the content is more preferably from mass% to 70 mass%, further preferably from 20 mass% to 60 mass%, particularly preferably from 20 mass% to 50 mass%.
  • the negative photosensitive resin layer preferably contains a polymerization initiator from the viewpoint of pattern formability.
  • the polymerization initiator at least one of a photopolymerization initiator and a thermal polymerization initiator is preferable, and a photopolymerization initiator is more preferable.
  • the photopolymerization initiator examples include a photopolymerization initiator having an oxime ester structure (hereinafter, also referred to as “oxime-based photopolymerization initiator”) and a photopolymerization initiator having an ⁇ -aminoalkylphenone structure (hereinafter, “ Also referred to as " ⁇ -aminoalkylphenone-based photopolymerization initiator”), a photopolymerization initiator having an ⁇ -hydroxyalkylphenone structure (hereinafter also referred to as " ⁇ -hydroxyalkylphenone-based polymerization initiator”), acylphosphine.
  • oxime-based photopolymerization initiator also referred to as “oxime-based photopolymerization initiator”
  • ⁇ -aminoalkylphenone-based photopolymerization initiator a photopolymerization initiator having an ⁇ -aminoalkylphenone structure
  • a photopolymerization initiator having an oxide structure hereinafter, also referred to as “acylphosphine oxide-based photopolymerization initiator”
  • acylphosphine oxide-based photopolymerization initiator a photopolymerization initiator having an N-phenylglycine structure
  • N-phenylglycine-based photopolymerization initiator a photopolymerization initiator having an N-phenylglycine structure
  • agent also referred to as “agent”
  • the photopolymerization initiator is selected from the group consisting of oxime photopolymerization initiators, ⁇ -aminoalkylphenone photopolymerization initiators, ⁇ -hydroxyalkylphenone photopolymerization initiators, and N-phenylglycine photopolymerization initiators. At least one selected from the group consisting of oxime-based photopolymerization initiators, ⁇ -aminoalkylphenone-based photopolymerization initiators, and N-phenylglycine-based photopolymerization initiators. Is more preferable.
  • the photopolymerization initiator for example, the photopolymerization initiators described in paragraphs 0031 to 0042 of JP2011-95716A and paragraphs 0064 to 0081 of JP2015-014783 may be used. ..
  • photopolymerization initiators examples include 1-[4-(phenylthio)phenyl]-1,2-octanedione-2-(O-benzoyloxime) (trade name: IRGACURE (registered trademark) OXE-01 , Manufactured by BASF), 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyloxime) (trade name: IRGACURE OXE-02, BASF 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone (trade name: IRGACURE 379EG, BASF) , 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (trade name: IRGACURE 907, manufactured by BASF), 2-hydroxy-1- ⁇ 4-[4-(2- Hydroxy-2-
  • the negative photosensitive resin layer may contain one type of polymerization initiator or may contain two or more types of polymerization initiators.
  • the polymerization initiator preferably contains an oxime-based photopolymerization initiator and an ⁇ -aminoalkylphenone-based photopolymerization initiator or an ⁇ -hydroxyalkylphenone-based polymerization initiator.
  • the content of the polymerization initiator in the negative photosensitive resin layer is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, based on the total mass of the negative photosensitive resin layer. It is particularly preferably 0.3% by mass or more.
  • the content of the polymerization initiator in the negative photosensitive resin layer is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the negative photosensitive resin layer.
  • the negative photosensitive resin layer preferably contains a binder polymer.
  • the binder polymer is preferably an alkali-soluble resin from the viewpoint of developability.
  • the alkali-soluble resin is preferably a resin having an acid value of 40 mgKOH/g or more, and is a (meth)acrylic resin having a carboxy group (hereinafter also referred to as “polymer B”) having an acid value of 40 mgKOH/g or more. More preferably.
  • the method for measuring the acid value is as described above.
  • the total proportion of the structural units derived from (meth)acrylic acid and the structural units derived from (meth)acrylic acid ester in polymer B is 20 mol% or more based on all the structural units of polymer B. It is more preferably 50 mol% or more.
  • Polymer B contains a structural unit having a carboxy group.
  • the constitutional unit having a carboxy group contained in the polymer B may be one type or two or more types.
  • the content ratio of the structural unit having a carboxy group in the polymer B is preferably 5 mol% to 60 mol% with respect to all the structural units of the polymer B, and 5 mol% to 40 mol %. It is more preferably mol%, further preferably 10 mol% to 40 mol%, particularly preferably 10 mol% to 30 mol%.
  • the binder polymer particularly the polymer B, preferably contains a structural unit having an aromatic ring from the viewpoint of moisture permeability and strength after curing.
  • a structural unit having an aromatic ring examples include styrene, tert-butoxystyrene, methylstyrene, styrene compounds such as ⁇ -methylstyrene, and benzyl (meth)acrylate.
  • the constituent unit having an aromatic ring is preferably a constituent unit derived from a styrene compound.
  • the binder polymer particularly the polymer B, preferably contains a structural unit having an ethylenically unsaturated group from the viewpoint of strength after curing.
  • the alkali-soluble resin preferably contains a constituent unit having an ethylenically unsaturated group in its side chain.
  • a (meth)acryl group is preferable, and a (meth)acryloxy group is more preferable.
  • the acid value of the binder polymer is preferably 40 mgKOH/g or more, more preferably 40 mgKOH/g to 200 mgKOH/g, further preferably 60 mgKOH/g to 150 mgKOH/g, and 60 mgKOH/g to 130 mgKOH. /G is particularly preferable.
  • the weight average molecular weight of the binder polymer is preferably more than 3,000, more preferably more than 3,000 and not more than 60,000, particularly preferably 5,000 to 50,000.
  • the weight average molecular weight of the binder polymer is a polystyrene equivalent weight average molecular weight measured by the method described above (that is, gel permeation chromatography).
  • the negative photosensitive resin layer may contain one kind of binder polymer, or may contain two or more kinds of binder polymer.
  • the content of the binder polymer in the negative photosensitive resin layer is preferably 10% by mass to 90% by mass, and 20% by mass to 80% by mass, based on the total mass of the negative photosensitive resin layer. It is more preferable that the amount is 30% by mass to 70% by mass.
  • the negative photosensitive resin layer may contain a component other than the above components (hereinafter, also referred to as “other component B”).
  • the other component B is not limited and can be appropriately selected depending on the purpose and the like. Examples of the other component B include a heat-crosslinkable compound, a sensitizer, and a corrosion inhibitor described later.
  • thermally crosslinkable compound examples include a blocked isocyanate compound, a bisphenol A type epoxy compound, a cresol novolac type epoxy compound, a biphenyl type epoxy compound, an alicyclic epoxy compound, and a melamine compound.
  • thermally crosslinkable compound means a compound having one or more functional groups capable of causing a crosslinking reaction by heat (that is, a thermally crosslinkable group) in one molecule.
  • a blocked isocyanate compound is preferable as the thermally crosslinkable compound.
  • the “blocked isocyanate compound” means a compound having a structure in which the isocyanate group of isocyanate is protected (masked) with a blocking agent.
  • the dissociation temperature of the blocked isocyanate compound is preferably 100°C to 160°C, more preferably 130°C to 150°C.
  • the “dissociation temperature of a blocked isocyanate compound” means a blocked isocyanate when measured by DSC (Differential scanning calorimetry) analysis using a differential scanning calorimeter (for example, DSC6200 manufactured by Seiko Instruments Inc.). It means the temperature of the endothermic peak accompanying the deprotection reaction of the compound.
  • Examples of the blocking agent having a dissociation temperature of 100° C. to 160° C. include pyrazole compounds (eg, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole, and 4-nitro-).
  • pyrazole compounds eg, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole, and 4-nitro-).
  • an oxime compound or a pyrazole compound is preferable, and an oxime compound is particularly preferable, from the viewpoint of storage stability.
  • the blocked isocyanate compound may be a commercially available product.
  • examples thereof include Karenz AOI-BM, Karenz MOI-BM, Karenz MOI-BP (all manufactured by Showa Denko KK), and block type Duranate series (manufactured by Asahi Kasei KK).
  • the molecular weight of the blocked isocyanate compound is preferably 200 to 3,000, more preferably 250 to 2,600, and particularly preferably 280 to 2,200.
  • the negative photosensitive resin layer may contain one kind of heat-crosslinkable compound, or may contain two or more kinds of heat-crosslinkable compounds.
  • the content of the heat-crosslinkable compound in the negative photosensitive resin layer is determined from the viewpoint of the strength of the cured film (that is, the cured product of the negative photosensitive resin layer) to be obtained.
  • the amount is preferably 1% by mass to 50% by mass, and more preferably 5% by mass to 30% by mass.
  • sensitizer examples include N-phenylglycine and the like.
  • the negative photosensitive resin layer may contain one kind of sensitizer or may contain two or more kinds of sensitizers.
  • the content of the sensitizer in the negative photosensitive resin layer is preferably 0.01% by mass to 5% by mass based on the total mass of the negative photosensitive resin layer.
  • the negative photosensitive resin layer may contain the other component A described in the above-mentioned "positive photosensitive resin layer", if necessary.
  • the adhesion layer is an alkali-soluble adhesion layer, and the resin layer is a positive photosensitive resin layer.
  • the adhesive layer is an alkali-soluble adhesive layer, and the resin layer is a negative photosensitive resin layer.
  • the adhesive layer is a thermosetting adhesive layer, and the resin layer is a positive photosensitive resin layer.
  • the adhesive layer is a thermosetting adhesive layer, and the resin layer is a negative photosensitive resin layer.
  • the adhesive layer is a negative photosensitive adhesive layer, and the resin layer is a negative photosensitive resin layer.
  • the adhesive layer is a positive photosensitive adhesive layer, and the resin layer is a positive photosensitive resin layer.
  • the method for forming the resin layer is not limited, and a known method can be applied.
  • Examples of the method for forming the resin layer include a method in which a resin layer-forming coating liquid containing each of the above components is applied onto an object to be coated and dried.
  • coating methods include slit coating, spin coating, curtain coating, inkjet coating, and the like.
  • the coating liquid for forming the resin layer can be prepared by mixing the above-mentioned components and the solvent in an arbitrary ratio.
  • the solvent is not limited, and examples thereof include the solvents described in the above “Adhesion layer”.
  • the solid content concentration in the coating liquid for forming the resin layer is not limited and can be appropriately set within the range of 0.5% by mass to 40% by mass, for example.
  • At least one selected from the group consisting of the layer containing the silver nanowires, the adhesion layer, and the resin layer preferably contains a corrosion inhibitor. Since at least one selected from the group consisting of a layer containing a silver nanowire, an adhesion layer, and a resin layer contains a corrosion inhibitor, corrosion of the silver nanowire or the like can be prevented, and thus durability can be improved.
  • the corrosion inhibitor is not limited, and known corrosion inhibitors can be applied.
  • the corrosion inhibitor include compounds containing at least one of nitrogen atom and sulfur atom.
  • the corrosion inhibitor is preferably a heterocyclic compound containing at least one of a nitrogen atom and a sulfur atom, and a compound containing a 5-membered ring structure containing one or more nitrogen atoms. It is more preferable that there is at least one compound, and it is particularly preferable that at least one compound selected from the group consisting of a compound having a triazole structure, a compound having a benzimidazole structure, and a compound having a thiadiazole structure.
  • the 5-membered ring structure containing one or more nitrogen atoms may be a monocyclic structure or a partial structure forming a condensed ring.
  • the corrosion inhibitor examples include benzimidazole, 1,2,4-triazole, benzotriazole, tolyltriazole, butylbenzyltriazole, alkyldithiothiadiazole, alkylthiol, 2-aminopyrimidine, 5,6-dimethylbenzimidazole, 2-Amino-5-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercaptopyrimidine, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, 2-mercapto Examples thereof include benzimidazole.
  • the corrosion inhibitor is at least one corrosion inhibitor selected from the group consisting of benzimidazole, 1,2,4-triazole, and 2,5-dimercapto-1,3,4-thiadiazole. It is preferable.
  • the silver nanowire-containing layer, the adhesion layer, and the resin layer may each contain one type of corrosion inhibitor or two or more types of corrosion inhibitors.
  • the content of the corrosion inhibitor is 0.01% by mass to 8% by mass with respect to the total mass of the layer containing the corrosion inhibitor among the layer containing the silver nanowires, the adhesion layer, and the resin layer. Is preferred.
  • At least one selected from the group consisting of the layer containing the silver nanowires, the adhesion layer, and the resin layer preferably contains a light stabilizer. At least one selected from the group consisting of a layer containing a silver nanowire, an adhesion layer, and a resin layer contains a light stabilizer, whereby the light resistance of the silver nanowire or the like can be improved.
  • the light stabilizer is not limited, and known light stabilizers can be applied.
  • the light stabilizer for example, compounds described in paragraphs 0032 to 0043 of US Patent Application Publication No. 2015/0270024 can be used.
  • the light stabilizer include transition metal compounds such as Fe, Co, Mn and V.
  • the ligand contained in the transition metal compound include acetylacetonato (hereinafter, also referred to as “acac”), cyclopentadienyl, bipyridine, phenanthroline, SO 4 2 ⁇ , NO 3 ⁇ and the like.
  • Specific examples of the transition metal compound include ferrocene, Fe(acac) 3 , Co(acac) 3 , Mn(acac) 3 , VO(acac) 3 , iron ascorbate, iron sulfate, tris(2,2′-bipyridine). ) Examples include iron sulfate.
  • the silver nanowire-containing layer, the adhesion layer, and the resin layer may each contain one kind of light stabilizer, or may contain two or more kinds of light stabilizers.
  • the content of the light stabilizer is 0.01 mass% to 10 mass% with respect to the total mass of the layer containing the light stabilizer among the layer containing the silver nanowires, the adhesion layer, and the resin layer. It is preferable to have.
  • the layer containing the silver nanowires, the adhesive layer, and the resin layer have a low content of impurities.
  • impurities include sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, and these ions, as well as free halogen and halide ions (chloride). (Product ion, bromide ion, iodide ion, etc.) and the like.
  • the content of impurities in each layer is preferably 1000 ppm or less, more preferably 200 ppm or less, still more preferably 40 ppm or less, on a mass basis.
  • the lower limit is not particularly defined, but from the viewpoint of practically limitable reduction and measurement limit, it can be 10 ppb or more, and 100 ppb or more on a mass basis.
  • Impurities can be quantified by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy and atomic absorption spectroscopy.
  • the content of compounds such as benzene, formaldehyde, trichloroethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, and hexane is small in each layer.
  • the content of each of these compounds in each layer is preferably 1000 ppm or less, more preferably 200 ppm or less, still more preferably 40 ppm or less, on a mass basis.
  • the lower limit is not particularly defined, but from the viewpoint of practically limitable reduction and measurement limit, it can be 10 ppb or more, and 100 ppb or more on a mass basis.
  • the content of the compound impurities can be suppressed in the same manner as the above-mentioned metal impurities. In addition, it can be quantified by a known measurement method.
  • the conductive transfer material according to the present disclosure may have a protective film at the outermost layer on the side opposite to the side on which the temporary support is arranged.
  • a method of manufacturing a patterned substrate according to the present disclosure includes a step of bonding the conductive transfer material and the substrate (hereinafter, also referred to as a “bonding step”) and a pattern of a photosensitive resin layer in the conductive transfer material.
  • a step of exposing hereinafter, also referred to as “exposure step”
  • a step of developing the conductive transfer material that has undergone the pattern exposure to form a pattern hereinafter, also referred to as “developing step” in this order.
  • Exposure step a step of developing the conductive transfer material that has undergone the pattern exposure to form a pattern
  • a method for manufacturing a patterned substrate according to the present disclosure includes a step of bonding the conductive transfer material and the substrate.
  • the conductive transfer material As the conductive transfer material, the conductive transfer material having a photosensitive resin layer among the conductive transfer material according to the above-described Embodiment 1A and the conductive transfer material according to the above-described Embodiment 1B can be applied.
  • the photosensitive resin layer is as described in the above section "Conductive transfer material", and the preferable range is also the same.
  • the conductive transfer material applicable to the bonding step include (1) a temporary support, a layer containing silver nanowires, and an adhesion layer having a thickness of 1 nm to 250 nm in this order. Then, a conductive transfer material having at least one photosensitive resin layer between the temporary support and the layer containing silver nanowires, (2) the temporary support, the layer containing silver nanowires, and contact resistance A conductive transfer material or the like having an adhesion layer having a resistance of 1 ⁇ to 300 ⁇ in this order and having at least one photosensitive resin layer between the temporary support and the layer containing the silver nanowires can be used.
  • the photosensitive resin layer in the conductive transfer material applicable to the laminating step is preferably a positive photosensitive resin layer from the viewpoint of resolution.
  • the substrate may be a substrate such as glass, silicon or a film itself, or a substrate in which any layer such as a conductive layer is provided on the substrate such as glass, silicon or film, if necessary. Good.
  • the substrate further has a conductive layer, the substrate preferably has a conductive layer on the base material.
  • the base material is preferably a glass base material or a film base material, more preferably a film base material, and particularly preferably a resin film.
  • the base material is preferably transparent.
  • the materials used in JP 2010-86684 A, JP 2010-152809 A and JP 2010-257492 A can be preferably used.
  • the refractive index of the base material is preferably 1.50 to 1.52.
  • the base material may be composed of a translucent base material such as a glass base material, and a tempered glass typified by Gorilla glass of Corning can be used.
  • a film substrate When a film substrate is used as the substrate, it is more preferable to use a substrate having small optical distortion and a substrate having high transparency, and it is particularly preferable to use a resin film.
  • Examples of the resin constituting the resin film include polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, cycloolefin polymer and the like.
  • the conductive layer examples include a metal layer and a conductive metal oxide layer.
  • conductive means that the volume resistivity is less than 1 ⁇ 10 6 ⁇ cm.
  • the volume resistivity is preferably less than 1 ⁇ 10 4 ⁇ cm.
  • the metal forming the metal layer examples include Al (aluminum), Zn (zinc), Cu (copper), Fe (iron), Ni (nickel), Cr (chrome), Mo (molybdenum), and the like.
  • the metal forming the metal layer may be a simple metal composed of one kind of metal element, a metal containing two or more kinds of metal elements, or an alloy containing at least one kind of metal element. May be.
  • Examples of the conductive metal oxide forming the conductive metal oxide layer include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 .
  • the conductive layer is preferably at least one kind of layer selected from the group consisting of a metal layer and a conductive metal oxide layer, more preferably a metal layer, from the viewpoint of conductivity and thin line forming property. Particularly preferred is a copper layer.
  • the conductive layer is preferably an electrode pattern corresponding to the sensor of the visual recognition part used in the capacitive touch panel or wiring of the peripheral extraction part.
  • the conductive transfer material and the substrate are bonded by bringing the adhesion layer of the conductive transfer material into contact with the substrate.
  • Lamination of the conductive transfer material and the substrate can be performed using a known laminator such as a vacuum laminator or an auto cut laminator.
  • the laminating temperature is preferably 80° C. to 150° C., more preferably 90° C. to 150° C., and particularly preferably 100° C. to 150° C.
  • the laminating temperature refers to the rubber roller temperature.
  • the substrate temperature during lamination is, for example, 10°C to 150°C, preferably 20°C to 150°C, more preferably 30°C to 150°C.
  • the substrate temperature during lamination is preferably 10°C to 80°C, more preferably 20°C to 60°C, and particularly preferably 30°C to 50°C.
  • the linear pressure during lamination is preferably 0.5 N/cm to 20 N/cm, more preferably 1 N/cm to 10 N/cm, and particularly preferably 1 N/cm to 5 N/cm.
  • the conveying speed (laminating speed) during lamination is preferably 0.5 m/min to 5 m/min, more preferably 1.5 m/min to 3 m/min.
  • a method for manufacturing a patterned substrate according to the present disclosure includes a step of pattern-exposing a photosensitive resin layer in the conductive transfer material.
  • the photosensitive resin layer in the conductive transfer material is pattern-exposed to form an exposed portion and a non-exposed portion in the photosensitive resin layer.
  • the exposed photosensitive resin layer in the conductive transfer material when the photosensitive resin layer in the conductive transfer material is a positive type, the exposed photosensitive resin layer (that is, the exposed portion) has increased solubility in the developer due to the polarity change.
  • the photosensitive resin layer in the conductive transfer material is a negative type, the exposed photosensitive resin layer (that is, the exposed portion) is cured.
  • the pattern exposure method may be exposure through a mask (also called “photomask”) or digital exposure using a laser or the like.
  • the light source for exposure is not limited and can be appropriately selected according to the components of the photosensitive resin layer.
  • examples of the light source include a light source capable of irradiating light in a wavelength range in which the exposed portion can be dissolved in the developing solution (for example, 365 nm, 405 nm, etc.).
  • examples of the light source include a light source capable of irradiating light (for example, 365 nm or 405 nm) in a wavelength range in which the exposed portion can be cured.
  • Specific examples of the light source include various lasers, light emitting diodes (LEDs), ultrahigh pressure mercury lamps, high pressure mercury lamps, metal halide lamps and the like.
  • Exposure is preferably 5mJ / cm 2 ⁇ 200mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 200mJ / cm 2.
  • the photosensitive resin layer may be pattern-exposed after the temporary support is peeled off from the conductive transfer material attached to the substrate, or the photosensitive resin layer may be pattern-exposed while the temporary support is left. You may.
  • a method of manufacturing a patterned substrate according to the present disclosure includes a step of developing a conductive transfer material that has undergone the pattern exposure to form a pattern.
  • a pattern can be formed by removing the exposed portion of the conductive transfer material with a developing solution.
  • the photosensitive resin layer in the conductive transfer material is a negative type, the pattern can be formed by removing the non-exposed portion of the conductive transfer material with a developing solution.
  • the developer is not limited, and a known developer such as the developer described in JP-A-5-72724 can be applied.
  • the developer is preferably an alkaline aqueous solution.
  • alkaline compound that can be contained in the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxy. And tetrabutylammonium hydroxide, choline (2-hydroxyethyltrimethylammonium hydroxide) and the like.
  • the pH of the alkaline aqueous solution at 25° C. is preferably 8 to 13, more preferably 9 to 12, and particularly preferably 10 to 12.
  • the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass to 5% by mass, more preferably 0.1% by mass to 3% by mass, based on the total amount of the alkaline aqueous solution.
  • the liquid temperature of the developer is preferably 20°C to 40°C.
  • development methods include paddle development, shower development, shower and spin development, and dip development.
  • a method of manufacturing a circuit board according to the present disclosure includes a step of bonding the conductive transfer material and the substrate (bonding step), and a step of exposing the photosensitive resin layer in the conductive transfer material by pattern exposure (exposure step). , A step of developing the pattern-exposed conductive transfer material to form a pattern (developing step), and a step of removing the photosensitive resin layer or the cured product of the photosensitive resin layer in the pattern (hereinafter, referred to as "removal” Also referred to as a "process"). Since the method for manufacturing a circuit board according to the present disclosure includes the above steps, it is possible to obtain a circuit board having excellent adhesion and conductivity between the layer containing silver nanowires and the board.
  • the bonding step, the exposure step, and the development step in the method for manufacturing a circuit board according to the present disclosure are synonymous with the bonding step, the exposure step, and the development step described in the section of the “patterned substrate”,
  • the preferable range is also the same.
  • a method for manufacturing a circuit board according to the present disclosure includes a step of removing a photosensitive resin layer or a cured product of the photosensitive resin layer (hereinafter, also referred to as a “removed layer”) in the above pattern.
  • the photosensitive resin layer in the pattern or the cured product of the photosensitive resin layer is usually the outermost layer of the pattern (that is, among the layers constituting the pattern, the layer arranged at the position farthest from the substrate). It is arranged.
  • a cured product of the photosensitive resin layer for example, a cured product of a negative photosensitive resin layer can be mentioned.
  • the cured product of the negative photosensitive resin layer is formed, for example, by exposing the negative photosensitive resin layer in the exposure step.
  • a method of removing the layer to be removed for example, a method of removing the layer to be removed by a chemical treatment can be mentioned, and a method using a removing liquid is preferable.
  • the substrate having the layer to be removed is immersed in a removing solution under stirring at preferably 30° C. to 80° C., more preferably 50° C. to 80° C. for 1 minute to 30 minutes. There is a method of doing.
  • a removal liquid containing 30% by mass or more of water more preferably a removal liquid containing 50% by mass or more of water, and 70% by mass or more of water. It is particularly preferable to use a removing solution that
  • the removing liquid is an inorganic alkali component such as sodium hydroxide, potassium hydroxide or sodium carbonate, or an organic alkali such as a primary amine compound, a secondary amine compound, a tertiary amine compound or a quaternary ammonium salt compound. It is preferable to contain components.
  • the content of the alkaline component is preferably 0.01% by mass to 20% by mass, more preferably 0.1% by mass to 10% by mass, based on the total mass of the removing liquid. preferable.
  • the removal step may be performed after the overall exposure step described later, if necessary.
  • the circuit board manufacturing method may include a step of exposing the entire surface of the pattern formed through the developing step (hereinafter, also referred to as “entire surface exposing step”) before the removing step. ..
  • the photosensitive resin layer in the pattern is a positive type, the solubility of the photosensitive resin layer in the removing liquid can be improved.
  • a light source containing light having the same wavelength as that in the above-mentioned exposure step in the whole-surface exposure step it is preferable to use a light source containing light having the same wavelength as that in the above-mentioned exposure step in the whole-surface exposure step.
  • the exposure amount in the overall exposure step is preferably 5mJ / cm 2 ⁇ 1,000mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 800mJ / cm 2, 100mJ / Particularly preferably, it is cm 2 to 500 mJ/cm 2 .
  • a laminate according to an embodiment of the present disclosure has a substrate, an adhesion layer having a thickness of 1 nm to 250 nm, and a layer containing silver nanowires (silver nanowire layer) in this order.
  • the laminate according to the above-described embodiment (hereinafter, also referred to as “embodiment 2A”) has the substrate, the adhesion layer having a thickness of 1 nm to 250 nm, and the layer containing silver nanowires in this order. Excellent adhesion and conductivity between the layer containing the silver nanowires and the substrate.
  • a laminate according to an embodiment of the present disclosure has a substrate, an adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ , and a layer containing silver nanowires (silver nanowire layer) in this order.
  • the laminate according to the above-described embodiment (hereinafter, also referred to as “embodiment 2B”) has the substrate, the adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ , and the layer containing silver nanowires in this order. Excellent adhesion and conductivity between the layer containing the silver nanowires and the substrate.
  • FIG. 3 schematically shows an example of the layer structure of the laminate according to the present disclosure.
  • the laminated body 200 illustrated in FIG. 3 includes the substrate 50, the adhesion layer 30, and the layer 20 containing silver nanowires in this order.
  • the adhesion layer and the silver nanowire layer may be arranged on the entire surface of the substrate, and the adhesion layer and the silver are provided on a part of the substrate.
  • a nanowire layer may be arranged.
  • the adhesion layer and the silver nanowire layer arranged on the substrate may have a patterned shape.
  • a circuit board etc. are mentioned as a specific example of the laminated body which has a pattern shape.
  • the adhesion layer and the layer including the silver nanowires are transfer layers.
  • transfer layer means a layer formed by transfer.
  • the laminated body according to the present disclosure has a substrate.
  • the substrate has the same meaning as the substrate described in the above-mentioned “method for producing patterned substrate”, and the preferred range is also the same.
  • the substrate preferably has a conductive layer on the base material.
  • the laminate has an adhesion layer having a thickness of 1 nm to 250 nm. Since the laminate in Embodiment 2A has the adhesion layer having a thickness of 1 nm to 250 nm, the adhesion between the layer containing the silver nanowires and the substrate is high, and the conductivity between the silver nanowire layer and the substrate is high. improves.
  • the thickness of the adhesive layer is measured by the method described above.
  • the adhesion layer may be the adhesion layer in the embodiment 1A described in the above section "Conductive transfer material" or may be a layer formed by curing the adhesion layer in the embodiment 1A. Good.
  • the layer formed by curing the adhesion layer is formed, for example, by curing a curable (for example, photocurable and thermosetting) component in the layer by exposure or heating.
  • the laminated body has an adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ . Since the laminate according to Embodiment 2B has the adhesion layer having a contact resistance of 1 ⁇ to 300 ⁇ , the adhesion between the layer containing the silver nanowires and the substrate is high, and the conductivity between the silver nanowire layer and the substrate is high. improves.
  • the thickness of the adhesion layer is measured by the method described above.
  • the adhesion layer may be the adhesion layer in the embodiment 1B described in the above-mentioned "conductive transfer material", or may be a layer formed by curing the adhesion layer in the embodiment 1B. Good.
  • the layer formed by curing the adhesion layer is formed, for example, by curing a curable (for example, photocurable and thermosetting) component in the layer by exposure or heating.
  • the contact resistance of the adhesion layer is measured by the TLM (Transmission Line Model) method.
  • TLM Transmission Line Model
  • the substrate in the laminated body has a conductive layer (that is, when the laminated body has a base material, a conductive layer, an adhesion layer, and a silver nanowire layer in this order)
  • they are arranged independently of each other.
  • the five conductive layers are selected.
  • the contact resistance of the adhesion layer can be determined by measuring the resistance between the conductive layers and plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the conductive layers.
  • all of the selected five conductive layers are limited to those in which one silver nanowire layer is arranged on the conductive layer via the adhesion layer.
  • the test laminate having the adhesion layer and the silver nanowire layer is peeled from the substrate.
  • the contact resistance of the contact layer of the laminate is defined as the contact resistance obtained by the method for measuring the contact resistance of the contact layer described in the section "Conductive Transfer Material" using the test laminate.
  • composition of the adhesion layer is as described in the above section "Conductive transfer material", and the preferable range is also the same.
  • the laminate according to the present disclosure has a layer containing silver nanowires.
  • the layer containing silver nanowires in the laminate according to the present disclosure has the same meaning as the layer containing silver nanowires described in the section of the “conductive transfer material”, and the preferable range is also the same.
  • At least one selected from the group consisting of the layer containing the silver nanowires and the adhesion layer preferably contains a corrosion inhibitor.
  • a corrosion inhibitor When at least one of the layer containing silver nanowires and the adhesion layer contains a corrosion inhibitor, corrosion of silver nanowires or the like can be prevented, and thus durability can be improved.
  • the corrosion inhibitor in the laminate according to the present disclosure has the same meaning as the corrosion inhibitor described in the above-mentioned "conductive transfer material", and the preferable range is also the same.
  • At least one selected from the group consisting of the layer containing the silver nanowires and the adhesion layer preferably contains a light stabilizer. Since at least one selected from the group consisting of a layer containing silver nanowires and an adhesion layer contains a light stabilizer, the light resistance of silver nanowires or the like can be improved.
  • the light stabilizer in the laminate according to the present disclosure has the same meaning as the light stabilizer described in the above-mentioned “conductive transfer material”, and the preferable range is also the same.
  • the layer containing the silver nanowires and the adhesive layer have a low content of impurities.
  • the impurities in the layered product according to the present disclosure have the same meaning as the impurities described in the above-mentioned “conductive transfer material”, and the preferable range of the content of the impurities in each of the above layers is also the same.
  • the method for manufacturing the laminated body is not limited, and, for example, the methods described in the above-mentioned "patterned substrate” and “circuit board” can be applied.
  • a touch panel according to the present disclosure has the above laminated body. Since the touch panel according to the present disclosure has the above-mentioned laminated body, it has excellent adhesion and conductivity between the layer containing the silver nanowires and the substrate.
  • the laminated body in the touch panel according to the present disclosure has the same meaning as the laminated body described in the above-mentioned “laminated body”, and the preferable range is also the same. Further, in the touch panel according to the present disclosure, when the laminate is used as a circuit board, it is preferable that a part of the region including the adhesion layer and the silver nanowire layer in the laminate be patterned.
  • the detection method in the touch panel according to the present disclosure includes, for example, a resistance film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, an optical method, and the like.
  • the capacitance method is preferable as the detection method.
  • in-cell type for example, those described in FIGS. 5, 6, 7, and 8 of Japanese Patent Laid-Open No. 2012-517051
  • on-cell type for example, Japanese Unexamined Patent Publication No. 2013-168125
  • OGS One Glass Solution
  • TOL Touch-on-Lens
  • JP 2 of Japanese Patent Laid-Open No. 2013-54727 other configurations
  • the method of manufacturing the touch panel is not limited, and known methods can be applied.
  • the touch panel manufacturing method for example, the circuit board manufacturing method described above can be applied.
  • FIG. 4 shows an example of a mask pattern used in the touch panel manufacturing method according to the present disclosure.
  • the pattern A shown in FIG. 4 can be used when pattern-exposing a positive photosensitive resin layer.
  • the solid line portion SL and the gray portion G are light-shielding portions, and the dotted line portion DL is a virtual frame for alignment.
  • the touch panel manufacturing method according to the present disclosure for example, by exposing the positive photosensitive resin layer through the mask having the pattern A shown in FIG. 4, a pattern corresponding to the solid line portion SL and the gray portion G is formed. It is possible to manufacture a touch panel in which the circuit wirings included therein are formed.
  • the weight average molecular weight of the resin is the weight average molecular weight determined in terms of polystyrene by gel permeation chromatography (GPC). The theoretical acid value was used for the acid value.
  • ⁇ Diameter and major axis length of silver nanowire> Using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.), 300 silver nanowires were observed to determine the diameter and the major axis length of each silver nanowire. The diameter and major axis length of the metal nanowire were calculated by arithmetically averaging the measured values.
  • TEM transmission electron microscope
  • An additive solution G was prepared by dissolving 0.5 g of glucose powder in 140 mL of pure water.
  • additive solution H was prepared by dissolving 0.5 g of HTAB (hexadecyl-trimethylammonium bromide) powder in 27.5 mL of pure water.
  • the additive liquid A, the additive liquid G, and the additive liquid H were repeatedly prepared by the above method and used for the preparation of the coating liquid for forming the silver nanowire layer.
  • the obtained concentrated liquid was diluted with pure water and methanol (pure water and methanol volume ratio (pure water/methanol): 60/40) to obtain a silver nanowire layer forming coating liquid.
  • the coating liquid for forming the silver nanowire layer was applied to the cycloolefin polymer film.
  • the coating amount of the coating liquid for forming the silver nanowire layer was such that the wet film thickness was 20 ⁇ m.
  • the sheet resistance of the layer containing the silver nanowires after drying was 60 ⁇ / ⁇ .
  • a non-contact eddy current type resistance measuring device EC-80P manufactured by Napson Corporation was used for measuring the sheet resistance.
  • the diameter of the silver nanowire was 17 nm, and the major axis length was 35 ⁇ m.
  • TO-2349 Monomer having a carboxy group (Aronix (registered trademark) TO-2349 manufactured by Toagosei Co., Ltd., mixture of pentafunctional ethylenically unsaturated compound and hexafunctional ethylenically unsaturated compound)
  • Compound A a compound having the following structural units
  • Compound B a compound having the following structural unit (Mw: 20000)
  • Compound C a compound having the following structural unit (Mw: 5500)
  • a material BP-1 which is a coating liquid for forming a positive photosensitive resin layer was prepared.
  • the numerical value written together with each structural unit represents the content ratio (molar ratio) of the structural unit.
  • the material BP-1 is also used as a coating liquid for forming an adhesion layer.
  • Compound D a compound having the following constitutional unit (Mw: 25000)
  • the material BP-1 which is a coating liquid for forming a positive photosensitive resin layer, is applied onto a 16 ⁇ m-thick polyethylene terephthalate film (temporary support, Lumirror 16KS40 (manufactured by Toray Industries, Inc.)) using a slit nozzle. Then, a positive photosensitive resin layer was formed. The coating amount of the material BP-1 was adjusted so that the thickness after drying would be the thickness described in Table 4.
  • a slit type nozzle is used to apply a coating liquid for forming a silver nanowire layer with a wet film thickness of 20 ⁇ m on the positive photosensitive resin layer, and then drying at 100° C.
  • a silver nanowire layer (that is, a layer containing silver nanowires) was formed by drying at a temperature.
  • the film thickness of the silver nanowire layer was 100 nm.
  • any of materials A-1 to A-4, which are coating solutions for forming an adhesion layer, selected according to the description in Table 4 below was applied. The coating amounts of the materials A-1 to A-4 were adjusted so that the thickness after drying would be the thickness shown in Table 4.
  • Example 11 ⁇ Production of Conductive Transfer Material of Example 11>
  • the conductive transfer material of Example 11 was prepared in the same procedure as in Example 1 except that the material BP-1 was applied on the silver nanowire layer to form a positive adhesion layer. Was produced. The coating amount of the material BP-1 was adjusted so that the thickness after drying would be the thickness described in Table 4.
  • a polyethylene terephthalate film (protective film, Lumirror 16KS40 (manufactured by Toray Co., Ltd.)) having a thickness of 16 ⁇ m is formed on the material A-1, A-3, or A, which is a coating liquid for forming an adhesive layer, using a slit nozzle. -4 was applied to form an adhesion layer. The coating amount of the materials A-1, A-3, or A-4 was adjusted so that the thickness after drying would be the thickness described in Table 4.
  • a coating liquid for forming a silver nanowire layer is applied on the adhesion layer with a slit-shaped nozzle at a WET coating thickness of 20 ⁇ m, and then dried at a drying temperature of 100° C.
  • the silver nanowire layer (that is, the layer containing the silver nanowire) was formed.
  • the film thickness of the silver nanowire layer was 100 nm.
  • the material BN-1 which is a negative type photosensitive resin layer forming coating solution was applied.
  • the coating amount of the material BN-1 was adjusted so that the thickness after drying would be the thickness described in Table 4. After coating the material BN-1, the material was dried at a drying temperature of 100° C.
  • a polyethylene terephthalate film having a thickness of 16 ⁇ m temporary support, Lumirror 16KS40 (manufactured by Toray Industries, Inc.) was pressure-bonded onto the negative photosensitive resin layer, and the conductive transfer of Examples 6, 8 and 9 was performed. Each material was made.
  • a conductive transfer material of Comparative Example 3 was produced by the same procedure as in Example 1 except that the adhesive layer was not formed.
  • ⁇ Preparation of transparent electrode pattern film> The conductive transfer materials of Examples 1 to 5, 10, and 11 and Comparative Examples 1 to 3 from which the protective film was peeled off were laminated on a cycloolefin polymer film having a thickness of 38 ⁇ m and a refractive index of 1.53 ( Hereinafter, in this paragraph, the laminate for pattern formation was obtained by "lamination processing".
  • the lamination process was performed using a vacuum laminator manufactured by MCK Co., Ltd. under the conditions of a cycloolefin polymer film temperature of 40° C., a rubber roller temperature of 100° C., a linear pressure of 3 N/cm, and a conveying speed of 2 m/min.
  • the surface exposed by peeling the protective film from the conductive transfer material was brought into contact with the surface of the cycloolefin polymer film.
  • the exposure mask quartz exposure mask having a transparent electrode forming pattern
  • the temporary support is brought into close contact with each other.
  • the positive photosensitive resin layer was pattern-exposed through the temporary support with an exposure amount of 100 mJ/cm 2 (i-line).
  • development treatment was carried out at 32° C. for 60 seconds using a 1% by mass aqueous solution of sodium carbonate.
  • Example 7 In the production of the transparent electrode pattern film using the conductive transfer material of Example 7, the same procedure as in Example 1 was performed except that the heat treatment was performed at 145° C. for 10 minutes after the development treatment and before the exposure. A transparent electrode pattern film (circuit board) was produced by the same procedure.
  • the contact resistance of the adhesion layer was measured by the TLM (Transmission Line Model) method.
  • the specific measuring method is as follows. Seven copper electrodes (thickness: 300 nm) arranged on the cycloolefin polymer film (thickness: 38 ⁇ m, refractive index: 1.53) in parallel and independently with each other at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm. , Width 500 ⁇ m) was formed. Next, the conductive transfer materials of Examples 1 to 11 and Comparative Examples 1 to 3 from which the protective film was peeled off were adhered to the seven copper electrodes, whereby silver nanowires were formed on the copper electrodes via an adhesion layer.
  • a test body having a structure in which layers were stacked (in Comparative Example 3, a test body having a structure in which a silver nanowire layer was stacked on a copper electrode) was produced.
  • the silver nanowire layer was arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the silver nanowire layer was 90°.
  • the contact resistance of the adhesion layer was obtained by measuring the resistance between adjacent copper electrodes and plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the copper electrodes.
  • a resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used to measure the resistance between the copper electrodes. The evaluation results are shown in Table 4.
  • the conductive transfer materials of Examples 1 to 11 have excellent adhesion. Furthermore, since the contact resistance of the adhesion layer in the conductive transfer materials of Examples 1 to 11 was low, the touch sensor manufactured using the conductive transfer materials of Examples 1 to 11 operated normally. Therefore, it was found that by using the conductive transfer materials of Examples 1 to 11, the conductivity between the layer containing the silver nanowires and the substrate was excellent. On the other hand, the touch sensors manufactured using the conductive transfer materials of Comparative Examples 1 to 3 did not operate normally. Further, it was found that the conductive transfer material of Comparative Example 3 was inferior in adhesion to the conductive transfer materials of Examples 1 to 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Materials For Photolithography (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

仮支持体と、銀ナノワイヤーを含む層と、厚さが1nm~250nmである密着層と、をこの順で有する導電性転写材料、及び仮支持体と、銀ナノワイヤーを含む層と、接触抵抗が1Ω~300Ωである密着層と、をこの順で有する導電性転写材料、並びにその応用を提供する。

Description

導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネル
 本開示は、導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネルに関する。
 近年、指、タッチペン等で触れることにより、指示画像に対応する情報の入力が行える入力装置(以下、「タッチパネル」ともいう。)が広く利用されている。上記入力装置においては、通常、ITO(Indium Tin Oxide)等の材料からなる導電膜が用いられている。また、近年では、ITO等に代わる材料として、導電性繊維を用いて導電膜を形成する種々の技術が検討されている。
 例えば、国際公開第2010/021224号には、支持フィルムと、支持フィルム上に設けられ導電性繊維を含有する導電層と、導電層上に設けられた感光性樹脂層と、を備える、感光性導電フィルムが開示されている。
 しかしながら、国際公開第2010/021224号に記載された感光性導電フィルムを基板に貼り合わせることによって感光性樹脂層と基板とを密着させた場合、導電性繊維を含有する導電層(以下、本段落において、単に「導電層」という。)と基板との間に感光性樹脂層が存在するため、導電層と基板とを電気的に直接接続する手段を別途設けなければ、導電層と基板との間の導電性は低くなる。従来技術では、例えば、導電層と基板との間を電気的に接続して回路を形成することは困難であると考えられる。一方、感光性樹脂層を介さずに導電層と基板とを直接密着させると、導電層と基板との密着性が低下する場合がある。このため、導電層と基板との密着性及び導電性を両立し得る転写材料が求められている。
 本開示は、上記の事情に鑑みてなされたものである。
 本開示の一態様は、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる導電性転写材料を提供することを目的とする。
 本開示の他の一態様は、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れるパターンつき基板の製造方法を提供することを目的とする。
 本開示の他の一態様は、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる回路基板の製造方法を提供することを目的とする。
 本開示の他の一態様は、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる積層体を提供することを目的とする。
 本開示の他の一態様は、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れるタッチパネルを提供することを目的とする。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 仮支持体と、銀ナノワイヤーを含む層と、厚さが1nm~250nmである密着層と、をこの順で有する導電性転写材料。
<2> 仮支持体と、銀ナノワイヤーを含む層と、接触抵抗が1Ω~300Ωである密着層と、をこの順で有する導電性転写材料。
<3> 上記密着層が、アルカリ可溶性樹脂を含有する<1>又は<2>に記載の導電性転写材料。
<4> 上記仮支持体と上記銀ナノワイヤーを含む層との間に、少なくとも1つの樹脂層を有する<1>~<3>のいずれか1つに記載の導電性転写材料。
<5> 上記銀ナノワイヤーを含む層、上記密着層、及び上記樹脂層からなる群より選択される少なくとも1つが、腐食防止剤を含有する<4>に記載の導電性転写材料。
<6> 上記樹脂層が、感光性樹脂層である<4>又は<5>に記載の導電性転写材料。
<7> 上記感光性樹脂層が、ポジ型の感光性樹脂層である<6>に記載の導電性転写材料。
<8> <6>又は<7>に記載の導電性転写材料、及び基板を貼り合わせる工程と、上記導電性転写材料における感光性樹脂層をパターン露光する工程と、上記パターン露光を経た導電性転写材料を現像してパターンを形成する工程と、をこの順に含む、パターンつき基板の製造方法。
<9> <6>又は<7>に記載の導電性転写材料、及び基板を貼り合わせる工程と、上記導電性転写材料における感光性樹脂層をパターン露光する工程と、上記パターン露光を経た導電性転写材料を現像してパターンを形成する工程と、上記パターンにおける、感光性樹脂層又は感光性樹脂層の硬化物を除去する工程と、をこの順に含む、回路基板の製造方法。
<10> 基板と、厚さが1nm~250nmである密着層と、銀ナノワイヤーを含む層と、をこの順で有する積層体。
<11> 基板と、接触抵抗が1Ω~300Ωである密着層と、銀ナノワイヤーを含む層と、をこの順で有する積層体。
<12> 上記密着層及び上記銀ナノワイヤーを含む層が、転写層である<10>又は<11>に記載の積層体。
<13> <10>~<12>のいずれか1つに記載の積層体を有するタッチパネル。
 本開示の一態様によれば、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる導電性転写材料を提供することができる。
 本開示の他の一態様によれば、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れるパターンつき基板の製造方法を提供することができる。
 本開示の他の一態様によれば、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる回路基板の製造方法を提供することができる。
 本開示の他の一態様によれば、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる積層体を提供することができる。
 本開示の他の一態様によれば、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れるタッチパネルを提供することができる。
図1は、本開示に係る導電性転写材料の層構成の一例を示す概略図である。 図2は、本開示に係る導電性転写材料の層構成の一例を示す概略図である。 図3は、本開示に係る積層体の層構成の一例を示す概略図である。 図4は、パターンAを示す概略図である。
 以下、本開示の実施形態について詳細に説明する。なお、本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「(メタ)アクリル」とは、アクリル及びメタクリルの双方、又は、いずれか一方を意味し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの双方、又は、いずれか一方を意味し、「(メタ)アクリロキシ」とは、アクリロキシ及びメタクリロキシの双方、又は、いずれか一方を意味する。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
 本開示において、樹脂中の構成単位の割合は、特に断りが無い限り、モル割合を表す。
 本開示において、分子量分布がある場合の分子量は、特に断りが無い限り、重量平均分子量(Mw)を表す。
<導電性転写材料>
[実施形態1A]
 本開示の一実施形態に係る導電性転写材料は、仮支持体と、銀ナノワイヤーを含む層(以下、「銀ナノワイヤー層」ともいう。)と、厚さが1nm~250nmである密着層と、をこの順で有する。上記実施形態(以下、「実施形態1A」ともいう。)に係る導電性転写材料は、仮支持体と、銀ナノワイヤーを含む層と、厚さが1nm~250nmである密着層と、をこの順で有するため、上記導電性転写材料を基板に貼り合わせた際に、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる。
[実施形態1B]
 本開示の一実施形態に係る導電性転写材料は、仮支持体と、銀ナノワイヤーを含む層と、接触抵抗が1Ω~300Ωである密着層と、をこの順で有する。上記実施形態(以下、「実施形態1B」ともいう。)に係る導電性転写材料は、仮支持体と、銀ナノワイヤーを含む層と、接触抵抗が1Ω~300Ωである密着層と、をこの順で有するため、上記導電性転写材料を基板に貼り合わせた際に、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる。
 図1は、本開示に係る導電性転写材料の層構成の一例を概略的に示している。図1に示す導電性転写材料100は、仮支持体10と、銀ナノワイヤーを含む層20と、密着層30と、をこの順で有する。なお、本開示の図面において示される各要素の縮尺は、必ずしも正確ではない。
 以下、実施形態1A及び実施形態1Bに係る導電性転写材料の各構成について説明する。ただし、実施形態1Bに係る導電性転写材料の構成は、実施形態1Aに係る導電性転写材料における「厚さが1nm~250nmである密着層」を「接触抵抗が1Ω~300Ωである密着層」に代えた点以外は、実施形態1Aに係る導電性転写材料の構成と同義である。このため、以下に説明する実施形態は、特に断りのない限り、上記実施形態1A及び上記実施形態1Bの両方の実施形態を意味し、好ましい範囲も同様である。
〔仮支持体〕
 本開示に係る導電性転写材料は、仮支持体を有する。
 仮支持体は、少なくとも、銀ナノワイヤーを含む層、及び密着層を支持し、被着体(例えば、銀ナノワイヤーを含む層)から剥離可能な支持体である。
 仮支持体は、仮支持体を介してパターン露光できるという観点から、光透過性を有することが好ましい。本開示において、「光透過性を有する」とは、パターン露光に使用する光の主波長の透過率が50%以上であることを意味する。パターン露光に使用する光の主波長の透過率は、露光感度向上の観点から、60%以上が好ましく、70%以上がより好ましい。透過率の測定方法としては、分光光度計(例えば、大塚電子(株)製MCPD-6800)を用いて測定する方法が挙げられる。
 仮支持体としては、例えば、ガラス基材、樹脂フィルム、紙等が挙げられる。仮支持体は、強度及び可撓性等の観点から、樹脂フィルムであることが好ましい。樹脂フィルムとしては、例えば、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられる。上記の中でも、仮支持体は、光学特性の観点から、ポリエチレンテレフタレートフィルムが好ましい。
 仮支持体の厚さは、制限されず、材質に応じて適宜設定することができる。仮支持体の厚さは、取扱い易さ、汎用性等の観点から、5μm~200μmが好ましく、10μm~150μmがより好ましい。
 また、仮支持体の好ましい態様については、例えば、特開2014-85643号公報の段落0017~段落0018に記載がある。これらの記載は参照により本明細書に取り込まれる。
〔密着層〕
 実施形態1Aにおいて、導電性転写材料は、厚さが1nm~250nmである密着層を有する。実施形態1Aにおける導電性転写材料は、厚さが1nm~250nmである密着層を有するため、基板に対する密着性が高く、銀ナノワイヤー層と基板との間の導電性が向上する。
 実施形態1Aにおいて、密着層の厚さは、密着性及び導電性の観点から、1nm~250nmであり、1nm~150nmであることが好ましく、1nm~100nmであることがより好ましい。同様の理由により、密着層の厚さは、1nm~70nmであってもよく、1nm~20nmであってもよい。
 実施形態1Aにおいて、密着層の厚さは以下の方法によって測定する。
 密着層の厚さ方向の断面観察像において、無作為に選択した10箇所で測定される密着層の厚さの算術平均値を求め、得られる値を密着層の厚さとする。密着層の厚さ方向の断面観察像は、走査型電子顕微鏡(SEM)、又は透過型電子顕微鏡(TEM)を用いて得ることができる。
 実施形態1Bにおいて、導電性転写材料は、接触抵抗が1Ω~300Ωである密着層を有する。実施形態1Bにおける導電性転写材料は、接触抵抗が1Ω~300Ωである密着層を有するため、基板に対する密着性が高く、銀ナノワイヤー層と基板との間の導電性が向上する。
 実施形態1Bにおいて、密着層の接触抵抗は、密着性及び導電性の観点から、1Ω~100Ωであることが好ましく、1Ω~50Ωであることがより好ましい。同様の理由により、実施形態1Bにおいて、密着層の接触抵抗は、1Ω~25Ωであってもよく、1Ω~20Ωであってもよい。
 実施形態1Bにおいて、密着層の接触抵抗は、TLM(Transmission Line Model)法によって測定する。具体的な測定方法は、以下のとおりである。
 基材(例えば、シクロオレフィンポリマーフィルム)上に、2mm、4mm、6mm、8mm、12mm、及び20mmの間隔で、互いに平行かつ独立に配置された7つの銅電極(厚さ300nm、幅500μm)を形成する。次に、7つの銅電極上に1つの導電性転写材料を貼り合わせることによって、銅電極上に、密着層を介して銀ナノワイヤー層が積層された構造を有する試験体を作製する。上記試験体の平面図において、銀ナノワイヤー層は、7つの銅電極を横断するように配置されており、各銅電極と銀ナノワイヤー層とのなす角は90°である。隣り合う銅電極間の抵抗を測定し、そして、銅電極間の抵抗(縦軸)及び距離(横軸)の関係をプロットすることによって、密着層の接触抵抗を求めることができる。銅電極間の抵抗を測定する装置は、制限されず、抵抗率計(例えば、ロレスタ-GP、株式会社三菱ケミカルアナリテック製)を用いることができる。
 密着層は、密着性の観点から、有機材料(例えば、有機樹脂)を含有する密着層(以下、「有機層」ともいう。)であることが好ましい。密着層は、パターン形成における残渣除去の観点から、アルカリ可溶性樹脂を含有することがより好ましい。
 本開示において、「アルカリ可溶性」とは、25℃の1mol/L水酸化ナトリウム溶液に可溶であることをいう。また、「可溶である」とは、100mLの溶媒に0.1g以上溶解することをいう。
 アルカリ可溶性樹脂としては、パターン形成における残渣除去の観点から、酸価20mgKOH/g以上の樹脂であることが好ましく、酸価20mgKOH/g以上の、カルボキシ基を有する(メタ)アクリル樹脂であることがより好ましい。
 本開示において、「(メタ)アクリル樹脂」とは、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の少なくとも一方を含む樹脂を意味する。
 (メタ)アクリル樹脂中における(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計割合は、(メタ)アクリル樹脂の全構成単位に対して、30モル%以上であることが好ましく、50モル%以上であることがより好ましい。(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計割合の上限は、制限されない。(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計割合は、(メタ)アクリル樹脂の全構成単位に対して、例えば、100モル%以下の範囲で適宜設定することができる。
 本開示において、「酸価」とは、JIS K0070:1992に記載の方法にしたがって測定された値を意味する。
 アルカリ可溶性樹脂の酸価は、パターン形成における残渣除去の観点から、20mgKOH/g以上であることが好ましく、45mgKOH/g~200mgKOH/gであることがより好ましく、50mgKOH/g以上~150mgKOH/gであることが特に好ましい。同様の理由により、アルカリ可溶性樹脂の酸価は、60mgKOH/g以上であってもよく、80mgKOH/g以上であってもよい。
 カルボキシ基を有する(メタ)アクリル樹脂は、カルボキシ基を有する構成単位を含む。上記(メタ)アクリル樹脂に含まれるカルボキシ基を有する構成単位は、1種であってもよく、2種以上であってもよい。
 カルボキシ基を有する(メタ)アクリル樹脂におけるカルボキシ基を有する構成単位の含有比率は、現像性の観点から、カルボキシ基を有する(メタ)アクリル樹脂の全構成単位に対して、3モル%~80モル%であることが好ましく、3モル%~40モル%であることがより好ましく、3モル%~35モル%であることが特に好ましい。
 アルカリ可溶性樹脂は、芳香環を有する構成単位を含んでいてもよい。芳香環を有する構成単位を形成するモノマーとしては、例えば、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン等のスチレン化合物、ベンジル(メタ)アクリレートなどが挙げられる。芳香環を有する構成単位としては、スチレン化合物由来の構成単位であることが好ましい。
 アルカリ可溶性樹脂は、エチレン性不飽和基を有する構成単位を含んでいてもよい。アルカリ可溶性樹脂は、側鎖にエチレン性不飽和基を有する構成単位を含むことが好ましい。本開示において、「主鎖」とは樹脂を構成する高分子化合物の分子中で相対的に最も長い結合鎖を表し、「側鎖」とは主鎖から枝分かれしている原子団を表す。エチレン性不飽和基としては、(メタ)アクリル基が好ましく、(メタ)アクリロキシ基がより好ましい。
 アルカリ可溶性樹脂の重量平均分子量(Mw)は、3,000を超えることが好ましく、3,000を超え60,000以下であることがより好ましく、5,000~50,000であることが特に好ましい。アルカリ可溶性樹脂の重量平均分子量は、以下の方法によって測定されるポリスチレン換算の重量平均分子量である。
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定できる。測定装置としては、様々な市販の装置を用いることができ、装置の内容、及び、測定技術は同当業者に公知である。GPCによる重量平均分子量の測定は、測定装置として、HLC(登録商標)-8220GPC(東ソー(株)製)を用い、カラムとして、TSKgel(登録商標)Super HZM-M(4.6mmID×15cm、東ソー(株)製)、Super HZ4000(4.6mmID×15cm、東ソー(株)製)、Super HZ3000(4.6mmID×15cm、東ソー(株)製)、Super HZ2000(4.6mmID×15cm、東ソー(株)製)をそれぞれ1本、直列に連結したものを用い、溶離液として、THF(テトラヒドロフラン)を用いることができる。また、測定条件としては、試料濃度を0.2質量%、流速を0.35mL/min、サンプル注入量を10μL、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行うことができる。検量線は、東ソー(株)製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」及び「A-1000」の7サンプルのいずれかを用いて作製できる。
 アルカリ可溶性樹脂としては、後述する「ネガ型の感光性樹脂層」の項において説明するアルカリ可溶性樹脂を適用することもできる。
 密着層は、1種のアルカリ可溶性樹脂を含有していてもよく、2種以上のアルカリ可溶性樹脂を含有していてもよい。
 密着層におけるアルカリ可溶性樹脂の含有量は、密着性及び現像性の観点から、密着層の全質量に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることが特に好ましい。密着層におけるアルカリ可溶性樹脂の含有量の上限は、制限されない。密着層におけるアルカリ可溶性樹脂の含有量は、密着層の全質量に対して、例えば、100質量%以下の範囲で適宜設定することができる。
 密着層におけるアルカリ可溶性樹脂は、熱硬化性樹脂であってもよい。熱硬化性樹脂は、制限されず、公知の熱硬化性樹脂を適用できる。
 また、密着層は、上記成分に加えて、後述する樹脂層(好ましくはネガ型の感光性樹脂層)に含有され得る成分(例えば、重合性化合物、重合開始剤)を含有していてもよい。
 波長400nm~700nmにおける密着層の最低透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。透過率は、上記仮支持体の透過率の測定方法と同様の方法によって測定される。
 密着層は、有機層であってもよく、アルカリ可溶性の密着層であってもよく、熱硬化性の密着層であってもよく、感光性の密着層であってもよい。アルカリ可溶性の密着層は、密着層の成分として、少なくともアルカリ可溶性樹脂によって構成される。熱硬化性の層は、密着層の成分として、少なくとも熱硬化性樹脂によって構成される。感光性の密着層としては、例えば、ネガ型感光性の密着層、及びポジ型感光性の密着層が挙げられる。熱硬化性の密着層、又は感光性の密着層は、アルカリ可溶性をさらに有していてもよい。
(密着層の形成方法)
 密着層の形成方法は、制限されず、公知の方法を適用できる。密着層の形成方法としては、例えば、上記各成分を含む密着層形成用塗布液を、被塗布物上に塗布し、乾燥させる方法が挙げられる。
 塗布方法としては、例えば、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布等が挙げられる。
 乾燥温度は、溶剤等の揮発性成分の種類に応じて適宜設定することができる。乾燥温度は、例えば、60℃~120℃の範囲で設定することができる。
 密着層形成用塗布液は、上記各成分、及び溶剤を任意の割合で混合することによって調製できる。
 溶剤は、制限されず、公知の溶剤を適用できる。溶剤としては、例えば、エチレングリコールモノアルキルエーテル系溶剤、エチレングリコールジアルキルエーテル系溶剤、エチレングリコールモノアルキルエーテルアセテート系溶剤、プロピレングリコールモノアルキルエーテル系溶剤、プロピレングリコールジアルキルエーテル系溶剤、プロピレングリコールモノアルキルエーテルアセテート系溶剤、ジエチレングリコールジアルキルエーテル系溶剤、ジエチレングリコールモノアルキルエーテルアセテート系溶剤、ジプロピレングリコールモノアルキルエーテル系溶剤、ジプロピレングリコールジアルキルエーテル系溶剤、ジプロピレングリコールモノアルキルエーテルアセテート系溶剤、エステル系溶剤、ケトン系溶剤、アミド系溶剤、ラクトン系溶剤等が挙げられる。
 また、溶剤の好ましい例としては、以下に記載のエステル系溶剤、エーテル系溶剤、ケトン系溶剤等が挙げられる。
 エステル系溶剤としては、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸sec-ブチル、酢酸t-ブチル、酢酸イソプロピル、酢酸n-ブチル、1-メトキシ-2-プロピルアセテート等が挙げられる。
 エーテル系溶剤としては、ジイソプロピルエーテル、1,4-ジオキサン、1,2-ジメトキシエタン、1,3-ジオキソラン、プロピレングリコールジメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。
 ケトン系溶剤としては、メチルn-ブチルケトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルn-プロピルケトン、メチルイソプロピルケトン等が挙げられる。
 密着層形成用塗布液中の固形分濃度は、制限されず、例えば、0.5質量%~10質量%の範囲で適宜設定できる。
〔銀ナノワイヤーを含む層〕
 本開示に係る導電性転写材料は、銀ナノワイヤーを含む層を有する。
(銀ナノワイヤー)
 銀ナノワイヤーの直径(すなわち、短軸長さ)は、透明性の観点から、50nm以下であることが好ましく、35nm以下であることがより好ましく、20nm以下であることが特に好ましい。銀ナノワイヤーの直径は、耐酸化性及び耐久性の観点から、5nm以上であることが好ましい。
 銀ナノワイヤーの長さ(すなわち、長軸長さ)は、導電性の観点から、5μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上が特に好ましい。銀ナノワイヤーの長さ(長軸長さ)は、製造過程で凝集物が生じてしまう等の観点から、1mm以下であることが好ましい。
 銀ナノワイヤーの直径及び長さは、例えば、透過型電子顕微鏡(TEM)又は光学顕微鏡を用いて測定できる。具体的に、透過型電子顕微鏡又は光学顕微鏡を用いて300個の銀ナノワイヤーを観察することによって測定した各銀ナノワイヤーの直径及び長さをそれぞれ算術平均し、得られた値を銀ナノワイヤーの直径及び長さとする。
 銀ナノワイヤーの形状としては、例えば、円柱状、直方体状、断面が多角形となる柱状等が挙げられる。高い透明性が必要とされる用途では、銀ナノワイヤーの形状は、円柱状、及び断面の多角形の角が丸まっている断面形状の少なくとも一方であることが好ましい。銀ナノワイヤーの断面形状は、透過型電子顕微鏡(TEM)を用いて観察できる。
 銀ナノワイヤーを含む層中の銀ナノワイヤーの含有量は、透明性及び導電性の観点から、銀ナノワイヤーを含む層の全質量に対して、1質量%~99質量%であることが好ましく、10質量%~95質量%であることがより好ましい。
(バインダー)
 銀ナノワイヤーを含む層は、必要に応じて、バインダー(マトリクスともいう。)を含んでいてもよい。バインダーは、銀ナノワイヤーが分散又は埋め込まれる固体材料である。バインダーは、腐食、磨耗等の有害環境要因から銀ナノワイヤーを保護できる。
 バインダーとしては、例えば、高分子材料、無機材料等が挙げられ、光透過性を有する材料が好ましい。
 高分子材料としては、例えば、(メタ)アクリル樹脂(例えば、ポリ(メタクリル酸メチル))、ポリエステル(例えば、ポリエチレンテレフタレート(PET))、ポリカーボネート、ポリイミド、ポリアミド、ポリオレフィン(例えば、ポリプロピレン)、ポリノルボルネン、セルロース化合物、ポリビニルアルコール(PVA)、ポリビニルピロリドン等が挙げられる。セルロース化合物としては、例えば、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシエチルセルロース(HEC)、メチルセルロース(MC)、ヒドロキシプロピルセルロース(HPC)、カルボキシメチルセルロース(CMC)等が挙げられる。また、高分子材料は、導電性の高分子材料であってもよい。導電性の高分子材料としては、例えば、ポリアニリン、ポリチオフェン等が挙げられる。
 無機材料としては、例えば、シリカ、ムライト、アルミナ等が挙げられる。
 また、バインダーとしては、特開2014-212117号公報の段落0051~段落0052に記載の材料を使用できる。これらの記載は参照により本明細書に組み込まれる。
 銀ナノワイヤーを含む層は、1種のバインダーを含有していてもよく、2種以上のバインダーを含有していてもよい。
 銀ナノワイヤーを含む層がバインダーを含有する場合、銀ナノワイヤーを含む層におけるバインダーの含有量は、銀ナノワイヤーを含む層の全質量に対して、1質量%~99質量%であることが好ましく、5質量%~80質量%であることがより好ましい。
 銀ナノワイヤーを含む層の厚さは、透明性及び導電性の観点から、1nm~400nmであることが好ましく、10nm~200nmであることがより好ましい。銀ナノワイヤーを含む層の厚さは、上記「密着層」の項において説明した方法によって測定する。
 波長400nm~700nmにおける銀ナノワイヤーを含む層の最低透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。透過率は、上記仮支持体の透過率の測定方法と同様の方法によって測定される。
(銀ナノワイヤーの製造方法)
 銀ナノワイヤーの製造方法は、制限されず、公知の方法を適用できる。銀ナノワイヤーの製造方法としては、例えば、少なくとも、ハロゲン化合物、及び還元剤を含む水溶媒中に、銀錯体溶液を添加し、150℃以下の温度で加熱する工程、及び必要に応じて脱塩処理工程を有する方法が挙げられる。
 ハロゲン化合物は、臭素、塩素、又はヨウ素を含有する化合物であれば制限されない。ハロゲン化合物としては、例えば、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム等のアルカリハライドなどが挙げられる。また、ハロゲン化合物として、HTAB(ヘキサデシルトリメチルアンモニウムブロミド)、HTAC(ヘキサデシルトリメチルアンモニウムクロライド)等を用いてもよい。
 還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩;水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩;亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、クエン酸又はその塩、コハク酸又はその塩、アスコルビン酸又はその塩等;ジエチルアミノエタノール、エタノールアミン、プロパノールアミン、トリエタノールアミン、ジメチルアミノプロパノール等のアルカノールアミン;プロピルアミン、ブチルアミン、ジプロピレンアミン、エチレンジアミン、トリエチレンペンタミン等の脂肪族アミン;ピペリジン、ピロリジン、N-メチルピロリジン、モルホリン等のヘテロ環式アミン;アニリン、N-メチルアニリン、トルイジン、アニシジン、フェネチジン等の芳香族アミン;ベンジルアミン、キシレンジアミン、N-メチルベンジルアミン等のアラルキルアミン;メタノール、エタノール、2-プロパノール等のアルコール;エチレングリコール、グルタチオン、有機酸(クエン酸、リンゴ酸、酒石酸等)、還元糖(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、糖アルコール(ソルビトール等)などが挙げられる。
 銀錯体の配位子としては、例えば、CN、SCN、SO 2-、チオウレア、アンモニア等が挙げられる。銀錯体としては、銀アンモニア錯体が好ましい。
 加熱温度は、150℃以下であることが好ましく、20℃~130℃であることがより好ましく、30℃~100℃であることがさらに好ましく、40℃~90℃であることが特に好ましい。
 脱塩処理は、銀ナノワイヤーを形成した後、限外ろ過、透析、ゲルろ過、デカンテーション、遠心分離等の手法により行うことができる。
 また、銀ナノワイヤーの製造方法としては、特開2013-167021号公報の段落0020~段落0031に記載の方法を適用することもできる。これらの記載は参照により本明細書に組み込まれる。
(銀ナノワイヤーを含む層の形成方法)
 銀ナノワイヤーを含む層の形成方法は、制限されず、公知の方法を適用できる。銀ナノワイヤーを含む層の形成方法としては、例えば、上記各成分を含む銀ナノワイヤー層形成用塗布液を、被塗布物上に塗布し、乾燥させる方法が挙げられる。
 銀ナノワイヤー層形成用塗布液は、例えば、上記各成分、及び溶剤を任意の割合で混合することによって調製できる。溶剤としては、主として水が用いられ、水と混和する有機溶剤を、溶媒の全量に対して80体積%以下の割合で併用することができる。
 有機溶剤としては、例えば、沸点が50℃~250℃、より好ましくは55℃~200℃のアルコール化合物が好ましい。アルコール化合物としては、例えば、メタノール、エタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール200、ポリエチレングリコール300、グリセリン、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1-エトキシ-2-プロパノール、エタノールアミン、ジエタノールアミン、2-(2-アミノエトキシ)エタノール、2-ジメチルアミノイソプロパノール等が挙げられる。
 銀ナノワイヤー層形成用塗布液中の銀ナノワイヤーの含有量は、銀ナノワイヤー層形成用塗布液の全質量に対して、0.01質量%~99質量%であることが好ましく、0.05質量%~95質量%であることがより好ましい。
 塗布方法としては、例えば、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布等が挙げられる。
 乾燥温度は、溶剤等の揮発性成分の種類に応じて適宜設定することができる。乾燥温度は、例えば、60℃~120℃の範囲で設定することができる。
〔樹脂層〕
 本開示に係る導電性転写材料は、上記仮支持体と上記銀ナノワイヤーを含む層との間に、少なくとも1つの樹脂層を有することが好ましい。導電性転写材料が、仮支持体と銀ナノワイヤーを含む層との間に、少なくとも1つの樹脂層を有することで、導電性転写材料にクッション性を付与することができるため、導電性転写材料の基板への転写性を向上できる。
 図2は、本開示に係る導電性転写材料の層構成の一例を概略的に示している。図2に示す導電性転写材料110は、仮支持体10と、樹脂層40と、銀ナノワイヤーを含む層20と、密着層30と、をこの順で有する。
 樹脂層は、パターニング性の観点から、感光性樹脂層であることが好ましい。感光性樹脂層としては、例えば、ポジ型の感光性樹脂層、及びネガ型の感光性樹脂層が挙げられる。上記の中でも、樹脂層は、レジスト剥離性の観点から、ポジ型の感光性樹脂層であることが好ましい。
 樹脂層の厚さは、制限されず、材質に応じて適宜設定できる。樹脂層の厚さは、例えば、1nm~100μmの範囲とすることができ、ラミネート性及びパターニングを両立する観点から1μm~20μmであることが好ましく、2~15μmであることがより好ましい。樹脂層の厚さは、上記「密着層」の項において説明した方法によって測定する。
 波長400nm~700nmにおける樹脂層の最低透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。透過率は、上記仮支持体の透過率の測定方法と同様の方法によって測定される。
 樹脂層の数は、制限されず、導電性転写材料が適用される工程等に応じて、適宜設定できる。
(ポジ型の感光性樹脂層)
 ポジ型の感光性樹脂層は、制限されず、公知のポジ型の感光性樹脂層を適用できる。ポジ型の感光性樹脂層は、感度、解像度、及び除去性の観点から、酸分解性基で保護された酸基を有する構成単位を含む重合体と、光酸発生剤と、を含有することが好ましい。
 ポジ型の感光性樹脂層については、国際公開第2018/179640号の段落0033~段落0130に記載がある。これらの記載は参照により本明細書に取り込まれる。
-酸分解性基で保護された酸基を有する構成単位を含む重合体-
 ポジ型の感光性樹脂層は、酸分解性で保護された酸基を有する構成単位(以下、「構成単位A」ともいう。)を含む重合体(以下、「重合体A」ともいう。)を含有することが好ましい。重合体A中の酸分解性基で保護された酸基は、露光により生じる触媒量の酸の作用(すなわち、脱保護反応)により、酸基となる。脱保護反応によって生じた酸基により、ポジ型の感光性樹脂層の現像液への溶解が可能となる。
 重合体Aは、付加重合型の重合体であることが好ましく、(メタ)アクリル酸又はそのエステルに由来する構成単位を含む重合体であることがより好ましい。なお、(メタ)アクリル酸又はそのエステルに由来する構成単位以外の構成単位、例えば、スチレン化合物に由来する構成単位、ビニル化合物に由来する構成単位等を有していてもよい。
 構成単位Aにおける酸基は、制限されず、公知の酸基を適用できる。酸基は、カルボキシ基、又はフェノール性水酸基(「フェノール性ヒドロキシ基」ともいう。)であることが好ましい。
 構成単位Aにおける酸分解性基は、制限されず、公知の酸分解性基を適用できる。酸分解性基としては、例えば、酸により比較的分解し易い基(例えば、1-アルコキシアルキル基、テトラヒドロピラニル基、テトラヒドロフラニル基等のアセタール型官能基)、酸により比較的分解し難い基(例えば、tert-ブチル基等の第三級アルキル基)が挙げられる。上記の中でも、酸分解性基は、アセタールの形で酸基を保護する構造を有する基であることが好ましい。また、酸分解性基は、導電パターンの形成に適用した場合における導電配線の線幅のバラツキが抑制される観点から、分子量が300以下の酸分解性基であることが好ましい。
 酸分解性基で保護された酸基を有する構成単位は、パターン形状の変形抑制、現像液への溶解性、及び転写性の観点から、下記式A1により表される構成単位、下記式A2により表される構成単位、及び下記式A3により表される構成単位からなる群より選択される少なくとも1種の構成単位であることが好ましく、下記式A3により表される構成単位であることが好ましく、後述する式A3-3により表される構成単位であることが特に好ましい。下記式A1で表される構成単位及び下記式A2で表される構成単位は、酸分解性基で保護されたフェノール性水酸基を有する構成単位である。下記式A3で表される構成単位は、酸分解性基で保護されたカルボキシ基を有する構成単位である。
Figure JPOXMLDOC01-appb-C000001
 式A1中、R11及びR12は、それぞれ独立して、水素原子、アルキル基、又はアリール基を表し、R11及びR12の少なくとも一方が、アルキル基、又はアリール基であり、R13は、アルキル基、又はアリール基を表し、R11又はR12と、R13とが連結して環状エーテルを形成してもよく、R14は、水素原子、又はメチル基を表し、Xは、単結合、又は二価の連結基を表し、R15は、置換基を表し、nは、0~4の整数を表す。
 式A2中、R21及びR22は、それぞれ独立して、水素原子、アルキル基、又はアリール基を表し、R21及びR22の少なくとも一方が、アルキル基又はアリール基であり、R23はアルキル基又はアリール基を表し、R21又はR22と、R23とが連結して環状エーテルを形成してもよく、R24は、それぞれ独立して、ヒドロキシ基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、ヒドロキシアルキル基、アリールカルボニル基、アリールオキシカルボニル基、又はシクロアルキル基を表し、mは、0~3の整数を表す。
 式A3中、R31及びR32は、それぞれ独立して、水素原子、アルキル基、又はアリール基を表し、R31及びR32の少なくとも一方が、アルキル基又はアリール基であり、R33は、アルキル基、又はアリール基を表し、R31又はR32と、R33とが連結して環状エーテルを形成してもよく、R34は、水素原子、又はメチル基を表し、Xは、単結合、又は連結基を表し、Yは、硫黄原子、又は酸素原子を表す。
 式A3中、R31又はR32がアルキル基の場合、アルキル基は、炭素数1~10のアルキル基であることが好ましい。R31又はR32がアリール基の場合、アリール基は、フェニル基であることが好ましい。R31及びR32は、それぞれ独立して、水素原子、又は炭素数1~4のアルキル基であり、R31及びR32の少なくとも一方が炭素数1~4のアルキル基であることが好ましい。
 式A3中、R33は、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。
 式A3中、R31~R33におけるアルキル基及びアリール基は、置換基を有していてもよい。
 式A3中、R31又はR32と、R33とが連結して環状エーテルを形成することが好ましい。環状エーテルの環員数は、制限されないが、5又は6であることが好ましく、5であることがより好ましい。
 式A3中、Xは、単結合、又はアリーレン基であることが好ましく、単結合であることが好ましい。アリーレン基は、置換基を有していてもよい。
 式A3中、Yは、露光感度の観点から、酸素原子であることが好ましい。
 式A3中、R34は水素原子又はメチル基を表し、重合体Aのガラス転移温度(Tg)をより低くし得るという観点から、水素原子であることが好ましい。より具体的には、式A3におけるR34が水素原子である構成単位の含有比率は、重合体Aに含まれる式A3で表される全構成単位に対して、20モル%以上であることが好ましい。なお、式A3で表される構成単位中の、式A3におけるR34が水素原子である構成単位の含有比率(モル%)は、13C-核磁気共鳴スペクトル(NMR)測定から常法により算出されるピーク強度の強度比により確認する。
 式A3で表される構成単位の中でも、下記式A3-3で表される構成単位が、パターン形成時の感度を更に高める観点からより好ましい。
Figure JPOXMLDOC01-appb-C000002
 式A3-3中、R34は、水素原子、又はメチル基を表し、R35~R41は、それぞれ独立して、水素原子、又は炭素数1~4のアルキル基を表す。式A3-3中、R34は、水素原子であることが好ましい。式A3-3中、R35~R41は、水素原子であることが好ましい。
 式A3で表される構成単位の好ましい具体例としては、下記の構成単位が例示できる。なお、下記の構成単位におけるR34は、水素原子、又はメチル基を表す。
Figure JPOXMLDOC01-appb-C000003
 重合体Aは、1種の構成単位Aを有していてもよく、2種以上の構成単位Aを有していてもよい。
 重合体Aにおける構成単位Aの含有比率は、重合体Aの全構成単位に対して、10モル%以上であることが好ましく、10モル%~90モル%であることがより好ましく、20モル%~70モル%であることが特に好ましい。重合体Aにおける構成単位Aの含有比率は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認する。
 重合体Aは、酸基を有する構成単位(以下、「構成単位B」ともいう。)を含むことが好ましい。重合体Aが構成単位Bを含むことで、パターン形成時の感度が良好となり、パターン露光後の現像工程においてアルカリ性の現像液に溶けやすくなり、現像時間の短縮化を図ることができる。
 構成単位Bにおける酸基とは、pKaが12以下のプロトン解離性基を意味する。感度向上の観点から、酸基のpKaは、10以下であることが好ましく、6以下であることがより好ましい。また、酸基のpKaは、-5以上であることが好ましい。
 構成単位Bにおける酸基としては、例えば、カルボキシ基、スルホンアミド基、ホスホン酸基、スルホン酸基、フェノール性水酸基、スルホニルイミド基等が挙げられる。上記の中でも、酸基は、カルボキシ基、又はフェノール性水酸基であることが好ましい。
 重合体Aへの酸基を有する構成単位の導入は、酸基を有するモノマーを共重合させることで行うことができる。
 構成単位Bは、スチレン化合物に由来する構成単位若しくはビニル化合物に由来する構成単位に対して酸基が置換した構成単位、又は、(メタ)アクリル酸に由来する構成単位であることがより好ましい。
 構成単位Bは、パターン形成時の感度がより良好となるという観点からカルボキシ基を有する構成単位及びフェノール性水酸基を有する構成単位からなる群より選択される少なくとも1種の構成単位であることが好ましい。
 重合体Aは、1種の構成単位Bを含んでいてもよく、2種以上の構成単位Bを含んでいてもよい。
 重合体Aにおける構成単位Bの含有比率は、パターン形成性の観点から、重合体Aの全構成単位に対して、0.1モル%~20モル%であることが好ましく、0.5モル%~15モル%であることがより好ましく、1モル%~10モル%であることが特に好ましい。重合体Aにおける構成単位Bの含有比率は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認する。
 重合体Aは、本開示に係る導電性転写材料の効果を損なわない範囲で、既述の構成単位A及び構成単位B以外の、他の構成単位(以下、「構成単位C」ともいう。)を含んでいてもよい。
 構成単位Cを形成するモノマーとしては、例えば、スチレン化合物、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物、マレイミド化合物、不飽和芳香族化合物、共役ジエン系化合物、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸無水物、脂肪族環式骨格を有する不飽和化合物、その他の不飽和化合物等が挙げられる。
 構成単位Cとしては、具体的には、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン、アセトキシスチレン、メトキシスチレン、エトキシスチレン、クロロスチレン、ビニル安息香酸メチル、ビニル安息香酸エチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、アクリロニトリル、エチレングリコールモノアセトアセテートモノ(メタ)アクリレート等を重合して形成される構成単位が挙げられる。その他、特開2004-264623号公報の段落0021~段落0024に記載の化合物を重合して形成される構成単位を挙げることができる。
 構成単位Cとしては、得られる導電性転写材料の電気特性を向上させる観点から、芳香環を有する構成単位及び脂肪族環式骨格を有する構成単位からなる群より選択される少なくとも1種の構成単位であることが好ましい。上記構成単位を形成するモノマーとして、例えば、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。上記の中でも、構成単位Cは、シクロヘキシル(メタ)アクリレート由来の構成単位であることが好ましい。
 また、構成単位Cを形成するモノマーとしては、密着性の観点から、例えば、(メタ)アクリル酸アルキルエステルが好ましく、炭素数4~12のアルキル基を有する(メタ)アクリル酸アルキルエステルがより好ましい。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル等が挙げられる。
 重合体Aは、1種の構成単位Cを含んでいてもよく、2種以上の構成単位Cを含んでいてもよい。
 重合体Aにおける構成単位Cの含有比率は、重合体Aの全構成単位に対して、70モル%以下が好ましく、60質量%以下がより好ましく、50質量%以下が特に好ましい。重合体Aにおける構成単位Cの含有比率の下限値は、0モル%でもよい。重合体Aにおける構成単位Cの含有比率は、重合体Aの全構成単位に対して、1モル%以上であることが好ましく、5モル%以上であることがより好ましい。上記範囲であると、解像度及び密着性がより向上する。
 重合体Aの重量平均分子量は、60,000以下であることが好ましい。重合体Aの重量平均分子量が60,000以下であることで、感光性樹脂層の溶融粘度を低く抑え、基板と貼り合わせる際において低温(例えば130℃以下)での貼り合わせを実現することができる。また、重合体Aの重量平均分子量は、2,000~60,000であることが好ましく、3,000~50,000であることがより好ましい。重合体Aの重量平均分子量は、既述の方法(すなわち、ゲルパーミエーションクロマトグラフィー)によって測定されるポリスチレン換算の重量平均分子量である。
 ポジ型の感光性樹脂層は、1種の重合体Aを含有していてもよく、2種以上の重合体Aを含有していてもよい。
 ポジ型の感光性樹脂層における重合体Aの含有量は、基板に対して良好な密着性を発現させる観点から、ポジ型の感光性樹脂層の全質量に対して、50質量%~99.9質量%であることが好ましく、70質量%~98質量%であることがより好ましい。
 重合体Aの製造方法(合成法)は、制限されず、公知の方法を適用できる。重合体Aの製造方法としては、例えば、構成単位Aを形成するための重合性モノマー、さらに必要に応じて、酸基を有する構成単位Bを形成するための重合性モノマー、及び構成単位Cを形成するための重合性モノマーを、有機溶剤中、重合開始剤を用いて重合する方法が挙げられる。
-光酸発生剤-
 ポジ型の感光性樹脂層は、光酸発生剤を含有することが好ましい。
 光酸発生剤は、紫外線、遠紫外線、X線、荷電粒子線等の放射線を照射されることにより酸を発生することができる化合物である。光酸発生剤としては、波長300nm以上、好ましくは波長300nm~450nmの活性光線に感応し、酸を発生する化合物が好ましい。また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。
 光酸発生剤としては、pKaが4以下の酸を発生する光酸発生剤が好ましく、pKaが3以下の酸を発生する光酸発生剤がより好ましく、pKaが2以下の酸を発生する光酸発生剤が特に好ましい。pKaの下限値は特に定めない。pKaは、例えば、-10.0以上であることが好ましい。
 光酸発生剤としては、例えば、イオン性光酸発生剤、及び非イオン性光酸発生剤が挙げられる。光酸発生剤は、感度及び解像度の観点から、後述するオニウム塩化合物、及び後述するオキシムスルホネート化合物からなる群より選択される少なくとも1種の化合物を含むことが好ましく、オキシムスルホネート化合物を含むことがより好ましい。
 イオン性光酸発生剤としては、例えば、ジアリールヨードニウム塩化合物及びトリアリールスルホニウム塩化合物等のオニウム塩化合物、第四級アンモニウム塩化合物などが挙げられる。上記の中でも、イオン性光酸発生剤は、オニウム塩化合物であることが好ましく、トリアリールスルホニウム塩化合物、及びジアリールヨードニウム塩化合物の少なくとも一方であることがより好ましい。
 イオン性光酸発生剤としては、特開2014-85643号公報の段落0114~段落0133に記載のイオン性光酸発生剤も好ましく用いることができる。
 非イオン性光酸発生剤としては、例えば、トリクロロメチル-s-トリアジン化合物、ジアゾメタン化合物、イミドスルホネート化合物、オキシムスルホネート化合物等を挙げることができる。上記の中でも、非イオン性光酸発生剤は、感度、解像度、及び密着性の観点から、オキシムスルホネート化合物であることが好ましい。トリクロロメチル-s-トリアジン化合物、及びジアゾメタン化合物の具体例としては、特開2011-221494号公報の段落0083~段落0088に記載の化合物が例示できる。
 オキシムスルホネート化合物、すなわち、オキシムスルホネート構造を有する化合物としては、下記式(B1)で表されるオキシムスルホネート構造を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(B1)中、R21は、アルキル基又はアリール基を表し、*は、他の原子又は他の基との結合部位を表す。
 式(B1)で表されるオキシムスルホネート構造を有する化合物は、いずれの基も置換されてもよく、R21におけるアルキル基は、直鎖状であっても、分岐構造を有していても、環構造を有していてもよい。許容される置換基は以下に説明する。
 R21で表されるアルキル基としては、炭素数1~10の、直鎖状又は分岐状アルキル基が好ましい。R21で表されるアルキル基は、炭素数6~11のアリール基、炭素数1~10のアルコキシ基、シクロアルキル基、又はハロゲン原子で置換されてもよい。
 R21で表されるアリール基としては、炭素数6~18のアリール基が好ましく、フェニル基又はナフチル基がより好ましい。R21で表されるアリール基は、炭素数1~4のアルキル基、アルコキシ基及びハロゲン原子からなる群より選択される1つ以上の基で置換されてもよい。
 ポジ型の感光性樹脂層は、1種の光酸発生剤を含有していてもよく、2種以上の光酸発生剤を含有していてもよい。
 ポジ型の感光性樹脂層における光酸発生剤の含有量は、感度及び解像度の観点から、ポジ型の感光性樹脂層の全質量に対して、0.1質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。
-他の成分A-
 ポジ型の感光性樹脂層は、上記成分以外の成分(以下、「他の成分A」ともいう。)を含有していてもよい。他の成分Aは、制限されず、目的等に応じて適宜選択できる。他の成分としては、例えば、界面活性剤、後述する腐食防止剤等が挙げられる。
 界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系(非イオン系)界面活性剤、及び両性界面活性剤が挙げられる。ポジ型の感光性樹脂層が界面活性剤を含有することで、膜厚の均一性を高めることができる。上記の中でも、界面活性剤は、ノニオン系界面活性剤であることが好ましい。
 ノニオン系界面活性剤としては、例えば、ポリオキシエチレン高級アルキルエーテル系界面活性剤、ポリオキシエチレン高級アルキルフェニルエーテル系界面活性剤、ポリオキシエチレングリコールの高級脂肪酸ジエステル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤等が挙げられる。ノニオン系界面活性剤の具体例としては、KP(信越化学工業株式会社製)、ポリフロー(共栄社化学株式会社製)、エフトップ(JEMCO社製)、メガファック(登録商標、例えばメガファックF551A、DIC株式会社製)、フロラード(住友スリーエム株式会社製)、アサヒガード(登録商標、AGC株式会社製)、サーフロン(登録商標、AGCセイケミカル株式会社製)、PolyFox(OMNOVA社製)、サーフィノール(日信化学工業株式会社製)及び、SH-8400(東レ・ダウコーニング株式会社製)等の各シリーズが挙げられる。
 ポジ型の感光性樹脂層は、1種の界面活性剤を含有していてもよく、2種以上の界面活性剤を含有していてもよい。
 ポジ型の感光性樹脂層における界面活性剤の含有量は、膜厚の均一性の観点から、ポジ型の感光性樹脂層の全質量に対して、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%であることがより好ましい。
(ネガ型の感光性樹脂層)
 ネガ型の感光性樹脂層は、制限されず、公知のネガ型の感光性樹脂層を適用できる。ネガ型の感光性樹脂層は、パターン形成性の観点から、重合性化合物、重合開始剤、及びバインダーポリマーを含有することが好ましい。
-重合性化合物-
 ネガ型の感光性樹脂層は、パターン形成性の観点から、重合性化合物を含有することが好ましい。
 重合性化合物としては、重合可能な化合物、例えば、ラジカル重合性化合物、カチオン重合性化合物等が挙げられる。上記の中でも、重合性化合物は、光重合性化合物であることが好ましく、エチレン性不飽和化合物であることがより好ましい。エチレン性不飽和化合物は、1つ以上のエチレン性不飽和基を有する化合物である。エチレン性不飽和基としては、(メタ)アクリロイル基がより好ましい。エチレン性不飽和化合物としては、(メタ)アクリレート化合物が好ましい。
 エチレン性不飽和化合物としては、2官能以上のエチレン性不飽和化合物を含むことが好ましい。ここで、2官能以上のエチレン性不飽和化合物とは、一分子中にエチレン性不飽和基を2つ以上有する化合物を意味する。
 2官能のエチレン性不飽和化合物としては、例えば、トリシクロデカンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等が挙げられる。
 2官能のエチレン性不飽和化合物としては、より具体的には、トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学工業(株)製)、トリシクロデカンジメタノールジメタクリレート(DCP、新中村化学工業(株)製)、1,9-ノナンジオールジアクリレート(A-NOD-N、新中村化学工業(株)製)、1,6-ヘキサンジオールジアクリレート(A-HD-N、新中村化学工業(株)製)、ポリテトラメチレングリコール#650ジアクリレート(A-PTMG-65、新中村化学工業(株)製)、エトキシ化ビスフェノールAジメタクリレート(BPE-500、新中村化学工業(株)製)等が挙げられる。
 3官能以上のエチレン性不飽和化合物としては、例えば、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、グリセリントリ(メタ)アクリレート骨格の(メタ)アクリレート化合物等が挙げられる。ここで、「(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート」との用語は、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、及びヘキサ(メタ)アクリレートを包含する概念である。また、「(トリ/テトラ)(メタ)アクリレート」との用語は、トリ(メタ)アクリレート及びテトラ(メタ)アクリレートを包含する概念である。
 エチレン性不飽和化合物は、現像性向上の観点から、酸基を有するエチレン性不飽和化合物を含むことが好ましい。酸基としては、例えば、リン酸基、スルホン酸基、カルボキシ基等が挙げられ、カルボキシ基が好ましい。
 酸基を有するエチレン性不飽和化合物としては、例えば、酸基を有する3~4官能のエチレン性不飽和化合物、酸基を有する5~6官能のエチレン性不飽和化合物等が挙げられる。
 カルボキシ基を有する2官能以上のエチレン性不飽和化合物としては、アロニックス(登録商標)TO-2349(東亞合成(株)製)、アロニックスM-520(東亞合成(株)製)、及びアロニックスM-510(東亞合成(株)製)が好ましい。
 酸基を有するエチレン性不飽和化合物は、特開2004-239942号公報の段落0025~段落0030に記載の酸基を有する重合性化合物であることも好ましい。これらの記載は参照により本明細書に取り込まれる。
 ネガ型の感光性樹脂層は、1種の重合性化合物を含有していてもよく、2種以上の重合性化合物を含有していてもよい。
 重合性化合物としては、2官能のエチレン性不飽和化合物と、3官能以上のエチレン性不飽和化合物とを含有することが好ましい。この場合、2官能のエチレン性不飽和化合物と、3官能以上のエチレン性不飽和化合物との含有量の質量比は、1:10~10:1であることが好ましい。
 ネガ型の感光性樹脂層における重合性化合物の含有量は、感光性の観点から、ネガ型の感光性樹脂層の全質量に対して、1質量%~70質量%であることが好ましく、10質量%~70質量%であることがより好ましく、20質量%~60質量%であることがさらに好ましく、20質量%~50質量%であることが特に好ましい。
-重合開始剤-
 ネガ型の感光性樹脂層は、パターン形成性の観点から、重合開始剤を含有することが好ましい。
 重合開始剤としては、光重合開始剤、及び熱重合開始剤の少なくとも一方が好ましく、光重合開始剤がより好ましい。
 光重合開始剤としては、例えば、オキシムエステル構造を有する光重合開始剤(以下、「オキシム系光重合開始剤」ともいう。)、α-アミノアルキルフェノン構造を有する光重合開始剤(以下、「α-アミノアルキルフェノン系光重合開始剤」ともいう。)、α-ヒドロキシアルキルフェノン構造を有する光重合開始剤(以下、「α-ヒドロキシアルキルフェノン系重合開始剤」ともいう。)、アシルフォスフィンオキサイド構造を有する光重合開始剤(以下、「アシルフォスフィンオキサイド系光重合開始剤」ともいう。)、N-フェニルグリシン構造を有する光重合開始剤(以下、「N-フェニルグリシン系光重合開始剤」ともいう。)等が挙げられる。
 光重合開始剤は、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、α-ヒドロキシアルキルフェノン系重合開始剤、及びN-フェニルグリシン系光重合開始剤からなる群より選択される少なくとも1種を含むことが好ましく、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、及びN-フェニルグリシン系光重合開始剤からなる群より選択される少なくとも1種を含むことがより好ましい。
 また、光重合開始剤としては、例えば、特開2011-95716号公報の段落0031~0042、特開2015-014783号公報の段落0064~段落0081に記載された光重合開始剤を用いてもよい。
 光重合開始剤の市販品としては、例えば、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)(商品名:IRGACURE(登録商標) OXE-01、BASF社製)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)(商品名:IRGACURE OXE-02、BASF社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:IRGACURE 379EG、BASF社製)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:IRGACURE 907、BASF社製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン(商品名:IRGACURE 127、BASF社製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン(商品名:IRGACURE 369、BASF社製)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名:IRGACURE 1173、BASF社製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名:IRGACURE 184、BASF社製)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:IRGACURE 651、BASF社製)等が挙げられる。
 ネガ型の感光性樹脂層は、1種の重合開始剤を含有していてもよく、2種以上の重合開始剤を含有していてもよい。
 重合開始剤としては、オキシム系光重合開始剤と、α-アミノアルキルフェノン系光重合開始剤又はα-ヒドロキシアルキルフェノン系重合開始剤と、を含有することが好ましい。
 ネガ型の感光性樹脂層における重合開始剤の含有量は、ネガ型の感光性樹脂層の全質量に対して、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上が特に好ましい。また、ネガ型の感光性樹脂層における重合開始剤の含有量は、ネガ型の感光性樹脂層の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。
-バインダーポリマー-
 ネガ型の感光性樹脂層は、バインダーポリマーを含有することが好ましい。
 バインダーポリマーは、現像性の観点から、アルカリ可溶性樹脂であることが好ましい。アルカリ可溶性樹脂としては、酸価40mgKOH/g以上の樹脂であることが好ましく、酸価40mgKOH/g以上の、カルボキシ基を有する(メタ)アクリル樹脂(以下、「重合体B」ともいう。)であることがより好ましい。酸価の測定方法は、上記のとおりである。
 重合体Bにおける(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計割合は、重合体Bの全構成単位に対して、20モル%以上であることが好ましく、50モル%以上であることがより好ましい。
 重合体Bは、カルボキシ基を有する構成単位を含む。上記重合体Bに含まれるカルボキシ基を有する構成単位は、1種であってもよく、2種以上であってもよい。
 重合体Bにおけるカルボキシ基を有する構成単位の含有比率は、現像性の観点から、重合体Bの全構成単位に対して、5モル%~60モル%であることが好ましく、5モル%~40モル%であることがより好ましく、10モル%~40モル%であることがさらに好ましく、10モル%~30モル%であることが特に好ましい。
 バインダーポリマー、特に重合体Bは、硬化後の透湿度及び強度の観点から、芳香環を有する構成単位を含むことが好ましい。芳香環を有する構成単位を形成するモノマーとしては、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン等のスチレン化合物、ベンジル(メタ)アクリレートなどが挙げられる。芳香環を有する構成単位としては、スチレン化合物由来の構成単位であることが好ましい。
 バインダーポリマー、特に重合体Bは、硬化後の強度の観点から、エチレン性不飽和基を有する構成単位を含むことが好ましい。アルカリ可溶性樹脂は、側鎖にエチレン性不飽和基を有する構成単位を含むことが好ましい。エチレン性不飽和基としては、(メタ)アクリル基が好ましく、(メタ)アクリロキシ基がより好ましい。
 バインダーポリマーの酸価は、40mgKOH/g以上であることが好ましく、40mgKOH/g~200mgKOH/gであることがより好ましく、60mgKOH/g~150mgKOH/gであることがさらに好ましく、60mgKOH/g~130mgKOH/gであることが特に好ましい。
 バインダーポリマーの重量平均分子量は、3,000を超えることが好ましく、3,000を超え60,000以下であることがより好ましく、5,000~50,000であることが特に好ましい。バインダーポリマーの重量平均分子量は、既述の方法(すなわち、ゲルパーミエーションクロマトグラフィー)によって測定されるポリスチレン換算の重量平均分子量である。
 ネガ型の感光性樹脂層は、1種のバインダーポリマーを含有していてもよく、2種以上のバインダーポリマーを含有していてもよい。
 ネガ型の感光性樹脂層におけるバインダーポリマーの含有量は、ネガ型の感光性樹脂層の全質量に対して、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~70質量%であることが特に好ましい。
-他の成分B-
 ネガ型の感光性樹脂層は、上記成分以外の成分(以下、「他の成分B」ともいう。)を含有していてもよい。他の成分Bは、制限されず、目的等に応じて適宜選択できる。他の成分Bとしては、例えば、熱架橋性化合物、増感剤、後述する腐食防止剤等が挙げられる。
 熱架橋性化合物としては、例えば、ブロックイソシアネート化合物、ビスフェノールA型のエポキシ化合物、クレゾールノボラック型のエポキシ化合物、ビフェニル型のエポキシ化合物、脂環式のエポキシ化合物、メラミン化合物等が挙げられる。ここで、「熱架橋性化合物」とは、熱により架橋反応を起こし得る官能基(すなわち、熱架橋性基)を1分子中に1つ以上有する化合物を意味する。
 上記の中でも、熱架橋性化合物としては、ブロックイソシアネート化合物が好ましい。ここで、「ブロックイソシアネート化合物」とは、イソシアネートのイソシアネート基をブロック剤で保護(マスク)した構造を有する化合物を意味する。
 ブロックイソシアネート化合物の解離温度は、100℃~160℃であることが好ましく、130℃~150℃であることがより好ましい。ここで、「ブロックイソシアネート化合物の解離温度」とは、示差走査熱量計(例えば、セイコーインスツルメンツ(株)製、DSC6200)を用いて、DSC(Differential scanning calorimetry)分析にて測定した場合に、ブロックイソシアネート化合物の脱保護反応に伴う吸熱ピークの温度を意味する。
 解離温度が100℃~160℃であるブロック剤としては、例えば、ピラゾール化合物(例えば、3,5-ジメチルピラゾール、3-メチルピラゾール、4-ブロモ-3,5-ジメチルピラゾール、及び4-ニトロ-3,5-ジメチルピラゾール)、活性メチレン化合物(例えば、マロン酸ジエステル(例えば、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-ブチル、及びマロン酸ジ2-エチルヘキシル))、トリアゾール化合物(例えば、1,2,4-トリアゾール)、オキシム化合物(例えば、ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等の分子内に-C(=N-OH)-で表される構造を有する化合物)等が挙げられる。上記の中でも、保存安定性の観点から、オキシム化合物、又はピラゾール化合物が好ましく、オキシム化合物が特に好ましい。
 ブロックイソシアネート化合物は、市販品であってもよい。例えば、カレンズAOI-BM、カレンズMOI-BM、カレンズMOI-BP(いずれも昭和電工(株)製)、ブロック型のデュラネートシリーズ(旭化成(株)製)等が挙げられる。
 ブロックイソシアネート化合物の分子量は、200~3,000であることが好ましく、250~2,600であることがより好ましく、280~2,200であることが特に好ましい。
 ネガ型の感光性樹脂層は、1種の熱架橋性化合物を含有していてもよく、2種以上の熱架橋性化合物を含有していてもよい。
 ネガ型の感光性樹脂層における熱架橋性化合物の含有量は、得られる硬化膜(すなわち、ネガ型の感光性樹脂層の硬化物)の強度の観点から、ネガ型の感光性樹脂層の全質量に対して、1質量%~50質量%であることが好ましく、5質量%~30質量%であることがより好ましい。
 増感剤としては、例えば、N-フェニルグリシン等が挙げられる。
 ネガ型の感光性樹脂層は、1種の増感剤を含有していてもよく、2種以上の増感剤を含有していてもよい。
 ネガ型の感光性樹脂層における増感剤の含有量は、ネガ型の感光性樹脂層の全質量に対して、0.01質量%~5質量%であることが好ましい。
 また、ネガ型の感光性樹脂層は、必要に応じて、上記「ポジ型の感光性樹脂層」の項において説明した他の成分Aを含有していてもよい。
 密着層と樹脂層との組み合わせとしては、下記(a)~(f)にそれぞれ記載された組み合わせが好ましく、下記(a)~(e)にそれぞれ記載された組み合わせがより好ましい。
(a)密着層がアルカリ可溶性の密着層であり、樹脂層がポジ型の感光性樹脂層である。
(b)密着層がアルカリ可溶性の密着層であり、樹脂層がネガ型の感光性樹脂層である。
(c)密着層が熱硬化性の密着層であり、樹脂層がポジ型の感光性樹脂層である。
(d)密着層が熱硬化性の密着層であり、樹脂層がネガ型の感光性樹脂層である。
(e)密着層がネガ型感光性の密着層であり、樹脂層がネガ型の感光性樹脂層である。
(f)密着層がポジ型感光性の密着層であり、樹脂層がポジ型の感光性樹脂層である。
(樹脂層の形成方法)
 樹脂層の形成方法は、制限されず、公知の方法を適用できる。樹脂層の形成方法としては、例えば、上記各成分を含む樹脂層形成用塗布液を、被塗布物上に塗布し、乾燥させる方法が挙げられる。
 塗布方法としては、例えば、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布等が挙げられる。
 樹脂層形成用塗布液は、上記各成分、及び溶剤を任意の割合で混合することによって調製できる。
 溶剤としては、制限されず、例えば、上記「密着層」の項において説明した溶剤が挙げられる。
 樹脂層形成用塗布液中の固形分濃度は、制限されず、例えば、0.5質量%~40質量%の範囲で適宜設定できる。
〔腐食防止剤〕
 本開示に係る導電性転写材料において、上記銀ナノワイヤーを含む層、上記密着層、及び上記樹脂層からなる群より選択される少なくとも1つは、腐食防止剤を含有することが好ましい。銀ナノワイヤーを含む層、密着層、及び樹脂層からなる群より選択される少なくとも1つが、腐食防止剤を含むことで、銀ナノワイヤー等の腐食を防止できるため、耐久性を向上できる。
 腐食防止剤は、制限されず、公知の腐食防止剤を適用できる。腐食防止剤としては、例えば、窒素原子及び硫黄原子の少なくとも1つを含有する化合物等が挙げられる。腐食防止剤は、耐久性の観点から、窒素原子及び硫黄原子の少なくとも1つを含有する複素環式化合物であることが好ましく、1つ以上の窒素原子を含有する5員環構造を含む化合物であることがより好ましく、トリアゾール構造を含む化合物、ベンゾイミダゾール構造を含む化合物、及びチアジアゾール構造を含む化合物からなる群より選択される少なくとも1種の化合物であることが特に好ましい。1つ以上の窒素原子を含有する5員環構造は、単環の構造であってもよく、縮合環を構成する部分構造であってもよい。
 腐食防止剤の具体例としては、ベンゾイミダゾール、1,2,4-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、ブチルベンジルトリアゾール、アルキルジチオチアジアゾール、アルキルチオール、2-アミノピリミジン、5,6-ジメチルベンゾイミダゾール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプトピリミジン、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール等が挙げられる。上記の中でも、腐食防止剤は、ベンゾイミダゾール、1,2,4-トリアゾール、及び2,5-ジメルカプト-1,3,4-チアジアゾールからなる群より選択される少なくとも1種の腐食防止剤であることが好ましい。
 銀ナノワイヤーを含む層、密着層、及び樹脂層は、それぞれ、1種の腐食防止剤を含有していてもよく、2種以上の腐食防止剤を含有していてもよい。
 腐食防止剤の含有量は、銀ナノワイヤーを含む層、密着層、及び樹脂層のうち、腐食防止剤を含有する層の全質量に対して、0.01質量%~8質量%であることが好ましい。
〔光安定化剤〕
 本開示に係る導電性転写材料において、上記銀ナノワイヤーを含む層、上記密着層、及び上記樹脂層からなる群より選択される少なくとも1つは、光安定化剤を含有することが好ましい。銀ナノワイヤーを含む層、密着層、及び樹脂層からなる群より選択される少なくとも1つが、光安定化剤を含むことで、銀ナノワイヤー等の耐光性を向上できる。
 光安定化剤は、制限されず、公知の光安定化剤を適用できる。光安定化剤としては、例えば、米国特許出願公開第2015/0270024号明細書の段落0032~段落0043に記載の化合物を使用できる。
 光安定化剤の具体例としては、Fe、Co、Mn、V等の遷移金属化合物が挙げられる。遷移金属化合物に含まれる配位子としては、例えば、アセチルアセトナト(以下、「acac」ともいう。)、シクロペンタジエニル、ビピリジン、フェナントロリン、SO 2-、NO 等が挙げられる。遷移金属化合物の具体例としては、フェロセン、Fe(acac)、Co(acac)、Mn(acac)、VO(acac)、アスコルビン酸鉄、硫酸鉄、トリス(2,2’-ビピリジン)硫酸鉄等が挙げられる。
 銀ナノワイヤーを含む層、密着層、及び樹脂層は、それぞれ、1種の光安定化剤を含有していてもよく、2種以上の光安定化剤を含有していてもよい。
 光安定化剤の含有量は、銀ナノワイヤーを含む層、密着層、及び樹脂層のうち、光安定化剤を含有する層の全質量に対して、0.01質量%~10質量%であることが好ましい。
〔不純物〕
 本開示に係る導電性転写材料において、上記銀ナノワイヤーを含む層、上記密着層、及び上記樹脂層の不純物の含有量が少ないことが好ましい。
 不純物の具体例としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、マンガン、銅、アルミニウム、チタン、クロム、コバルト、ニッケル、亜鉛、スズ、及びこれらのイオン、並びに、遊離ハロゲン、ハロゲン化物イオン(塩化物イオン、臭化物イオン、ヨウ化物イオン等)などが挙げられる。
 各層における不純物の含有量は、質量基準で、1000ppm以下が好ましく、200ppm以下がより好ましく、40ppm以下がさらに好ましい。下限は特に定めるものではないが、現実的に減らせる限界及び測定限界の観点から、質量基準で、10ppb以上とすることができ、100ppb以上とすることができる。
 不純物を上記範囲に減らす方法としては、各層の原料に不純物を含まないものを選択すること、及び層の形成時に不純物の混入を防ぐこと等が挙げられる。このような方法により、不純物量を上記範囲内とすることができる。
 不純物は、例えば、ICP(Inductively Coupled Plasma)発光分光分析法、原子吸光分光法等の公知の方法で定量することができる。
 また、各層における、ベンゼン、ホルムアルデヒド、トリクロロエチレン、1,3-ブタジエン、四塩化炭素、クロロホルム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサン等の化合物の含有量が少ないことが好ましい。これら化合物の各層中における含有量としては、質量基準で、1000ppm以下が好ましく、200ppm以下がより好ましく、40ppm以下がさらに好ましい。下限は特に定めるものではないが、現実的に減らせる限界及び測定限界の観点から、質量基準で、10ppb以上とすることができ、100ppb以上とすることができる。
 化合物の不純物は、上記の金属の不純物と同様の方法で含有量を抑制することができる。また、公知の測定法により定量することができる
〔保護フィルム〕
 本開示に係る導電性転写材料は、仮支持体が配置された側とは反対側の最外層に位置に、保護フィルムを有していてもよい。
<パターンつき基板の製造方法>
 本開示に係るパターンつき基板の製造方法は、上記導電性転写材料、及び基板を貼り合わせる工程(以下、「貼り合わせ工程」ともいう。)と、上記導電性転写材料における感光性樹脂層をパターン露光する工程(以下、「露光工程」ともいう。)と、上記パターン露光を経た導電性転写材料を現像してパターンを形成する工程(以下、「現像工程」ともいう。)と、をこの順に含む。本開示に係るパターンつき基板の製造方法は、上記工程を含むため、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れるパターンつき基板を得ることができる。
[貼り合わせ工程]
 本開示に係るパターンつき基板の製造方法は、上記導電性転写材料、及び基板を貼り合わせる工程を含む。
 導電性転写材料としては、上記実施形態1Aに係る導電性転写材料、及び上記実施形態1Bに係る導電性転写材料のうち、感光性樹脂層を有する導電性転写材料を適用することができる。感光性樹脂層は、上記「導電性転写材料」の項において説明したとおりであり、好ましい範囲も同様である。
 貼り合わせ工程に適用可能な導電性転写材料の具体例としては、(1)仮支持体と、銀ナノワイヤーを含む層と、厚さが1nm~250nmである密着層と、をこの順で有し、仮支持体と銀ナノワイヤーを含む層との間に、少なくとも1つの感光性樹脂層を有する導電性転写材料、(2)仮支持体と、銀ナノワイヤーを含む層と、接触抵抗が1Ω~300Ωである密着層と、をこの順で有し、仮支持体と銀ナノワイヤーを含む層との間に、少なくとも1つの感光性樹脂層を有する導電性転写材料等が挙げられる。貼り合わせ工程に適用可能な導電性転写材料における感光性樹脂層は、解像性の観点から、ポジ型の感光性樹脂層であることが好ましい。
 基板は、ガラス、シリコン、フィルム等の基材自体が基板であってもよく、ガラス、シリコン、フィルム等の基材上に、必要により導電層などの任意の層が設けられた基板であってもよい。基板が導電層をさらに有する場合、基板は、基材上に導電層を有することが好ましい。
 基材は、ガラス基材又はフィルム基材であることが好ましく、フィルム基材であることがより好ましく、樹脂フィルムであることが特に好ましい。
 基材は、透明であることが好ましい。透明の基材としては、特開2010-86684号公報、特開2010-152809号公報及び特開2010-257492号公報に用いられている材料を好ましく用いることができる。また、基材の屈折率は、1.50~1.52であることが好ましい。
 基材は、ガラス基材等の透光性基材で構成されていてもよく、コーニング社のゴリラガラスに代表される強化ガラス等を用いることができる。
 基材としてフィルム基材を用いる場合、光学的に歪みが小さい基材、及び透明度が高い基材を用いることがより好ましく、樹脂フィルムを用いることが特に好ましい。
 樹脂フィルムを構成する樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリカーボネート、トリアセチルセルロース、シクロオレフィンポリマー等が挙げられる。
 導電層としては、例えば、金属層、導電性金属酸化物層等が挙げられる。ここで、「導電性」とは、体積抵抗率が1×10Ωcm未満であることを意味する。体積抵抗率は、1×10Ωcm未満であることが好ましい。
 金属層を構成する金属としては、例えば、Al(アルミニウム)、Zn(亜鉛)、Cu(銅)、Fe(鉄)、Ni(ニッケル)、Cr(クロム)、Mo(モリブデン)等が挙げられる。金属層を構成する金属は、1種の金属元素からなる単体の金属であってもよく、2種以上の金属元素を含む金属であってもよく、少なくとも1種の金属元素を含む合金であってもよい。
 導電性金属酸化物層を構成する導電性金属酸化物としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、SiO等が挙げられる。
 導電層は、導電性及び細線形成性の観点から、金属層及び導電性金属酸化物層からなる群より選択される少なくとも1種の層であることが好ましく、金属層であることがより好ましく、銅層であることが特に好ましい。
 導電層としては、静電容量型タッチパネルに用いられる視認部のセンサーに相当する電極パターン又は周辺取り出し部の配線であることが好ましい。
 貼り合わせ工程においては、導電性転写材料及び基板を、導電性転写材料における密着層と基板とを接触させることによって、貼り合わせる。
 導電性転写材料及び基板の貼り合わせ(以下、「ラミネート」ともいう。)は、真空ラミネーター、オートカットラミネーター等の公知のラミネーターを用いて行うことができる。
 ラミネート温度は、80℃~150℃であることが好ましく、90℃~150℃であることがより好ましく、100℃~150℃であることが特に好ましい。ゴムローラーを備えたラミネーターを用いる場合、ラミネート温度とは、ゴムローラー温度を指す。
 ラミネート時の基板温度としては、例えば、10℃~150℃が挙げられ、20℃~150℃が好ましく、30℃~150℃がより好ましい。基板として樹脂基板を用いる場合には、ラミネート時の基板温度は、10℃~80℃が好ましく、20℃~60℃がより好ましく、30℃~50℃が特に好ましい。
 ラミネート時の線圧は、0.5N/cm~20N/cmであることが好ましく、1N/cm~10N/cmであることがより好ましく、1N/cm~5N/cmであることが特に好ましい。
 ラミネート時の搬送速度(ラミネート速度)は、0.5m/分~5m/分であることが好ましく、1.5m/分~3m/分であることがより好ましい。
[露光工程]
 本開示に係るパターンつき基板の製造方法は、上記導電性転写材料における感光性樹脂層をパターン露光する工程を含む。パターン露光工程においては、導電性転写材料における感光性樹脂層をパターン露光することによって、感光性樹脂層に露光部及び非露光部を形成する。
 露光工程においては、導電性転写材料における感光性樹脂層がポジ型である場合、露光された感光性樹脂層(すなわち、露光部)は、極性変化によって現像液への溶解性が増大する。導電性転写材料における感光性樹脂層がネガ型である場合、露光された感光性樹脂層(すなわち、露光部)は、硬化する。
 パターン露光の方法は、マスク(「フォトマスク」ともいう。)を介した露光であってもよく、レーザー等を用いたデジタル露光であってもよい。
 露光の光源は、制限されず、感光性樹脂層の成分に応じて適宜選択できる。例えば、感光性樹脂層がポジ型である場合、光源としては、露光部が現像液に溶解し得る波長域の光(例えば、365nm、405nmなど)を照射できる光源が挙げられる。また、例えば、感光性樹脂層がネガ型である場合、光源としては、露光部が硬化し得る波長域の光(例えば、365nm又は405nm)を照射できる光源が挙げられる。光源の具体例としては、各種レーザー、発光ダイオード(LED)、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。
 露光量は、5mJ/cm~200mJ/cmであることが好ましく、10mJ/cm~200mJ/cmであることがより好ましい。
 露光工程においては、基板に貼り合わされた導電性転写材料から仮支持体を剥離した後、感光性樹脂層をパターン露光してもよく、仮支持体を残したまま、感光性樹脂層をパターン露光してもよい。
[現像工程]
 本開示に係るパターンつき基板の製造方法は、上記パターン露光を経た導電性転写材料を現像してパターンを形成する工程を含む。
 現像工程においては、導電性転写材料における感光性樹脂層がポジ型である場合、導電性転写材料の露光部を現像液によって除去することで、パターンを形成できる。また、導電性転写材料における感光性樹脂層がネガ型である場合、導電性転写材料の非露光部を現像液によって除去することで、パターンを形成できる。
 現像液は、制限されず、特開平5-72724号公報に記載の現像液等の公知の現像液を適用できる。
 現像液は、アルカリ性水溶液であることが好ましい。アルカリ性水溶液に含有され得るアルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリン(2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド)等が挙げられる。
 アルカリ性水溶液の25℃におけるpHとしては、8~13が好ましく、9~12がより好ましく、10~12が特に好ましい。
 アルカリ性水溶液中におけるアルカリ性化合物の含有量は、アルカリ性水溶液全量に対し、0.1質量%~5質量%が好ましく、0.1質量%~3質量%がより好ましい。
 現像液の液温度は、20℃~40℃が好ましい。
 現像の方式としては、例えば、パドル現像、シャワー現像、シャワー及びスピン現像、ディップ現像等が挙げられる。
<回路基板の製造方法>
 本開示に係る回路基板の製造方法は、上記導電性転写材料、及び基板を貼り合わせる工程(貼り合わせ工程)と、上記導電性転写材料における感光性樹脂層をパターン露光する工程(露光工程)と、上記パターン露光を経た導電性転写材料を現像してパターンを形成する工程(現像工程)と、上記パターンにおける、感光性樹脂層又は感光性樹脂層の硬化物を除去する工程(以下、「除去工程」ともいう。)と、をこの順に含む。本開示に係る回路基板の製造方法は、上記工程を含むため、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる回路基板を得ることができる。
 本開示に係る回路基板の製造方法における貼り合わせ工程、露光工程、及び現像工程は、上記「パターンつき基板」の項において説明した、貼り合わせ工程、露光工程、及び現像工程とそれぞれ同義であり、好ましい範囲も同様である。
[除去工程]
 本開示に係る回路基板の製造方法は、上記パターンにおける、感光性樹脂層又は感光性樹脂層の硬化物(以下、あわせて「被除去層」ともいう。)を除去する工程を含む。
 現像工程において、パターンにおける感光性樹脂層又は感光性樹脂層の硬化物は、通常、上記パターンの最外層(すなわち、パターンを構成する各層のうち、基板から最も遠い位置に配置された層)に配置されている。
 感光性樹脂層の硬化物としては、例えば、ネガ型の感光性樹脂層の硬化物が挙げられる。ネガ型の感光性樹脂層の硬化物は、例えば、上記露光工程において、ネガ型の感光性樹脂層が露光されることによって形成される。
 被除去層を除去する方法としては、例えば、薬品処理により被除去層を除去する方法等が挙げられ、除去液を用いる方法が好ましい。
 被除去層を除去する方法としては、例えば、好ましくは30℃~80℃、より好ましくは50℃~80℃にて撹拌中の除去液に、被除去層を有する基板を1分~30分間浸漬する方法が挙げられる。
 除去工程において、除去性の観点から、水を30質量%以上含有する除去液を用いることが好ましく、水を50質量%以上含有する除去液を用いることがより好ましく、水を70質量%以上含有する除去液を用いることが特に好ましい。
 除去液は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等の無機アルカリ成分、又は、第1級アミン化合物、第2級アミン化合物、第3級アミン化合物、第4級アンモニウム塩化合物等の有機アルカリ成分を含有することが好ましい。
 アルカリ成分の含有量は、除去性の観点から、除去液の全質量に対し、0.01質量%~20質量%であることが好ましく、0.1質量%~10質量%であることがより好ましい。
 除去工程は、必要に応じて、後述する全面露光工程の後に行われてもよい。
[全面露光工程]
 本開示に係る回路基板の製造方法は、上記除去工程の前に、上記現像工程を経て形成されるパターンを全面露光する工程(以下、「全面露光工程」ともいう。)を含んでいてもよい。例えば、パターンにおける感光性樹脂層がポジ型である場合、感光性樹脂層の除去液への溶解性を向上できる。
 全面露光工程においては、除去性の観点から、上記露光工程と同じ波長の光を含む光源を用いることが好ましい。
 全面露光工程における露光量としては、除去性の観点から、5mJ/cm~1,000mJ/cmであることが好ましく、10mJ/cm~800mJ/cmであることがより好ましく、100mJ/cm~500mJ/cmであることが特に好ましい。
<積層体>
[実施形態2A]
 本開示の一実施形態に係る積層体は、基板と、厚さが1nm~250nmである密着層と、銀ナノワイヤーを含む層(銀ナノワイヤー層)と、をこの順で有する。上記実施形態(以下、「実施形態2A」ともいう。)に係る積層体は、基板と、厚さが1nm~250nmである密着層と、銀ナノワイヤーを含む層と、をこの順で有するため、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる。
[実施形態2B]
 本開示の一実施形態に係る積層体は、基板と、接触抵抗が1Ω~300Ωである密着層と、銀ナノワイヤーを含む層(銀ナノワイヤー層)と、をこの順で有する。上記実施形態(以下、「実施形態2B」ともいう。)に係る積層体は、基板と、接触抵抗が1Ω~300Ωである密着層と、銀ナノワイヤーを含む層と、をこの順で有するため、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる。
 図3は、本開示に係る積層体の層構成の一例を概略的に示している。図3に示す積層体200は、基板50、密着層30と、銀ナノワイヤーを含む層20と、をこの順で有する。
 本開示に係る積層体は、平面図として上記積層体を観察した場合に、基板の全面に密着層、及び銀ナノワイヤー層が配置されていてもよく、基板の一部に密着層、及び銀ナノワイヤー層が配置されていてもよい。例えば、本開示に係る積層体においては、基板上に配置された、密着層、及び銀ナノワイヤー層がパターン状の形状を有していてもよい。パターン状の形状を有する積層体の具体例としては、回路基板等が挙げられる。
 本開示の好ましい実施形態において、上記密着層及び上記銀ナノワイヤーを含む層は、転写層である。本開示において、「転写層」とは、転写によって形成された層を意味する。
 以下、実施形態2A及び実施形態2Bに係る積層体の各構成について説明する。ただし、実施形態2Bに係る積層体の構成は、実施形態2Aに係る積層体における「厚さが1nm~250nmである密着層」を「接触抵抗が1Ω~300Ωである密着層」に代えた点以外は、実施形態2Aに係る積層体の構成と同義である。このため、以下に説明する実施形態は、特に断りのない限り、上記実施形態2A及び上記実施形態2Bの両方の実施形態を意味し、好ましい範囲も同様である。
〔基板〕
 本開示に係る積層体は、基板を有する。基板は、上記「パターンつき基板の製造方法」の項において説明した基板と同義であり、好ましい範囲も同様である。基板は、基材上に導電層を有することが好ましい。
〔密着層〕
 実施形態2Aにおいて、積層体は、厚さが1nm~250nmである密着層を有する。実施形態2Aにおける積層体は、厚さが1nm~250nmである密着層を有するため、銀ナノワイヤーを含む層と基板との密着性が高く、銀ナノワイヤー層と基板との間の導電性が向上する。実施形態2Aにおいて、密着層の厚さは、既述の方法によって測定する。実施形態2Aにおいて、密着層は、上記「導電性転写材料」の項において説明した実施形態1Aにおける密着層であってもよく、上記実施形態1Aにおける密着層が硬化してなる層であってもよい。上記密着層が硬化してなる層は、例えば、層中の硬化性(例えば、光硬化性、及び熱硬化性)の成分が露光又は加熱によって硬化されることによって形成される。
 実施形態2Bにおいて、積層体は、接触抵抗が1Ω~300Ωである密着層を有する。実施形態2Bにおける積層体は、接触抵抗が1Ω~300Ωである密着層を有するため、銀ナノワイヤーを含む層と基板との密着性が高く、銀ナノワイヤー層と基板との間の導電性が向上する。実施形態2Bにおいて、密着層の厚さは、既述の方法によって測定する。実施形態2Bにおいて、密着層は、上記「導電性転写材料」の項において説明した実施形態1Bにおける密着層であってもよく、上記実施形態1Bにおける密着層が硬化してなる層であってもよい。上記密着層が硬化してなる層は、例えば、層中の硬化性(例えば、光硬化性、及び熱硬化性)の成分が露光又は加熱によって硬化されることによって形成される。
 実施形態2Bにおいて、密着層の接触抵抗は、TLM(Transmission Line Model)法によって測定する。
 例えば、積層体における基板が導電層を有する場合(すなわち、積層体が、基材と、導電層と、密着層と、銀ナノワイヤー層と、をこの順で有する場合)、互いに独立して配置された導電層を5つ選択する。導電層間の抵抗を測定し、そして、導電層間の抵抗(縦軸)及び距離(横軸)の関係をプロットすることによって、密着層の接触抵抗を求めることができる。ただし、選択された5つの導電層は、いずれも、導電層上に密着層を介して1つの銀ナノワイヤー層が配置されているものに限る。
 積層体における基板が導電層を有しない場合には、基板から密着層及び銀ナノワイヤー層を有する試験用積層体を剥離する。上記試験用積層体を用いて、上記「導電性転写材料」の項において説明した密着層の接触抵抗の測定方法によって得られる接触抵抗を、積層体の密着層の接触抵抗とする。
 密着層の組成は、上記「導電性転写材料」の項において説明したとおりであり、好ましい範囲も同様である。
〔銀ナノワイヤーを含む層〕
 本開示に係る積層体は、銀ナノワイヤーを含む層を有する。本開示に係る積層体における銀ナノワイヤーを含む層は、上記「導電性転写材料」の項において説明した銀ナノワイヤーを含む層と同義であり、好ましい範囲も同様である。
〔腐食防止剤〕
 本開示に係る積層体において、上記銀ナノワイヤーを含む層、及び上記密着層からなる群より選択される少なくとも1つは、腐食防止剤を含有することが好ましい。銀ナノワイヤーを含む層、及び密着層少なくとも1つが、腐食防止剤を含むことで、銀ナノワイヤー等の腐食を防止できるため、耐久性を向上できる。本開示に係る積層体における腐食防止剤は、上記「導電性転写材料」の項において説明した腐食防止剤と同義であり、好ましい範囲も同様である。
〔光安定化剤〕
 本開示に係る積層体において、上記銀ナノワイヤーを含む層、及び上記密着層からなる群より選択される少なくとも1つは、光安定化剤を含有することが好ましい。銀ナノワイヤーを含む層、及び密着層からなる群より選択される少なくとも1つが、光安定化剤を含むことで、銀ナノワイヤー等の耐光性を向上できる。本開示に係る積層体における光安定化剤は、上記「導電性転写材料」の項において説明した光安定化剤と同義であり、好ましい範囲も同様である。
〔不純物〕
 本開示に係る積層体において、上記銀ナノワイヤーを含む層、及び上記密着層の不純物の含有量が少ないことが好ましい。本開示に係る積層体における不純物は、上記「導電性転写材料」の項において説明した不純物と同義であり、上記各層における不純物の含有量の好ましい範囲も同様である。
[積層体の製造方法]
 積層体の製造方法としては、制限されず、例えば、上記「パターンつき基板」及び「回路基板」の項において説明した方法を適用できる。
<タッチパネル>
 本開示に係るタッチパネルは、上記積層体を有する。本開示に係るタッチパネルは、上記積層体を有するため、銀ナノワイヤーを含む層と基板との間の密着性及び導電性に優れる。
 本開示に係るタッチパネルにおける積層体は、上記「積層体」の項において説明した積層体と同義であり、好ましい範囲も同様である。また、本開示に係るタッチパネルにおいて、積層体が回路基板として用いられる場合、積層体における密着層、及び銀ナノワイヤー層を含む領域の一部は、パターン状であることが好ましい。
 本開示に係るタッチパネルにおける検出方法としては、例えば、抵抗膜方式、静電容量方式、超音波方式、電磁誘導方式、光学方式等が挙げられる。上記の中でも、検出方法としては、静電容量方式が好ましい。
 タッチパネル型としては、いわゆる、インセル型(例えば、特表2012-517051号公報の図5、図6、図7、図8に記載のもの)、いわゆる、オンセル型(例えば、特開2013-168125号公報の図19に記載のもの、特開2012-89102号公報の図1や図5に記載のもの)、OGS(One Glass Solution)型、TOL(Touch-on-Lens)型(例えば、特開2013-54727号公報の図2に記載のもの)、その他の構成(例えば、特開2013-164871号公報の図6に記載のもの)、各種アウトセル型(いわゆる、GG、G1・G2、GFF、GF2、GF1、G1Fなど)を挙げることができる。
 本開示に係るタッチパネルとしては、『最新タッチパネル技術』(2009年7月6日、(株)テクノタイムズ社発行)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
 タッチパネルの製造方法は、制限されず、公知の方法を適用できる。タッチパネルの製造方法においては、例えば、上記回路基板の製造方法を適用できる。
 本開示に係るタッチパネルの製造方法において用いられるマスクのパターンの一例を、図4に示す。図4に示されるパターンAは、ポジ型の感光性樹脂層をパターン露光する際に用いることができる。図4に示されるパターンAにおいて、実線部SL及びグレー部Gは、遮光部であり、点線部DLは、アライメント合わせの枠を仮想的に示したものである。本開示に係るタッチパネルの製造方法において、例えば、図4に示されるパターンAを有するマスクを介してポジ型の感光性樹脂層を露光することで、実線部SL及びグレー部Gに対応するパターンを有する回路配線が形成されたタッチパネルを製造することできる。
 以下、実施例により本開示を詳細に説明するが、本開示はこれらに制限されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。
 以下の実施例において、樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算で求めた重量平均分子量である。酸価は、理論酸価を用いた。
<銀ナノワイヤーの直径及び長軸長さ>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の銀ナノワイヤーを観察して、各銀ナノワイヤーの直径及び長軸長さを求めた。測定値を算術平均することで、金属ナノワイヤーの直径及び長軸長さを求めた。
<添加液Aの調製>
 硝酸銀粉末0.51gを純水50mLに溶解した。得られた液に、1mol/Lのアンモニア水を液が透明になるまで添加した。その後、得られた液に、液の全量が100mLになるように純水を添加して、添加液Aを調製した。
<添加液Gの調製>
 グルコース粉末0.5gを140mLの純水で溶解して、添加液Gを調製した。
<添加液Hの調製>
 HTAB(ヘキサデシル-トリメチルアンモニウムブロミド)粉末0.5gを27.5mLの純水で溶解して、添加液Hを調製した。
<銀ナノワイヤー層形成用塗布液の調製>
 三口フラスコ内に純水(410mL)を添加した後、20℃にて撹拌しながら、添加液H(82.5mL)、及び添加液G(206mL)をロートにて添加した。得られた液に、添加液A(206mL)を、流量2.0mL/min、撹拌回転数800rpm(revolutions per minute。以下同じ。)で添加した。10分後、得られた液に、添加液Hを82.5mL添加した。その後、得られた液を、3℃/分で内温75℃まで昇温した。その後、撹拌回転数を200rpmに落とし、5時間加熱した。得られた液を冷却した後、ステンレスカップに入れ、限外濾過モジュールSIP1013(旭化成株式会社製、分画分子量6,000)、マグネットポンプ、及びステンレスカップをシリコンチューブで接続した限外濾過装置を用いて限外濾過を行った。モジュールからの濾液が50mLになった時点で、ステンレスカップに950mLの蒸留水を加え、洗浄を行った。上記の洗浄を10回繰り返した後、液の量が50mLになるまで濃縮を行った。なお、添加液A、添加液G、添加液Hについて、上記の方法で繰り返し作製し、銀ナノワイヤー層形成用塗布液の調製に用いた。
 得られた濃縮液を、純水及びメタノール(純水及びメタノールの体積比率(純水/メタノール):60/40)で希釈することによって、銀ナノワイヤー層形成用塗布液を得た。次に、銀ナノワイヤー層形成用塗布液を、シクロオレフィンポリマーフィルムに塗布した。銀ナノワイヤー層形成用塗布液の塗布量は、ウェット膜厚が20μmとなる量とした。乾燥後の銀ナノワイヤーを含む層のシート抵抗は、60Ω/□であった。シート抵抗の測定には、非接触式の渦電流方式の抵抗測定器EC-80P(ナプソン株式会社製)を用いた。また、銀ナノワイヤーの直径は17nm、長軸長さは35μmであった。
<密着層形成用塗布液の調製>
 下記表1の記載にしたがって、密着層形成用塗布液である材料A-1~A-4をそれぞれ調製した。後述する化合物A~化合物Cにおいて各構成単位に併記された数値は、構成単位の含有比率(モル比)を表す。
Figure JPOXMLDOC01-appb-T000005
 TO-2349:カルボキシ基を有するモノマー(東亞合成(株)製、アロニックス(登録商標)TO-2349、5官能エチレン性不飽和化合物と6官能エチレン性不飽和化合物との混合物)
 化合物A:下記の構成単位を有する化合物
Figure JPOXMLDOC01-appb-C000006
 化合物B:下記の構成単位を有する化合物(Mw:20000)
Figure JPOXMLDOC01-appb-C000007
 化合物C:下記の構成単位を有する化合物(Mw:5500)
Figure JPOXMLDOC01-appb-C000008
<ポジ型感光性樹脂層形成用塗布液の調製>
 下記表2の記載にしたがって、ポジ型感光性樹脂層形成用塗布液である材料BP-1を調製した。後述する化合物Dにおいて各構成単位に併記された数値は、構成単位の含有比率(モル比)を表す。また、材料BP-1は、密着層形成用塗布液としても使用する。
Figure JPOXMLDOC01-appb-T000009
 化合物D:下記の構成単位を有する化合物(Mw:25000)
Figure JPOXMLDOC01-appb-C000010
 化合物E:下記の構造を有する化合物
Figure JPOXMLDOC01-appb-C000011
<ネガ型感光性樹脂層形成用塗布液の調製>
 下記表3の記載にしたがって、ネガ型感光性樹脂層形成用塗布液である材料BN-1を調製した。
Figure JPOXMLDOC01-appb-T000012
<実施例1~5、7、及び10、並びに比較例1~2の導電性転写材料の作製>
 厚さ16μmのポリエチレンテレフタレートフィルム(仮支持体、ルミラー16KS40(東レ株式会社製))の上に、スリット状ノズルを用いて、ポジ型感光性樹脂層形成用塗布液である材料BP-1を塗布し、ポジ型の感光性樹脂層を形成した。材料BP-1の塗布量は、乾燥後の厚さが表4に記載の厚さとなる量に調整した。
 100℃で溶剤を揮発させた後、ポジ型の感光性樹脂層上に、スリット状ノズルを用いて、ウェット膜厚20μmで銀ナノワイヤー層形成用塗布液を塗布し、次いで、100℃の乾燥温度で乾燥させることで、銀ナノワイヤー層(即ち銀ナノワイヤーを含む層)を形成した。銀ナノワイヤー層の膜厚は100nmであった。
 銀ナノワイヤー層の上に、下記表4の記載にしたがって選択した密着層形成用塗布液である材料A-1~A-4のいずれかを塗布した。材料A-1~A-4の塗布量は、乾燥後の厚さが表4に記載の厚さとなる量に調整した。材料A-1~A-4の塗布後、100℃の乾燥温度で乾燥させ、密着層を形成した。
 次に、密着層の上に厚さ16μmのポリエチレンテレフタレートフィルム(保護フィルム、ルミラー16KS40(東レ株式会社製))を圧着し、実施例1~5、7、及び10、並びに比較例1~2の導電性転写材料をそれぞれ作製した。
<実施例11の導電性転写材料の作製>
 実施例11においては、銀ナノワイヤー層の上に、材料BP-1を塗布し、ポジ型の密着層を形成したこと以外は、実施例1と同様の手順によって実施例11の導電性転写材料を作製した。なお、材料BP-1の塗布量は、乾燥後の厚さが表4に記載の厚さとなる量に調整した。
<実施例6、8、及び9の導電性転写材料の作製>
 厚さ16μmのポリエチレンテレフタレートフィルム(保護フィルム、ルミラー16KS40(東レ株式会社製))の上に、スリット状ノズルを用いて、密着層形成用塗布液である材料A-1、A-3、又はA-4を塗布し、密着層を形成した。材料A-1、A-3、又はA-4の塗布量は、乾燥後の厚さが表4に記載の厚さとなる量に調整した。
 100℃で溶剤を揮発させた後、密着層上に、スリット状ノズルを用いて、WET塗布厚さ20μmで銀ナノワイヤー層形成用塗布液を塗布し、次いで、100℃の乾燥温度で乾燥させることで、銀ナノワイヤー層(即ち銀ナノワイヤーを含む層)を形成した。銀ナノワイヤー層の膜厚は100nmであった。
 銀ナノワイヤー層の上に、ネガ型の感光性樹脂層形成用塗布液である材料BN-1を塗布した。材料BN-1の塗布量は、乾燥後の厚さが表4に記載の厚さとなる量に調整した。材料BN-1の塗布後、100℃の乾燥温度で乾燥させ、ネガ型の感光性樹脂層を形成した。
 次に、ネガ型の感光性樹脂層の上に厚さ16μmのポリエチレンテレフタレートフィルム(仮支持体、ルミラー16KS40(東レ株式会社製))を圧着し、実施例6、8、及び9の導電性転写材料をそれぞれ作製した。
<比較例3の導電性転写材料の作製>
 密着層を形成しなかったこと以外は、実施例1と同様の手順によって比較例3の導電性転写材料を作製した。
<透明電極パターンフィルムの作製>
 保護フィルムを剥離した実施例1~5、10、及び11、並びに比較例1~3の各導電性転写材料を、厚さ38μm、屈折率1.53のシクロオレフィンポリマーフィルム上に貼り合わせること(以下、本段落において「ラミネート加工」という。)によって、パターン形成用積層体を得た。ラミネート加工は、MCK社製真空ラミネーターを用いて、シクロオレフィンポリマーフィルム温度40℃、ゴムローラー温度100℃、線圧3N/cm、搬送速度2m/分の条件で行った。また、ラミネート加工においては、導電性転写材料から保護フィルムを剥離することによって露出する面を、シクロオレフィンポリマーフィルム表面に接触させた。
 次に、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、露光マスク(透明電極形成用パターンを有す石英露光マスク)面と仮支持体とを密着させ、仮支持体を介して露光量100mJ/cm(i線)でポジ型の感光性樹脂層をパターン露光した。
 仮支持体を剥離後、炭酸ソーダ1質量%水溶液を用いて、32℃で60秒間現像処理を実施した。現像処理後、パターンつき基板に超高圧洗浄ノズルから超純水を噴射することで残渣を除去した。これにより密着層、銀ナノワイヤー層、及び感光性樹脂層をパターンニングした。
 その後、エアを吹きかけてパターンつき基板上の水分を除去した。
 次に、高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、露光量400mJ/cm(i線)で残存するポジ型の感光性樹脂層を露光した後、炭酸ソーダ1質量%水溶液を用いて、32℃で60秒間処理することで、ポジ型の感光性樹脂層を除去することで、パターン化された銀ナノワイヤー層を有する透明電極パターンフィルム(回路基板)を作製した。
 実施例7の導電性転写材料を用いた透明電極パターンフィルムの作製においては、現像処理の後であって露光前に、145℃で10分の加熱処理を行ったこと以外は、実施例1と同様の手順によって透明電極パターンフィルム(回路基板)を作製した。
 実施例6、及び8の導電性転写材料を用いた透明電極パターンフィルムの作製においては、現像処理の後に、露光処理を行わず、ネガ型の感光性樹脂層用除去液SH-303(関東化学株式会社製)を用いて、30℃で60秒間処理することで、ネガ型の感光性樹脂層の硬化物を除去したこと以外は、実施例1と同様の手順によって透明電極パターンフィルム(回路基板)を作製した。
 実施例9の導電性転写材料を用いた透明電極パターンフィルムの作製においては、現像処理の後であって、SH-303(関東化学株式会社製)で処理をする前に、145℃で10分の加熱処理を行ったこと以外は、実施例6と同様の手順によって透明電極パターンフィルム(回路基板)を作製した。
<評価>
[ヘイズ]
 ヘイズメーターNDH4000(日本電色工業株式会社製)により、上記で作製した透明電極パターンフィルムのヘイズを測定した。評価結果を表4に示す。
[密着性]
 上記で作製したパターン形成用積層体を用いて、JIS K5400を参考に100マスのクロスカット試験を実施した。仮支持体を剥離したパターン形成用積層体の試験面である感光性樹脂層に、カッターナイフを用いて1mm四方の格子状の切り傷を入れ、透明粘着テープ#600(スリーエムジャパン(株)製)を強く圧着させた。透明粘着テープを180°方向に剥離した後、感光性樹脂層の状態を顕微鏡で観察し、剥離前の感光性樹脂層の面積に対する、剥離後に残存する感光性樹脂層の面積の割合を算出し、以下の基準にしたがって密着性を評価した。A、B又はCであることが実用上許容されるレベルであり、A又はBであることが好ましく、Aであることがより好ましい。評価結果を表4に示す。
(基準)
 A:100%
 B:95%以上100%未満
 C:65%以上95%未満
 D:35%以上65%未満
 E:35%未満
[現像残渣]
 上記透明電極パターンフィルムの作製において、現像処理後のパターンつき基板を目視及び顕微鏡(対物レンズの倍率:50倍)にて観察し、残渣成分が付着しているかどうかを観察した。以下の基準にしたがって現像残渣を評価した。評価結果を表4に示す。
(基準)
 A:目視及び顕微鏡観察において、残渣成分の付着は見られない。
 B:目視では視認できないが、顕微鏡観察で残渣成分の付着が見られる。
 C:目視で明らかに残渣成分の付着が見られる。
[接触抵抗]
 TLM(Transmission Line Model)法によって密着層の接触抵抗を測定した。具体的な測定方法は、以下のとおりである。
 シクロオレフィンポリマーフィルム(厚さ38μm、屈折率1.53)上に、2mm、4mm、6mm、8mm、12mm、及び20mmの間隔で、互いに平行かつ独立に配置された7つの銅電極(厚さ300nm、幅500μm)を形成した。次に、7つの銅電極上に、保護フィルムを剥離した実施例1~11及び比較例1~3の導電性転写材料を貼り合わせることによって、銅電極上に、密着層を介して銀ナノワイヤー層が積層された構造を有する試験体(比較例3においては、銅電極上に銀ナノワイヤー層が積層された構造を有する試験体)を作製した。上記各試験体の平面図において、銀ナノワイヤー層は、7つの銅電極を横断するように配置されており、各銅電極と銀ナノワイヤー層とのなす角は90°であった。隣り合う銅電極間の抵抗を測定し、そして、銅電極間の抵抗(縦軸)及び距離(横軸)の関係をプロットすることによって、密着層の接触抵抗を求めた。銅電極間の抵抗の測定には、抵抗率計(ロレスタ-GP、株式会社三菱ケミカルアナリテック製)を用いた。評価結果を表4に示す。
[シート抵抗]
 非接触式の渦電流方式の抵抗測定器EC-80P(ナプソン株式会社製)を用いて、上記で作製した透明電極パターンフィルムのシート抵抗を測定した。評価結果を表4に示す。
[センサー動作確認]
 取り出し配線として銅電極を表面に有するシクロオレフィンポリマーフィルム(厚さ38μm、屈折率1.53)上に、実施例1~11及び比較例1~3の導電性転写材料を用いて、既述の方法にしたがって透明電極パターンを形成することで、静電容量方式のタッチセンサーを作製した。タッチセンサーは、特許第6173831号公報に記載の方法と類似の方法で作製した。以下の基準にしたがって、得られた静電容量方式のタッチセンサーのセンサー動作を評価した。評価結果を表4に示す。
(基準)
 A:正常に動作した。
 B:正常に動作しなかった。
Figure JPOXMLDOC01-appb-T000013
 表4より、実施例1~11の導電性転写材料は、密着性に優れることがわかった。さらに、実施例1~11の導電性転写材料における密着層の接触抵抗が低いため、実施例1~11の導電性転写材料を用いて作製したタッチセンサーは、正常に動作した。よって、実施例1~11の導電性転写材料を用いることで、銀ナノワイヤーを含む層と基板との間の導電性が優れることがわかった。一方、比較例1~3の導電性転写材料を用いて作製したタッチセンサーは、正常に動作しなかった。また、比較例3の導電性転写材料は、実施例1~11の導電性転写材料に比べて、密着性が劣ることが分かった。
 2018年12月27日に出願された日本国特許出願2018-246220号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (13)

  1.  仮支持体と、
     銀ナノワイヤーを含む層と、
     厚さが1nm~250nmである密着層と、
     をこの順で有する導電性転写材料。
  2.  仮支持体と、
     銀ナノワイヤーを含む層と、
     接触抵抗が1Ω~300Ωである密着層と、
     をこの順で有する導電性転写材料。
  3.  前記密着層が、アルカリ可溶性樹脂を含有する請求項1又は請求項2に記載の導電性転写材料。
  4.  前記仮支持体と前記銀ナノワイヤーを含む層との間に、少なくとも1つの樹脂層を有する請求項1~請求項3のいずれか1項に記載の導電性転写材料。
  5.  前記銀ナノワイヤーを含む層、前記密着層、及び前記樹脂層からなる群より選択される少なくとも1つが、腐食防止剤を含有する請求項4に記載の導電性転写材料。
  6.  前記樹脂層が、感光性樹脂層である請求項4又は請求項5に記載の導電性転写材料。
  7.  前記感光性樹脂層が、ポジ型の感光性樹脂層である請求項6に記載の導電性転写材料。
  8.  請求項6又は請求項7に記載の導電性転写材料、及び基板を貼り合わせる工程と、
     前記導電性転写材料における感光性樹脂層をパターン露光する工程と、
     前記パターン露光を経た導電性転写材料を現像してパターンを形成する工程と、
     をこの順に含む、パターンつき基板の製造方法。
  9.  請求項6又は請求項7に記載の導電性転写材料、及び基板を貼り合わせる工程と、
     前記導電性転写材料における感光性樹脂層をパターン露光する工程と、
     前記パターン露光を経た導電性転写材料を現像してパターンを形成する工程と、
     前記パターンにおける、感光性樹脂層又は感光性樹脂層の硬化物を除去する工程と、
     をこの順に含む、回路基板の製造方法。
  10.  基板と、
     厚さが1nm~250nmである密着層と、
     銀ナノワイヤーを含む層と、
     をこの順で有する積層体。
  11.  基板と、
     接触抵抗が1Ω~300Ωである密着層と、
     銀ナノワイヤーを含む層と、
     をこの順で有する積層体。
  12.  前記密着層及び前記銀ナノワイヤーを含む層が、転写層である請求項10又は請求項11に記載の積層体。
  13.  請求項10~請求項12のいずれか1項に記載の積層体を有するタッチパネル。
PCT/JP2019/045774 2018-12-27 2019-11-22 導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネル WO2020137284A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020562935A JPWO2020137284A1 (ja) 2018-12-27 2019-11-22 導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネル
CN201980086064.9A CN113316743A (zh) 2018-12-27 2019-11-22 导电性转印材料、附有图案的基板的制造方法、电路基板的制造方法、层叠体及触控面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246220 2018-12-27
JP2018-246220 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137284A1 true WO2020137284A1 (ja) 2020-07-02

Family

ID=71129005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045774 WO2020137284A1 (ja) 2018-12-27 2019-11-22 導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネル

Country Status (4)

Country Link
JP (1) JPWO2020137284A1 (ja)
CN (1) CN113316743A (ja)
TW (1) TW202036602A (ja)
WO (1) WO2020137284A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138630A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 転写フィルム、積層体の製造方法、回路配線の製造方法
WO2023090253A1 (ja) * 2021-11-22 2023-05-25 富士フイルム株式会社 積層体及びその製造方法、並びに電子デバイス
WO2023243290A1 (ja) * 2022-06-16 2023-12-21 東レ株式会社 インモールド転写用成型フィルム、成型品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251186A (ja) * 2009-04-17 2010-11-04 Hitachi Chem Co Ltd 導電性転写フィルム及びそれを用いた導電性パターンの形成方法
JP2013010262A (ja) * 2011-06-29 2013-01-17 Fujifilm Corp 導電性基材の製造方法
WO2013140971A1 (ja) * 2012-03-23 2013-09-26 富士フイルム株式会社 導電性部材およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155412A1 (ja) * 2010-06-07 2011-12-15 日立化成工業株式会社 感光性樹脂組成物、これを用いた感光性エレメント、画像表示装置の隔壁の形成方法、画像表示装置の製造方法及び画像表示装置
JP2012033466A (ja) * 2010-07-02 2012-02-16 Fujifilm Corp 導電層転写材料、及びタッチパネル
WO2015068654A1 (ja) * 2013-11-05 2015-05-14 昭和電工株式会社 導電パターン形成方法及びこれを使用したオンセル型タッチパネルの製造方法並びにこれに使用する転写用フィルム及びオンセル型タッチパネル
WO2017018427A1 (ja) * 2015-07-30 2017-02-02 昭和電工株式会社 導電フィルムの製造方法及び導電フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251186A (ja) * 2009-04-17 2010-11-04 Hitachi Chem Co Ltd 導電性転写フィルム及びそれを用いた導電性パターンの形成方法
JP2013010262A (ja) * 2011-06-29 2013-01-17 Fujifilm Corp 導電性基材の製造方法
WO2013140971A1 (ja) * 2012-03-23 2013-09-26 富士フイルム株式会社 導電性部材およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138630A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 転写フィルム、積層体の製造方法、回路配線の製造方法
WO2023090253A1 (ja) * 2021-11-22 2023-05-25 富士フイルム株式会社 積層体及びその製造方法、並びに電子デバイス
WO2023243290A1 (ja) * 2022-06-16 2023-12-21 東レ株式会社 インモールド転写用成型フィルム、成型品の製造方法

Also Published As

Publication number Publication date
CN113316743A (zh) 2021-08-27
JPWO2020137284A1 (ja) 2021-11-04
TW202036602A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
KR101932778B1 (ko) 도전 패턴의 형성 방법, 도전 패턴 기판 및 터치 패널 센서
KR102058349B1 (ko) 감광성 수지 조성물, 도전성 배선 보호막 및 터치 패널 부재
WO2020137284A1 (ja) 導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネル
JP6858269B2 (ja) 回路配線の製造方法、タッチパネルの製造方法及びパターン付き基材の製造方法
WO2020137797A1 (ja) 導電性転写材料、パターンつき基板の製造方法、積層体、及びタッチパネル
JP6591078B2 (ja) 感光性樹脂組成物、転写フィルム、タッチパネル用保護膜、タッチパネル及びその製造方法、並びに画像表示装置
WO2019102771A1 (ja) 感光性転写材料、樹脂パターン製造方法、及び、配線製造方法
WO2018179640A1 (ja) 感光性転写材料、及び、回路配線の製造方法
JP2019191518A (ja) 感光性転写材料、レジストパターンの製造方法、回路配線の製造方法
WO2016167228A1 (ja) 感光性導電フィルム、導電パターンの形成方法、導電パターン付き基材、及びタッチパネルセンサ
KR20190003641A (ko) 패턴이 형성된 기재의 제조 방법, 및 회로 기판의 제조 방법
TW201601935A (zh) 轉印型感光性折射率調整膜及其形成方法、電子零件
JP7317102B2 (ja) 導電性転写材料及び導電パターンの製造方法
JPWO2018186428A1 (ja) タッチセンサ及びタッチセンサの製造方法
JP6205925B2 (ja) 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板
WO2020137144A1 (ja) 感光性転写材料、積層体、タッチパネル、パターン付き基板の製造方法、回路基板の製造方法、及びタッチパネルの製造方法
JP2017198878A (ja) 感光性導電フィルム及びそれを用いた導電パターン、導電パターン基板、タッチパネルセンサの製造方法
JPWO2020116068A1 (ja) 転写材料、樹脂パターンの製造方法、回路配線の製造方法、及びタッチパネルの製造方法
JP7152593B2 (ja) 転写フィルム、及び、パターン付き基板の製造方法
JP2018177889A (ja) 感光性転写材料用重合体溶液の製造方法、感光性転写材料用組成物の製造方法、感光性転写材料の製造方法、回路配線の製造方法、及び、タッチパネルの製造方法
WO2021024650A1 (ja) 感光性転写部材、樹脂パターンの製造方法、回路配線の製造方法、タッチパネルの製造方法
JP2018045126A (ja) 真空ラミネート用感光性フィルム、転写型感光性屈折率調整フィルム、及び硬化樹脂パターンの形成方法
WO2020174767A1 (ja) パターンつき基板の製造方法、回路基板の製造方法、タッチパネルの製造方法、及び積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903866

Country of ref document: EP

Kind code of ref document: A1