WO2020135775A1 - 耦合馈电的装置、移相器和天线 - Google Patents

耦合馈电的装置、移相器和天线 Download PDF

Info

Publication number
WO2020135775A1
WO2020135775A1 PCT/CN2019/129397 CN2019129397W WO2020135775A1 WO 2020135775 A1 WO2020135775 A1 WO 2020135775A1 CN 2019129397 W CN2019129397 W CN 2019129397W WO 2020135775 A1 WO2020135775 A1 WO 2020135775A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
strip line
line
transmission
ports
Prior art date
Application number
PCT/CN2019/129397
Other languages
English (en)
French (fr)
Inventor
张宏志
高启强
崔莎
聂文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020135775A1 publication Critical patent/WO2020135775A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines

Definitions

  • the present application relates to the field of communication, and more specifically, to a device for coupling feed, a phase shifter, and an antenna in the field of communication.
  • a phase shifter is a device that can adjust the phase of a wave. It is the core component of an antenna. It can change the antenna pattern by changing the phase of the signal that reaches the antenna, thereby achieving the purpose of remote control of the network coverage area. .
  • the multi-port phase shifter can complete the feeding of the multi-port antenna.
  • the current development trend of the antenna is to broaden the frequency band.
  • the dispersion of the amplitude and phase of each output port at high and low frequencies is inconsistent, it is difficult to achieve the broadband equal phase
  • the flat amplitude will cause the side lobe of the antenna pattern to deteriorate, seriously affecting the interference to the neighboring cell.
  • a device needs to be provided to help adjust the dispersion of the amplitude and phase of each output port of the phase shifter at high and low frequencies.
  • the present application provides a device for coupling feeding, a phase shifter and an antenna.
  • the device changes the capacitance of the port through the coupling between the strip lines, thereby changing the slope of the amplitude and phase of the port is beneficial to the phase shifter.
  • the consistency of the dispersion of the amplitude and phase of each output port at high and low frequencies optimizes the side lobe of the antenna pattern to reduce interference to the neighboring area.
  • a device for coupling feed comprising:
  • the first supporting medium plate
  • a first transmission belt line provided on one side of the first supporting dielectric plate, the first transmission belt line including a coupling section and a first belt line section;
  • One end of the first transmission strip line includes a first port, the first strip line segment of the first transmission strip line includes M ports, and the first strip line segment of the first coupling strip line includes N ports, And, the first port is a signal input port, the M ports and the N ports are signal output ports, or the first port is a signal output port, the M ports and the N ports The port is a signal input port, and M and N are integers greater than or equal to 1.
  • the first supporting dielectric plate is used to support the tape line adhered thereto, is a support body of the electronic component, and is a carrier for the electrical connection of the electronic component.
  • the projections of the coupling section of the first coupling strip line and the coupling section of the first transmission strip line on the plane where the first supporting dielectric plate is located at least partially coincident means that the coupling section of the first coupling strip line
  • the projection of the coupling section with the first transmission line on the plane where the first supporting dielectric plate is located may completely overlap, or may partially overlap, which is not limited herein.
  • the plane where the first supporting medium body is located can be understood as the plane formed by the length and width of the first supporting medium body.
  • the device may be a power divider configured in the phase shifter, or may be a combiner configured in the phase shifter.
  • the first port is a signal input port
  • M ports and N ports are signal output ports
  • signals are input from the first port
  • the first port and the M ports pass through the first transmission line
  • Direct communication is used to transmit signal energy.
  • the first port and the N ports transmit signal energy through the coupling electrical connection between the first transmission strip line and the first coupling strip line. That is to say, the first transmission strip line transmits part of the signal energy input from the first port to the M ports 1, and the first coupling strip line and the first transmission strip line will be input from the first port by way of electrical coupling
  • the other part of the signal energy is transmitted to N ports, so that the signal is divided into two and output through M ports and N ports, respectively, to realize the feeding of each port.
  • the capacitance of the output port (for example, M ports and N ports) can be effectively changed, thereby changing the output port
  • the slope of the amplitude and phase is helpful to achieve the consistency of the dispersion of the amplitude and phase of each output port at high and low frequencies, optimize the side lobe of the antenna pattern, and reduce the interference to the neighboring area.
  • the input signals of the M ports and the input signals of the N ports are at different frequencies, for example, the input signals of the M ports may be high-frequency signals, N ports
  • the input signal can be a low frequency signal, which is integrated into an output signal by a combiner.
  • the signal energy is transmitted through the coupling electrical connection of the first transmission strip line and the first coupling strip line, which can effectively change the capacitance of the output port (for example, the first port), thereby changing the output port’s
  • the slope of amplitude and phase when there are other output ports in the phase shifter, compare the output port in the combiner with other output ports. It can be found that the consistency of the amplitude and phase dispersion of each output port at high and low frequencies
  • the side lobe of the antenna pattern has been optimized to reduce the interference to the neighboring area.
  • the device for coupling and feeding in the embodiment of the present application includes a first transmission strip line and a first coupling strip line provided on both sides of the first supporting dielectric body, and the first transmission strip line and the first coupling
  • the transmission of signal energy through the coupling of the electrical connections between the strip lines can effectively change the inductance of the port, thereby changing the amplitude and phase slope of the port is beneficial to achieve the amplitude and high and low frequency of each output port in the phase shifter
  • the consistency of the phase dispersion optimizes the side lobe of the antenna pattern and reduces the interference to the neighboring cell.
  • the port inductance can also be changed, so the device size can be effectively reduced.
  • the device further includes:
  • a second coupling strip line provided on one side of the first supporting dielectric plate and on the same side as the first transmission strip line
  • the projection of the sub-coupling section of the first coupling strip line and the coupling section of the second coupling strip line on the plane where the first supporting dielectric plate is located at least partially coincides, so that the second coupling strip line and the The first transmission line is coupled and electrically connected.
  • the device for coupling and feeding in the embodiment of the present application can be achieved by at least partially overlapping projections of the first strip line segment of the first coupling segment and the coupling segment of the second coupling strip line on the plane where the first supporting dielectric body is located.
  • the coupling electrical connection between the first coupling strip line and the second coupling strip line enables the first strip line segment of the first coupling strip line to couple the signal energy again, which will pass through the coupling of the first coupling strip line and the first transmission strip line
  • the transmitted signal energy again transmits part of the signal energy to the P ports of the second coupling strip line through the coupling method, or the signal energy of the P ports is finally transmitted to the first port through the coupling method to realize the output from the P ports
  • the purpose of inputting smaller signal energy can also effectively change the slope of the phase and/or amplitude of the P ports relative to the first port to meet the requirements of different scenarios.
  • the device further includes:
  • the device for coupling feeding in the embodiment of the present application can be achieved by at least partially overlapping projections of the first region of the first transmission strip line and the coupling section of the third coupling strip line on the plane where the first supporting dielectric body is located.
  • the coupling electrical connection between the first transmission strip line and the third coupling strip line enables the first transmission strip line to couple energy again, and a part of the signal energy is transmitted through the coupling electrical connection of the third coupling strip line and the first transmission strip line To the S ports of the third coupling strip line, or the signal energy of the S ports is finally transmitted to the first port through the coupling electrical connection of the third coupling strip line and the first transmission strip line, and the output from the S ports is realized
  • the purpose of inputting smaller signal energy can also effectively change the slope of the phase and/or amplitude of the S ports relative to the first port to meet the requirements of different scenarios.
  • the device further includes:
  • a second transmission belt line provided on one side of the first supporting dielectric plate and on the same side as the first transmission belt line, the second transmission belt line and the first belt line segment of the first coupling belt line Electrically connected through metallized vias.
  • the second transmission line and the first coupling line of the first coupling line are electrically connected through the metalized vias, so that the first coupling line of the first coupling line and the second transmission line are directly connected, increasing the number of The size of the first strip line segment of a coupled strip line in the thickness direction (ie, the y direction) increases the signal energy transmitted in the first coupled strip line, thereby increasing the signal energy transmitted in the device.
  • the device further includes:
  • a third transmission belt line disposed on one side of the first supporting dielectric plate and on the same side as the first coupling belt line, the third transmission belt line and the first belt line segment of the first transmission belt line
  • the first area of is electrically connected through a metalized via, and the first area is the area between the first port and the first coupling strip line.
  • the area (ie, the first area) between the first port and the first coupling strip line in the first strip line segment of the first transmission strip line is set as a double-layer strip line. That is to say, it can be understood that the input end area of the first transmission strip line is set as a double-layer strip line, and for the combiner, it can be understood that the output end area of the first transmission strip line is set as a double-layer strip line.
  • the third transmission belt line and the first region in the first belt line segment are electrically connected through the metalized via, so that the first region of the first transmission belt line and the second transmission belt line are connected, which increases the number of The size of the first region of the first belt line segment of a transmission line in the thickness direction increases the signal energy transmitted on the first transmission line, thereby increasing the signal energy transmitted in the device.
  • the device further includes:
  • a fourth transmission line provided on one side of the first supporting dielectric plate and on the same side as the first coupling line, the fourth transmission line and the first transmission line segment of the first transmission line
  • the second region is electrically connected through a metalized via, the second region is the end of the coupling section of the first transmission line away from the first port and the other end of the first transmission line The area between the departments.
  • the second region of the first belt line segment of the first transmission belt line is set as a double-layer belt line.
  • the output end region of the first transmission belt line is set as The double-layer strip line
  • the combiner can be understood as setting the input end region of the first transmission strip line as a double-layer strip line.
  • the fourth transmission belt line and the second region in the first belt line segment are electrically connected through the metallized via, so that the second region of the first transmission belt line and the fourth transmission belt line 140 are connected, which increases The thickness of the second region of the first strip line segment in the thickness direction increases the signal energy transmitted on the first transmission strip line, thereby increasing the signal energy transmitted in the device.
  • the first supporting dielectric board is a printed circuit board PCB board.
  • a device for coupling feed characterized in that the device further includes:
  • the first supporting medium plate
  • a fifth transmission belt line provided on one side of the first supporting dielectric plate and on the same side as the first coupling belt line, one end of the fifth transmission belt line includes a first port, the fifth The other end of the transmission line is electrically connected to one end of the coupling section close to the fifth transmission line in the first transmission line through a metalized via,
  • the first strip line segment of the first transmission strip line includes M ports, the first strip line segment of the first coupling strip line includes N ports, and the first port is a signal input port, and the M number
  • the port and the N ports are signal output ports, or the first port is a signal output port, the M ports and the N ports are signal input ports, and M and N are both greater than or equal to 1. Integer.
  • the device for coupling feeding in the embodiment of the present application includes the first transmission strip line and the first coupling strip line provided on both sides of the first supporting dielectric body, and the same side as the first coupling strip line
  • the fifth transmission belt line connecting the fifth transmission belt line and the first transmission belt line through a metalized via to form a single-layer transmission belt line, through the coupling between the first transmission belt line and the first coupling belt line
  • Transmission of signal energy by means of electrical connection can effectively change the inductance of the port, thus changing the amplitude and phase slope of the port is conducive to achieving the consistency of the amplitude and phase dispersion of each output port in the phase shifter at high and low frequencies To optimize the side lobe of the antenna pattern and reduce interference to neighboring cells.
  • the port inductance can also be changed, so the device size can be effectively reduced.
  • phase shifter in a third aspect, includes the device of any possible design according to the first aspect or the second aspect.
  • an antenna including the phase shifter according to the third aspect.
  • FIG. 1 is a three-dimensional view of a device for coupling feed according to an embodiment of the present application.
  • FIG. 2 is a top view of a device for coupling feeding according to an embodiment of the present application.
  • FIG. 3 is a rear view of a device for coupling and feeding in an embodiment of the present application.
  • FIG. 4 is another top view of the device for coupling feeding according to an embodiment of the present application.
  • 6 to 8 are another three-dimensional diagrams of the device for coupling and feeding power according to an embodiment of the present application.
  • FIG. 9 is another top view of the device for coupling feeding according to an embodiment of the present application.
  • FIG. 10 is a front view of a device for coupling feeding according to an embodiment of the present application.
  • 11 to 14 are another three-dimensional diagrams of the device for coupling and feeding power according to an embodiment of the present application.
  • an embodiment of the present application provides a device for coupling and feeding, which includes a first transmission strip line and a first coupling strip line disposed on both sides of a first supporting dielectric body, and realizes the first transmission by coupling
  • the electrical connection between the strip line and the first coupling strip line can effectively change the capacitance of the port, thereby changing the amplitude and phase slope of the port is beneficial to realize the high and low frequency of each output port in the phase shifter Consistency of dispersion in amplitude and phase optimizes the side lobe of the antenna pattern to reduce interference to neighboring cells.
  • FIG. 1 to FIG. 12 are schematic illustrations, and any modified implementation manner or connection manner is within the protection scope of the embodiments of the present application.
  • the directions of the x-axis, y-axis, and z-axis are perpendicular to each other.
  • the direction of the z-axis can be understood as the thickness direction of the device or the first supporting medium plate
  • the direction of the x-axis can be understood as the device or
  • the length direction of the first supporting medium plate and the direction of the y-axis can be understood as the width direction of the device or the first supporting medium plate
  • the origin of the coordinate system can be understood as the geometric center of the first supporting medium plate.
  • the first supporting dielectric plate 110 is used to support the tape line adhered thereto, is a support body of the electronic component, and is a carrier for the electrical connection of the electronic component.
  • the first supporting dielectric board 110 may be a printed circuit board (PCB) board.
  • PCB printed circuit board
  • the first supporting dielectric plate 110 may also be other non-metallic materials, for example, Phenylene (PPE), Polyformal Denyde (POM), and the like.
  • PPE Phenylene
  • POM Polyformal Denyde
  • the projection of the coupling section 131 of the first coupling strip line 130 and the coupling section 121 of the first transmission strip line 120 on the plane where the first supporting dielectric plate 110 is located at least partially coincides with that means that the first coupling
  • the projections of the coupling section 131 of the strip line 130 and the coupling section 121 of the first transmission strip line 120 on the plane where the first supporting dielectric plate 110 is located may completely overlap, or may partially overlap, which is not limited herein.
  • the plane on which the first supporting medium body 110 is located can be understood as a plane composed of the length and width of the first supporting medium body 110, that is, the xy plane composed of the x direction and the y direction in the drawings.
  • the first transmission strip line 120 and the first coupling strip line 130 are respectively disposed on both sides of the first supporting dielectric plate 110.
  • the first conveyor belt line 120 is disposed on the lower layer of the first supporting dielectric plate 110, or the first conveyor belt line 120 is disposed on the first supporting dielectric plate 110 along the z-axis
  • the first coupling strip line is disposed on the upper layer of the first supporting dielectric plate 110, or the first coupling strip line 130 is disposed on the side of the first supporting dielectric plate 110 along the positive direction of the z-axis .
  • the coupling section 131 of the first coupling strip line 130 is used for coupling and electrically connecting with the coupling section 121 of the first transmission strip line 120 to transmit signal energy to the N ports 130-B of the first coupling strip line 130.
  • the first strip line segment 132 of the first coupling strip line 130 can be understood as a part or all of the strip line segments of the first coupling strip line 130 except for the coupling segment 131, as an example and not a limitation, FIG. 2 shows that except the coupling segment 131 All of the band segments of N, N ports 130-B are ports provided at any position of the first band segment 131 of the first coupling strip line 130, N is an integer greater than or equal to 1.
  • the division of the coupling segment 131 and the first strip line segment 132 of the first coupling strip line 130 in FIGS. 1 and 2 is only a schematic illustration, as long as the two divided strip line segments can achieve their respective functions, for example,
  • the coupling section 131 is used for coupling with the coupling section 121 of the first transmission belt line 120 to achieve electrical connection
  • the first belt line section 132 is a belt line section other than the coupling section 131, and the size of the two belt line sections is not divided here limited.
  • the explanation of the division of various coupling strip lines and transmission strip lines involved in the following is similar to the explanation of the division of the first coupling strip line here.
  • the coupling section 121 of the first transmission strip line 120 is used for coupling and electrical connection with the coupling section 131 of the first coupling strip line 130 to transmit signals to the N ports 130-B of the first coupling strip line.
  • the first strip line segment 122 can be understood as a portion of the first transmission strip line 120 other than the coupling segment 121, and the M ports 120-B are ports provided at any positions of the first strip line segment 121 of the first transmission strip line 120,
  • the first port 120-A is a port provided at the end of the first transmission line 120.
  • the first transmission strip line 120 includes a coupling section 121 and a first strip line section 122, and one end of the first strip line section 122 includes a first port 120-A,
  • the first strip line segment 122 includes N ports 120-B.
  • the first port 120-A is specifically located at the end of the first region 122-1, and the N ports 120-B may be located in the second Any position of the area 122-2
  • the first area 122-1 can be understood as a line segment from the first port 120-A to the coupling section 121
  • the second area 122-2 can be understood as the coupling section 121 away from the first port 120 -A line segment between the end of A and the other end of the first transmission line 120.
  • FIGS. 1 and 3 show one port 120-B
  • FIG. 5 shows three ports 120-B.
  • the three ports 120-B can be disposed at any position of the first strip line 122.
  • first area 122-1 and the second area 122-2 of the first line segment 122 in FIGS. 3 and 5 is only a schematic illustration, as long as the two areas are respectively located on both sides outside the coupling section 121. However, there is no limit to the size of the two regions.
  • the division of the coupling segment 121 and the first strip line segment 122 of the first transmission strip line 120 in FIGS. 1, 3, and 5 is only a schematic illustration, as long as the two split strip line segments can achieve their respective functions.
  • the coupling section 121 is used to couple with the coupling section 131 of the first coupling strip line 130 to achieve electrical connection
  • the first strip line section 122 is a strip line section other than the coupling section 121.
  • the division of size is not limited.
  • first strip line segment 122 of the first transmission strip line 120 shown in FIGS. 1, 3 and 5 includes two parts for illustrative purposes only.
  • the first strip line segment 122 may include only the area between the end of the coupling segment 121 and another end of the first strip line segment that does not include the first port 120-A, that is, It may include only the portion 122-2 shown in FIGS. 1, 3, and 5, and one end of the coupling section 121 of the first transmission line 120 may include the first port 120-A.
  • the first coupling The end of the coupling section 131 with the line 130 may also include a first port 120-A.
  • the ends of the two coupling sections together form the first port 120-A, and the signal energy is directly coupled from the first port 120-A
  • the first coupling strip line 130 and the first transmission strip line 120 transmit part of the signal energy to N ports and M ports, respectively.
  • the coupling area of this structure is large, which can increase the amount of capacitance.
  • the device may be a power divider configured in the phase shifter, or may be a combiner configured in the phase shifter.
  • the first port 120-A is a signal input port
  • M ports 120-B and N ports 130-B are signal output ports
  • signals are input from the first port 120-A
  • the first One port 120-A and M ports 120-B are directly connected through the first transmission line 120 to transmit signal energy
  • the first port 120-A and N ports 130-B are coupled to the first through the first transmission line 120
  • the coupling between the strip lines 130 electrically transmits signal energy.
  • the first transmission strip line 120 transmits a part of the signal energy input from the first port 120-A to the M ports 120-B, and the first coupling strip line 130 and the first transmission strip line 120 are electrically connected by coupling
  • the other part of the signal energy input from the first port 120-A is transmitted to the N ports 130-B, thereby dividing the signal into two, passing through the M ports 120-B and the N ports 130-B, respectively
  • the output realizes the feeding of each port.
  • the signal energy is 100%
  • the signal energy transmitted to the M ports through the first transmission strip line 120 may be 50%
  • the signal energy transmitted to the N ports through the first transmission strip line 120 and the first coupling strip line 130 It can be 40%, and the remaining 10% is energy loss.
  • the capacitance of the output port (for example, M ports and N ports) can be effectively changed, thereby changing the output port
  • the slope of the amplitude and phase is helpful to achieve the consistency of the dispersion of the amplitude and phase of each output port at high and low frequencies, optimize the side lobe of the antenna pattern, and reduce the interference to the neighboring area.
  • the first port 120-A is the signal output port
  • the M ports 120-B and the N ports 130-B are the signal input ports
  • the signals are from the M ports 120-B and N Port 130-B input
  • M ports 120-B and the first port 120-A are directly connected through the first transmission line 120 to transmit signal energy
  • N ports 130-B and the first port 120-A are transmitted through the first
  • the coupling electrical connection between the strip line 120 and the first coupling strip line 130 transmits signal energy.
  • the first transmission strip line 120 transmits the signal energy input from the M ports 120-B to the first port 120-A
  • a coupling strip line 130 and the first transmission strip line 120 are electrically connected by coupling.
  • the signal energy input from the N ports 130-B is transmitted to the first port 120-A, thereby combining the signal energy into one.
  • the signal energy transmitted to the M ports through the first transmission strip line 120 may be 50%
  • the signal energy transmitted to the N ports through the first transmission strip line 120 and the first coupling strip line 130 may be 40%, and the rest 10% is energy loss, then the signal energy finally transmitted to the first port 120-A is 90%.
  • the input signals of M ports 120-B and the input signals of N ports 130-B are at different frequencies, for example, the input signals of M ports 120-A It can be a high-frequency signal, and the input signals of the N ports 130-A can be low-frequency signals, which are integrated into an output signal by a combiner.
  • the signal energy is transmitted through the coupling electrical connection of the first transmission strip line and the first coupling strip line, which can effectively change the capacitance of the output port (for example, the first port), thereby changing the output port’s
  • the slope of amplitude and phase when there are other output ports in the phase shifter, compare the output port in the combiner with other output ports. It can be found that the consistency of the amplitude and phase dispersion of each output port at high and low frequencies
  • the side lobe of the antenna pattern has been optimized to reduce the interference to the neighboring area.
  • the device for coupling and feeding in the embodiment of the present application includes a first transmission strip line and a first coupling strip line provided on both sides of the first supporting dielectric body, and the first transmission strip line and the first coupling
  • the signal energy can be effectively changed by coupling the electrical connection between the strip lines, which can effectively change the capacitance of the port, thereby changing the amplitude and phase slope of the port, which is beneficial to achieve the amplitude of each output port in the phase shifter at high and low frequencies
  • the side lobe of the antenna pattern is optimized to reduce the interference to the neighboring area.
  • the port inductance can also be changed, so the device size can be effectively reduced.
  • the amplitude and phase of the ports in the device need to be designed according to the scenario, and the realization of the amplitude and phase between the ports requires reasonable design power division and matching.
  • the device based on the embodiment of the present application can be adjusted by adjusting the first transmission band
  • the coupling area between the line and the first coupling strip line is to achieve the purpose of changing the inductance, and further, to adjust the amplitude and phase slope of the port at high and low frequencies, thereby achieving the high and low frequency of each output port of the phase shifter
  • the consistency of the dispersion in amplitude and phase on the antenna optimizes the side lobe of the antenna pattern to reduce interference to the neighboring cell.
  • the coupling area can be adjusted by adjusting the overlapping area of the first transmission strip line and the first coupling strip line.
  • the size of the coupling section of the first transmission strip line and the coupling section of the first coupling strip line in the x direction or the y direction can be adjusted, and the overlapping area can be adjusted by increasing the area of the coupling section; for another example, the first transmission can be adjusted
  • the position of the strip line and the first coupling strip line, so that the overlapping area of the coupling section of the two strip lines changes, as an example and not a limitation, the first transmission strip line and the first coupling strip line may be staggered in the x direction
  • the first transmission strip line and the first coupling strip line may be arranged in the x direction to increase the overlapping area of the coupling section.
  • the above structures all realize the coupling between the strip lines in the y direction.
  • the coupling between the strip lines in the y direction can be realized, and the coupling between the strip lines can also be realized in the x direction.
  • a transmission belt line 103 is provided beside the same side of the first coupling belt line 130 to increase the size of the first transmission belt line 120 in the x direction.
  • the transmission belt line 103 and the first The transmission belt line 120 is electrically connected through the metalized via 101, so that the transmission belt line 103 communicates with the first transmission belt line 120, and the first coupling belt line 130 and the first transmission belt line 120 are on the plane where the first supporting dielectric plate 110 is located (For example, the xy plane) the projections are at least partially coincident to realize the coupling of the first coupling strip line 130 and the first transmission strip line 120 in the y direction, and the transmission strip line 103 and the first coupling strip line 130 are perpendicular to the first support
  • the projection of the plane (for example, the yz plane) of the plane where the dielectric body 110 lies at least partially overlaps to realize the electrical coupling of the first coupling strip line 130 and the transmission strip line 103 in the x direction, since the transmission strip line line
  • a transmission line 104 is provided beside the same side of the first transmission line 120 to increase the size of the first coupling line 130 in the x direction.
  • the transmission line 104 and the first The coupling strip line 130 is electrically connected through the metalized via 101, so that the transmission strip line 104 communicates with the first coupling strip line 130, and the first coupling strip line 130 and the first transmission strip line 120 are on the plane where the first supporting dielectric plate 110 is located (For example, the xy plane) the projection at least partially coincides to realize the coupling of the first coupling strip line 130 and the first transmission strip line 120 in the y direction, and the transmission strip line 104 and the first transmission strip line are perpendicular to the first supporting medium
  • the projection of the plane (for example, the yz plane) of the plane where the body 110 is located at least partially coincides to realize the coupling and electrical connection of the first transmission belt line 120 and the transmission belt line 104 in the x direction, since the transmission belt line 104 and the first coupling
  • first transmission strip line and the first coupling strip line are originally provided on both sides of the first supporting dielectric body, it is originally provided in the thickness direction (or, z direction) of the first supporting dielectric body There is space reserved for the two types of strip lines. Therefore, this method of increasing the size of the strip line does not further increase the size of the device. At the same time, it increases the signal energy transmitted in the device.
  • the first strip line segment of the first coupling strip line may be set as a double-layer strip line, or the first strip line segment of the first transmission strip line may be set as a double-layer strip line.
  • this design method will be described in detail with reference to FIGS. 1 to 8.
  • the via 101 is electrically connected.
  • the design principle is that the second transmission belt line 140 and the first transmission belt line 120 cannot be electrically connected.
  • the second transmission strip line 140 and the first coupling strip line 132 of the first coupling strip line 130 are electrically connected through the metalized via 101, so that the first transmission strip line 132 and the second transmission strip line 140 communicate with each other.
  • the size of the strip line segment 132 in the thickness direction ie, the y direction
  • the thickness (ie, the dimension in the y direction) of the first strip line segment 132 is 2.5 mm
  • the thickness of the second transmission strip line 140 is 2.5 mm
  • the first strip line segment 132 is coupled to the first by using a metalized via
  • the electrical connection of the strip line 130 can be understood as increasing the thickness of the first strip line segment 132 from 2.5 mm to 5 mm, thereby realizing an increase in the signal energy transmitted in the first coupling strip line 130 by increasing the size of the first strip line segment 132 .
  • the first region 122-1 is a region between the first port 120-A and the first coupling strip line 130.
  • the third transmission strip line 151 is disposed between the first port 120-A and the first coupling strip line 130, that is, the third transmission strip line 151 is disposed on the first area 122-1.
  • the third transmission belt line 151 may not be limited to the above-mentioned arrangement, one end of the third transmission belt line 151 may be located on the left side of the first port 120-A, and the other end is located in the first region 122- Between 1, as long as it is connected to the third transmission line in the first area 122-1 through a metalized via.
  • the gap 102 is greater than 0.
  • the design principle is that the third transmission strip line 151 and the first The coupling strip line 130 has an electrical connection, and the gap 102 cannot be too large.
  • the design principle is that energy can be transmitted to the third transmission strip line 151 and the first transmission strip line 120 through the gap.
  • the gap is 0.5 mm.
  • the area between the first port 120-A and the first coupling strip line 130 (ie, the first area 122-1) in the first strip line segment 122 is set as a double-layer strip line
  • the input end area of the first transmission strip line 120 is set as a double-layer strip line
  • the combiner it can be understood as the output end area of the first transmission strip line 120 Set to double-layer strip line.
  • the third transmission belt line 151 and the first region 122-1 in the first belt line segment 122 are electrically connected through the metalized via 101, so that the first region 122-1 of the first transmission belt line 120 and The second transmission belt line 140 communicates, increasing the thickness of the first region 122-1 of the first belt line segment 122 in the thickness direction, increasing the signal energy transmitted on the first transmission belt line 120, and thus increasing the The transmitted signal energy.
  • the device further includes:
  • the fourth transmission line 152 (shown in FIGS. 1, 2, 4, 8 to 10) provided on one side of the first supporting dielectric plate 110 and on the same side as the first coupling line 130, the fourth transmission line 152
  • the second region 122-2 (as shown in FIGS. 3 and 5) of the first belt line segment 122 of the first transmission belt line 120 is electrically connected by a metalized via, and the second region 122-2 is the first transmission belt line A region between the end of the coupling section 121 of the 120 far away from the first port 120-A and the other end of the first transmission line 120.
  • the fourth transmission line 152 is disposed on the second area 122-2.
  • the fourth transmission belt line 152 may not be limited to the above-mentioned arrangement, one end of the fourth transmission belt line 152 may be located to the right of the M ports 120-B, and the other end is located in the second region 122- Between two, as long as it is connected to the fourth transmission line 152 in the second region 122-2 through the metalized via.
  • the design principle is that the fourth transmission strip line 152 and the first coupling strip line 130 cannot be electrically connected.
  • the second region 122-2 of the first strip line segment 122 is set as a double-layer strip line, and for the power splitter, it can be understood as the output end of the first transmission strip line 120 The area is set as a double-layer strip line.
  • the input end area of the first transmission strip line 120 is set as a double-layer strip line.
  • the coupling of the first transmission strip line and the first coupling strip line may be referred to as primary coupling.
  • the signal energy may need to be coupled multiple times (for example, twice).
  • the device further includes:
  • a second coupling strip line 160 disposed on one side of the first supporting dielectric plate 110 and on the same side as the first transmission strip line 120,
  • the second coupling strip line 160 includes a coupling segment 161 and a first strip line segment 162.
  • the first coupling strip line 160 of the second coupling strip line 160 includes P ports 160-B, P is an integer greater than or equal to 1, the first coupling strip
  • the first strip line section 132 of the line 130 includes a sub-coupling section 132-1 and a second strip line section 132-2, and the second strip line section 132-2 of the first coupling strip line 130 includes the N ports,
  • one port 160-B in the first strip line segment 162 of the second coupled strip line 160 shown in FIG. 11 is only a schematic illustration, and multiple ports may be provided in the first strip line segment 162 based on actual application scenarios.
  • port 160-B you can refer to the setting method of N ports 130-B, which will not be repeated here.
  • the first strip line segment 132 of the first coupling strip line 130 is used to couple energy again, that is, by making the coupling segment 161 of the first strip line segment 132 and the second coupling strip line 160 in the first supporting dielectric body
  • the signal energy transmitted to the M ports through the first transmission strip line 120 may be 50%, through the first transmission strip line 120 and the first coupling strip line
  • the signal energy transmitted to the N ports through the coupling electrical connection between 130 may be 30%
  • the signal energy transmitted to the P ports through the coupling electrical connection between the first coupling strip line 130 and the second coupling strip line 160 may be 10%, the remaining 10% is energy loss.
  • the first strip line segment 131 of the first coupling strip line 130 is provided as a single layer, and does not need to be set as a double layer, that is, there is no need to provide the first strip with the first coupling strip line 130
  • the line segment 131 metalizes the above-mentioned second transmission line 140 connected by vias.
  • the device for coupling and feeding in the embodiment of the present application can be achieved by at least partially overlapping projections of the first strip line segment of the first coupling segment and the coupling segment of the second coupling strip line on the plane where the first supporting dielectric body is located.
  • the coupling electrical connection between the first coupling strip line and the second coupling strip line enables the first strip line segment of the first coupling strip line to couple the signal energy again, which will pass through the coupling of the first coupling strip line and the first transmission strip line
  • the transmitted signal energy again transmits part of the signal energy to the P ports of the second coupling strip line through the coupling method, or the signal energy of the P ports is finally transmitted to the first port through the coupling method to realize the output from the P ports
  • the purpose of inputting smaller signal energy can also effectively change the slope of the phase and/or amplitude of the P ports relative to the first port to meet the requirements of different scenarios.
  • the coupling strip line that realizes the second coupling is on the same side as the first coupling strip line.
  • the device further includes:
  • the first band segment 172 of the line 170 includes S ports 170-B, where S is an integer greater than or equal to 1, where,
  • the third coupling strip line 170 is disposed between the first port 120 -A and the first coupling strip line 130.
  • the third coupling strip line 170 may not be limited to the above-mentioned arrangement, one end of the third coupling strip line 170 may be located on the left side of the first port 120-A, and the other end is located in the first region 122- Between 1, it suffices to realize the coupling and electrical connection with the third coupling strip line 170 in the first region 122-1.
  • one port 170-B in the first strip line segment 172 of the third coupling strip line 170 shown in FIG. 12 is only a schematic illustration, and multiple ports may be provided in the first strip line segment 172 based on actual application scenarios.
  • port 170-B please refer to the setting method of N ports 130-B, which will not be repeated here.
  • the first area 122-1 of the first transmission line 120 is used to further couple energy, that is, by coupling the first area 122-1 of the first transmission line 120 to the third coupling line 170
  • the projection of the segment 171 on the plane where the first supporting dielectric body 110 lies at least partially overlaps to realize the coupling electrical connection between the two strip lines, which will be transmitted through the coupling of the third coupling strip line 170 and the first transmission strip line 120
  • the signal energy transmits a part of the signal energy to the S ports 170-B of the third coupling strip line 170 through a coupling manner, or finally transmits the signal energy of the S ports 170-B to the first port 120-A through a coupling manner.
  • the signal energy transmitted to the M ports through the first transmission strip line 120 may be 50%, through the first transmission strip line 120 and the third coupling strip line
  • the coupling electrical connection between 170 and the signal energy transmitted to the S ports 170-A is 20%, and the signal energy transmitted to the N ports through the coupling electrical connection between the first transmission strip line 120 and the first coupling strip line 130 It can be 20%, and the remaining 10% is energy loss.
  • the first area 122-1 of the first strip line segment 122 of the first transmission strip line 120 is set as a single layer, and does not need to be set as a double layer, that is, it does not need to be set with the first transmission
  • the first region 122-1 of the strip line 120 is metalized with the above-mentioned third transmission strip line 151 connected by a via.
  • the device further includes:
  • a second supporting dielectric plate 180 provided on one side of the first conveyor belt line 110;
  • a fourth coupling strip line 190 provided on one side of the second supporting dielectric body 180, the fourth coupling strip line 190 and the first transmission strip line 120 are respectively located on both sides of the second supporting dielectric body 180, and the fourth coupling strip line 190 It includes a coupling segment 191 and a first strip line segment 192.
  • the first strip line segment 192 of the fourth coupling strip line 190 includes Q ports 190-B, Q is an integer greater than or equal to 1, where,
  • first belt line segment and the second belt line segment may completely overlap, or may partially overlap.
  • the second strip segment shown in FIG. 13 is the first region 122-1 of the first strip segment 122 described above.
  • the second strip segment may also be the second region of the first strip segment 122 122-2, or the second strip line segment is the first strip line segment, which is not limited here, as long as the area of the second strip line segment is any area other than the coupling segment 121.
  • one port 190-B in the first strip line segment 192 of the fourth coupling strip line 190 shown in FIG. 13 is only a schematic illustration, and multiple ports may be provided in the first strip line segment 192 based on actual application scenarios.
  • port 190-B please refer to the setting method of N ports 130-B, which will not be repeated here.
  • the structures in the above 3 can refer to FIGS. 1 to 10, and the first strip line segment of the first coupling strip line is set as a double-layer strip line, for example, adding a second transmission strip line
  • the first transmission line of the first transmission belt line can also be set as a double-layer belt line, for example, adding a third
  • the transmission belt line and/or the fourth transmission belt line realizes that at least one of the third transmission belt line or the fourth transmission belt line is electrically connected to the metalized via of the first transmission belt line.
  • the device for coupling and feeding.
  • the device corresponding to FIG. 1 to FIG. 13 is different in that the strip line that is electrically coupled to the first coupling strip line is A single-layer strip line formed by electrically connecting through metallized vias.
  • the device includes:
  • the first supporting dielectric plate 110 The first supporting dielectric plate 110;
  • the first strip line segment 122 of the first transmission strip line 120 includes M ports 120-B
  • the first strip line segment 132 of the first coupling strip line 130 includes N ports 130-B
  • the first port 191-A is a signal Input ports
  • M ports 120-B and N ports 130-B are signal output ports
  • the first port 191-A is a signal output port
  • M ports 120-B and N ports 130-B are signal inputs Port
  • M and N are integers greater than or equal to 1.
  • first supporting dielectric body 110 for the specific description of the first supporting dielectric body 110, the first transmission strip line 120, and the first coupling strip line 130, reference may be made to the related descriptions of the embodiments corresponding to FIG. 1 to FIG.
  • the fifth transmission belt line 191 and the first transmission belt line 120 on both sides of the first supporting medium body 110 are provided, and the fifth transmission belt line 191 and the first transmission belt line 120 are passed through the metalized via 101 Electrically connected to form a single-layer transmission strip line that directly communicates with the first port 191-A, which can be compared to the first transmission strip line in the embodiments corresponding to FIGS. 1 to 13 above, so that the signal energy flows from the first port 191-A is directly transmitted to the M ports 120-B, or the signal energy can be transmitted from the M ports 120-B to the first port 191-A.
  • the functional principle of the single-layer strip line formed by the fifth transmission strip line 191 and the first transmission strip line 120 is the same as that of the first transmission strip line 120 in the embodiment corresponding to FIGS. 1 to 13. Repeat.
  • the device for coupling feeding in the embodiment of the present application includes the first transmission strip line and the first coupling strip line provided on both sides of the first supporting dielectric body, and the same side as the first coupling strip line
  • the fifth transmission belt line connecting the fifth transmission belt line and the first transmission belt line through a metalized via to form a single-layer transmission belt line, through the coupling between the first transmission belt line and the first coupling belt line
  • Transmission of signal energy by means of electrical connection can effectively change the inductance of the port, thus changing the amplitude and phase slope of the port is conducive to achieving the consistency of the amplitude and phase dispersion of each output port in the phase shifter at high and low frequencies To optimize the side lobe of the antenna pattern and reduce interference to neighboring cells.
  • the port inductance can also be changed, so the device size can be effectively reduced.
  • phase shifter includes the devices described in the embodiments corresponding to the foregoing FIGS. 1 to 14, and details are not described herein again.
  • the power splitter and the combiner having the above-mentioned structure can be configured at the same time based on actual needs.
  • the input signals of the M ports and the input signals of the N ports are located at different frequencies, and the output signals of the M ports and the input signals of the N ports may be output from different power dividers Some of the signals are integrated into an output signal through the combiner.
  • the signal energy is transmitted through the coupling electrical connection of the first transmission strip line and the first coupling strip line, which can effectively change the capacitance of the output port (for example, the first port), thereby changing the output port’s
  • the phase shifter for example, the port where the power splitter outputs other signals
  • compare the output port in the combiner with other output ports It can be found that each output port The consistency of the dispersion of the amplitude and phase at high and low frequencies is improved, and the side lobe of the antenna pattern is optimized, which further reduces the interference to the neighboring cell.
  • An embodiment of the present application further provides an antenna including the above phase shifter configured with the devices described in the embodiments corresponding to FIG. 1 to FIG. 14.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种耦合馈电的装置、移相器和天线,该装置包括设置在第一支撑介质体两侧的第一传输带线和第一耦合带线,通过耦合方式实现该第一传输带线和该第一耦合带线之间的电连接,可以有效改变端口的容感量,从而,改变端口的幅度和相位的斜率,有利于实现移相器中各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。

Description

耦合馈电的装置、移相器和天线
本申请要求于2018年12月29日提交中国专利局、申请号为201811635109.7、申请名称为“耦合馈电的装置、移相器和天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中耦合馈电的装置、移相器和天线。
背景技术
移相器是能够对波的相位进行调整的一种装置,是天线的核心组成部分,可以通过改变到达天线的信号的相位来改变天线的方向图,进而实现对网络覆盖区域进行远程控制的目的。
多端口移相器可以完成对多端口天线的馈电,目前的天线的发展趋势是宽频化,但是,由于各个输出端口在高低频的幅度和相位的色散不一致,很难达到宽频化的等相位和平坦幅度,致使天线的方向图副瓣恶化,严重影响对邻区的干扰。
基于此,需要提供一种装置,有助于调整移相器的各个输出端口在高低频的幅度和相位的色散。
发明内容
本申请提供一种耦合馈电的装置、移相器和天线,该装置通过带线之间的耦合改变端口的容感量,从而,改变端口的幅度和相位的斜率,有利于移相器中各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
第一方面,提供了一种耦合馈电的装置,该装置包括:
第一支撑介质板;
设置在所述第一支撑介质板的一侧的第一传输带线,所述第一传输带线包括耦合段和第一带线段;
设置在所述第一支撑介质板的另一侧的第一耦合带线,所述第一耦合带线包括耦合段和第一带线段,其中,所述第一耦合带线的耦合段与所述第一传输带线的耦合段在所述第一支撑介质板所在的平面的投影至少部分重合,以使得所述第一耦合带线和所述第一传输带线耦合电连接;
所述第一传输带线的一个端部包括第一端口,所述第一传输带线的第一带线段包括M个端口,所述第一耦合带线的第一带线段包括N个端口,以及,所述第一端口为信号输入端口,所述M个端口和所述N个端口为信号输出端口,或,所述第一端口为信号输出端口,所述M个端口和所述N个端口为信号输入端口,M和N都为大于或等于1的整数。
其中,M个端口和N个端口在第一支撑介质体所在的平面的投影不重合。
这里,第一支撑介质板用于支撑粘合在上面的带线,是电子元器件的支撑体,是电子元器件电器连接的载体。
在本申请实施例中,第一耦合带线的耦合段与第一传输带线的耦合段在第一支撑介质板所在的平面的投影至少部分重合表示的是,第一耦合带线的耦合段与第一传输带线的耦合段在第一支撑介质板所在的平面的投影可以完全重合,也可以部分重合,此处不做任何限定。其中,第一支撑介质体所在的平面可以理解为由第一支撑介质体的长和宽构成的平面。
在本申请实施例中,该装置可以是配置在移相器中的功分器,也可以是配置在移相器中的合路器。
当该装置是功分器时,第一端口为信号输入端口,M个端口和N个端口都为信号输出端口,信号从第一端口输入,第一端口与M个端口通过第一传输带线直接连通来传输信号能量,第一端口与N个端口通过第一传输带线和第一耦合带线之间的耦合电连接来传输信号能量。也就是说,第一传输带线将从第一端口输入的信号能量的一部分传输至M个端口1,第一耦合带线和第一传输带线通过耦合电连接的方式将从第一端口输入的信号能量的另一部分传输至N个端口,从而,将信号一分为二,分别通过M个端口和N个端口输出,实现了各个端口的馈电。
因此,通过第一传输带线和第一耦合带线的耦合电连接的方式传输信号能量,可以有效改变输出端口(例如,M个端口和N个端口)的容感量,从而,改变输出端口的幅度和相位的斜率,有利于实现各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
当该装置是合路器时,第一端口为信号输出端口,M个端口和N个端口都为信号输入端口,信号从M个端口和N个端口输入,M个端口与第一端口通过第一传输带线直接连通来传输信号能量,N个端口与第一端口通过第一传输带线和第一耦合带线之间的耦合电连接来传输信号能量。也就是说,第一传输带线将从M个端口输入的信号能量传输至第一端口,第一耦合带线和第一传输带线通过耦合电连接的方式将从N个端口输入的信号能量传输至第一端口,从而,将信号能量合二为一。
需要说明的是,当该装置为合路器时,M个端口的输入信号与N个端口的输入信号是位于不同频率的,例如,M个端口的输入信号可以是高频信号,N个端口的输入信号可以是低频信号,通过合路器整合为一个输出信号。在合路器中通过第一传输带线和第一耦合带线的耦合电连接的方式传输信号能量,可以有效改变输出端口(例如,第一端口)的容感量,从而,改变输出端口的幅度和相位的斜率,当移相器中还有其他输出端口时,将合路器中的输出端口与其他输出端口比较,可以发现,各个输出端口在高低频的幅度和相位的色散的一致性提高,天线的方向图副瓣得到了优化,减少了对邻区的干扰。
因此,本申请实施例的耦合馈电的装置,该装置包括设置在第一支撑介质体两侧的第一传输带线和第一耦合带线,通过该第一传输带线和该第一耦合带线之间的耦合电连接的方式传输信号能量可以有效地改变端口的容感量,从而,改变端口的幅度和相位的斜率,有利于实现移相器中各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
此外,相较于目前的通过在功分、合路设计时增加开路短路枝节或者电容以及电感器 件改变端口的容感性(即,改变端口的容感量)的方式,在不需要增加装置尺寸的情况下同样可以改变端口的容感性,因此,可以有效地减少装置尺寸。
在一种可能的设计中,所述装置还包括:
设置在所述第一支撑介质板的一侧且与所述第一传输带线同侧的第二耦合带线,
所述第二耦合带线包括耦合段和第一带线段,所述第二耦合带线的第一带线段包括P个端口,P为大于或等于1的整数,所述第一耦合带线的第一带线段包括子耦合段和第二带线段,所述第一耦合带线的第二带线段包括所述N个端口,其中,
所述第一耦合带线的子耦合段与所述第二耦合带线的耦合段在所述第一支撑介质板所在的平面的投影至少部分重合,以使得所述第二耦合带线和所述第一传输带线耦合电连接。
因此,本申请实施例的耦合馈电的装置,通过使得第一耦合段的第一带线段与第二耦合带线的耦合段在第一支撑介质体所在的平面的投影至少部分重合,可以实现第一耦合带线和第二耦合带线之间的耦合电连接,使得第一耦合带线的第一带线段能够再次耦合信号能量,将通过第一耦合带线和第一传输带线的耦合而传输的信号能量再次通过耦合方式传输一部分信号能量至第二耦合带线的P个端口,或者,将P个端口的信号能量通过耦合方式最终传输至第一端口,实现了从P个端口输出或输入较小信号能量的目的,也能有效地改变P个端口相对于第一端口的相位和/或幅度的斜率,以满足不同场景的需求。
在一种可能的设计中,所述装置还包括:
设置在所述第一支撑介质板的一侧且与所述第一耦合带线同侧的第三耦合带线,所述第三耦合带线包括耦合段和第一带线段,所述第三耦合带线的第一带线段包括S个端口,S为大于或等于1的整数,其中,
所述第三耦合带线的耦合段与所述第一传输带线的第一带线段的第一区域在所述第一支撑介质板所在的平面的投影至少部分重合,以使得所述第三耦合带线和所述第一传输带线耦合电连接,所述第一区域为所述第一端口与所述第一耦合带线之间的区域。
因此,本申请实施例的耦合馈电的装置,通过使得第一传输带线的第一区域与第三耦合带线的耦合段在第一支撑介质体所在的平面的投影至少部分重合,可以实现第一传输带线和第三耦合带线之间的耦合电连接,使得第一传输带线可以再次耦合能量,通过第三耦合带线和第一传输带线的耦合电连接将一部分信号能量传输至第三耦合带线的S个端口,或者,将S个端口的信号能量通过第三耦合带线和第一传输带线的耦合电连接最终传输至第一端口,实现了从S个端口输出或输入较小信号能量的目的,也能有效地改变S个端口相对于第一端口的相位和/或幅度的斜率,以满足不同场景的需求。
在一种可能的设计中,所述装置还包括:
设置在所述第一支撑介质板的一侧且与所述第一传输带线同侧的第二传输带线,所述第二传输带线与所述第一耦合带线的第一带线段通过金属化过孔电连接。
这样,通过金属化过孔将第二传输带线和第一耦合带线的第一带线段电连接,使第一耦合带线的第一带线段和第二传输带线直接连通,增加了第一耦合带线的第一带线段在厚度方向(即,y方向)的尺寸,增加了在第一耦合带线中传输的信号能量,从而,增加了在装置中传输的信号能量。
在一种可能的设计中,所述装置还包括:
设置在所述第一支撑介质板的一侧且与所述第一耦合带线同侧的第三传输带线,所述第三传输带线与所述第一传输带线的第一带线段的第一区域通过金属化过孔电连接,所述第一区域为所述第一端口与所述第一耦合带线之间的区域。
在这种设计中,将第一传输带线的第一带线段中第一端口与第一耦合带线之间的区域(即,第一区域)设置为双层带线,对于功分器来说,可以理解为将第一传输带线的输入端区域设置为双层带线,对于合路器来说,可以理解为将第一传输带线的输出端区域设置为双层带线。通过金属化过孔将第三传输带线和第一带线段中的第一区域通过金属化过孔电连接,使第一传输带线的第一区域和第二传输带线连通,增加了第一传输带线的第一带线段的第一区域在厚度方向的尺寸,增加了在第一传输带线上传输的信号能量,从而,增加了在装置中传输的信号能量。
在一种可能的设计中,所述装置还包括:
设置在所述第一支撑介质板的一侧且与所述第一耦合带线同侧的第四传输带线,所述第四传输带线与所述第一传输带线的第一带线段的第二区域通过金属化过孔电连接,所述第二区域为所述第一传输带线的耦合段中远离所述第一端口的端部与所述第一传输带线的另一个端部之间的区域。
在这种设计中,将第一传输带线的第一带线段的第二区域设置为双层带线,对于功分器来说,可以理解为将第一传输带线的输出端区域设置为双层带线,对于合路器来说,可以理解为将第一传输带线的输入端区域设置为双层带线。通过金属化过孔将第四传输带线和第一带线段中的第二区域通过金属化过孔电连接,使得第一传输带线的第二区域和第四传输带线140连通,增加了第一带线段的第二区域在厚度方向的尺寸,增加了在第一传输带线上传输的信号能量,从而,增加了在装置中传输的信号能量。
在一种可能的设计中,其特征在于,
所述第一支撑介质板为印刷电路板PCB板。
第二方面,提供一种耦合馈电的装置,其特征在于,所述装置还包括:
第一支撑介质板;
设置在所述第一支撑介质板的一侧的第一传输带线,所述第一传输带线包括耦合段和第一带线段;
设置在所述第一支撑介质板的另一侧的第一耦合带线,所述第一耦合带线包括耦合段和第一带线段,其中,所述第一耦合带线的耦合段与所述第一传输带线的耦合段在所述第一支撑介质板所在的平面的投影至少部分重合,以使得所述第一耦合带线和所述第一传输带线耦合电连接;
设置在所述第一支撑介质板的一侧且与所述第一耦合带线同侧的第五传输带线,所述第五传输带线的一个端部包括第一端口,所述第五传输带线的另一个端部与所述第一传输带线中靠近所述第五传输带线的耦合段一个端部通过金属化过孔电连接,
所述第一传输带线的第一带线段包括M个端口,所述第一耦合带线的第一带线段包括N个端口,以及,所述第一端口为信号输入端口,所述M个端口和所述N个端口为信号输出端口,或,所述第一端口为信号输出端口,所述M个端口和所述N个端口为信号输入端口,M和N都为大于或等于1的整数。
因此,本申请实施例的耦合馈电的装置,该装置包括设置在第一支撑介质体两侧的第 一传输带线和第一耦合带线,以及,设置在与第一耦合带线同侧的第五传输带线,将第五传输带线与第一传输带线通过金属化过孔连接形成单层传输带线,通过该第一传输带线和该第一耦合带线之间的耦合电连接的方式传输信号能量,可以有效地改变端口的容感量,从而,改变端口的幅度和相位的斜率,有利于实现移相器中各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
此外,相较于目前的通过在功分、合路设计时增加开路短路枝节或者电容以及电感器件改变端口的容感性(即,改变端口的容感量)的方式,在不需要增加装置尺寸的情况下同样可以改变端口的容感性,因此,可以有效地减少装置尺寸。
第三方面,提供了一种移相器,所述移相器包括上述第一方面或第二方面中任一种可能的设计的装置。
第四方面,提供了一种天线,所述天线包括上述第三方面所述的移相器。
附图说明
图1本申请实施例的耦合馈电的装置的三维图。
图2是本申请实施例的耦合馈电的装置的俯视图。
图3是本申请实施例的耦合馈电的装置的背面图。
图4是本申请实施例的耦合馈电的装置的另一俯视图。
图5是本申请实施例的耦合馈电的装置的另一俯视图。
图6至图8是本申请实施例的耦合馈电的装置的另一三维图。
图9是本申请实施例的耦合馈电的装置的另一俯视图。
图10是本申请实施例的耦合馈电的装置的主视图。
图11至图14是本申请实施例的耦合馈电的装置的另一三维图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
如背景技术所述,在多端口移相器中,由于各个输出端口在高低频的幅度和相位的色散不一致,很难达到宽频化的等相位和平坦幅度,致使天线的方向图副瓣恶化,严重影响对邻区的干扰。
基于此,本申请实施例提供了一种耦合馈电的装置,该装置包括设置在第一支撑介质体两侧的第一传输带线和第一耦合带线,通过耦合方式实现该第一传输带线和该第一耦合带线之间的电连接,可以有效地改变端口的容感量,从而,改变端口的幅度和相位的斜率,有利于实现移相器中各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
下面,结合图1至图12,对本申请实施例的耦合馈电的装置进行详细说明。
应理解,图1至图12所示的耦合馈电的装置以及各个部件的示意性结构图都是示意性说明,任何变形的实现方式或连接方式都在本申请实施例的保护范围内。
为了便于描述,首先对本申请实施例的附图的坐标系进行说明。在所有附图中,x轴、y轴和z轴的方向两两垂直,z轴的方向可以理解为该装置或该第一支撑介质板的厚度方向,x轴的方向可以理解为该装置或该第一支撑介质板的长度方向,y轴的方向可以理解为该装 置或该第一支撑介质板的宽度方向,坐标系的原点可以理解为该第一支撑介质板的几何中心。
图1所示为本申请实施例的耦合馈电的装置的三维图,图2所示为本申请实施例的耦合馈电的装置的俯视图,图3所示为本申请实施例的耦合馈电的装置的仰视图。如图1至图3所示,该装置包括:
第一支撑介质板110;
设置在第一支撑介质板110的一侧的第一传输带线120,第一传输带线120包括耦合段121和第一带线段122,第一传输带线120的一个端部包括第一端口120-A,第一传输带线120的第一带线段122包括M个端口120-B;
设置在第一支撑介质板110的另一侧的第一耦合带线130,第一耦合带线130包括耦合段131和第一带线段132,第一耦合带线130的第一带线段132包括N个端口130-B;
其中,第一耦合带线130的耦合段131与第一传输带线120的耦合段121在第一支撑介质板110所在的平面的投影至少部分重合,以使得第一耦合带线130和第一传输带线120耦合电连接。
此外,M个端口120-B和N个端口130-B在第一支撑介质体110所在的平面的投影不重合。
这里,第一支撑介质板110用于支撑粘合在上面的带线,是电子元器件的支撑体,是电子元器件电器连接的载体。
在一种可能的设计中,第一支撑介质板110可以是印刷电路板(printed circuit board,PCB)板。
作为示例而非限定,第一支撑介质板110也可以是其他非金属材料,例如,聚笨醚(Phenylene ether,PPE),聚甲醛(Polyformaldenyde,POM)等。
在本申请实施例中,第一耦合带线130的耦合段131与第一传输带线120的耦合段121在第一支撑介质板110所在的平面的投影至少部分重合表示的是,第一耦合带线130的耦合段131与第一传输带线120的耦合段121在第一支撑介质板110所在的平面的投影可以完全重合,也可以部分重合,此处不做任何限定。其中,第一支撑介质体110所在的平面可以理解为由第一支撑介质体110的长和宽构成的平面,即为附图中由x方向和y方向构成的xy平面。通过使得耦合段131与耦合段121在第一支撑介质板110所在的平面的投影至少部分重合,可以实现第一耦合带线130和第一传输带线120之间的耦合电连接,以传输信号能量,完成端口的馈电。
下面,结合具体的附图,对各个部件之间的连接关系以及位置关系做详细说明。
第一传输带线120和第一耦合带线130分别设置在第一支撑介质板110的两侧。作为示例而非限定,参考图1,第一传输带线120设置在第一支撑介质板110的下层,或者说,第一传输带线120设置在第一支撑介质板110的沿着z轴的负方向的一侧,第一耦合带线设置在第一支撑介质板110的上层,或者说,第一耦合带线130设置在第一支撑介质板110的沿着z轴的正方向的一侧。
第一耦合带线130的耦合段131用于和第一传输带线120的耦合段121进行耦合电连接,以传输信号能量至第一耦合带线130的N个端口130-B。第一耦合带线130的第一带线段132可以理解为第一耦合带线130中除耦合段131以外的部分或全部带线段,作为示例而非限 定,图2所示为除耦合段131以外的全部带线段,N个端口130-B是设置在第一耦合带线130的第一带线段131的任意位置的端口,N为大于或等于1的整数。
作为示例而非限定,参考图1和图2,第一带线段132包括1个端口130-B,可以设置在第一带线段132的端部;参考图4,第一带线段132包括3个端口130-B,可以设置在第一带线段132的任意位置。应理解,图1、图2和图4所示的端口130-B的数量以及位置仅为示意性说明,不应对本申请实施例构成限定。
应理解,图1和图2中对第一耦合带线130的耦合段131和第一带线段132的划分仅为示意性说明,只要划分的两个带线段能实现各自功能即可,例如,耦合段131用于和第一传输带线120的耦合段121进行耦合实现电连接,以及,第一带线段132是耦合段131以外的带线段,此处对两个带线段的尺寸的划分没有限定。下文中涉及到的对各种耦合带线和传输带线的划分的解释同此处针对第一耦合带线的划分的解释类似。
第一传输带线120的耦合段121用于和第一耦合带线130的耦合段131进行耦合电连接,以传输信号至第一耦合带线的N个端口130-B。第一带线段122可以理解为第一传输带线120中除耦合段121以外的部分,M个端口120-B是设置在第一传输带线120的第一带线段121的任意位置的端口,第一端口120-A是设置在第一传输带线120的端部的端口。
作为示例而非限定,参考图1、图3和图5,第一传输带线120包括耦合段121和第一带线段122,第一带线段122的一个端部包括第一端口120-A,第一带线段122包括N个端口120-B。当第一带线段122包括第一区域122-1和第二区域122-2时,第一端口120-A具体位于第一区域122-1的端部,N个端口120-B可以位于第二区域122-2的任意位置,第一区域122-1可以理解为第一端口120-A至耦合段121之间的带线段,第二区域122-2可以理解为耦合段121远离第一端口120-A的端部与第一传输带线120的另一个端部之间的带线段。图1和图3示出了一个端口120-B,图5示出了3个端口120-B,3个端口120-B可以设置在第一带线段122的任意位置。
应理解,图3和图5对第一带线段122的第一区域122-1和第二区域122-2的划分仅为示意性说明,只要两个区域分别位于耦合段121以外的两侧即可,对两个区域的尺寸的划分没有限定。
还应理解,图1、图3和图5中对第一传输带线120的耦合段121和第一带线段122的划分仅为示意性说明,只要划分的两个带线段能实现各自功能即可,例如,耦合段121用于和第一耦合带线130的耦合段131进行耦合实现电连接,以及,第一带线段122是耦合段121以外的带线段,此处对两个带线段的尺寸的划分没有限定。
还应理解,图1、图2和图5所示的端口120-B的数量以及位置仅为示意性说明,不应对本申请实施例构成限定。
还应理解,图1、图3和图5所示的第一传输带线120的第一带线段122包括两部分仅为示意性说明。在一种可能的设计中,第一带线段122可以仅包括耦合段121的端部与第一带线段的另一个不包括第一端口120-A的端部之间的区域,也就是说,可以仅包括图1、图3和图5所示的122-2部分,第一传输带线120的耦合段121的一个端部可以包括第一端口120-A,这种情况中,第一耦合带线130的耦合段131的端部也可以包括第一端口120-A,两个耦合段的端部共同形成第一端口120-A,将信号能量直接从第一端口120-A开始进行耦合,第一耦合带线130和第一传输带线120将部分信号能量分别传输至N个端口和M个端口 上。在与图1、图3和图5的其他结构相同的条件下,这种结构的耦合面积大,可以增加容感量。
在本申请实施例中,该装置可以是配置在移相器中的功分器,也可以是配置在移相器中的合路器。
当该装置是功分器时,第一端口120-A为信号输入端口,M个端口120-B和N个端口130-B都为信号输出端口,信号从第一端口120-A输入,第一端口120-A与M个端口120-B通过第一传输带线120直接连通来传输信号能量,第一端口120-A与N个端口130-B通过第一传输带线120和第一耦合带线130之间的耦合电连接来传输信号能量。也就是说,第一传输带线120将从第一端口120-A输入的信号能量的一部分传输至M个端口120-B,第一耦合带线130和第一传输带线120通过耦合电连接的方式将从第一端口120-A输入的信号能量的另一部分传输至N个端口130-B,从而,将信号一分为二,分别通过M个端口120-B和N个端口130-B输出,实现了各个端口的馈电。例如,信号能量为100%,通过第一传输带线120传输至M个端口的信号能量可以是50%,通过第一传输带线120和第一耦合带线130传输至N个端口的信号能量可以是40%,其余的10%为能量损耗。
因此,通过第一传输带线和第一耦合带线的耦合电连接的方式传输信号能量,可以有效改变输出端口(例如,M个端口和N个端口)的容感量,从而,改变输出端口的幅度和相位的斜率,有利于实现各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
当该装置是合路器时,第一端口120-A为信号输出端口,M个端口120-B和N个端口130-B都为信号输入端口,信号从M个端口120-B和N个端口130-B输入,M个端口120-B与第一端口120-A通过第一传输带线120直接连通来传输信号能量,N个端口130-B与第一端口120-A通过第一传输带线120和第一耦合带线130之间的耦合电连接来传输信号能量。也就是说,第一传输带线120将从M个端口120-B输入的信号能量传输至第一端口120-A,一耦合带线130和第一传输带线120通过耦合电连接的方式将从N个端口130-B输入的信号能量传输至第一端口120-A,从而,将信号能量合二为一。例如,通过第一传输带线120传输至M个端口的信号能量可以是50%,通过第一传输带线120和第一耦合带线130传输至N个端口的信号能量可以是40%,其余的10%为能量损耗,则最终传输至第一端口120-A的信号能量为90%。
需要说明的是,当该装置为合路器时,M个端口120-B的输入信号与N个端口130-B的输入信号是位于不同频率的,例如,M个端口120-A的输入信号可以是高频信号,N个端口130-A的输入信号可以是低频信号,通过合路器整合为一个输出信号。在合路器中通过第一传输带线和第一耦合带线的耦合电连接的方式传输信号能量,可以有效改变输出端口(例如,第一端口)的容感量,从而,改变输出端口的幅度和相位的斜率,当移相器中还有其他输出端口时,将合路器中的输出端口与其他输出端口比较,可以发现,各个输出端口在高低频的幅度和相位的色散的一致性提高,天线的方向图副瓣得到了优化,减少了对邻区的干扰。
因此,本申请实施例的耦合馈电的装置,该装置包括设置在第一支撑介质体两侧的第一传输带线和第一耦合带线,通过该第一传输带线和该第一耦合带线之间的耦合电连接的方式传输信号能量,可以有效地改变端口的容感量,从而,改变端口的幅度和相位的斜率, 有利于实现移相器中各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
此外,相较于目前的通过在功分、合路设计时增加开路短路枝节或者电容以及电感器件改变端口的容感性(即,改变端口的容感量)的方式,在不需要增加装置尺寸的情况下同样可以改变端口的容感性,因此,可以有效地减少装置尺寸。
一般情况下,该装置中的端口的幅度和相位需要依据场景设计,端口间的幅度和相位的实现需要合理的设计功分、匹配,基于本申请实施例的装置,可以通过调整第一传输带线和第一耦合带线之间的耦合面积来实现改变容感性的目的,进而,实现端口在高低频上的幅度和相位的斜率的调整,从而,实现移相器中各个输出端口在高低频上的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
在一种可能的设计中,调整第一传输带线和第一耦合带线的重合面积可以调整耦合面积。例如,可以调整第一传输带线的耦合段和第一耦合带线的耦合段的在x方向或y方向的尺寸,通过增加耦合段的面积来调整重合面积;再例如,可以调整第一传输带线和第一耦合带线的位置,从而,使得两个带线的耦合段的重合面积发生改变,作为示例而非限定,可以将第一传输带线和第一耦合带线在x方向错开设置,以减少耦合段的重合面积,可以将第一传输带线和第一耦合带线在x方向重合设置,以增加耦合段的重合面积。
上述结构都是在y方向上实现带线之间的耦合,为了增加耦合面积,在y方向上实现带线之间的耦合的同时,还可以同时在x方向上实现带线之间的耦合。
参考图6,在一种可能的设计中,在第一耦合带线130的同侧的旁边设置传输带线103,增加第一传输带线120在x方向的尺寸,传输带线103与第一传输带线120通过金属化过孔101电连接,使得传输带线103与第一传输带线120连通,第一耦合带线130与第一传输带线120在第一支撑介质板110所在的平面(例如,xy平面)的投影至少部分重合,实现第一耦合带线130与第一传输带线120在y方向上的耦合,传输带线103与第一耦合带线130在垂直于第一支撑介质体110所在的平面的平面(例如,yz平面)的投影至少部分重合,实现第一耦合带线130与传输带线103在x方向的耦合电连接,由于传输带线103与第一传输带线120通过金属化过孔电连接,相当于将第一传输带线120在y方向的尺寸加宽,因此,理论上也是实现了第一传输带线120与第一耦合带线130在x方向的耦合电连接。
参考图7,在一种可能的设计中,在第一传输带线120的同侧的旁边设置传输带线104,增加第一耦合带线130在x方向的尺寸,传输带线104与第一耦合带线130通过金属化过孔101电连接,使得传输带线104与第一耦合带线130连通,第一耦合带线130与第一传输带线120在第一支撑介质板110所在的平面(例如,xy平面)的投影至少部分重合,实现第一耦合带线130与第一传输带线120在y方向上的耦合,传输带线104与第一传输带线在垂直于第一支撑介质体110所在的平面的平面(例如,yz平面)的投影至少部分重合,实现第一传输带线120与传输带线104在x方向的耦合电连接,由于传输带线104与第一耦合带线140通过金属化过孔电连接,相当于将第一耦合带线130在y方向的尺寸加宽,因此,理论上也是实现了第一传输带线120与第一耦合带线130在x方向的耦合电连接。
这样,通过同时在x方向和y方向上实现第一耦合带线130和第一传输带线120的耦合电连接,增加了第一耦合带线130和第一传输带线120的耦合面积。
在上述结构中,第一传输带线或第一耦合带线都为单层带线,在有些场景中,可能不 利于信号能量的传输,例如,在带线传输的信号能量较少,从而使得在装置中传输的信号能量较少。因此,为了提高在该装置中传输的信号能量,可以将第一传输带线或第一耦合带线的部分设置为双层带线,并且,采用金属化过孔将双层带线电连接,使得双层带线连通成为一体,实现了通过增加带线尺寸来增加在装置中传输的信号能量的目的。应理解,由于在第一支撑介质体的两侧本来就设置有第一传输带线和第一耦合带线,在第一支撑介质体的厚度方向(或,z方向)上本来就有为设置两种带线预留的空间,因此,这种增加带线尺寸的方式并不会进一步造成装置尺寸的增加,同时,会增加在装置中传输的信号能量。
作为示例而非限定,在本申请实施例中,可以将第一耦合带线的第一带线段设置为双层带线,也可以将第一传输带线的第一带线段设置为双层带线。下面,结合图1至图8,对这种设计方式做详细说明。
继续参考图1至图5,在一种可能的设计中,该装置还包括:
设置在第一支撑介质板110的一侧且与第一传输带线120同侧的第二传输带线140,第二传输带线140与第一耦合带线130的第一带线段132通过金属化过孔101电连接。
其中,第二传输带线140与第一传输带线120之间存在间隙,该间隙大于0,设计原则是不能使得第二传输带线140与第一传输带线120存在电连接。
这样,通过金属化过孔101将第二传输带线140和第一耦合带线130的第一带线段132电连接,使第一带线段132和第二传输带线140连通,增加了第一带线段132在厚度方向(即,y方向)的尺寸,增加了在第一耦合带线130中传输的信号能量,从而,增加了在装置中传输的信号能量。例如,第一带线段132的厚度(即,在y方向的尺寸)为2.5mm,第二传输带线140的厚度为2.5mm,通过采用金属化过孔将第一带线段132与第一耦合带线130电连接,可以理解为将第一带线段132的厚度从2.5mm增加至5mm,从而实现了通过增加第一带线段132的尺寸来增加在第一耦合带线130中传输的信号能量。
参考图8至图10,在一种可能的设计中,该装置还包括:
设置在第一支撑介质板110的一侧且与第一耦合带线130同侧的第三传输带线151,第三传输带线151与第一传输带线120的第一带线段122的第一区域122-1通过金属化过孔连接,第一区域122-1为第一端口120-A与第一耦合带线130之间的区域。
在一种可能的设计中,第三传输带线151设置在第一端口120-A与第一耦合带线130之间,即第三传输带线151设置在第一区域122-1上。
作为示例而非限定,第三传输带线151也可以不仅限于上述设置,第三传输带线151的一个端部可以位于第一端口120-A的左边,另一个端部位于第一区域122-1之间,只要在第一区域122-1上与第三传输带线通过金属化过孔连接即可。
其中,如图8和图9所示,第三传输带线151与第一耦合带线130之间存在间隙102,该间隙102大于0,设计原则是不能使得第三传输带线151与第一耦合带线130存在电连接,并且,该间隙102也不能太大,设计原则是可以通过该间隙向第三传输带线151和第一传输带线120传输能量。
在一种可能的设计中,该间隙为0.5mm。
可以看出,在这种设计中,将第一带线段122中第一端口120-A与第一耦合带线130之间的区域(即,第一区域122-1)设置为双层带线,对于功分器来说,可以理解为将第 一传输带线120的输入端区域设置为双层带线,对于合路器来说,可以理解为将第一传输带线120的输出端区域设置为双层带线。通过金属化过孔101将第三传输带线151和第一带线段122中的第一区域122-1通过金属化过孔电连接,使第一传输带线120的第一区域122-1和第二传输带线140连通,增加了第一带线段122的第一区域122-1在厚度方向的尺寸,增加了在第一传输带线120上传输的信号能量,从而,增加了在装置中传输的信号能量。
继续参考图1至图10,在一种可能的设计中,该装置还包括:
设置在第一支撑介质板110的一侧且与第一耦合带线130同侧的第四传输带线152(如图1、2、4、8至10所示),第四传输带线152与第一传输带线120的第一带线段122的第二区域122-2(如图3和图5所示)通过金属化过孔电连接,第二区域122-2为第一传输带线120的耦合段121中远离第一端口120-A的端部与第一传输带线120的另一个端部之间的区域。
在一种可能的设计中,第四传输带线152设置在第二区域122-2上。
作为示例而非限定,第四传输带线152也可以不仅限于上述设置,第四传输带线152的一个端部可以位于M个端口120-B的右边,另一个端部位于第二区域122-2之间,只要在第二区域122-2上与第四传输带线152通过金属化过孔连接即可。
其中,第四传输带线152与第一耦合带线130之间存在间隙,该间隙大于0,设计原则是不能使得第四传输带线152与第一耦合带线130存在电连接。
可以看出,在这种设计中,将第一带线段122的第二区域122-2设置为双层带线,对于功分器来说,可以理解为将第一传输带线120的输出端区域设置为双层带线,对于合路器来说,可以理解为将第一传输带线120的输入端区域设置为双层带线。通过金属化过孔101将第四传输带线152和第一带线段122中的第二区域122-2通过金属化过孔电连接,使得第一传输带线120的第二区域122-2和第四传输带线140连通,增加了第一带线段122的第二区域122-2在厚度方向的尺寸,增加了在第一传输带线120上传输的信号能量,从而,增加了在装置中传输的信号能量。
以上,结合图1至图10,对第一传输带线和第一耦合带线之间的耦合电连接以及对其他部件的相应设计做了详细说明。为了便于描述,可以将第一传输带线和第一耦合带线的耦合称为一次耦合,实际上,在某些场景中,例如,在需要输出端口或输入端口的信号能量较少的场景中,或者,针对某些输出端口,在需要输出端口的相位和/或幅度的斜率相对于输入端口的相位和/或幅度的斜率变化较大(耦合次数越多,相位和/或幅度的斜率变化越大)的场景中,可能需要对信号能量进行多次(例如,两次)耦合。下面,结合图11至图13,以两次耦合为例,通过3种结构,对实现两次耦合的装置做详细描述。应理解,当需要实现多次耦合时,装置的结构的设计原理与两次耦合的装置的结构的设计原理相同,可以参考两次耦合的结构设计,为了简洁,文中不再赘述。
结构1
在该结构中,可以只需要一个支撑介质板,实现两次耦合。
参考图11,该装置还包括:
设置在第一支撑介质板110的一侧且与第一传输带线120同侧的第二耦合带线160,
第二耦合带线160包括耦合段161和第一带线段162,第二耦合带线160的第一带线 段162包括P个端口160-B,P为大于或等于1的整数,第一耦合带线130的第一带线段132包括子耦合段132-1和第二带线段132-2,第一耦合带线130的第二带线段132-2包括所述N个端口,
第一耦合带线130的子耦合段132-1与第二耦合带线160的耦合段162在第一支撑介质板110所在的平面的投影至少部分重合,以使得第二耦合带线160和第一耦合带线130的子耦合段132-1耦合电连接。
应理解,图11中所示的第二耦合带线160的第一带线段162中的1个端口160-B仅为示意性说明,可以基于实际应用场景,在第一带线段162设置多个端口160-B,可以参考N个端口130-B的设置方式,这里不再赘述。
在这种设计中,利用第一耦合带线130的第一带线段132再次耦合能量,即,通过使得第一带线段132与第二耦合带线160的耦合段161在第一支撑介质体所在的平面的投影至少部分重合,实现两个带线之间的耦合电连接,将通过第一耦合带线130和第一传输带线120的耦合而传输的信号能量再次通过耦合方式传输一部分信号能量至第二耦合带线160的P个端口160-B,或者,将P个端口160-B的信号能量通过耦合方式最终传输至第一端口120-A。例如,以功分器为例,假设,信号能量为100%,通过第一传输带线120传输至M个端口的信号能量可以是50%,通过第一传输带线120和第一耦合带线130之间的耦合电连接传输至N个端口的信号能量可以是30%,通过第一耦合带线130和第二耦合带线160之间的耦合电连接传输至P个端口的信号能量可以是10%,其余的10%为能量损耗。
需要说明是,在这种结构中,第一耦合带线130的第一带线段131设置为单层,不需要设置为双层,即,不需要设置与第一耦合带线130的第一带线段131金属化过孔连接的上述第二传输带线140。
因此,本申请实施例的耦合馈电的装置,通过使得第一耦合段的第一带线段与第二耦合带线的耦合段在第一支撑介质体所在的平面的投影至少部分重合,可以实现第一耦合带线和第二耦合带线之间的耦合电连接,使得第一耦合带线的第一带线段能够再次耦合信号能量,将通过第一耦合带线和第一传输带线的耦合而传输的信号能量再次通过耦合方式传输一部分信号能量至第二耦合带线的P个端口,或者,将P个端口的信号能量通过耦合方式最终传输至第一端口,实现了从P个端口输出或输入较小信号能量的目的,也能有效地改变P个端口相对于第一端口的相位和/或幅度的斜率,以满足不同场景的需求。
结构2
在该结构中,也只需要一个支撑介质板,实现两次耦合,与结构1的不同之处在于,实现第二次耦合的耦合带线与第一耦合带线位于同侧。
参考图12,该装置还包括:
设置在第一支撑介质板110的一侧且与第一耦合带线130同侧的第三耦合带线170,第三耦合带线170包括耦合段171和第一带线段172,第三耦合带线170的第一带线段172包括S个端口170-B,S为大于或等于1的整数,其中,
第三耦合带线170的耦合段171与第一传输带线120的第一带线段122的第一区域122-1在第一支撑介质板110所在的平面的投影至少部分重合,以使得第三耦合带线170和第一传输带线120耦合电连接,第一区域122-1为第一端口120-A与第一耦合带线130 之间的区域。
在一种可能的设计中,第三耦合带线170设置在第一端口120-A与第一耦合带线130之间。
作为示例而非限定,第三耦合带线170也可以不仅限于上述设置,第三耦合带线170的一个端部可以位于第一端口120-A的左边,另一个端部位于第一区域122-1之间,只要在第一区域122-1上与第三耦合带线170实现耦合电连接即可。
应理解,图12中所示的第三耦合带线170的第一带线段172中的1个端口170-B仅为示意性说明,可以基于实际应用场景,在第一带线段172设置多个端口170-B,可以参考N个端口130-B的设置方式,此处不再赘述。
在这种设计中,利用第一传输带线120的第一区域122-1进一步耦合能量,即,通过使得第一传输带线120的第一区域122-1与第三耦合带线170的耦合段171在第一支撑介质体110所在的平面的投影至少部分重合,实现两个带线之间的耦合电连接,将通过第三耦合带线170和第一传输带线120的耦合而传输的信号能量通过耦合方式传输一部分信号能量至第三耦合带线170的S个端口170-B,或者,将S个端口170-B的信号能量通过耦合方式最终传输至第一端口120-A。例如,以功分器为例,假设,信号能量为100%,通过第一传输带线120传输至M个端口的信号能量可以是50%,通过第一传输带线120和第三耦合带线170之间的耦合电连接传输至S个端口170-A的信号能量为20%,通过第一传输带线120和第一耦合带线130之间的耦合电连接传输至N个端口的信号能量可以是20%,其余的10%为能量损耗。
需要说明是,在这种结构中,第一传输带线120的第一带线段122的第一区域122-1设置为单层,不需要设置为双层,即,不需要设置与第一传输带线120的第一区域122-1金属化过孔连接的上述第三传输带线151。
因此,本申请实施例的耦合馈电的装置,通过使得第一传输带线的第一区域与第三耦合带线的耦合段在第一支撑介质体所在的平面的投影至少部分重合,可以实现第一传输带线和第三耦合带线之间的耦合电连接,使得第一传输带线可以再次耦合能量,通过第三耦合带线和第一传输带线的耦合电连接将一部分信号能量传输至第三耦合带线的S个端口,或者,将S个端口的信号能量通过第三耦合带线和第一传输带线的耦合电连接最终传输至第一端口,实现了从S个端口输出或输入较小信号能量的目的,也能有效地改变S个端口相对于第一端口的相位和/或幅度的斜率,以满足不同场景的需求。
结构3
在该结构中,需要两个支撑介质板,实现两次耦合。
参考图13,该装置还包括:
设置在第一传输带线110的一侧的第二支撑介质板180;
设置在第二支撑介质体180的一侧的第四耦合带线190,第四耦合带线190与第一传输带线120分别位于第二支撑介质体180的两侧,第四耦合带线190包括耦合段191和第一带线段192,第四耦合带线190的第一带线段192包括Q个端口190-B,Q为大于或等于1的整数,其中,
第四耦合带线190的耦合段191与第一传输带线120的第二带线段在第二支撑介质体180所在的平面的投影至少部分重合,第二带线段的区域为第一传输带线120中除耦合段 121以外的任意区域。
其中,第一带线段与第二带线段可以完全重合,也可以部分重合。
图13所示的第二带线段为上文所述的第一带线段122的第一区域122-1,作为示例而非限定,第二带线段也可以是第一带线段122的第二区域122-2,或者,第二带线段为第一带线段,此处不做限定,只要第二带线段的区域是耦合段121以外的任意区域即可。
应理解,图13中所示的第四耦合带线190的第一带线段192中的1个端口190-B仅为示意性说明,可以基于实际应用场景,在第一带线段192设置多个端口190-B,可以参考N个端口130-B的设置方式,此处不再赘述。
还应理解,上述图11至图13所示的实现两次耦合的结构仅为示意性说明,不应对本申请实施例造成限定,任何基于上述实施例的设计原理得到的各种改变以及变型的结构都在本申请实施例的保护范围内。
需要说明的是,若无特殊说明,在上述3中结构都可以参考图1至图10,将第一耦合带线的第一带线段设置为双层带线,例如,添加第二传输带线实现第二传输带线与第一耦合带线的第一带线段的金属化过孔电连接,也可以将第一传输带线的第一带线段设置为双层带线,例如,添加第三传输带线和/或第四传输带线,实现第三传输带线或第四传输带线中的至少一个与第一传输带线的金属化过孔电连接。
在本申请实施例中,还提供了一种耦合馈电的装置,在该装置中,与图1至图13对应的装置不同之处在于,与第一耦合带线耦合电连接的带线是通过金属化过孔电连接形成的单层带线。参考图14,该装置包括:
第一支撑介质板110;
设置在第一支撑介质板110的一侧的第一传输带线120,第一传输带线120包括耦合段121和第一带线段122;
设置在第一支撑介质板110的另一侧的第一耦合带线130,第一耦合带线130包括耦合段131和第一带线段132,其中,第一耦合带线130的耦合段131与第一传输带线120的耦合段131在第一支撑介质板210所在的平面的投影至少部分重合,以使得第一耦合带线130和第一传输带线120耦合电连接;
设置在第一支撑介质板110的一侧且与第一耦合带线130同侧的第五传输带线191,第五传输带线191的一个端部包括第一端口191-A,第五传输带线191的另一个端部与第一传输带线120的一个端部通过金属化过孔电连接,
第一传输带线120的第一带线段122包括M个端口120-B,第一耦合带线130的第一带线段132包括N个端口130-B,以及,第一端口191-A为信号输入端口,M个端口120-B和N个端口130-B为信号输出端口,或,第一端口191-A为信号输出端口,M个端口120-B和N个端口130-B为信号输入端口,M和N都为大于或等于1的整数。
其中,第五传输带线191与第一耦合带线130之间存在间隙,该间隙的设计原则与上文中第三传输带线151与第一耦合带线130之间的间隙102的设计原则相同,此处不再赘述。
此外,关于第一支撑介质体110、第一传输带线120、第一耦合带线130的具体描述可以参考图1至图13对应的实施例的相关描述,为了简洁,不再赘述。
在该装置中,设置位于第一支撑介质体110两侧的第五传输带线191和第一传输带线 120,将第五传输带线191与第一传输带线120通过金属化过孔101电连接,形成一个单层传输带线,与第一端口191-A直连通,可以类比于上文图1至图13对应的实施例中的第一传输带线,使得信号能量从第一端口191-A直接传输至M个端口120-B,或,可以使得信号能量从M个端口120-B传输至第一端口191-A。第五传输带线191和第一传输带线120形成的单层带线的作用原理与图1至图13对应的实施例中的第一传输带线120的作用原理相同,为了简洁,不再赘述。
因此,本申请实施例的耦合馈电的装置,该装置包括设置在第一支撑介质体两侧的第一传输带线和第一耦合带线,以及,设置在与第一耦合带线同侧的第五传输带线,将第五传输带线与第一传输带线通过金属化过孔连接形成单层传输带线,通过该第一传输带线和该第一耦合带线之间的耦合电连接的方式传输信号能量,可以有效地改变端口的容感量,从而,改变端口的幅度和相位的斜率,有利于实现移相器中各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
此外,相较于目前的通过在功分、合路设计时增加开路短路枝节或者电容以及电感器件改变端口的容感性(即,改变端口的容感量)的方式,在不需要增加装置尺寸的情况下同样可以改变端口的容感性,因此,可以有效地减少装置尺寸。
在该装置中,与图1至图13对应的实施例类似,该装置还可以包括上述第二传输带线或第四传输带线,以增加在该装置中传输的信号能量,以及,该装置还可以包括上述第二耦合带线,以实现多次耦合,具体描述以及结构可以参考上文的相关描述,此处不再赘述。
上述,结合图1至图14,对本申请实施例的耦合馈电的装置做了详细说明。
在本申请实施例中,还提供了一种移相器,该移相器中包括上述图1至图14对应的各个实施例所描述的装置,此处不再赘述。
此外,在该移相器中,可以基于实际需要,同时配置具有上述结构的功分器和合路器。
当在移相器中配置功分器时,通过第一传输带线和第一耦合带线的耦合电连接的方式传输信号能量,可以有效改变输出端口(例如,M个端口和N个端口)的容感量,从而,改变输出端口的幅度和相位的斜率,有利于实现各个输出端口在高低频的幅度和相位的色散的一致性,优化天线的方向图副瓣,减少对邻区的干扰。
当该装置为合路器时,M个端口的输入信号与N个端口的输入信号是位于不同频率的,M个端口的输出信号和N个端口的输入信号可以是从不同功分器中输出的信号中的部分信号,通过合路器整合为一个输出信号。在合路器中通过第一传输带线和第一耦合带线的耦合电连接的方式传输信号能量,可以有效改变输出端口(例如,第一端口)的容感量,从而,改变输出端口的幅度和相位的斜率,当移相器中还有其他输出端口(例如,功分器输出其他信号的端口)时,将合路器中的输出端口与其他输出端口比较,可以发现,各个输出端口在高低频的幅度和相位的色散的一致性提高,天线的方向图副瓣得到了优化,进而,减少了对邻区的干扰。
本申请实施例还提供了一种天线,该天线包括上述配置有图1至图14对应的各个实施例所描述的装置的移相器。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种耦合馈电的装置,其特征在于,所述装置包括:
    第一支撑介质板;
    设置在所述第一支撑介质板的一侧的第一传输带线,所述第一传输带线包括耦合段和第一带线段;
    设置在所述第一支撑介质板的另一侧的第一耦合带线,所述第一耦合带线包括耦合段和第一带线段,其中,所述第一耦合带线的耦合段与所述第一传输带线的耦合段在所述第一支撑介质板所在的平面的投影至少部分重合,以使得所述第一耦合带线和所述第一传输带线耦合电连接;
    所述第一传输带线的一个端部包括第一端口,所述第一传输带线的第一带线段包括M个端口,所述第一耦合带线的第一带线段包括N个端口,以及,所述第一端口为信号输入端口,所述M个端口和所述N个端口为信号输出端口,或,所述第一端口为信号输出端口,所述M个端口和所述N个端口为信号输入端口,M和N都为大于或等于1的整数。
  2. 根据权利要求1所述的装置,其特征在于,所述装置还包括:
    设置在所述第一支撑介质板的一侧且与所述第一传输带线同侧的第二耦合带线,
    所述第二耦合带线包括耦合段和第一带线段,所述第二耦合带线的第一带线段包括P个端口,P为大于或等于1的整数,所述第一耦合带线的第一带线段包括子耦合段和第二带线段,所述第一耦合带线的第二带线段包括所述N个端口,其中,
    所述第一耦合带线的子耦合段与所述第二耦合带线的耦合段在所述第一支撑介质板所在的平面的投影至少部分重合,以使得所述第二耦合带线和所述第一传输带线耦合电连接。
  3. 根据权利要求1所述的装置,其特征在于,所述装置还包括:
    设置在所述第一支撑介质板的一侧且与所述第一耦合带线同侧的第三耦合带线,所述第三耦合带线包括耦合段和第一带线段,所述第三耦合带线的第一带线段包括S个端口,S为大于或等于1的整数,其中,
    所述第三耦合带线的耦合段与所述第一传输带线的第一带线段的第一区域在所述第一支撑介质板所在的平面的投影至少部分重合,以使得所述第三耦合带线和所述第一传输带线耦合电连接,所述第一区域为所述第一端口与所述第一耦合带线之间的区域。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述装置还包括:
    设置在所述第一支撑介质板的一侧且与所述第一传输带线同侧的第二传输带线,所述第二传输带线与所述第一耦合带线的第一带线段通过金属化过孔电连接。
  5. 根据权利要求1至4中任一项所述的装置,其特征在于,所述装置还包括:
    设置在所述第一支撑介质板的一侧且与所述第一耦合带线同侧的第三传输带线,所述第三传输带线与所述第一传输带线的第一带线段的第一区域通过金属化过孔电连接,所述第一区域为所述第一端口与所述第一耦合带线之间的区域。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述装置还包括:
    设置在所述第一支撑介质板的一侧且与所述第一耦合带线同侧的第四传输带线,所述 第四传输带线与所述第一传输带线的第一带线段的第二区域通过金属化过孔电连接,所述第二区域为所述第一传输带线的耦合段中远离所述第一端口的端部与所述第一传输带线的另一个端部之间的区域。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,
    所述第一支撑介质板为印刷电路板PCB板。
  8. 一种耦合馈电的装置,其特征在于,所述装置还包括:
    第一支撑介质板;
    设置在所述第一支撑介质板的一侧的第一传输带线,所述第一传输带线包括耦合段和第一带线段;
    设置在所述第一支撑介质板的另一侧的第一耦合带线,所述第一耦合带线包括耦合段和第一带线段,其中,所述第一耦合带线的耦合段与所述第一传输带线的耦合段在所述第一支撑介质板所在的平面的投影至少部分重合,以使得所述第一耦合带线和所述第一传输带线耦合电连接;
    设置在所述第一支撑介质板的一侧且与所述第一耦合带线同侧的第五传输带线,所述第五传输带线的一个端部包括第一端口,所述第五传输带线的另一个端部与所述第一传输带线中靠近所述第五传输带线的耦合段一个端部通过金属化过孔电连接,
    所述第一传输带线的第一带线段包括M个端口,所述第一耦合带线的第一带线段包括N个端口,以及,所述第一端口为信号输入端口,所述M个端口和所述N个端口为信号输出端口,或,所述第一端口为信号输出端口,所述M个端口和所述N个端口为信号输入端口,M和N都为大于或等于1的整数。
  9. 一种移相器,其特征在于,所述移相器包括如权利要求1至7中任一项或权利要求8所述的装置。
  10. 一种天线,其特征在于,所述天线包括如权利要求9所述的移相器。
PCT/CN2019/129397 2018-12-29 2019-12-27 耦合馈电的装置、移相器和天线 WO2020135775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811635109.7 2018-12-29
CN201811635109.7A CN111384563B (zh) 2018-12-29 2018-12-29 耦合馈电的装置、移相器和天线

Publications (1)

Publication Number Publication Date
WO2020135775A1 true WO2020135775A1 (zh) 2020-07-02

Family

ID=71127721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129397 WO2020135775A1 (zh) 2018-12-29 2019-12-27 耦合馈电的装置、移相器和天线

Country Status (2)

Country Link
CN (1) CN111384563B (zh)
WO (1) WO2020135775A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154382A (zh) * 2022-05-23 2023-12-01 华为技术有限公司 辐射单元、基站天线及基站天馈系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237603A (ja) * 2000-02-23 2001-08-31 Mitsubishi Electric Corp 移相器
JP2001237605A (ja) * 2000-02-23 2001-08-31 Mitsubishi Electric Corp 移相器
CN1392628A (zh) * 2002-08-07 2003-01-22 西安海天天线科技股份有限公司 连续可调移相器
CN105977583A (zh) * 2016-06-28 2016-09-28 华为技术有限公司 一种移相器及馈电网络

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157986B1 (en) * 2005-06-11 2007-01-02 National Taiwan University Three-dimensional balun
CN106936521B (zh) * 2017-01-12 2020-04-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 紧凑型天线馈电校准网络
CN108448221B (zh) * 2018-03-09 2020-12-29 电子科技大学 一种宽带多层微带Butler波束成形网络矩阵装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237603A (ja) * 2000-02-23 2001-08-31 Mitsubishi Electric Corp 移相器
JP2001237605A (ja) * 2000-02-23 2001-08-31 Mitsubishi Electric Corp 移相器
CN1392628A (zh) * 2002-08-07 2003-01-22 西安海天天线科技股份有限公司 连续可调移相器
CN105977583A (zh) * 2016-06-28 2016-09-28 华为技术有限公司 一种移相器及馈电网络

Also Published As

Publication number Publication date
CN111384563A (zh) 2020-07-07
CN111384563B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US11716812B2 (en) Millimeter-wave active antenna unit, and interconnection structure between PCB boards
WO2020155722A1 (zh) 天线及其移相馈电装置
US11316240B2 (en) Transition structure for coupling first and second transmission lines through a multi-layer structure and including a cavity corresponding to the second transmission line
WO2020135524A1 (zh) 高频辐射体、多频阵列天线和基站
WO2019128219A1 (zh) 合路器、移相器组件及天线
CN110808458A (zh) 一种双极化多层贴片滤波天线及通信设备
US11469511B2 (en) Waveguide microstrip line converter and antenna device
US11462811B2 (en) Coupling device and antenna
US20160064796A1 (en) Feed network for antenna systems
CN108123196B (zh) 基于竖直双面平行带线的宽带滤波集成立体巴伦
WO2020135775A1 (zh) 耦合馈电的装置、移相器和天线
TWM546649U (zh) 可撓性電路板
CN107689475B (zh) 一种微同轴超宽带耦合器
CN211126042U (zh) 一种双极化多层贴片滤波天线及通信设备
WO2021098042A1 (zh) 天线、终端中框及终端
EP4340124A1 (en) Radiation unit and base station antenna
US20210281236A1 (en) Balun and Method for Manufacturing the Same
CN114204241A (zh) 微带-开路槽线耦合双频带90度定向耦合器
CN108808180B (zh) 基于介质集成悬置线的移相器结构及混频器结构
US11817613B2 (en) Coupling component, microwave device and electronic device
CN216251054U (zh) 一种用于传输射频兼顾直流信号的馈入器
JP2001088097A (ja) ミリ波多層基板モジュール及びその製造方法
TWI688158B (zh) 多饋入天線
CN115494456B (zh) 雷达收发装置及雷达装置
WO2023221144A1 (zh) 天线单元、天线模组以及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901675

Country of ref document: EP

Kind code of ref document: A1