WO2020155722A1 - 天线及其移相馈电装置 - Google Patents

天线及其移相馈电装置 Download PDF

Info

Publication number
WO2020155722A1
WO2020155722A1 PCT/CN2019/115382 CN2019115382W WO2020155722A1 WO 2020155722 A1 WO2020155722 A1 WO 2020155722A1 CN 2019115382 W CN2019115382 W CN 2019115382W WO 2020155722 A1 WO2020155722 A1 WO 2020155722A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
shifting
metal
circuit
substrate
Prior art date
Application number
PCT/CN2019/115382
Other languages
English (en)
French (fr)
Inventor
李明超
吴庚飞
苏国生
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2020155722A1 publication Critical patent/WO2020155722A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Definitions

  • the present invention relates to the field of wireless communication technology, in particular to an antenna and a phase-shifting power feeding device thereof.
  • the phase-shifting feeder is the core element of the base station antenna.
  • the electrical signal enters the corresponding antenna channel through the phase-shifting feeder for power division and phase-shift processing to achieve signal radiation.
  • the phase shifting feeder is generally composed of two separate components, a phase shifter and a feed network board. Moreover, the phase shifter needs to be fed with the feeder circuit of the feeder network board through a feeder cable. Therefore, it is necessary to install a coaxial cable and perform joint welding when processing the phase-shifting power feeder, which will cause the phase-shifting power feeder to become larger in size and heavier in weight, which is not conducive to the miniaturization of the base station antenna.
  • phase-shifting power feeder is not conducive to the miniaturization of base station antennas, and provide a phase-shifting power feeder that is conducive to miniaturization of the antenna.
  • a phase-shifting power feeding device includes:
  • the metal cavity is a U-shaped groove structure with one side opening
  • One-piece circuit board including:
  • phase shifting circuit and a feeder circuit formed on the surface of the substrate the phase shifting circuit has a plurality of signal terminals, and the plurality of signal terminals are electrically connected to the feeder circuit;
  • the side of the substrate provided with the phase shifting circuit faces the metal cavity, and the phase shifting circuit is located in the shielding cavity, and the ground layer constitutes the bottom layer of the feeder circuit.
  • the edge of the opening is formed with pins protruding toward the integrated circuit board
  • the substrate is provided with a metalized card slot electrically connected to the ground layer, and the pins are inserted in Inside the metalized card slot.
  • the metalized card slot penetrates the substrate, and an edge of the metalized card slot facing away from the metal cavity is provided with a ground pad, and one end of the pin protrudes The metalized card slot is welded to the ground pad.
  • the phase shift circuit and the feeder circuit are respectively located on two opposite sides of the substrate, and the plurality of signal terminals communicate with the feeder through a feeder metal hole penetrating the substrate.
  • the line is electrically connected.
  • the phase shift circuit and the feeder circuit are both located on the side of the substrate facing the metal cavity, and the phase shifter circuit and the feeder circuit are an integrated circuit structure .
  • the ground layer includes a first metal layer and a second metal layer formed on opposite sides of the substrate, and the first metal layer and the second metal layer pass through metallized vias Electric connection.
  • a hollow area is formed in a part of the first metal layer and/or the second metal layer, and the phase shift circuit and the feeder circuit are both located in the hollow area.
  • the hollow area of the first metal layer is staggered from the hollow area of the second metal layer.
  • multiple metal cavities and cooperate with the ground layer to form multiple shielding cavities
  • multiple phase shift circuits are formed on the integrated circuit board, and multiple The phase shift circuits are respectively located in a plurality of the shielded cavities.
  • the metal cavity has a U-shaped groove structure and cooperates with the ground layer to form a shielding cavity, thereby playing the role of a traditional phase shifter cavity. Since the ground layer serves as a side wall of the shielding cavity, compared with the traditional phase shifter cavity, the metal cavity omits a side wall, thereby significantly reducing the thickness and weight of the metal cavity.
  • the phase shifting circuit and the feeder circuit share a substrate to form an integrated circuit board.
  • the integrated circuit board plays the role of the phase shifting circuit board and the feeding network board in the traditional phase shifter. Therefore, the structure of the phase-shifting power feeding device is more compact, and the thickness of the metal cavity can be further compressed. It can be seen that the above-mentioned phase-shifting power feeding device has a reduced volume and a simplified structure, thereby facilitating miniaturization of the antenna.
  • An antenna characterized by comprising the phase-shifting power feeding device according to any one of the above-mentioned preferred embodiments.
  • FIG. 1 is a schematic diagram of the structure of a phase shifting power feeding device in a preferred embodiment of the present invention
  • FIG. 2 is an exploded schematic diagram of the phase-shifting feeder shown in Figure 1;
  • FIG. 3 is a schematic diagram of another view of the phase shifting power feeding device shown in FIG. 2;
  • FIG. 4 is a schematic diagram of the structure of an integrated circuit board in the phase-shifting feeder shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of a phase-shifting power feeding device in another embodiment of the present invention.
  • Fig. 6 is an exploded schematic diagram of the phase shifting feeder shown in Fig. 5.
  • the invention provides an antenna and a phase-shifting power feeding device.
  • the antenna includes the phase-shifting power feeding device.
  • the antenna generally also includes multiple radiating units, and multiple output ports of the phase-shifting feeder are communicatively connected with multiple radiating units to form multiple antenna channels.
  • the phase-shifting feeder performs power division and phase-shifting of the electrical signal, so that signals of different phases are radiated by multiple radiating units.
  • the phase-shifting power feeding device 100 in the preferred embodiment of the present invention includes a metal cavity 110 and an integrated circuit board 120.
  • the metal cavity 110 has a U-shaped groove structure with one side open.
  • the metal cavity 110 is generally elongated, and its opening 101 also extends along its length.
  • the U-shaped groove structure means that the cross section of the metal cavity 110 is U-shaped.
  • the metal cavity 110 may be surrounded by a bottom wall and two opposite side walls extending along both sides of the bottom wall, or may be surrounded by only one arc-shaped side wall. Therefore, compared with the conventional phase shifter cavity, the metal cavity 110 is equivalent to a default side wall, so its thickness and weight can be significantly reduced.
  • the integrated circuit board 120 includes a substrate 121, a phase shift circuit 122, a feeder line 123 and a ground layer 124. among them:
  • the substrate 121 is generally formed of a material with a relatively high dielectric constant; the ground layer 124 may be a metal layer formed on the surface of the substrate 121 by means of coating, printing, or the like.
  • the phase shift circuit 122 and the feeder circuit 123 are formed on the surface of the substrate 121 and are insulated from the ground layer 124.
  • the feeder circuit 123 is generally composed of a power dividing circuit and a filter circuit. Wherein, the phase shift circuit 122 and the feed line 123 may be a strip line or a microstrip line structure. In addition, the phase shift circuit 122 and the feeder line 123 may also be a PCB circuit board structure integrated with the substrate 121.
  • the phase shift circuit 122 has a plurality of signal terminals (not shown), and the plurality of signal terminals are electrically connected to the feeder line 123.
  • the signal terminals 121 are used to realize the input and output of electrical signals. According to different application scenarios, the number of signal terminals can be adjusted accordingly.
  • the main function of the phase shift circuit 122 is to realize the phase change of the electrical signal. According to the different principles of phase shifting, it can be divided into dielectric sliding phase shifter and conductor sliding phase shifter. Since the medium sliding phase shifter has the advantages of compact structure and low intermodulation interference, in this embodiment, the medium sliding method is also adopted to realize the phase shift.
  • the phase-shifting power feeding device 100 further includes a phase-shifting dielectric plate 130.
  • the phase shifting medium plate 130 is slidably received in the metal cavity 110 and disposed opposite to the phase shifting circuit 122. By sliding the phase shifting dielectric plate 130, the electrical length in the phase shifting circuit 122 can be changed, so that the output phase difference of each signal terminal can be realized.
  • the feeder line 123 is formed on either side of the substrate 121, and the ground layer 124 is formed on at least one side of the substrate 121. Furthermore, the ground layer 124 constitutes the bottom layer of the feeder line 123. In other words, at least part of the ground layer 124 and the feeder line 123 are located on opposite sides of the substrate 121.
  • the substrate 121 covers the opening 101 of the metal cavity 110, and the metal cavity 110 is electrically connected to the ground layer 124. Therefore, the metal cavity 110 and the ground layer 124 cooperate to form a shielding cavity (not shown).
  • the shielding cavity is a closed structure, which is equivalent to a traditional phase shifter cavity.
  • the side of the substrate 121 where the phase shift circuit 122 is formed faces the metal cavity 110, and the phase shift circuit 122 is located in the shielding cavity.
  • the phase shifting circuit 122 is housed in the shielding cavity, and forms a phase shifter module together with the shielding cavity to realize the function of a traditional phase shifter. Therefore, under the premise that the thickness and weight of the metal cavity 110 are significantly reduced, it can be ensured that the function of the phase-shifting power feeding device 100 is not affected.
  • the ground layer 124 includes a first metal layer 1241 and a second metal layer 1243 formed on opposite sides of the substrate 121, and the first metal layer 1241 and the second metal layer 1243 pass through metallized vias ( Figure Not marked) electrical connection.
  • the ground layer 124 has a double-layer structure, and the metal cavity 110, the first metal layer 1241 and the second metal layer 1243 together form a shielding cavity.
  • the first metal layer 1241 is disposed toward the metal cavity 110.
  • the use of a double-layered ground layer 124 as a side wall of the shielding cavity can make the shielding effect better.
  • the ground layer 124 may also be a single-layer structure, and the ground layer 124 of the single-layer structure may be disposed toward or away from the metal cavity 110.
  • the phase shift circuit 122 and the feeder line 123 share the substrate 121 to form an integrated circuit board 120.
  • the integrated circuit board 120 functions as a phase shifting circuit board and a feeding network board in a traditional phase shifter. Therefore, the structure of the phase-shifting power feeding device 100 is more compact, and the thickness of the metal cavity 110 can be further compressed.
  • each feeder line 123 can correspond to multiple phase shifter modules.
  • a plurality of phase shifting circuits 122 are formed on the integrated circuit board 120, and the plurality of phase shifting circuits 122 are respectively located in a plurality of shielding cavities. That is, one phase shift circuit 122 and one metal cavity 110 constitute a pair of phase shifter modules, and the mounting relationship between each phase shifter module and the substrate 121 is the same.
  • the substrate 121 can be fixed to the metal cavity 110 by welding, clamping, etc., so that the integrated circuit board 120 and the metal cavity 110 can be integrated.
  • the edge of the opening 101 is formed with a pin 113 protruding toward the integrated circuit board 120
  • the substrate 121 is provided with a metalized card slot 1212 that is electrically connected to the ground layer 124, and the pin 113 is inserted in the metalized card Slot 1212.
  • the pin 113 and the metal cavity 110 are integrally formed, and the pin 113 is matched with the metalized card slot 1212 to achieve rapid positioning.
  • the pins 113 can be easily inserted into the metalized card slots 1212, which can quickly realize the installation between the metal cavity 110 and the substrate 121, and improve assembly efficiency.
  • the inner wall of the metalized card slot 1212 is metalized, so that the contact area between the ground layer 124 and the pin 113 can be increased, thereby improving the reliability of the electrical connection between the metal cavity 110 and the ground layer 124.
  • the metalized card slot 1212 penetrates the substrate 121, and the edge of the metalized card slot 1212 facing away from the metal cavity 110 is provided with a ground pad 1214.
  • One end of the pin 113 protrudes from the metalized card slot 1212 and is welded to the ground pad 1214.
  • the ground pad 1214 and the ground layer 124 may be integrated, and the reliability of the electrical connection between the metal cavity 110 and the ground layer 124 can be further improved by welding the pins 113 and the ground pad 1214. Moreover, since the metalized card slot 1312 penetrates the substrate 121, the welding operation can be performed on the side of the substrate 121 facing away from the metal cavity 110. At this time, the metal cavity 110 forms an avoidance for the welding part, thereby facilitating operation.
  • the multiple signal terminals are electrically connected to the feeder line 123, electrical signals can be conducted between the feeder line 123 and the phase shift circuit 122. Furthermore, since the metal cavity 110 and the feeder line 123 are provided in a common ground, and the signal terminal 121 is electrically connected to the feeder line 123, it functions as a traditional coaxial feeder. Therefore, the phase-shifting power feeder 100 does not need to use a coaxial feeder, and the feeder line 123 can feed the phase-shifting circuit 122.
  • the outer wall of the metal cavity 110 does not need to be provided with a wiring groove for installing the coaxial feeder, and at the same time, it avoids the low welding efficiency and poor welding quality that generally exist because the coaxial feeder needs to be welded to the wiring groove on the outer wall of the metal cavity 110
  • the problem is beneficial to improve the electrical performance of the phase-shifting feeder 100.
  • the feeder line 123 and the phase shift circuit 122 may be located on the same side of the substrate 121 or on opposite sides of the substrate 121.
  • the signal terminal 121 and the feeder circuit 123 may be electrically connected by welding, integral molding, plug-in connection and the like.
  • phase shift circuit 122 and the feeder circuit 123 are respectively located on opposite sides of the substrate 121, and a plurality of signal terminals pass through the feeder metal hole 1216 through the substrate 121 and the feeder
  • the electric line 123 is electrically connected.
  • the feed line 123 is located on the side of the substrate 121 facing away from the metal cavity 110, and the first metal layer 1241 constitutes the bottom layer of the feed line 123.
  • the phase shift circuit 122 and the feeder circuit 123 can be separately formed on both sides of the substrate 121, which has a lower requirement on process accuracy, which is beneficial to improve the product yield.
  • the feeding metal hole 1216 is essentially a metalized via hole, so the phase shift circuit 122 and the feeding line 123 can be connected without welding, which has high reliability.
  • the first metal layer 1241 and the second metal layer 1243 are partially formed with a hollow area (not shown), and the phase shift circuit 122 and the feed line 123 are both located in the hollow area.
  • the hollow area can be obtained by etching the metal layer or integrally forming.
  • the hollow area is not covered by metal. Therefore, by providing the hollow area, a gap can be formed between the phase shifting circuit 122 and the feeder line 123 and the ground layer 124, so that the phase shifter 122 and the feeder line 123 are insulated from the ground layer 124. While ensuring that there is no short circuit between the signal circuit and the ground circuit, it also ensures the design impedance of the radio frequency transmission link.
  • the hollowed-out area of the first metal layer 1241 and the hollowed-out area of the second metal layer 1243 are staggered.
  • the hollow area of the first metal layer 1241 is located in the middle, and the hollow area of the second metal layer 1243 is located at the edge thereof.
  • the first metal layer 1241 and the second metal layer 1243 can block each other's hollow areas, so as to avoid a situation in which a certain area of the shielding cavity is not covered by the ground layer 124, thereby improving the shielding effect of the shielding cavity.
  • the feeder circuit 123 and the phase shift circuit 122 can also be located on the same side of the substrate 121.
  • the multiple signal terminals and the feeder line 123 can also be electrically connected in other ways. for example:
  • phase shifting circuit 122 and the feeder circuit 123 are both located on the side of the substrate 121 facing the metal cavity 110, and the phase shifter 122 and the feeder circuit 123 are integrated ⁇ circuit structure.
  • the phase shift circuit 122 and the feeder circuit 123 can be integrally formed at the same time, and the electrical connection is naturally realized after forming. Therefore, the reliability and product yield of the electrical connection between the phase shift circuit 122 and the feeder line 123 can be further improved.
  • the structure of the integrated circuit board 120 can be made more compact, thereby further reducing the volume of the phase-shifting power feeding device 100.
  • the second metal layer 1243 constitutes the bottom layer of the feeder line 123.
  • the edge of the opening 101 of the metal cavity 110 is also provided with a avoidance notch 102.
  • a hollow area is formed on the first metal layer 1241, and the phase shift circuit 122 and the feeder line 123 are both located in the hollow area of the first metal layer 1241.
  • the metal cavity 110 has a U-shaped groove structure, and cooperates with the ground layer 124 to form a shielding cavity, thereby functioning as a conventional phase shifter cavity. Since the ground layer 124 serves as a side wall of the shielding cavity, the metal cavity 110 omits a side wall compared with the traditional phase shifter cavity, thereby significantly reducing the function of the phase shifter 100 The thickness and weight of the small metal cavity 110.
  • the phase shift circuit 122 and the feeder line 123 share the substrate 131 to form an integrated circuit board 120.
  • the integrated circuit board 120 functions as a phase shifting circuit board and a feeding network board in a traditional phase shifter.
  • phase-shifting power feeding device 100 is more compact, and the thickness of the metal cavity 110 can be further compressed. It can be seen that the above-mentioned phase-shifting power feeding device 100 has a reduced volume and a simplified structure, thereby facilitating miniaturization of the antenna.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种移相馈电装置,包括金属腔体及一体式电路板。其中,一体式电路板包括基板、移相电路、馈电线路及接地层。金属腔体为U型槽结构,且与接地层配合形成屏蔽腔,从而起到传统移相器腔体的作用。由于接地层作为屏蔽腔的一个侧壁,故金属腔体相较于传统的移相器腔体则省略了一个侧壁,从而显著减小金属腔体的厚度及重量。此外,移相电路与馈电线路共用基板,形成一体式电路板。一体式电路板起到了传统移相器中移相电路板及馈电网络板的作用。因此,移相馈电装置结构更紧凑,且金属腔体厚度尺寸可进一步压缩。可见,上述移相馈电装置的体积减小、结构简化,从而有利于实现天线的小型化。此外,本发明还提供一种天线。

Description

天线及其移相馈电装置 技术领域
本发明涉及无线通讯技术领域,特别涉及一种天线及其移相馈电装置。
背景技术
随着天线技术发展,小型化天线成为基站天线的发展趋势。移相馈电装置是基站天线的核心元件,电信号通过移相馈电装置进行功分、移相处理后进入对应的天线通道内,实现信号辐射。
目前,移相馈电装置一般由移相器及馈电网络板两个单独的元器件组合而成。而且,移相器需与馈电网络板的馈电线路之间,要通过馈电电缆实现馈电。因此,加工移相馈电装置时需要设置同轴电缆并进行接头焊接,从而会造成移相馈电装置的尺寸变大、重量偏重,进而不利于基站天线的小型化。
发明内容
基于此,有必要针对现有移相馈电装置不利于基站天线小型化的问题,提供一种利于实现天线小型化的移相馈电装置。
一种移相馈电装置,包括:
金属腔体,为一侧开口的U型槽结构;及
一体式电路板,包括:
基板;
形成于所述基板表面的移相电路及馈电线路,所述移相电路具有多个信号端子,且所述多个信号端子与所述馈电线路电连接;
形成于所述基板至少一侧的接地层,所述基板形覆设于所述开口,且所述金属腔体与所述接地层电连接,以与所述接地层配合形成屏蔽腔;
其中,所述基板设有所述移相电路的一侧朝向所述金属腔体,并使所述移相电路位于所述屏蔽腔内,所述接地层构成所述馈电线路的底层。
在其中一个实施例中,所述开口的边缘形成有朝所述一体式电路板突出的插脚,所述基板上开设有与所述接地层电连接的金属化卡槽,所述插脚插设于所述金属化卡槽内。
在其中一个实施例中,所述金属化卡槽贯穿所述基板,且所述金属化卡槽背向所述金属腔体的一侧的边缘设置有接地焊盘,所述插脚的一端突出于所述金属化卡槽并与所述接地焊盘焊接。
在其中一个实施例中,所述移相电路及所述馈电线路分别位于所述基板相对的两侧,且所述多个信号端子通过贯穿所述基板的馈电金属孔与所述馈电线路电连接。
在其中一个实施例中,所述移相电路及所述馈电线路均位于所述基板朝向所述金属腔体的一侧,且所述移相电路及所述馈电线路为一体式电路结构。
在其中一个实施例中,所述接地层包括形成于所述基板相对两侧的第一金属层及第二金属层,且所述第一金属层及所述第二金属层通过金属化过孔电连接。
在其中一个实施例中,所述第一金属层和/或所述第二金属层的局部形成有镂空区域,所述移相电路及所述馈电线路均位于所述镂空区域内。
在其中一个实施例中,所述第一金属层的所述镂空区域与所述第二金属层的所述镂空区域错开。
在其中一个实施例中,所述金属腔体为多个并与所述接地层配合形成多个所述屏蔽腔,所述一体式电路板上形成有多个所述移相电路,且多个所述移相电路分别位于多个所述屏蔽腔内。
上述移相馈电装置,金属腔体为U型槽结构,且与接地层配合形成屏蔽腔,从而起到传统移相器腔体的作用。由于接地层作为屏蔽腔的一个侧壁,故金属腔体相较于传统的移相器腔体则省略了一个侧壁,从而显著减小金属腔体的厚度及重量。此外,移相电路与馈电线路共用基板,形成一体式电路板。一体式电路板起到了传统移相器中移相电路板及馈电网络板的作用。因此,移相馈电装置结构更紧凑,且金属腔体厚度尺寸可进一步压缩。可见,上述移相馈电装置的体积减小、结构简化,从而有利于实现天线的小型化。
一种天线,其特征在于,包括如上述优选实施例中任一项所述的移相馈电装置。
附图说明
图1为本发明较佳实施例中移相馈电装置的结构示意图;
图2为图1所示移相馈电装置的爆炸示意图;
图3为图2所示移相馈电装置另一视角的示意图;
图4为图1所示移相馈电装置中一体式电路板的结构示意图;
图5为本发明另一个实施例中移相馈电装置的结构示意图;
图6为图5所示移相馈电装置的爆炸示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供了一种天线及移相馈电装置,该天线包含该移相馈电装置。而且,天线一般还包括多个辐射单元,移相馈电装置的多个输出端口与多个辐射单元通讯连接形成多个天线通道。移相馈电装置对电信号进行功分、移相后,以使不同 相位的信号分别经多个辐射单元辐射。
请参阅图1,本发明较佳实施例中的移相馈电装置100包括金属腔体110及一体式电路板120。
请一并参阅图2及图3,金属腔体110为一侧开口的U型槽结构。金属腔体110一般呈长条形,其开口101则也沿其长度方向延伸。具体的,U型槽结构指的是金属腔体110的横截面呈U形。其中,金属腔体110可由底壁及沿底壁两侧延伸且相对设置的两个侧壁围成,也可由仅由一个弧形侧壁围成。因此,金属腔体110与传统移相器腔体相比,相当于缺省一个侧壁,故其厚度及重量均可显著减小。
请一并参阅图4,一体式电路板120包括基板121、移相电路122、馈电线路123及接地层124。其中:
基板121一般由介电常数较高的材料成型;接地层124可以是通过镀膜、印刷等方式形成于基板121表面的金属层。移相电路122及馈电线路123形成于基板121的表面,并与接地层124之间绝缘。馈电线路123一般由功分电路、滤波电路部分构成。其中,移相电路122及馈电线路123可以是带状线或微带线结构。此外,移相电路122与馈电线路123还可是与基板121一体的PCB电路板结构。
移相电路122具有多个信号端子(图未示),且多个信号端子与馈电线路123电连接。信号端子121用于实现电信号的输入及输出,根据应用场景的不同,信号端子的数量可对应调整。移相电路122的主要功能是实现电信号的相位变化。根据移相原理的不同,可分介质滑动式移相器及导体滑动式移相器。由于介质滑动式移相器具有结构紧凑、互调干扰小等优势,故本实施例中也采用介质滑动的方式实现移相。
因此,具体在本实施例中,移相馈电装置100还包括移相介质板130。移相介质板130可滑动地收容于金属腔体110内并与移相电路122相对设置。通过滑动移相介质板130,可改变移相电路122中的电长度,从而使得各信号端子实现输出相位的差异。
馈电线路123形成于基板121的任一侧,而接地层124形成于基板121至少 一侧。而且,接地层124构成馈电线路123的底层。也就是说,至少部分接地层124与馈电线路123位于基板121相对的两侧。
基板121覆设于金属腔体110的开口101,且金属腔体110与接地层124形成电连接。因此,金属腔体110与接地层124配合形成屏蔽腔(图未标)。屏蔽腔为封闭结构,相当于传统移相器腔体。进一步的,基板121形成有移相电路122的一侧朝向金属腔体110设置,并使移相电路122位于屏蔽腔内。此时,移相电路122收容于屏蔽腔内,与屏蔽腔共同构成移相器模块,实现传统移相器的功能。因此,在金属腔体110的厚度及重量显著减小的前提下,还能保证移相馈电装置100功能不受影响。
具体在本实施例中,接地层124包括形成于基板121相对两侧的第一金属层1241及第二金属层1243,且第一金属层1241及第二金属层1243通过金属化过孔(图未标)电连接。此时,接地层124为双层结构,金属腔体110与第一金属层1241及第二金属层1243共同构成屏蔽腔。第一金属层1241朝向金属腔体110设置。采用双层结构的接地层124作为屏蔽腔的一个侧壁,可使其屏蔽效果更佳。
需要指出的是,在其他实施例中,接地层124也可为单层结构,且单层结构的接地层124即可朝向金属腔体110设置,也可背向金属腔体110设置。此外,移相电路122与馈电线路123共用基板121,形成一体式电路板120。一体式电路板120起到了传统移相器中移相电路板及馈电网络板的作用。因此,移相馈电装置100结构更紧凑,且金属腔体110厚度尺寸可进一步压缩。
需要指出的是,根据天线集成复杂程度的区别,每个馈电线路123可对应多个移相器模块。具体在本实施例中,金属腔体100为多个并与接地层124配合形成多个屏蔽腔。一体式电路板120上形成有多个移相电路122,且多个移相电路122分别位于多个屏蔽腔内。即,一个移相电路122与一个金属腔体110构成一对移相器模块,且每个移相器模块与基板121之间的安装关系相同。
基板121可通过焊接、卡接等方式与金属腔体110实现固定,从而使得一体式电路板120与金属腔体110实现集成。具体在本实施例中,开口101的边缘形成有朝一体式电路板120突出的插脚113,基板121上开设有与接地层124电连 接的金属化卡槽1212,插脚113插设于金属化卡槽1212内。
插脚113与金属腔体110为一体成型的结构,插脚113与金属化卡槽1212配合,可实现快速定位。而且,插脚113与金属化卡槽1212插接方便,可快速实现金属腔体110与基板121之间的安装,提升装配效率。另外,金属化卡槽1212内壁金属化,故可增大接地层124与插脚113的接触面积,从而提升金属腔体110与接地层124电连接的可靠性。
进一步的,在本实施例中,金属化卡槽1212贯穿基板121,且金属化卡槽1212背向金属腔体110的一侧的边缘设置有接地焊盘1214。插脚113的一端突出于金属化卡槽1212并与接地焊盘1214焊接。
具体的,接地焊盘1214与接地层124可以是一体的,通过将插脚113与接地焊盘1214焊接,可进一步提升金属腔体110与接地层124电连接的可靠性。而且,由于金属化卡槽1312贯穿基板121,故焊接操作可在基板121背向金属腔体110的一侧进行。此时,金属腔体110对焊接部位形成避位,从而便于操作。
由于多个信号端子与馈电线路123电连接,故电信号可在馈电线路123与移相电路122之间传导。进一步的,由于金属腔体110与馈电线路123的共地设置,而信号端子121又与馈电线路123电连接,故起到了相当于传统的同轴馈线的作用。因此,移相馈电装置100无需采用同轴馈线,便可实现馈电线路123对移相电路122馈电。
相对于现有移相器而言,由于无需采用同轴馈线实现移相电路122与馈电线路123的电连接。因此,金属腔体110的外壁上也无需设置安装同轴馈线的布线槽,同时避免了因同轴馈线需与金属腔体110外壁的布线槽焊接而普遍存在的焊接效率低、焊接质量较差的问题,有利于提升移相馈电装置100的电气性能。
馈电线路123与移相电路122可位于基板121的同侧或相对的两侧。信号端子121与馈电线路123之间可通过焊接、一体化成型、插接等方式实现电连接。
请再次参阅图2及图3,在本实施例中,移相电路122及馈电线路123分别位于基板121相对的两侧,且多个信号端子通过贯穿基板121的馈电金属孔1216与馈电线路123电连接。
具体的,馈电线路123位于基板121背向金属腔体110的一侧,第一金属层1241构成馈电线路123的底层。此时,移相电路122及馈电线路123可在基板121的两侧分别成型,对工艺精度要求较低,有利于提升产品良率。
而且,移相电路122及馈电线路123之间的大部分区域通过基板121分离,故可避免相互干扰。进一步的,馈电金属孔1216实质为金属化过孔,故无需焊接便可连接移相电路122与馈电线路123,可靠性较高。
在本实施例中,第一金属层1241及第二金属层1243的局部形成有镂空区域(图未示),移相电路122及馈电线路123均位于镂空区域内。
具体的,可通过对金属层进行蚀刻,或者一体成型的方式得到镂空区域。镂空区域无金属覆盖。因此,通过设置镂空区域,可使移相电路122及馈电线路123与接地层124之间形成间隙,从而实现移相电路122及馈电线路123与接地层124绝缘。在保证信号电路与接地电路之间不短路的同时,还确保了射频传输链路的设计阻抗。
进一步的,在本实施例中,第一金属层1241的镂空区域与第二金属层1243的镂空区域错开。
以图4所示为例,第一金属层1241的镂空区域位于其中部,而第二金属层1243上的镂空区域则位于其边缘。也就是说,第一金属层1241及第二金属层1243可相互遮挡彼此的镂空区域,从而避免出现屏蔽腔的某个区域未被接地层124覆盖的情况,进而提升屏蔽腔的屏蔽效果。
需要指出的是,馈电线路123与移相电路122还可位于基板121的同侧。相应的,多个信号端子与馈电线路123之间还可采用其他方式实现电连接。譬如:
如图5及图6所示,在另一个实施例中,移相电路122及馈电线路123均位于基板121朝向金属腔体110的一侧,且移相电路122及馈电线路123为一体式电路结构。
具体的,移相电路122及馈电线路123可同时一体成型,且成型后即自然实现电连接。因此,移相电路122与馈电线路123电连接的可靠性及产品良率均可进一步提升。而且,可使一体式电路板120的结构更紧凑,从而进一步减小移相 馈电装置100的体积。此时,第二金属层1243构成馈电线路123的底层。
而且,为了对馈电线路123实现避位,金属腔体110开口101的边缘还开设有避位缺口102。
进一步的,在本实施例中,第一金属层1241上形成有镂空区域,移相电路122及馈电线路123均位于第一金属层1241的镂空区域内。
上述移相馈电装置100,金属腔体110为U型槽结构,且与接地层124配合形成屏蔽腔,从而起到传统移相器腔体的作用。由于接地层124作为屏蔽腔的一个侧壁,故金属腔体110相较于传统的移相器腔体则省略了一个侧壁,从而在保证移相馈电装置100功能的前提下,显著减小金属腔体110的厚度及重量。此外,移相电路122与馈电线路123共用基板131,形成一体式电路板120。一体式电路板120起到了传统移相器中移相电路板及馈电网络板的作用。因此,移相馈电装置100结构更紧凑,且金属腔体110厚度尺寸可进一步压缩。可见,上述移相馈电装置100的体积减小、结构简化,从而有利于实现天线的小型化。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种移相馈电装置,其特征在于,包括:
    金属腔体,为一侧开口的U型槽结构;及
    一体式电路板,包括:
    基板;
    形成于所述基板表面的移相电路及馈电线路,所述移相电路具有多个信号端子,且所述多个信号端子与所述馈电线路电连接;
    形成于所述基板至少一侧的接地层,所述基板形覆设于所述开口,且所述金属腔体与所述接地层电连接,以与所述接地层配合形成屏蔽腔;
    其中,所述基板设有所述移相电路的一侧朝向所述金属腔体,并使所述移相电路位于所述屏蔽腔内,所述接地层构成所述馈电线路的底层。
  2. 根据权利要求1所述的移相馈电装置,其特征在于,所述开口的边缘形成有朝所述一体式电路板突出的插脚,所述基板上开设有与所述接地层电连接的金属化卡槽,所述插脚插设于所述金属化卡槽内。
  3. 根据权利要求2所述的移相馈电装置,其特征在于,所述金属化卡槽贯穿所述基板,且所述金属化卡槽背向所述金属腔体的一侧的边缘设置有接地焊盘,所述插脚的一端突出于所述金属化卡槽并与所述接地焊盘焊接。
  4. 根据权利要求1所述的移相馈电装置,其特征在于,所述移相电路及所述馈电线路分别位于所述基板相对的两侧,且所述多个信号端子通过贯穿所述基板的馈电金属孔与所述馈电线路电连接。
  5. 根据权利要求1所述的移相馈电装置,其特征在于,所述移相电路及所述馈电线路均位于所述基板朝向所述金属腔体的一侧,且所述移相电路及所述馈电线路为一体式电路结构。
  6. 根据权利要求1至5任一项所述的移相馈电装置,其特征在于,所述接地层包括形成于所述基板相对两侧的第一金属层及第二金属层,且所述第一金属层及所述第二金属层通过金属化过孔电连接。
  7. 根据权利要求6所述的移相馈电装置,其特征在于,所述第一金属层和/ 或所述第二金属层的局部形成有镂空区域,所述移相电路及所述馈电线路均位于所述镂空区域内。
  8. 根据权利要求7所述的移相馈电装置,其特征在于,所述第一金属层的所述镂空区域与所述第二金属层的所述镂空区域错开。
  9. 根据权利要求1所述的移相馈电装置,其特征在于,所述金属腔体为多个并与所述接地层配合形成多个所述屏蔽腔,所述一体式电路板上形成有多个所述移相电路,且多个所述移相电路分别位于多个所述屏蔽腔内。
  10. 一种天线,其特征在于,包括如上述权利要求1至9任一项所述的移相馈电装置。
PCT/CN2019/115382 2019-01-30 2019-11-04 天线及其移相馈电装置 WO2020155722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910091677.3 2019-01-30
CN201910091677.3A CN109638457B (zh) 2019-01-30 2019-01-30 天线及移相馈电装置

Publications (1)

Publication Number Publication Date
WO2020155722A1 true WO2020155722A1 (zh) 2020-08-06

Family

ID=66062813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115382 WO2020155722A1 (zh) 2019-01-30 2019-11-04 天线及其移相馈电装置

Country Status (2)

Country Link
CN (1) CN109638457B (zh)
WO (1) WO2020155722A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022152022A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 天线装置及电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802234B (zh) * 2019-01-30 2023-09-29 京信通信技术(广州)有限公司 基站天线及移相馈电装置
CN109638457B (zh) * 2019-01-30 2023-09-29 京信通信技术(广州)有限公司 天线及移相馈电装置
CN110931921A (zh) * 2019-12-23 2020-03-27 南京阜太通信技术有限公司 一种应用于5g大规模天线阵列的移相器结构
CN111063999A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线、移相馈电装置及腔体结构
CN111446523A (zh) * 2020-04-30 2020-07-24 上海安费诺永亿通讯电子有限公司 一种高集成度移相器
CN111817008B (zh) * 2020-06-30 2022-07-19 武汉虹信科技发展有限责任公司 一种移相器及基站天线
CN112003017B (zh) * 2020-07-31 2023-04-14 中信科移动通信技术股份有限公司 阵列天线移相馈电装置及阵列天线
CN112186348B (zh) * 2020-09-27 2021-12-17 华南理工大学 基站天线及移相馈电装置
CN112864574A (zh) * 2020-12-25 2021-05-28 华南理工大学 天线装置与天线模块
CN112909453A (zh) * 2021-03-23 2021-06-04 京信通信技术(广州)有限公司 基站天线及其移相器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267844A1 (en) * 2005-05-31 2006-11-30 Fujitsu Component Limited Antenna apparatus
CN106972223A (zh) * 2017-04-21 2017-07-21 摩比天线技术(深圳)有限公司 移相器及基站天线
CN109088133A (zh) * 2018-07-18 2018-12-25 华南理工大学 射频器件
CN109638457A (zh) * 2019-01-30 2019-04-16 京信通信技术(广州)有限公司 天线及其移相馈电装置
CN109802234A (zh) * 2019-01-30 2019-05-24 京信通信技术(广州)有限公司 基站天线及其移相馈电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995726B1 (en) * 2004-07-15 2006-02-07 Rockwell Collins Split waveguide phased array antenna with integrated bias assembly
CN104681896A (zh) * 2015-03-23 2015-06-03 武汉虹信通信技术有限责任公司 一种多路一体化介质移相器
CN105390824B (zh) * 2015-12-14 2018-06-19 华为技术有限公司 劈裂天线的馈电网络和劈裂天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267844A1 (en) * 2005-05-31 2006-11-30 Fujitsu Component Limited Antenna apparatus
CN106972223A (zh) * 2017-04-21 2017-07-21 摩比天线技术(深圳)有限公司 移相器及基站天线
CN109088133A (zh) * 2018-07-18 2018-12-25 华南理工大学 射频器件
CN109638457A (zh) * 2019-01-30 2019-04-16 京信通信技术(广州)有限公司 天线及其移相馈电装置
CN109802234A (zh) * 2019-01-30 2019-05-24 京信通信技术(广州)有限公司 基站天线及其移相馈电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022152022A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 天线装置及电子设备

Also Published As

Publication number Publication date
CN109638457A (zh) 2019-04-16
CN109638457B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2020155722A1 (zh) 天线及其移相馈电装置
WO2020155724A1 (zh) 基站天线及其移相馈电装置
TWI710163B (zh) 射頻連接設置
WO2020155723A1 (zh) 移相馈电装置及基站天线
US10148027B2 (en) Structure for connecting board and connector, board, and method for connecting board and connector
US6661386B1 (en) Through glass RF coupler system
EP2503858B1 (en) Diplexer circuit and method of manufacturing a printed circuit board therefor
US10230160B2 (en) Wireless communication system and wearable electronic device including the same
JP2006024618A (ja) 配線基板
JP3139975B2 (ja) アンテナ装置
US11063339B2 (en) Antenna module and communication device
EP4089836A1 (en) Antenna assembly and electronic device
US20200388899A1 (en) Microstrip-to-waveguide transition and radio assembly
CN210957014U (zh) 移相馈电装置、天线单元及阵列天线
CN110931987A (zh) 移相馈电装置、辐射阵列及大规模阵列天线
CN210692765U (zh) 移相馈电装置、辐射阵列及大规模阵列天线
CN209329160U (zh) 基站天线及其移相馈电装置
JP4995174B2 (ja) 無線通信装置
CN206401476U (zh) 一种一体化多路介质移相器
US8212727B2 (en) Antenna and wireless transceiver using the same
US11923587B2 (en) Transmission line for radiofrequency range current
US12003037B2 (en) Base station antenna and phase-shifting and feeding device thereof
WO2020014891A1 (en) Balun and method for manufacturing the same
CN209329162U (zh) 天线及其移相馈电装置
US6917253B2 (en) Radio-frequency connection and a radio-frequency distribution network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19913492

Country of ref document: EP

Kind code of ref document: A1