WO2020136764A1 - 電子部品パッケージの製造方法 - Google Patents

電子部品パッケージの製造方法 Download PDF

Info

Publication number
WO2020136764A1
WO2020136764A1 PCT/JP2018/047917 JP2018047917W WO2020136764A1 WO 2020136764 A1 WO2020136764 A1 WO 2020136764A1 JP 2018047917 W JP2018047917 W JP 2018047917W WO 2020136764 A1 WO2020136764 A1 WO 2020136764A1
Authority
WO
WIPO (PCT)
Prior art keywords
tape
mask
chip
carrier
chips
Prior art date
Application number
PCT/JP2018/047917
Other languages
English (en)
French (fr)
Inventor
一尊 本田
小川 剛
望 松原
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/047917 priority Critical patent/WO2020136764A1/ja
Priority to JP2020562022A priority patent/JP6888746B2/ja
Priority to TW108146724A priority patent/TWI819172B/zh
Publication of WO2020136764A1 publication Critical patent/WO2020136764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to a method for manufacturing an electronic component package using an expanded tape.
  • the WLP technology is characterized by assembling the wafer as it is and dicing the wafer into individual pieces in the final process. This technology enables high productivity and high reliability because it is assembled (sealed) at a wafer level.
  • a rewiring layer having a rewiring pattern formed of polyimide and copper wiring is formed on an insulating film on a circuit surface of a semiconductor chip, and a metal pad or a solder ball is mounted on the rewiring.
  • WLCSP Wafer Level Chip Scale Package
  • FI-WLP Fet In Wafer Level Package
  • the semiconductor chip periphery is protected by performing sealing at the wafer level for the purpose of reducing the stress applied to the cracks and pad periphery of the semiconductor chip during handling.
  • Each package is separated into individual pieces and the process is proceeding to the next step (SMT process or the like).
  • Many discrete semiconductors are smaller than the system LCI, and in order to protect the semiconductor chip to a higher degree, the five-side or six-side sealing of the semiconductor chip is particularly required.
  • the miniaturization of chip size is also progressing in the LED field, and in the assembly of mini LED (200 ⁇ m or less) or micro LED (100 ⁇ m or less), when the LED wafer is mounted on the substrate after dicing, the DC width is small and the chip interval is small. It is necessary to spread and install.
  • Patent Document 1 proposes a method of widening the intervals between semiconductor chips by fixing a plurality of chips on an expanding tape and stretching the expanding tape.
  • an object of the present invention is to provide a method for manufacturing an electronic component package, which can improve the positional accuracy of the chip after stretching the expand tape.
  • a first step of preparing an expanded tape and a plurality of chips fixed on the expanded tape A second step of expanding the interval between the plurality of chips fixed on the expanded tape by stretching the expanded tape; A third step of maintaining the tension of the stretched expanded tape, A fourth step of providing a mask having a plurality of openings on a carrier or a substrate, and transferring a plurality of chips to the carrier or the substrate through the openings of the mask,
  • a method for manufacturing an electronic component package comprising a fifth step of peeling an expanding tape from a plurality of chips and removing a mask from a carrier or a substrate,
  • the mask has a first surface provided on the carrier or the substrate in the fourth step and a second surface opposite to the first surface, and the plurality of openings are tapered from the second surface toward the first surface.
  • FIG. 1 is a schematic cross-sectional view for explaining one embodiment of the first to third steps
  • FIG. 2 is a schematic cross-sectional view for explaining one embodiment of the fourth and fifth steps. is there.
  • an expanding tape 1 and a plurality of chips 2 fixed on the expanding tape 1 are prepared.
  • the expanded tape 1 has an adhesive layer 1a and a base film 1b, and the adhesive layer 1a contacts the chip 2.
  • the chip 2 also has a circuit surface on which pads (circuits) 3 are provided.
  • the surface of the chip 2 opposite to the circuit surface may be fixed to the expanding tape 1 (FIG. 1A), or the circuit surface may be fixed to the expanding tape 1 (not shown).
  • the plurality of chips 2 are arranged at intervals.
  • the expanded tape 1 is stretched to widen the intervals between the plurality of chips 2 fixed on the expanded tape 1 (FIG. 1B).
  • the stretched expanded tape 1 is fixed using a fixing jig 4 to maintain the tension of the expanded tape 1 (FIG. 1(c)).
  • a mask 6 having a plurality of openings is provided on the carrier 5, and a plurality of chips 2 are transferred to the carrier 5 through the openings 6c of the mask 6 (FIG. 2A) (FIG. 2). 2(b)).
  • the expanding tape 1 is peeled off from the plurality of chips 2 and the mask 6 is removed from the carrier 5 (FIG. 2(c)).
  • the carrier 5 may be a substrate.
  • ⁇ First step> There is no particular limitation on the method of preparing the expanded tape and the plurality of chips fixed on the expanded tape.
  • it can be produced by laminating a wafer on a dicing tape or the like, dicing it with a blade or a laser to obtain a plurality of individual chips, and then transferring these to an expanding tape.
  • the dicing may be performed by forming a brittle layer with a laser and expanding.
  • the semiconductor wafer may be directly laminated on the expand tape, and the semiconductor wafer may be diced by the above-mentioned method.
  • the initial chip interval (chip interval before the second step) is preferably narrow, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 60 ⁇ m or less.
  • the initial chip interval is preferably 10 ⁇ m or more so that stress is not applied to the chips when the chip intervals are widened. If it is smaller than 10 ⁇ m, the expanded tape area between a plurality of chips is small and it is difficult to spread.
  • the above chip may be a semiconductor chip or another chip.
  • the semiconductor chip include elemental semiconductors such as silicon and germanium, and compound semiconductors such as gallium arsenide and indium phosphide.
  • Examples of other chips include gallium nitride and sapphire.
  • the type of pad on the circuit surface of the chip is not particularly limited as long as it can be formed on the circuit surface of the chip, and even if it is a bump (projection electrode) such as a copper bump or a solder bump, it is a Ni/Au plated pad. It may be a relatively flat metal pad such as.
  • Extending tape stretching methods include, for example, a push-up method and a pulling method.
  • the push-up method the expand tape is stretched by fixing the expand tape and then raising the stage having a predetermined shape.
  • the pulling method is a method in which the expand tape is stretched by fixing the expand tape and then pulling it in a predetermined direction in parallel with the surface of the installed expand tape.
  • the push-up method is preferable because the distance between the chips can be uniformly extended and the required (occupied) device area is small and compact.
  • the stretching conditions may be appropriately set according to the characteristics of the expanded tape.
  • the push-up amount (pull amount) is preferably 10 mm to 500 mm, more preferably 10 mm to 300 mm.
  • the distance is 10 mm or more, the interval between the plurality of chips tends to widen, and when the distance is 500 mm or less, the chips are less likely to be scattered and misaligned.
  • the temperature may be appropriately set according to the characteristics of the expanded tape, but may be, for example, 10°C to 200°C, 10°C to 150°C, or 20°C to 100°C.
  • the push-up speed may be appropriately set according to the characteristics of the expanded tape, but may be, for example, 0.1 mm/sec to 500 mm/sec, 0.1 mm/sec to 300 mm/sec, 0.1 mm/sec to 200 mm/ May be seconds. When it is 0.1 mm/sec or more, the productivity is improved. When it is 500 mm/sec or less, peeling between the chip and the expanding tape becomes difficult to occur.
  • the distance between the plurality of chips after the second step is preferably 300 ⁇ m or more from the viewpoint of more reliably sealing the side surfaces of the chips. From the viewpoint of handleability, the interval between the plurality of chips after the second step is more preferably 500 ⁇ m or more, still more preferably 1 mm or more.
  • the upper limit is not particularly limited, but can be 5 mm or less.
  • ⁇ Third step> The tension of the expanded tape is maintained to prevent the stretched expanded tape from returning to its original state.
  • the method of holding the tension of the expand tape is not particularly limited as long as the tension is held and the interval between the chips does not return to its original value.
  • a method of fixing with a fixing jig such as a grip ring (manufactured by Technovision Co., Ltd.), or a method of heating the outer peripheral portion of the expanded tape to shrink it (heat shrink) to maintain tension can be mentioned.
  • a mask having a plurality of openings is provided on a carrier or a substrate, and a plurality of chips are transferred (laminated) to the carrier or the substrate through the openings of the mask.
  • the mask has a first surface provided on a carrier or substrate and a second surface opposite to the first surface, and the plurality of openings have a tapered shape that tapers from the second surface toward the first surface. ..
  • the plurality of chips pass through the wider opening on the second surface side and are guided to the narrower opening on the first surface side, so that the chips are displaced in the third step. If so, the position of the chip can be corrected. This improves the positional accuracy of the chip.
  • FIG. 3 is an enlarged schematic cross-sectional view of a part of the mask 6 of FIG. 2, and FIG. 4 is a top view of the entire mask 6.
  • the mask 6 of FIGS. 3 and 4 has a first surface 6a and a second surface 6b, and also has a plurality of openings 6c penetrating the mask 6 from the first surface 6a to the second surface 6b.
  • the shape of the opening 6c in FIGS. 3 and 4 is a square.
  • the shape of the opening 6c can be appropriately set according to the shape of the chip. For example, when the shape of the chip is a quadrangle, the shape of the opening 6c is preferably a square or a rectangle.
  • A indicates the length between the ends of the opening on the second surface 6b
  • B indicates the length between the ends of the opening on the first surface 6a
  • a indicates Length from a point intersecting the first surface 6a when a perpendicular is drawn from the end of the opening on the second surface 6b toward the first surface 6a to the end of the opening on the corresponding first surface 6a Indicates.
  • a and B mean the length of one side of the opening of the second surface 6b and the first surface 6a, respectively.
  • the taper ratio hereinafter, simply referred to as “taper ratio” in the opening (the space formed by the side surfaces of the first surface 6a, the second surface 6b and the opening 6c) of the mask is “2a/L. "(L is the thickness of the mask).
  • the angle formed by the side surface forming the opening of the mask and the first surface is defined as an inclination angle ⁇ (hereinafter, simply referred to as “inclination angle ⁇ ”) on the side surface forming the opening of the mask.
  • the lengths of A and B can be set appropriately according to the chip size, but the length of B must be the same as or longer than the chip size.
  • the length of B is substantially the same as the size of the chip, the positional accuracy is highest, but the chip may be damaged during transfer. Therefore, the length of B may be appropriately adjusted depending on the package to be manufactured, but from the viewpoint of improving the positional accuracy, it is preferably adjusted within the range of the chip size+5%.
  • the taper ratio and the inclination angle ⁇ may be set appropriately according to the interval between the chips, but the smaller the inclination angle ⁇ , the easier it is to correct the distortion and displacement that occur after the expansion.
  • the taper ratio is preferably 0.9 to 2 from the viewpoint of simultaneously improving the accuracy of positional deviation correction and improving the productivity.
  • the inclination angle ⁇ is preferably 45° to 65°, more preferably 50° to 60°, further preferably 53° to 57°, and particularly preferably 54.7°. ..
  • the material of the mask is preferably silicon. Silicon can be processed at low cost by anisotropic etching, and the mask having the above inclination angle can be easily manufactured with high precision.
  • the thickness of the mask may be set appropriately from the viewpoint of handleability.
  • the thickness of the mask is preferably 100 ⁇ m to 775 ⁇ m from the viewpoint of having sufficient strength and being easy to manufacture.
  • the laminating method is not particularly limited, but a roll laminator, a diaphragm type laminator, a vacuum roll laminator, a vacuum diaphragm type laminator or the like can be adopted.
  • a pressure bonding machine may be used for pressure bonding.
  • Lamination conditions may be set appropriately according to the physical properties and characteristics of the expanded tape, chip, carrier and substrate.
  • the temperature may be room temperature (25°C) to 200°C, preferably room temperature (25°C) to 150°C, more preferably room temperature (25°C) to 100°C.
  • the semiconductor chip is easily transferred (laminated) to the carrier, and when the temperature is 200° C. or lower, the semiconductor tape is displaced due to distortion or slack due to thermal expansion or low elasticity of the expand tape (expand tape and semiconductor chip). It becomes difficult for the semiconductor chips to be scattered, and the semiconductor chips to be scattered.
  • the pressure bonding time may be 5 seconds to 300 seconds, preferably 5 seconds to 200 seconds, more preferably 5 seconds to 100 seconds. When it is 5 seconds or more, the semiconductor chip is easily transferred (laminated) to the carrier, and when it is 300 seconds or less, the productivity is improved.
  • the pressure may be 0.1 MPa to 3 MPa, preferably 0.1 MPa to 2 MPa, more preferably 0.1 MPa to 1 MPa. When it is 0.1 MPa or more, the semiconductor chip is easily transferred (laminated) to the carrier, and when it is 2 MPa or less, damage to the semiconductor chip is reduced.
  • ⁇ Fifth step> The expand tape is peeled (removed) from the plurality of chips, and the mask is removed from the carrier or the substrate.
  • the adhesive force between the expanded tape and the carrier, the expanded tape and the chip, and the chip and the carrier should be set appropriately so that the chips transferred onto the carrier will not be displaced or peeled off from the carrier.
  • the adhesive force between the expand tape and the chip is equal to or smaller than the adhesive force between the chip and the carrier.
  • the expanded tape is removed after UV irradiation (UV irradiation step is added).
  • UV irradiation step the expanded tape can be peeled off from the chip by irradiating UV to reduce the adhesion (adhesive strength) of the expanded tape, and then laminating it on a carrier. As a result, stress on the chip is reduced, and transfer can be performed smoothly without displacement.
  • the chip size is preferably 10 mm or less, and more preferably 5 mm or less.
  • the expand tape is not particularly limited as long as it has stretchability capable of widening the interval between the plurality of chips fixed on the expand tape. It is preferable that the MD and TD chip intervals after the second step (after expanding the chip interval) are uniform.
  • Expanding tape may have a multi-layer structure such as a base film (base layer) that greatly contributes to stretchability and an adhesive layer that controls adhesive strength.
  • base film base layer
  • adhesive layer that controls adhesive strength
  • the base film is not particularly limited as long as it has stretchability and stability that maintains the chip interval after the third step.
  • the base material film is a polyester film such as polyethylene terephthalate film; polytetrafluoroethylene film, polyethylene film, polypropylene film, polymethylpentene film, polyvinyl acetate film, and ⁇ -olefin such as poly-4-methylpentene-1. It may be various plastic films such as homopolymers and copolymers thereof, and polyolefin films containing the above homopolymers or ionomers of the above copolymers; polyvinyl chloride films; and polyimide films; urethane resin films.
  • the base film is not limited to a single-layer film, and may be a multi-layer film obtained by combining two or more types of the above plastic films or two or more types of the same type of plastic films.
  • the base film is preferably a polyolefin film or a urethane resin film from the viewpoint of stretchability.
  • the base film may contain various additives such as an antiblocking agent, if necessary.
  • the thickness of the base film may be appropriately set if necessary, but is preferably 50 ⁇ m to 500 ⁇ m. When the thickness is less than 50 ⁇ m, the stretchability is deteriorated, and when the thickness is more than 500 ⁇ m, distortion is likely to occur and the handleability is deteriorated.
  • the thickness of the substrate film is appropriately selected within a range that does not impair workability.
  • a high energy ray (in particular, ultraviolet ray) curable adhesive agent is used as the adhesive agent forming the adhesive layer, it is necessary to have a thickness that does not hinder the transmission of the high energy ray.
  • the thickness of the substrate film may be usually 10 to 500 ⁇ m, preferably 50 to 400 ⁇ m, and more preferably 70 to 300 ⁇ m.
  • the base material layer is composed of a plurality of base material films, it is preferable to adjust the total thickness of the base material layer within the above range.
  • the base film may be chemically or physically surface-treated, if necessary, in order to improve the adhesion to the adhesive layer. Examples of the surface treatment include corona treatment, chromic acid treatment, ozone exposure, flame exposure, high-voltage bombardment exposure, and ionizing radiation treatment.
  • the adhesive layer there is no particular limitation on the adhesive layer as long as the adhesive force can be controlled (set so that the position of the chip does not shift or scatter in each process).
  • the pressure-sensitive adhesive layer preferably has a pressure-sensitive adhesive force at room temperature and is composed of a pressure-sensitive adhesive component having an adhesive force to the chip.
  • the base resin of the pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer include acrylic resin, synthetic rubber, natural rubber, polyimide resin and the like. From the viewpoint of reducing the adhesive residue of the pressure-sensitive adhesive component, the base resin preferably has a functional group (hydroxyl group, carboxyl group, etc.) capable of reacting with other additives.
  • a resin that is cured by high energy rays such as ultraviolet rays and radiation, or heat may be used. When such a curable resin is used, the adhesive force can be reduced by curing the resin.
  • the pressure-sensitive adhesive component may include a cross-linking agent capable of performing a cross-linking reaction with the functional group of the base resin.
  • the cross-linking agent preferably has at least one functional group selected from the group consisting of an epoxy group, an isocyanate group, an aziridine group, and a melanin group.
  • These cross-linking agents may be used alone or in combination of two or more. If the reaction rate is slow, a catalyst such as amine or tin may be used if necessary.
  • the adhesive component may appropriately contain a tackifier such as a rosin-based resin or a terpene resin, and an optional component such as various surfactants.
  • the thickness of the adhesive layer is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 5 to 40 ⁇ m.
  • the thickness of the adhesive layer is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 5 to 40 ⁇ m.
  • the adhesive layer is 10 ⁇ m or more, the base film is not damaged (cuts or the like) even if the semiconductor wafer is diced on the expand tape without using the dicing tape. Therefore, in the first step, on the dicing tape.
  • the step of dicing the semiconductor wafer and transferring (attaching) it to the expanding tape can be omitted. That is, dicing can be performed on the expanded tape.
  • Expanded tapes can be manufactured according to techniques well known in the art. For example, it can be manufactured according to the following method.
  • the protective film is coated by knife coating, roll coating, spray coating, gravure coating, bar coating, curtain coating or the like, and the solvent is removed to form an adhesive layer. Specifically, it is preferable to perform heating at 50 to 200° C. for 0.1 to 90 minutes. If there is no effect on void generation and viscosity adjustment in each step, it is preferable to set the conditions under which the organic solvent volatilizes to 1.5% or less.
  • the produced protective film with an adhesive layer and the substrate film are laminated under a temperature condition of room temperature to 60°C so that the adhesive layer and the substrate film face each other.
  • -Expand tape base film or base film + adhesive layer
  • base film or base film + adhesive layer should be used after removing the protective film.
  • the protective film examples include A-63 (manufactured by Teijin DuPont Films Co., Ltd., release treatment agent: modified silicone type), A-31 (manufactured by Teijin DuPont Films Co., Ltd., release treatment agent: Pt type silicone type) and the like. Is mentioned.
  • the thickness of the protective film is appropriately selected within a range that does not impair the workability, and usually it is preferably 100 ⁇ m or less from the economical viewpoint.
  • the thickness of the protective film is preferably 10 to 75 ⁇ m, more preferably 25 to 50 ⁇ m. When the thickness of the protective film is 10 ⁇ m or more, problems such as tearing of the film during the production of the expanded tape are unlikely to occur. Further, when the thickness of the protective film is 75 ⁇ m or less, the protective film can be easily peeled off when using the expanded tape.
  • the carrier is not particularly limited as long as it is resistant to the temperature and pressure at the time of transfer (the chips are not damaged and the chip interval does not change).
  • the thermal expansion coefficient of the carrier is preferably 100 ppm/° C. or lower, more preferably 50 ppm/° C. or lower, and further preferably 20 ppm/° C. or lower, in order to prevent defects such as displacement of the chip.
  • the coefficient of thermal expansion of the carrier is preferably 3 ppm/° C. or higher because distortion and warpage occur when the coefficient of thermal expansion is smaller than that of the chip.
  • the material of the carrier is not particularly limited, but examples thereof include silicon (wafer), glass, SUS, iron, Cu plates, and glass epoxy substrates.
  • the thickness of the carrier may be 100 ⁇ m to 5000 ⁇ m, preferably 100 ⁇ m to 4000 ⁇ m, more preferably 100 ⁇ m to 3000 ⁇ m. When it is 100 ⁇ m or more, handleability is improved. Even if it is thick, it is not expected that the handling property will be remarkably improved.
  • Carriers may consist of multiple layers.
  • the adhesion may be set as appropriate in consideration of the adhesion between the chip and the expanded tape.
  • the thickness of the layer laminated with the adhesive layer, the temporary fixing material and the like is not particularly limited, but may be, for example, 1 ⁇ m to 300 ⁇ m, and preferably 1 ⁇ m to 200 ⁇ m. When the thickness is 1 ⁇ m or more, a sufficient adhesive force with the chip can be secured. On the other hand, even if the thickness exceeds 300 ⁇ m, there is no advantage in characteristics and it is uneconomical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Containers And Plastic Fillers For Packaging (AREA)

Abstract

エキスパンドテープと、当該エキスパンドテープ上に固定された複数のチップと、を準備する第1工程と、エキスパンドテープを延伸することにより、エキスパンドテープ上に固定された複数のチップの間隔を広げる第2工程と、延伸されたエキスパンドテープのテンションを保持する第3工程と、キャリア又は基板上に複数の開口部を有するマスクを設け、当該マスクの開口部を通して、複数のチップをキャリア又は基板に転写する第4工程と、複数のチップからエキスパンドテープを剥離するとともに、キャリア又は基板からマスクを外す第5工程を備える、電子部品パッケージの製造方法であって、 マスクは、第4工程においてキャリア又は基板上に設けられる第1面と、その反対側の第2面とを有し、複数の開口部は第2面から第1面に向かって先細りとなるようなテーパー形状を有する、電子部品パッケージの製造方法。

Description

電子部品パッケージの製造方法
 本発明はエキスパンドテープを用いた電子部品パッケージの製造方法に関する。
 近年、半導体装置の小型化、高機能化、高集積化に伴い、半導体の多ピン化、高密度化、配線の狭ピッチ化が進展している。そのため、ピン若しくは配線の微細化又は低誘電率化を目的としたlow-K層のような脆弱層の適用に伴い高信頼性化技術が求められている。このような背景の中、高信頼性化、高生産化等が可能なウエハレベルパッケージ(Wafer Level Package:WLP)技術が進展している。
 WLP技術は、ウエハ状態のままで組立を行い、その最終工程でダイシングによってウエハを個片化することを特徴とする。ウエハレベルで一括に組立てる(封止を行う)ことから高生産性及び高信頼性化が可能な技術である。
 WLPには、例えば、半導体チップの回路面の絶縁膜上にポリイミド及び銅配線等で再配線パターンを形成した再配線層を形成し、その再配線上にメタルパッド又ははんだボールを搭載して、接続端子用バンプを構成するWLCSP(Wafer Level Chip Scale Package)、FI-WLP(Fan In Wafer Level Package)がある。このような電子部品パッケージでは、小型化、薄型化が急速に進展しているため、信頼性を確保するためにウエハレベルで封止を行って半導体チップ周辺を保護した後に、パッケージ毎に個片化して、その後の二次実装等のハンドリングを行うことで信頼性を確保している。このような組立において、ダイシングによってウエハを個片化した後は、得られた複数のチップ同士の間隔が狭いため、チップをキャリア又は基板に再配置する必要がある。
 また、ディスクリート半導体のような単機能半導体の実装分野もハンドリングの際の半導体チップのクラック及びパッド周辺部にかかるストレス低減を目的に、ウエハレベルで封止を行って半導体チップ周辺を保護した後に、パッケージ毎に個片化して次の工程(SMTプロセス等)に進んでいる。ディスクリート半導体はシステムLCIに比べて小型のものが多く、半導体チップをより高度に保護するため、半導体チップの5面又は6面封止が特に求められている。半導体チップの側面を封止するためには、ウエハを個片化して半導体チップを作製した後に半導体チップの間隔を広げる必要があり、キャリア等にチップ間隔を広げて再配置を行い、オーバーモールドを行う。
 LED分野でもチップサイズの小型化が進展しており、ミニLED(200μm以下)又はマイクロLED(100μm以下)の組立てにおいて、LEDウエハをダイシング後に基板に搭載する際に、DC幅が小さく、チップ間隔を広げて搭載する必要がある。
 特許文献1では、半導体チップの間隔を広げる方法として、複数のチップをエキスパンドテープ上に固定し、当該エキスパンドテープを延伸することにより、半導体チップの間隔を広げる方法が提案されている。
国際公開第2018/216621号
 ところで、チップの小型化が進展する中で、エキスパンドテープの延伸後におけるチップの位置精度に改善の余地があることが、本発明者等の検討により明らかとなった。
 そこで本発明は、エキスパンドテープの延伸後に、チップの位置精度を改善することが可能な、電子部品パッケージの製造方法を提供することを目的とする。
 本発明者らは、鋭意研究した結果、以下の[1]~[5]に記載の発明により、上記課題を解決できることを見出すに至った。
[1] エキスパンドテープと、当該エキスパンドテープ上に固定された複数のチップと、を準備する第1工程と、
 エキスパンドテープを延伸することにより、エキスパンドテープ上に固定された複数のチップの間隔を広げる第2工程と、
 延伸されたエキスパンドテープのテンションを保持する第3工程と、
 キャリア又は基板上に複数の開口部を有するマスクを設け、当該マスクの開口部を通して、複数のチップをキャリア又は基板に転写する第4工程と、
 複数のチップからエキスパンドテープを剥離するとともに、キャリア又は基板からマスクを外す第5工程を備える、電子部品パッケージの製造方法であって、
 マスクは、第4工程においてキャリア又は基板上に設けられる第1面と、その反対側の第2面とを有し、複数の開口部は第2面から第1面に向かって先細りとなるようなテーパー形状を有する、電子部品パッケージの製造方法。
[2] 第2工程において、エキスパンドテープが25℃以上の温度で延伸される、[1]に記載の電子部品パッケージの製造方法。
[3] マスクの開口部におけるテーパー比が0.9~2である、[1]又は[2]に記載の電子部品パッケージの製造方法。
[4] マスクの開口部を形成する側面における傾斜角が54.7°である、[1]~[3]のいずれかに記載の電子部品パッケージの製造方法。
[5] マスクがシリコンから形成される、[1]~[4]のいずれかに記載の電子部品パッケージの製造方法。
 本発明によれば、エキスパンドテープの延伸後に、チップの位置精度を改善することが可能な、電子部品パッケージの製造方法を提供することができる。
第1工程~第3工程の一実施形態を説明するための模式断面図である。 第4工程~第5工程の一実施形態を説明するための模式断面図である。 第4工程の一実施形態で用いられるマスクの模式断面図である。 第4工程の一実施形態で用いられるマスクの上面図である。
 以下、図面を参照しながら本実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。
 まず、上述の第1工程~第5工程について、図1及び2に基づいて説明する。図1は、第1工程~第3工程の一実施形態を説明するための模式断面図であり、図2は、第4工程及び第5工程の一実施形態を説明するための模式断面図である。
 まず、第1工程では、エキスパンドテープ1と、エキスパンドテープ1上に固定された複数のチップ2とを準備する。エキスパンドテープ1は、粘着層1aと基材フィルム1bとを有し、粘着層1aがチップ2と接する。また、チップ2は、パッド(回路)3が設けられた回路面を有する。チップ2は回路面とは反対側の面がエキスパンドテープ1に固定されていてもよく(図1(a))、回路面がエキスパンドテープ1に固定されていてもよい(図示せず)。なお、複数のチップ2は、間隔を置いて配置されている。
 第2工程では、エキスパンドテープ1を延伸することにより、エキスパンドテープ1上に固定された、複数のチップ2の間隔を広げる(図1(b))。
 第3工程では、延伸されたエキスパンドテープ1を、固定用ジグ4を用いて固定することにより、エキスパンドテープ1のテンションを保持する(図1(c))。
 第4工程では、キャリア5上に、複数の開口部を有するマスク6を設け、当該マスク6の開口部6cを通して(図2(a))、複数のチップ2を前記キャリア5に転写する(図2(b))。
 第5工程では、複数のチップ2から、エキスパンドテープ1を剥離するとともに、キャリア5からマスク6を外す(図2(c))。なお、第4工程及び第5工程において、キャリア5は基板であってもよい。
 以下、各工程について詳細に説明する。
<第1工程>
 エキスパンドテープと、エキスパンドテープ上に固定された複数のチップと、を準備する方法に特に制限はない。例えば、ダイシングテープ等にウエハをラミネート後、ブレード又はレーザーでダイシングして複数の個片化されたチップを得た後、これらをエキスパンドテープに転写することにより作製することができる。
 ダイシングは、レーザーで脆弱層を形成してエキスパンドすることによって行ってもよい。また、上述の転写を省略して生産性を向上させる観点から、エキスパンドテープに半導体ウエハを直接ラミネートして、上述の方法で半導体ウエハをダイシングして作製してもよい。
 生産性、低コスト化の観点から、初期のチップ間隔(第2工程前のチップの間隔)は狭い方が好ましく、100μm以下が好ましく、80μm以下がより好ましく、60μm以下が更に好ましい。ダイシングによるウエアの切削は、上記チップ間隔が広い程ウエハを無駄にするため、低コスト化の観点から、上述のように狭い方が好ましい。チップ間隔を広げる際に、チップにストレスがかからないようにするために、初期のチップの間隔は10μm以上が好ましい。10μmより小さいと複数のチップの間のエキスパンドテープ領域が少ないため広がりにくい。
 上記チップは、半導体チップであってもよく、その他のチップであってもよい。半導体チップとしては、例えば、シリコン、ゲルマニウム等の元素半導体、ガリウムヒ素、インジウムリン等の化合物半導体等が挙げられる。その他のチップとしては、ガリウムナイトライド、サファイア等が挙げられる。
 チップの回路面上のパッドの種類は、チップの回路面に形成され得るものであれば特に限定されず、銅バンプ、はんだバンプ等のバンプ(突起電極)であっても、Ni/Auめっきパッド等の比較的平坦な金属パッドであってもよい。
<第2工程>
 エキスパンドテープを延伸することにより、複数のチップの間隔を広げる。
 エキスパンドテープの延伸方法としては、例えば、突き上げ方式と引張り方式がある。突き上げ方式は、エキスパンドテープを固定後、所定の形をしたステージが上昇することでエキスパンドテープが引き伸ばされる。引張り方式はエキスパンドテープを固定後、設置したエキスパンドテープ面と平行に所定の方向に引っ張ることで、エキスパンドテープが引き伸ばされる方式である。チップの間隔を均一に引き伸ばせる点、及び必要な(占有する)装置面積が小さくてコンパクトである点から、突き上げ方式の方が好ましい。
 延伸条件は、エキスパンドテープの特性に応じて適宜設定すればよい。例えば、突き上げ方式を採用した場合の突き上げ量(引張り量)は10mm~500mmが好ましく、10mm~300mmがより好ましい。10mm以上であると、複数のチップの間隔が広がりやすく、500mm以下であるとチップの飛散及び位置ずれが起こりづらくなる。
 温度もエキスパンドテープ特性に応じて適宜設定すればよいが、例えば10℃~200℃であってもよく、10℃~150℃、20℃~100℃であってもよい。温度が10℃以上であるとエキスパンドテープが延伸しやすくなり、温度が200℃以下であるとエキスパンドテープの熱膨張及び低弾性化による歪み又はたるみによるチップの位置ずれ(エキスパンドテープからのチップの剥離)、チップの飛散等が起こりづらくなる。
 突き上げ速度もエキスパンドテープ特性に応じて適宜設定すればよいが、例えば0.1mm/秒~500mm/秒であってもよく、0.1mm/秒~300mm/秒、0.1mm/秒~200mm/秒であってもよい。0.1mm/秒以上であると生産性が向上する。500mm/秒以下であると、チップとエキスパンドテープ間での剥離が生じづらくなる。
 第2工程後の複数のチップの間隔は、チップの側面をより確実に封止する観点から、300μm以上が好ましい。取り扱い性の観点から、第2工程後の複数のチップの間隔は、500μm以上がより好ましく、1mm以上が更に好ましい。上限は特に制限はないが、5mm以下とすることができる。
<第3工程>
 延伸されたエキスパンドテープが元の状態に戻ることを防ぐために、エキスパンドテープのテンションを保持する。
 エキスパンドテープのテンションを保持する方法は、テンションが保持され、チップの間隔が元に戻らなければ特に制限はない。例えば、グリップリング(株式会社テクノビジョン製)等の固定用ジグを用いて固定する、又はエキスパンドテープの外周部を加熱して収縮させて(ヒートシュリンク)テンションを保持する方法等が挙げられる。
<第4工程>
 キャリア又は基板上に複数の開口部を有するマスクを設け、当該マスクの開口部を通して,複数のチップをキャリア又は基板に転写(ラミネート)する。マスクは、キャリア又は基板上に設けられる第1面とその反対側の第2面とを有し、複数の開口部は第2面から第1面に向かって先細りとなるようなテーパー形状を有する。
 第4工程において、複数のチップは、第2面側のより広い開口部を通過して、第1面側のより狭い開口部へと誘導されるので、第3工程においてチップの位置ずれが生じていたとしても、チップの位置を補正することができる。これにより、チップの位置精度が向上する。
 以下、図3及び図4に基づいて、第4工程の一実施形態で用いられるマスクについて説明する。図3は、図2のマスク6の一部を拡大した模式断面図であり、図4は、マスク6全体の上面図である。
 図3及び図4のマスク6は、第1面6a及び第2面6bを有し、且つ第1面6aから第2面6bに向かってマスク6を貫通する複数の開口部6cを有する。図3及び図4における開口部6cの形状は正方形である。開口部6cの形状は、チップの形状に合わせて適宜設定することができる。例えば、チップの形状が四角形である場合は、開口部6cの形状を正方形又は長方形とすることが好ましい。
 図3中、"A"は第2面6bにおける開口部の端部間の長さを示し、"B"は第1面6aにおける開口部の端部間の長さを示し、"a"は第2面6bにおける開口部の端部から第1面6aに向かって垂線を下ろしたときに第1面6aと交差する点から、対応する第1面6aにおける開口部の端部までの長さを示す。特に開口部の形状が正方形である場合には、"A"及び"B"は、それぞれ第2面6b及び第1面6aの開口部における一辺の長さを意味する。
 AとBとの差は、aの2倍に相当する(A-B=2a)。この値を使って、マスクの開口部(第1面6a、第2面6b及び開口部6cの側面から形成される空間)におけるテーパー比(以下、単に「テーパー比」という)を"2a/L"(Lはマスクの厚み)と規定する。また、マスクの開口部を形成する側面と第1面とがなす角度を、マスクの開口部を形成する側面における傾斜角θ(以下、単に「傾斜角θ」という)とする。
 上記A及びBの長さは、チップのサイズに応じて、適宜設定することができるが、上記Bの長さはチップのサイズと同じかそれ以上の長さとする必要がある。上記Bの長さがチップのサイズと略同じである場合には、位置精度は最も高いが、転写する際にチップが破損する虞もある。このため、上記Bの長さは、製造するパッケージによって適宜調整すればよいが、位置精度を向上させる観点から、チップのサイズ+5%以内の範囲で調整すると好ましい。
 テーパー比及び傾斜角θは、チップ同士の間隔によって適宜設定すればよいが、傾斜角θが小さいほど、エキスパンド後に生じたゆがみ及び位置ずれを補正しやすい。位置ずれ補正の精度向上と生産性向上を両立する観点から、テーパー比は0.9~2であると好ましい。同様の観点から、傾斜角θは45°~65°であると好ましく、50°~60°であるとより好ましく、53°~57°であると更に好ましく、54.7°であると特に好ましい。
 マスクの材質はシリコンであると好ましい。シリコンは、異方性エッチングにより低コストで加工することが可能であり、上記の傾斜角を有するマスクを簡単に精度良く作製することができる。
 マスクの厚みは、取り扱い性の観点から厚みを適宜設定すればよい。特にマスクの材質がシリコンである場合のマスクの厚みは、十分な強度を有し、且つ作製が容易である観点から、100μm~775μmであると好ましい。
 第4工程において、ラミネート方法は特に制限はないが、ロールラミネータ、ダイヤフラム式ラミネータ、真空ロールラミネータ、真空ダイヤフラム式ラミネータ等を採用することができる。仮ラミネート後、圧着機を用いて圧着してもよい。
 ラミネート条件はエキスパンドテープ、チップ、キャリア及び基板の物性及び特性によって適宜設定すればよい。例えば、ロールラミネータであれば、室温(25℃)~200℃であってもよく、室温(25℃)~150℃が好ましく、室温(25℃)~100℃がより好ましい。室温以上であると、半導体チップがキャリアに転写(ラミネート)しやすくなり、200℃以下であるとエキスパンドテープの熱膨張又は低弾性化による歪み又はたるみによる半導体チップの位置ずれ(エキスパンドテープと半導体チップ間の剥離)、半導体チップの飛散等が起こりづらくなる。ダイヤフラム系のラミネータであれば、温度条件に関しては上述のロール系ラミネータと同様である。圧着時間は5秒~300秒であってもよく、5秒~200秒が好ましく、5秒~100秒がより好ましい。5秒以上であると半導体チップがキャリアに転写(ラミネート)しやすく、300秒以下であると生産性が向上する。圧力は0.1MPa~3MPaであってもよく、0.1MPa~2MPaが好ましく、0.1MPa~1MPaがより好ましい。0.1MPa以上であると、半導体チップがキャリアに転写(ラミネート)しやすく、2MPa以下であると半導体チップへのダメージが軽減される。
<第5工程>
 複数のチップからエキスパンドテープを剥離(除去)するとともに、キャリア又は基板からマスクを外す。
 エキスパンドテープを剥離する際に、キャリア又は基板上にマスクがあると、チップの位置ずれが発生しにくい。
 エキスパンドテープを剥離する際は、キャリア上に転写されたチップが位置ずれを起こしたり、キャリアから剥がれたりしないように、エキスパンドテープとキャリア、エキスパンドテープとチップ、チップとキャリアの密着力は適宜設定する必要がある。例えば、エキスパンドテープとチップの密着力が、チップとキャリアの密着力と同じかそれよりも小さいことが好ましい。
 エキスパンドテープ、又はキャリア面にUV硬化機能を付与し、UVを照射することで密着力(接着力)が上下するように設定してもよい。この場合は、UV照射後(UV照射工程を追加)にエキスパンドテープを除去する。例えば、第3工程後にUVを照射してエキスパンドテープの密着力(接着力)を下げた後に、キャリアにラミネートして、エキスパンドテープをチップから剥離することができる。これによってチップへのストレスが軽減され、転写を位置ずれなくスムーズに行うことができる。
 チップのサイズに特に制限はないが、サイズが小さい程、本実施形態の製造方法は従来の方法に対して、高生産化価値が高い。この観点から、チップのサイズは、□10mm以下が好ましく、□5mm以下がより好ましい。
 次に各工程で用いられる材料について説明する。
(エキスパンドテープ)
 エキスパンドテープは、当該エキスパンドテープ上に固定された複数のチップの間隔を広げることができる延伸性を有していれば特に制限はない。第2工程後(チップの間隔を広げた後)のMDとTDのチップ間隔が均一であることが好ましい。
 エキスパンドテープは、延伸性に大きく寄与する基材フィルム(基材層)、粘着力を制御する粘着層等、複数の層構造であってもよい。
 基材フィルムは、延伸性、第3工程後にチップ間隔を保持する安定性があれば特に制限はない。
 基材フィルムは、ポリエチレンテレフタレートフィルム等のポリエステル系フィルム;ポリテトラフルオロエチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリビニルアセテートフィルム、及びポリ-4-メチルペンテン-1等のα-オレフィンの単独重合体及びそれらの共重合体、並びに上記単独重合体又は上記共重合体のアイオノマーを含むポリオレフィン系フィルム;ポリ塩化ビニルフィルム;及びポリイミドフィルム;ウレタン樹脂フィルムなどの各種プラスチックフィルムであってよい。上記基材フィルムは、単層のフィルムに限らず、上記プラスチックフィルムを2種以上又は同種のプラスチックフィルムを2つ以上組み合わせて得られる多層のフィルムであってもよい。
 上記基材フィルムは、延伸性の観点から、ポリオレフィンフィルム、ウレタン樹脂フィルムであることが好ましい。基材フィルムは、必要に応じて、ブロッキング防止剤等の各種添加剤を含んでもよい。
 上記基材フィルムの厚みは、必要に応じて適宜設定すればよいが、50μm~500μmが好ましい。50μmより薄いと延伸性が低下し、500μmより大きいと歪みが発生しやすくなったり、取り扱い性が低下したりする等、不具合が生じる。
 上記基材フィルムの厚みは、作業性を損なわない範囲で適宜選択される。ただし、粘着層を構成する粘着剤として、高エネルギー線(中でも、紫外線)硬化性粘着剤を用いる場合は、その高エネルギー線の透過を阻害しない厚さにする必要がある。このような観点から、基材フィルムの厚さは、通常は10~500μmであってもよく、50~400μmが好ましく、70~300μmがより好ましい。
 基材層を複数の基材フィルムから構成する場合、基材層全体の厚さが上記範囲内となるように調整することが好ましい。基材フィルムは、粘着層との密着性を向上させるために、必要に応じて、化学的又は物理的に表面処理を施したものであってもよい。上記表面処理としては、例えば、コロナ処理、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等が挙げられる。
 粘着層は、粘着力を制御する(工程毎にチップの位置ずれ、飛散が起きないように設定)ことができれば、特に制限はない。
 粘着層は、室温で粘着力があり、チップに対し密着力を有する粘着剤成分から構成することが好ましい。粘着層を構成する粘着剤成分のベース樹脂の一例としては、アクリル樹脂、合成ゴム、天然ゴム、ポリイミド樹脂等が挙げられる。
 粘着剤成分の糊残りを減少させる観点から、上記ベース樹脂は、他の添加剤と反応し得る官能基(水酸基、カルボキシル基等)を有することが好ましい。粘着剤成分として、紫外線、放射線等の高エネルギー線、又は熱によって硬化する樹脂を使用してもよい。このような硬化性樹脂を使用した場合、樹脂を硬化させることによって粘着力を低下させることができる。また、粘着力を調整するため、上記粘着剤成分は、上記ベース樹脂の官能基と架橋反応できる架橋剤を含んでもよい。架橋剤は、エポキシ基、イソシアネート基、アジリジン基、及びメラニン基からなる群から選ばれる少なくとも1種の官能基を有することが好ましい。これらの架橋剤は、単独で使用してもよいし、2種以上を併用してもよい。
 また、反応速度が遅い場合は、必要に応じて、アミン又はスズ等の触媒を使用してもよい。その他、粘着特性を調整するために、上記粘着剤成分は、ロジン系又はテルペン樹脂等のタッキファイヤー、及び各種界面活性剤等の任意成分を適宜含有してもよい。
 粘着層の厚さは、通常は1~100μmであり、2~50μmが好ましく、5~40μmがより好ましい。粘着層の厚さを1μm以上にすることによって、チップとの十分な粘着力を確保することができるため、第2工程の際(チップ間隔を広げる際)に半導体のチップの飛散を抑制することが容易となる。一方、100μmを超える厚さとしても、特性において利点はなく、不経済となる。
 粘着層が10μm以上であると、ダイシングテープを用いずに、エキスパンドテープ上で半導体ウエハをダイシングしても基材フィルムにダメージ(切り込み等)が入らないため、第1工程において、ダイシングテープ上で半導体ウエハをダイシングしてエキスパンドテープに転写(貼り付ける)する工程を省略することができる。すなわち、エキスパンドテープ上でダイシングできる。
(エキスパンドテープの作製方法)
 エキスパンドテープは、当技術分野で周知の技術に沿って製造することができる。例えば、以下の方法に従って製造することができる。保護フィルムの上に、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等によって塗工し、溶媒を除去することによって粘着層を形成する。具体的には、50~200℃、0.1~90分間の加熱を行うことが好ましい。各工程でのボイド発生及び粘度調整に影響がなければ、有機溶媒が1.5%以下となるまで揮発する条件とすることが好ましい。
 作製した粘着層付保護フィルムと、基材フィルムを、常温~60℃の温度条件下で、粘着層と基材フィルムが対向するように積層する。
 エキスパンドテープ(基材フィルム、もしくは基材フィルム+粘着層)は保護フィルムを剥がして使用する。
 保護フィルムとしては、例えば、A-63(帝人デュポンフィルム株式会社製、離型処理剤:変性シリコーン系)、A-31(帝人デュポンフィルム株式会社製、離型処理剤:Pt系シリコーン系)等が挙げられる。
 保護フィルムの厚さは、作業性を損なわない範囲で適宜選択され、通常は、経済的観点から100μm以下であることが好ましい。上記保護フィルムの厚さは、10~75μmが好ましく、25~50μmがより好ましい。上記保護フィルムの厚さが10μm以上であれば、エキスパンドテープの作製時にフィルムが破れる等の不具合が起こり難い。また、上記保護フィルムの厚さが75μm以下であれば、エキスパンドテープの使用時に保護フィルムを容易に剥離することができる。
(キャリア)
 キャリアは、転写時の温度及び圧力に耐性があれば(チップが破損しないこと、チップ間隔が変わらないこと)、特に制限はない。例えば、キャリアの熱膨張率は、チップの位置ずれ等の不具合を防止するため、100ppm/℃以下が好ましく、50ppm/℃以下がより好ましく、20ppm/℃以下が更に好ましい。また、キャリアの熱膨張率は、チップよりも熱膨張率が小さいと歪み及び反りが生じるため、3ppm/℃以上が好ましい。
 キャリアの材質としては、特に制限はないが、シリコン(ウエハ)、ガラス、SUS、鉄、Cu等の板、ガラスエポキシ基板などが挙げられる。
 キャリアの厚みは100μm~5000μmであってもよく、100μm~4000μmが好ましく、100μm~3000μmがより好ましい。100μm以上であると取り扱い性が向上する。厚くても格段の取り扱い性向上が見込めるわけではなく、経済面から考慮して5000μm以下であればよい。
 キャリアは複数の層から成っていてもよい。上述の材質からなる層に加えて、密着力制御を付与する観点から、粘着層、仮固定材等をラミネートした層があってもよい。密着力はチップ及びエキスパンドテープの密着力を考慮して、適宜設定すればよい。粘着層、仮固定材等をラミネートした層の厚みは特に制限はないが、例えば、1μm~300μmであってもよく、1μm~200μmが好ましい。1μm以上とすることでチップとの十分な粘着力を確保することができる。一方、300μmを超える厚さとしても、特性において利点はなく、不経済となる。
 1…エキスパンドテープ、1a…粘着層、1b…基材フィルム、2…チップ、3…パッド(回路)、4…固定用ジグ、5…キャリア、6…マスク。

Claims (5)

  1.  エキスパンドテープと、当該エキスパンドテープ上に固定された複数のチップと、を準備する第1工程と、
     前記エキスパンドテープを延伸することにより、前記エキスパンドテープ上に固定された複数の前記チップの間隔を広げる第2工程と、
     延伸された前記エキスパンドテープのテンションを保持する第3工程と、
     キャリア又は基板上に複数の開口部を有するマスクを設け、当該マスクの開口部を通して、前記複数のチップを前記キャリア又は基板に転写する第4工程と、
     複数の前記チップから前記エキスパンドテープを剥離するとともに、前記キャリア又は基板から前記マスクを外す第5工程を備える、電子部品パッケージの製造方法であって、
     前記マスクは、前記第4工程において前記キャリア又は基板上に設けられる第1面と、その反対側の第2面とを有し、前記複数の開口部は第2面から第1面に向かって先細りとなるようなテーパー形状を有する、電子部品パッケージの製造方法。
  2.  前記第2工程において、前記エキスパンドテープが25℃以上の温度で延伸される、請求項1に記載の電子部品パッケージの製造方法。
  3.  前記マスクの開口部におけるテーパー比が0.9~2である、請求項1又は2に記載の電子部品パッケージの製造方法。
  4.  前記マスクの開口部を形成する側面における傾斜角が54.7°である、請求項1~3のいずれか一項に記載の電子部品パッケージの製造方法。
  5.  前記マスクがシリコンから形成される、請求項1~4のいずれか一項に記載の電子部品パッケージの製造方法。
PCT/JP2018/047917 2018-12-26 2018-12-26 電子部品パッケージの製造方法 WO2020136764A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/047917 WO2020136764A1 (ja) 2018-12-26 2018-12-26 電子部品パッケージの製造方法
JP2020562022A JP6888746B2 (ja) 2018-12-26 2018-12-26 電子部品パッケージの製造方法
TW108146724A TWI819172B (zh) 2018-12-26 2019-12-19 電子零件封裝的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047917 WO2020136764A1 (ja) 2018-12-26 2018-12-26 電子部品パッケージの製造方法

Publications (1)

Publication Number Publication Date
WO2020136764A1 true WO2020136764A1 (ja) 2020-07-02

Family

ID=71128550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047917 WO2020136764A1 (ja) 2018-12-26 2018-12-26 電子部品パッケージの製造方法

Country Status (3)

Country Link
JP (1) JP6888746B2 (ja)
TW (1) TWI819172B (ja)
WO (1) WO2020136764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289908A (zh) * 2020-09-11 2021-01-29 罗化芯显示科技开发(江苏)有限公司 一种mini-LED芯片巨量转移的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210138263A (ko) * 2020-05-12 2021-11-19 삼성전자주식회사 반도체 칩 실장용 테이프 및 상기 테이프를 이용한 반도체 패키지 제조 방법
TWI802059B (zh) * 2021-10-26 2023-05-11 錼創顯示科技股份有限公司 微型發光二極體顯示裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174979A (ja) * 2003-12-08 2005-06-30 Sony Corp 素子配列方法
JP2008176073A (ja) * 2007-01-18 2008-07-31 Japan Advanced Institute Of Science & Technology Hokuriku 回路基板シートおよび回路基板の製造方法
JP2011096961A (ja) * 2009-11-02 2011-05-12 Citizen Electronics Co Ltd Led素子の製造方法
JP2017076748A (ja) * 2015-10-16 2017-04-20 リンテック株式会社 粘着シート及び半導体装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003275615A1 (en) * 2002-11-01 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US7244326B2 (en) * 2003-05-16 2007-07-17 Alien Technology Corporation Transfer assembly for manufacturing electronic devices
US20130187540A1 (en) * 2012-01-24 2013-07-25 Michael A. Tischler Discrete phosphor chips for light-emitting devices and related methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174979A (ja) * 2003-12-08 2005-06-30 Sony Corp 素子配列方法
JP2008176073A (ja) * 2007-01-18 2008-07-31 Japan Advanced Institute Of Science & Technology Hokuriku 回路基板シートおよび回路基板の製造方法
JP2011096961A (ja) * 2009-11-02 2011-05-12 Citizen Electronics Co Ltd Led素子の製造方法
JP2017076748A (ja) * 2015-10-16 2017-04-20 リンテック株式会社 粘着シート及び半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289908A (zh) * 2020-09-11 2021-01-29 罗化芯显示科技开发(江苏)有限公司 一种mini-LED芯片巨量转移的方法
CN112289908B (zh) * 2020-09-11 2022-08-02 罗化芯显示科技开发(江苏)有限公司 一种mini-LED芯片巨量转移的方法

Also Published As

Publication number Publication date
TW202029309A (zh) 2020-08-01
TWI819172B (zh) 2023-10-21
JPWO2020136764A1 (ja) 2021-09-09
JP6888746B2 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
JP7173000B2 (ja) 半導体装置の製造方法及びエキスパンドテープ
JP5032231B2 (ja) 半導体装置の製造方法
JP5551568B2 (ja) 樹脂封止用粘着テープ及びこれを用いた樹脂封止型半導体装置の製造方法
JP4430085B2 (ja) ダイシング・ダイボンドフィルム
KR101749762B1 (ko) 칩 보유 지지용 테이프, 칩 형상 워크의 보유 지지 방법, 칩 보유 지지용 테이프를 사용한 반도체 장치의 제조 방법, 및 칩 보유 지지용 테이프의 제조 방법
JP6888746B2 (ja) 電子部品パッケージの製造方法
KR101596199B1 (ko) 반도체 장치 제조용 필름, 반도체 장치 제조용 필름의 제조 방법, 및 반도체 장치의 제조 방법
KR101563765B1 (ko) 플립 칩형 반도체 이면용 필름, 단책상 반도체 이면용 필름의 제조방법, 및 플립 칩형 반도체 장치
JP2011018804A (ja) 半導体用フィルムおよび半導体装置の製造方法
JP2010126716A (ja) 半導体装置製造用フィルムロール
TWI741197B (zh) 半導體封裝件及半導體封裝件之製造方法
JP2006261529A (ja) フリップチップ実装用アンダーフィルテープおよび半導体装置の製造方法
JP2011018806A (ja) 半導体用フィルムおよび半導体装置の製造方法
TWI601218B (zh) 具有高溫塗層之晶片封裝構造之製造方法
KR20150097446A (ko) 플립 칩형 반도체 이면용 필름, 다이싱 테이프 일체형 반도체 이면용 필름, 반도체 장치의 제조 방법 및 플립 칩형 반도체 장치
JP4725639B2 (ja) 半導体装置の製造方法
TWI697968B (zh) 半導體裝置之製造方法
KR20160129758A (ko) 반도체 소자의 이면을 보호하기 위한 이면 보호 필름, 일체형 필름, 필름, 반도체 장치의 제조 방법 및 보호 칩의 제조 방법
WO2024024852A1 (ja) 半導体装置の製造方法及びエキスパンドテープ
TW201819175A (zh) 切晶黏晶帶及半導體裝置之製造方法
JP2011035075A (ja) 半導体用フィルムの製造方法および半導体用フィルム
WO2022185489A1 (ja) 半導体装置の製造方法
JP2011253949A (ja) 半導体用フィルムおよび半導体装置の製造方法
CN111952166A (zh) 晶圆接合膜及制作方法
WO2020110619A1 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18945185

Country of ref document: EP

Kind code of ref document: A1