WO2019128219A1 - 合路器、移相器组件及天线 - Google Patents

合路器、移相器组件及天线 Download PDF

Info

Publication number
WO2019128219A1
WO2019128219A1 PCT/CN2018/097596 CN2018097596W WO2019128219A1 WO 2019128219 A1 WO2019128219 A1 WO 2019128219A1 CN 2018097596 W CN2018097596 W CN 2018097596W WO 2019128219 A1 WO2019128219 A1 WO 2019128219A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
main transmission
combiner
parallel
filters
Prior art date
Application number
PCT/CN2018/097596
Other languages
English (en)
French (fr)
Inventor
苏国生
陈礼涛
刘培涛
薛锋章
李明超
法斌斌
王宇
Original Assignee
京信通信系统(中国)有限公司
京信通信技术(广州)有限公司
京信通信系统(广州)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司, 京信通信技术(广州)有限公司, 京信通信系统(广州)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2019128219A1 publication Critical patent/WO2019128219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a combiner, and a corresponding phase shifter assembly and antenna.
  • Multi-frequency antennas play an increasingly important role in network coverage.
  • Multi-frequency antennas Integrating combiners and phase shifters is a trend in order to facilitate layout or downsizing.
  • the combiner is generally used for the transmitting end, and its function is to combine two or more RF signals sent from different transmitters into one RF device for transmitting the antenna, and avoid mutual influence between the respective port signals.
  • the performance of the device may affect the quality of the entire system.
  • the large size will affect the integration of the components. Therefore, the miniaturization design of the combiner is particularly important.
  • Another object of the present invention is to provide a phase shifter assembly including the above combiner that reduces the size of the phase shifter assembly while facilitating integration of the phase shifter assembly.
  • Another object of the present invention is to provide an antenna including the phase shifter assembly described above, which can greatly reduce the mounting size of the antenna.
  • the present invention provides the following technical solutions:
  • the present invention provides a combiner comprising a dielectric substrate and at least two filters disposed on the dielectric substrate, the input ends of each of the filters respectively serving as an input end of the combiner, each of the An output of the filter is connected to serve as an output of the combiner;
  • the filter further includes a main transmission line and a parallel stub; the main transmission line is electrically connected to an input end and an output end of the filter; One end of the parallel stub is electrically connected to the main transmission line, and the other end is open, and the main transmission line of each of the filters and the parallel stubs used for matching are distributed on different circuit layers.
  • the projection of the main transmission line on the circuit layer where the parallel stub is located overlaps part or all of the parallel stub.
  • the main transmission line of at least one of the filters and the main transmission line of the other filters are disposed on different circuit layers, or the main transmission lines of each of the filters are disposed on the same circuit layer.
  • the combiner further includes a metallized via that turns on different circuit layers of the dielectric substrate, and each of the parallel stubs in each of the filters passes through the metallized via and the main transmission line connection.
  • the filter includes at least one of the parallel stubs, the parallel stub is electrically connected to the main transmission line through the metallized via, and the parallel stub is away from the One end of the metallized via is open.
  • the main transmission line in each of the filters is disposed on different circuit layers of the dielectric substrate through metallized via segments, and at least one section of the main transmission line is provided with a short parallel connection. And a parallel stub, and the parallel stub is located on an extension line of the main transmission line of the same layer.
  • At least one of the parallel stubs in each of the filters is composed of two or more microstrip structures, and the size of the parallel stubs is different from the main transmission line, and at least one of the parallel connections is short.
  • the centerline of the stub is offset from the centerline of the main transmission line.
  • the filter further includes a parallel stub disposed on the same circuit layer as the main transmission line and not on the same line as the main transmission line.
  • the combiner includes at least two of the dielectric substrates, and the main transmission line in each of the filters is disposed between two adjacent dielectric substrates, and two adjacent to the dielectric substrates are away from each other.
  • the parallel transmission stubs are all disposed on one side of the main transmission line, and each of the parallel stubs is electrically connected to the main transmission line.
  • the present invention also provides a phase shifter assembly comprising two phase shifters and at least one combiner according to any of the above aspects, the combiner being provided to two of the phase shifters Between the outputs of the two phase shifters are respectively connected to different inputs of the combiner.
  • the two phase shifters and the combiner are disposed on the same level of the same circuit board.
  • the present invention also provides an antenna comprising the phase shifter assembly of any of the above aspects.
  • the combiner provided by the present invention the main transmission line of each of the filters and the parallel stubs matched with them are distributed on different circuit layers to fully utilize the space of the dielectric substrate, so that the design structure of the entire combiner It is compact and reasonable, easy to process, and does not occupy extra space. It is beneficial to reduce the volume of the combiner and realize the miniaturization design of the combiner.
  • the connection position enables band stop suppression of a specific bandwidth.
  • the projection of the main transmission line of the applied filter on the circuit layer where the parallel stub is located overlaps part or all of the parallel stub, so that the parallel stub and the main transmission line
  • the projections are substantially coincident to reduce the width of the combiner, further reducing the volume of the combiner.
  • the combiner provided by the present invention, comprising at least one section of the filter, wherein the parallel stub comprises two or more microstrip structures, the parallel stub being different in size from the main transmission line. At least one of the centerlines of the parallel stub is offset from the centerline of the main transmission line.
  • the parallel stubs are composed of circuits of different sizes and numbers, and can be flexibly designed according to actual needs to realize optimization and suppression of the standing wave of the combiner; the center line of the parallel stub can be deviated from the center line of the main transmission line to adjust Circuit performance.
  • the combiner provided by the present invention the filter further comprising a parallel stub disposed on the same circuit layer as the main transmission line and not on the same line as the main transmission line, and the projection is not coincident with the main transmission line by setting the projection
  • the conventional parallel stub is used by a mixture of two parallel stubs.
  • the combiner size can be folded in length and width to reduce the size of the combiner.
  • the invention provides a phase shifter assembly, which integrates the combiner with the phase shifter, facilitates assembly and mass production, and avoids the introduction of passive intermodulation products.
  • the antenna provided by the present invention comprises a phase shifter assembly provided with the combiner, and a phase shifter assembly having a smaller size is more advantageous for actual installation of the antenna and greatly reducing the size of the antenna after installation.
  • FIG. 1 is a schematic structural view of an exemplary embodiment of a combiner of the present invention
  • FIG. 2 is a schematic structural view of a layer of a dielectric substrate of the combiner of FIG. 1;
  • FIG. 3 is a schematic structural view of another layer of the dielectric substrate of the combiner of FIG. 1;
  • FIG. 4 is a schematic structural view of an embodiment of a filter in a combiner of the present invention, and for convenience of explanation, a dielectric substrate in the combiner is also shown;
  • Figure 5 is a plan view showing an exemplary embodiment of a filter in the combiner of the present invention, for convenience of explanation, also showing the dielectric substrate in the combiner;
  • FIG. 6 is a front elevational view of the filter in the combiner of the present invention, and for convenience of explanation, the dielectric substrate in the combiner is also shown;
  • FIG. 7 is a schematic structural view of another embodiment of a filter in a combiner of the present invention, and for convenience of explanation, a dielectric substrate in the combiner is also shown;
  • FIG. 8 is a schematic structural view of still another embodiment of a filter in the combiner of the present invention, and for convenience of explanation, the dielectric substrate in the combiner is also shown;
  • FIG. 9 is a schematic structural view of still another embodiment of a filter in a combiner of the present invention, and for convenience of explanation, a dielectric substrate in the combiner is also shown;
  • FIG. 10 is a schematic structural view of still another embodiment of a filter in a combiner of the present invention. For convenience of explanation, a dielectric substrate in the combiner is also shown;
  • Figure 11 is a schematic structural view of an exemplary embodiment of a phase shifter assembly of the present invention.
  • Figure 12 is a block diagram showing an exemplary embodiment of another phase shifter assembly of the present invention.
  • a combiner 50 includes a dielectric substrate and at least two filters disposed on the dielectric substrate, and input ends of the filters As an input end of the combiner, an output end of each of the filters is connected as an output end of the combiner; the filter further includes a main transmission line and a parallel stub; the main transmission line Electrically connecting an input end and an output end of the filter; one end of the parallel stub is electrically connected to the main transmission line, and the other end is open, and the main transmission line of each of the filters is matched with a parallel short
  • the lines are distributed on different circuit layers.
  • the main transmission line of each of the filters and the parallel stubs matched with them are distributed on different circuit layers to fully utilize the space of the dielectric substrate, so that the design structure of the entire combiner is compact.
  • the projection of the main transmission line on the circuit layer where the parallel stub is located overlaps part or all of the parallel stub.
  • the partial coincidence may mean that the projection of the main transmission line on the circuit layer where the parallel stub is located may completely coincide with a partial parallel stub of the multi-section parallel stub, or may be completely complete with some of the parallel stubs of a certain section. Coincident to reduce the width of the combiner, further reducing the volume of the combiner.
  • the combiner 50 includes a dielectric substrate 11 and a first filter 51 and a second filter 52 disposed on the dielectric substrate 11.
  • the first filter 51 can turn on the first frequency band and suppress the second frequency band.
  • the second filter 52 is capable of turning on the second frequency band to suppress the first frequency band, and the first frequency band and the second frequency band can be flexibly selected according to actual needs.
  • the structures of the first filter 51 and the second filter 52 are identical.
  • the dielectric substrate 11 is a PCB board; the first filter 51 includes an input end 121, an output end 13, a main transmission line 141, and a first set of parallel stubs composed of two microstrip structures 151 and 152.
  • the main transmission line 141 is electrically connected to the input end 121 and the output end 13 of the first filter 51;
  • the second filter 52 includes an input end 122, an output end 13, and a main transmission line 142.
  • Two sets of parallel stubs 154 and 155, the main transmission line 142 is electrically connected to the input end 122 and the output end 13 of the second filter 52; wherein the input end 121 of the first filter 51 serves as the combined path
  • One input of the device 50, the input 122 of the second filter 52 serves as the other input of the combiner 50; the output of the first filter 51 and the second filter 52 is connected as the The output of the router 50.
  • One end of the first group of parallel stubs and the second group of parallel stubs 153 formed by the two-segment microstrip structure 151 and 152 are electrically connected to the main transmission line 141, and the other ends are open, and the main transmission line 141 is in the
  • the projection on the circuit layer where a set of parallel stubs is located coincides with the first microstrip structure 151 of the first set of parallel stubs, and overlaps with the second microstrip structure 152 of the second segment; similarly, the second filter 52
  • One end of each of the two sets of parallel stubs 154 and 155 is electrically connected to the main transmission line 142, and the other end is open.
  • the projection of the main transmission line 142 on the circuit layer where the two sets of parallel stubs 154 and 155 are located and two The group parallel stubs 154 and 155 all coincide.
  • the main transmission line of at least one of the filters and the main transmission line of the other filters are disposed on different circuit layers.
  • the main transmission line 141 of the first filter 51 is placed on the top layer of the PCB (refer to the circuit layer where the solid line of FIG. 1 is the reference standard), the second group of parallel stubs 153 and the microstrip structure 151 and the microstrip structure 152.
  • the first set of parallel stubs are placed on the bottom layer of the PCB (referenced to the circuit layer where the dotted line is in FIG.
  • the main transmission line 142 of the second filter 52 is placed on the bottom layer of the PCB, two sets of parallel stubs 154 and The 155 is placed on the top layer of the PCB; the input end 121 of the first filter 51, the input end 122 of the second filter 52, and the output end 13 are double-layer circuits, and the top and bottom circuits are connected by a plurality of metallized vias 161.
  • the main transmission lines of each of the filters are disposed on the same circuit layer. That is, the main transmission line 141 of the first filter 51 and the main transmission line 142 of the second filter 52 may both be disposed on the top layer of the PCB board, and the parallel short sections of the first filter 51 and the second filter 52 are all disposed on the PCB board. The bottom layer. It should be noted that the combiner of the present invention may also adopt one of the first filter 51 or the second 52 and at least one existing conventional filter to be flexibly designed as needed.
  • the combiner further includes a metallized via that turns on different circuit layers of the dielectric substrate, and each of the parallel stubs in each of the filters passes through the metallized via and the main transmission line Connecting, specifically, in the first filter 51, the first set of parallel stubs and the second set of parallel stubs formed by the microstrip structure 151 and the microstrip structure 152 are placed on the bottom layer of the PCB (indicated by the dotted line in FIG.
  • the circuit layer is the reference standard) and is connected to the main transmission line 141 through the metallization via 160; the main transmission line 142 of the second filter 52 is placed on the bottom layer of the PCB, and two sets of parallel stubs 154 and 155 are placed on the top of the PCB. And connected to the main transmission line 141 through other metallization vias 160.
  • the filter 51 includes at least one of the parallel stubs, and the parallel stub passes through the metalized via and the main transmission line. Connected, and the parallel stub is open at an end away from the metallized via.
  • the filter 51 includes two parallel stubs: a first parallel stub 153 and a second parallel stub 154, the first parallel stub 153 and a second parallel stub 154 may be electrically connected to the main transmission line 14 through the same metallization via 16, and the first parallel stub 153 and the second parallel stub 154 are away from the metal One end of the via 16 is open.
  • the combiner further includes two ground plates, the dielectric substrate 11 is a plurality of layers, and the dielectric substrate 11 provided with the filter is disposed between the two ground plates to make a combination
  • the structure of the device is compact and reasonable.
  • the filter 51 used by the combiner 50 has its main transmission line 14 and an open-ended parallel stub 15 printed on the top layer of the PCB (in the solid line of FIG. 5).
  • the circuit layer is the reference standard) and the bottom layer (referring to the circuit layer in which the dotted line is located in FIG. 5), and one end of the terminal open parallel stub 15 is connected to the main transmission line 14 through the metallized via 16.
  • the filter 51 in the combiner 50 includes two parallel stubs 15, and the two metallized vias 16 are disposed adjacent to the input end 12 and the output end 13, respectively.
  • the parallel stub 15 of the present invention can significantly shorten the length compared with the conventional open stub; meanwhile, the parallel stub 15 and the projection of the main transmission line 14 substantially coincide, and the width of the combiner 50 can be significantly reduced. The volume of the combiner 50 is thus greatly reduced.
  • At least one of the parallel stubs 15 of each of the filters 51 may be more than two segments for the optimization and suppression of the standing wave of the combiner 50.
  • the microstrip structures 151 and 152 are different in size from the main transmission line 14, that is, the main transmission line 14 and the parallel stub 15 are circuits having different widths; at least one of the parallel stubs is described.
  • the centerline of line 15 is offset from the centerline of the main transmission line 14 to adjust circuit performance.
  • three parallel stubs 15, three parallel stubs 15 and the main transmission line 14 are designed in different sizes, wherein one end of the microstrip structure 151 is connected to the main transmission line 14 through the metallized vias 16.
  • the other end is connected to the microstrip structure 152 to form a parallel stub.
  • the microstrip structure 152 is offset from the center line of the main transmission line 14 for adjusting the circuit performance; one end of the parallel stub 153 and the parallel stub 154 are passed.
  • the metallized vias 16 are connected to the main transmission line 14, and a gap is provided between the parallel stubs 15 of each section.
  • a filter 51 is disclosed, the filter 51 further comprising a same circuit layer as the main transmission line 14 and not in the main transmission line 14.
  • Parallel stubs 17 on the same line, the parallel stubs 17 do not coincide with the projection of the main transmission line 14, that is, the filter 51 includes at least one conventional parallel stub 17 .
  • one is used.
  • the parallel stub 15 and the conventional parallel stub 17 which are projected on the main transmission line 14 are respectively located on the bottom layer of the PCB (refer to the circuit layer in which the dotted line is located in FIG. 8) and the top layer, and the parallel connection in the bottom layer is short.
  • One end of the wire 15 is electrically connected to the main transmission line 14 through the metallized via 16 and the other end is open; one end of the conventional parallel stub 17 at the top layer can be directly electrically connected to the main transmission line 14 of the same circuit layer, and Open at one end.
  • the combiner size can be compromised in length and width to reduce the size of the combiner.
  • the combiner 50 includes at least two dielectric substrates 11, and the main transmission line 14 in each of the filters 51.
  • the side of the two adjacent dielectric substrates 11 remote from the main transmission line 14 are provided with the parallel stubs 153 and 154, each of which is short in parallel Both the cut lines 153 and 154 are electrically connected to the main transmission line 14.
  • the dielectric substrate 11 can be a multi-layer PCB board, the main transmission line 14 is located in the middle layer, and the two parallel stubs 153 and 154 are respectively located on the top and bottom layers of the PCB board, and one end passes through the metallized via 16 and the main transmission line 14 . Connected, greatly reducing the size of the combiner.
  • the main transmission line 14 can be placed on the top layer (the circuit layer in which the parallel stub 154 is located in FIG. 9 as a reference standard), and the parallel stubs 153 and 154 are placed on the middle layer and the bottom layer (parallel line 153 in FIG. 9)
  • the circuit layer is a reference standard) and is connected to the main transmission line 14 through a metallized via 16 .
  • the main transmission lines 141 and 142 in each of the filters 51 are segmentally disposed on different circuit layers of the dielectric substrate 11 through metallized vias 162.
  • the main transmission line 141 is provided with at least one of the parallel stubs 154 on an extension line of the metallization 162 via.
  • the main transmission lines 141 and 142 of the present embodiment are respectively placed on the top and bottom layers of the PCB board, and are connected through the metallization vias 162; the parallel stubs 153 are printed on the bottom layer of the PCB board, and through the metallization vias 161 One end is connected to the main transmission line 141; the parallel stub 154 is an extension line of the main transmission line 141 at the segment, and the filtering effect is realized by coupling with the main transmission line 142.
  • the second filter 52 has the same embodiment as the first filter 51, and details are not described herein again.
  • an embodiment of the present invention further provides a phase shifter assembly 200, including two phase shifters 30 and 40 and the combiner 50, and the combiner 50 is provided in two Between adjacent phase shifters 30 and 40, the outputs of the two phase shifters 30 and 40 are respectively connected to different inputs of the combiner 50.
  • the two phase shifters can arbitrarily match the number of combiners according to actual needs, and can be one or more.
  • Each phase shifter assembly 200 can also be spliced into an integrated phase shifter assembly and placed in the same cavity.
  • phase shifter assembly 200 includes a first phase shifter 40, a second phase shifter 30, and at least one of the combiners 50, and the combiner 50 is placed on two phase shifters. between.
  • the signal of the first phase shifter 40 is input from the input port 401, the output port 402 is connected to the input port 102 of the combiner 50; the signal of the second phase shifter 30 is input from the input port 301, and the output port 302 and the combiner 50
  • the input ports 103 are connected; the outputs of the two phase shifters 30 and 40 are outputted by the output port 101 after passing through the combiner 50.
  • the two phase shifter circuits and the combiner circuit are printed on the same PCB.
  • the phase shifter component 200 of this embodiment has two output ports 101. Further, the combined phase shifter 1 can be expanded into a plurality of output ports, assuming that the number of output ports of the first phase shifter 40 is M and the second shift The number of output ports of the phaser 30 is N, and the number of combiners 50 is K, then K is less than or equal to the minimum value of M, N, preferably, K, M, N are equal and greater than or equal to 1.
  • phase shifter assembly 200 the two phase shifters 30 and 40 and the combiner 50 are disposed on the same level of the same circuit board.
  • a phase shifter assembly 100 is provided, as shown in FIG. 12, including a phase shifter 20 and a filter 51 in the combiner 50, the phase shifter 20
  • the input port 201 and/or the output port 202 are provided with the filter 51 to improve the filtering performance of the phase shifter assembly 100, and the phase shifter circuit and the filter circuit can be integrated in the same cavity.
  • FIG. 5 and FIG. 5 show that as shown in FIG. 5 and FIG.
  • the filter 51 includes an input terminal 12, an output terminal 13, a main transmission line 14, and a parallel stub 15; the main transmission line 14 is electrically connected to the input terminal 12 and the An output end 13; one end of the parallel stub 15 is electrically connected to the main transmission line 14, and the other end is open, and the projection of the main transmission line 14 on the circuit layer where the parallel stub 15 is located is
  • the parallel stubs 15 are partially or completely coincident.
  • 51 further includes metallization vias 16 that conduct different circuit layers of the dielectric substrate, each of the parallel stubs being electrically coupled to the main transmission line 14 by metallization vias 16.
  • the present invention also provides an antenna comprising at least one phase shifter assembly 100 or 200 as described above, such that the antenna has the advantages of the phase shifter assembly 100 or 200, to a certain extent The size of the antenna.
  • the present invention overcomes the traditional fixed thinking, changes the traditional strip line filter, combiner and phase shifter component structure, and greatly reduces the filter and the combined path through the use of parallel stubs.
  • the size of the unit reduces costs and is easy to integrate with components such as phase shifters.
  • the strip line filter and combiner of the present invention have an optimistic application prospect as a basic component.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明实施例提供了一种合路器,包括介质基板和设置在所述介质基板上的至少两个滤波器,所述滤波器包括输入端、输出端、主传输线及并联短截线;各所述滤波器的输入端分别作为所述合路器的一个输入端,各所述滤波器的输出端连接以作为所述合路器的输出端,所述主传输线电连接所述滤波器的输入端与所述滤波器的输出端;所述并联短截线的一端与所述主传输线电连接,另一端皆开路,每个所述滤波器的主传输线与其匹配使用的并联短截线分布在不同电路层上,实现了合路器的小型化设计,以满足其与各种通信部件集成的需要。本发明实施例还提供了移相器组件及天线,将所述合路器运用于这些部件中,可大大缩小这些部件的体积。

Description

合路器、移相器组件及天线 技术领域
本发明涉及移动通信技术领域,尤其涉及一种合路器,以及相应的移相器组件及天线。
背景技术
随着移动通信的发展,多频天线在网络覆盖中扮演着越来越重要的角色。多频天线为了方便布局或缩小尺寸,将合路器与移相器集成成为一个趋势。
合路器一般用于发射端,其作用是将两路或者多路从不同发射机发出的射频信号合为一路送到天线发射的射频器件,同时避免各个端口信号之间的相互影响,合路器性能的优劣可能会影响整个系统的运行质量,尺寸太大会影响部件的集成,因此,合路器的小型化设计显的尤为重要。
发明内容
本发明的目的旨在提供一种合路器,以解决合路器尺寸太大、成型困难而影响部件集成的问题。
本发明的另一目的旨在提供一种包括上述合路器的移相器组件,在便于集成移相器组件的同时,缩小该移相器组件的尺寸。
本发明的另一目的旨在提供一种包括上述移相器组件的天线,可大大缩小天线的安装尺寸。
为了实现上述目的,本发明提供以下技术方案:
本发明提供一种合路器,包括介质基板和设置在所述介质基板上的至少两个滤波器,各所述滤波器的输入端分别作为所述合路器的一个输入端,各所述滤波器的输出端连接以作为所述合路器的输出端;所述滤波器还包括主传输线及并联短截线;所述主传输线电连接所述滤波器的输入端与输出端;所述并联短截线的一端与所述主传输线电连接,另一端皆开路,每个所述滤波器的主传输线与其匹配使用的并联短截线分布在不同电路 层上。
进一步地,所述主传输线在所述并联短截线所在电路层上的投影与所述并联短截线部分或全部重合。
进一步地,至少一个所述滤波器的主传输线和其他滤波器的主传输线设置在不同电路层上,或者各所述滤波器的主传输线设置在同一电路层上。
进一步地,所述合路器还包括导通所述介质基板不同电路层的金属化过孔,各所述滤波器中每节所述并联短截线通过金属化过孔与所述主传输线电连接。
进一步地,所述滤波器包括至少一节所述并联短截线,所述并联短截线通过所述金属化过孔与所述主传输线电连接,且所述并联短截线上远离所述金属化过孔的一端开路。
进一步地,各所述滤波器中的所述主传输线通过金属化过孔分段设置在所述介质基板的不同电路层上,所述主传输线的分段处设有至少一节所述并联短截线,且所述并联短截线位于同层的一段所述主传输线的延长线上。
进一步地,各所述滤波器中至少一节所述并联短截线由两段以上的微带结构构成,所述并联短截线的尺寸与所述主传输线不同,至少一节所述并联短截线的中心线偏离所述主传输线的中心线。
进一步地,所述滤波器还包括与所述主传输线设置在同一电路层且与所述主传输线不在同一直线上的并联短截线。
进一步地,所述合路器包括至少两个所述介质基板,各所述滤波器中所述主传输线设置在两个相邻所述介质基板之间,两相邻所述介质基板上远离所述主传输线的一侧皆设有所述并联短截线,各所述并联短截线皆与所述主传输线电连接。
相应地,本发明还提供了一种移相器组件,包括两个移相器及至少一个上述任一技术方案所述的合路器,所述合路器设于两个所述移相器之间,两个所述移相器的输出端分别与所述合路器的不同输入端连接。
进一步地,两所述移相器及所述合路器设于同一电路板的同一层面 上。
相应地,本发明还提供了一种天线,包括上述任一技术方案所述的移相器组件。
相比现有技术,本发明的方案具有以下优点:
1.本发明提供的合路器,每个所述滤波器的主传输线与其匹配使用的并联短截线分布在不同电路层上,以充分利用介质基板的空间,使整个合路器的设计结构显得紧凑合理,易于加工,且不会占用额外的空间,有利于缩小合路器的体积,实现合路器的小型化设计,此外,通过调整并联短截线的形状、结构及与主传输线的连接位置,可以实现特定带宽的阻带抑制。
2.本发明提供的合路器,运用的滤波器的主传输线在所述并联短截线所在电路层上的投影与所述并联短截线部分或全部重合,使并联短截线与主传输线投影基本重合,以减小合路器的宽度,进一步缩小合路器的体积。
3.本发明提供的合路器,其包含的滤波器的至少一节所述并联短截线由两段以上的微带结构构成,所述并联短截线的尺寸与所述主传输线不同,至少一节所述并联短截线的中心线偏离所述主传输线的中心线。并联短截线由不同尺寸和数量的电路构成,可根据实际需要灵活设计,实现合路器驻波的优化和抑制;并联短截线的中心线可偏离所述主传输线的中心线,以调节电路性能。
4.本发明提供的合路器,所述滤波器还包括与所述主传输线设置在同一电路层且与所述主传输线不在同一直线上的并联短截线,通过设置投影与主传输线不重合的常规并联短截线,通过两种并联短截线的混合使用,合路器尺寸可以在长度和宽度上折中,缩小合路器尺寸。
5.本发明提供的一种移相器组件,将合路器与移相器集成,利于组装和大批量生产,同时可避免引入的无源互调产物。
6.本发明提供的天线,包括设有所述合路器的移相器组件,具有较小尺寸的移相器组件,更有利于天线的实际安装,并大大缩小天线安装后的尺寸。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面 的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明的合路器一个典型实施例的结构示意图;
图2为图1中的合路器的介质基板一层面的结构示意图;
图3为图1中的合路器的介质基板另一层面的结构示意图;
图4为本发明合路器中的滤波器一个实施例的结构示意图,为便于说明,同时示出了所述合路器中的介质基板;
图5为本发明合路器中的滤波器的一个典型实施例的俯视图,为便于说明,同时示出了所述合路器中的介质基板;
图6为本发明合路器中的滤波器的主视图,为便于说明,同时示出了所述合路器中的介质基板;
图7为本发明合路器中的滤波器另一个实施例的结构示意图,为便于说明,同时示出了所述合路器中的介质基板;
图8为本发明合路器中的滤波器又一个实施例的结构示意图,为便于说明,同时示出了所述合路器中的介质基板;
图9为本发明合路器中的滤波器再一个实施例的结构示意图,为便于说明,同时示出了所述合路器中的介质基板;
图10为本发明合路器中的滤波器又一个实施例的结构示意图,为便于说明,同时示出了所述合路器中的介质基板;
图11为本发明的一种移相器组件的一个典型实施例的结构示意图;
图12为本发明的另一种移相器组件的一个典型实施例的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似 功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
如图1、2和3所示,本发明一个实施例提供的一种合路器50,包括介质基板和设置在所述介质基板上的至少两个滤波器,各所述滤波器的输入端分别作为所述合路器的一个输入端,各所述滤波器的输出端连接以作为所述合路器的输出端;所述滤波器还包括主传输线及并联短截线;所述主传输线电连接所述滤波器的输入端与输出端;所述并联短截线的一端与所述主传输线电连接,另一端皆开路,每个所述滤波器的主传输线与其匹配使用的并联短截线分布在不同电路层上。
本发明提供的合路器,每个所述滤波器的主传输线与其匹配使用的并联短截线分布在不同电路层上,以充分利用介质基板的空间,使整个合路器的设计结构显得紧凑合理,易于加工,且不会占用额外的空间,有利于缩小合路器的体积,实现合路器的小型化设计,此外,通过调整并联短截线的形状、结构及与主传输线的连接位置,可以实现特定带宽的阻带抑制。
进一步地,所述主传输线在所述并联短截线所在电路层上的投影与所述并联短截线部分或全部重合。所述部分重合可指主传输线在并联短截线所在电路层上的投影可与多节并联短截线中的部分并联短截线完全重合,或与某节并联短截线中的部分电路完全重合,以减小合路器的宽度,进一步缩小合路器的体积。
具体地,该合路器50包括介质基板11和设置在所述介质基板11上的第一滤波器51和第二滤波器52,第一滤波器51能够导通第一频段,抑制第二频段;第二滤波器52能够导通第二频段,抑制第一频段,所述第一频段、第二频段可根据实际需要灵活选取。较佳地,所述第一滤波器51和所述第二滤波器52的结构一致。其中,优选地,所述介质基板11为PCB板;第一滤波器51包括输入端121、输出端13、主传输线141、由151和152两段微带结构构成的第一组并联短截线及第二组并联短截线153,所述主传输线141电连接所述第一滤波器51的输入端121与输出端13;第二滤波器52包括输入端122、输出端13、主传输线142、两组并联短截线154和155,所述主传输线142电连接所述第二滤波器52的输 入端122与输出端13;其中,第一滤波器51的输入端121作为所述合路器50的一个输入端,第二滤波器52的输入端122作为所述合路器50的另一个输入端;第一滤波器51和第二滤波器52的输出端13连接以作为所述合路器50的输出端。由151和152两段微带结构构成的第一组并联短截线及第二组并联短截线153的一端与所述主传输线141电连接,另一端皆开路,所述主传输线141在第一组并联短截线所在电路层上的投影与第一组并联短截线的第一段微带结构151全部重合,与其第二段微带结构152部分重合;同理,第二滤波器52的两组并联短截线154和155的一端分别与所述主传输线142电连接,另一端皆开路,所述主传输线142在两组并联短截线154和155所在电路层上的投影与两组并联短截线154和155皆全部重合。
一种方案中,至少一个所述滤波器的主传输线和其他滤波器的主传输线设置在不同电路层上。具体地,第一滤波器51的主传输线141放置于PCB板顶层(以图1实线所在电路层为参考标准),第二组并联短截线153及由微带结构151和微带结构152构成的第一组并联短截线放置于PCB板底层(以图1虚线所在电路层为参考标准);第二滤波器52的主传输线142放置于PCB板底层,两组并联短截线154和155放置于PCB板顶层;第一滤波器51的输入端121、第二滤波器52的输入端122及输出端13为双层电路,由若干金属化过孔161将顶层和底层电路相连。
可选地,在另一种方案中,各所述滤波器的主传输线设置在同一电路层上。即第一滤波器51的主传输线141和第二滤波器52的主传输线142可都设置在PCB板的顶层,第一滤波器51和第二滤波器52的并联短截皆设置在PCB板的底层。需要说明的是,本发明的合路器也可采用一个所述第一滤波器51或第二52及至少一个现有的常规滤波器,以根据需要灵活设计。
进一步地,所述合路器还包括导通所述介质基板不同电路层的金属化过孔,各所述滤波器中每节所述并联短截线通过金属化过孔与所述主传输线电连接,具体地,在第一滤波器51中,由微带结构151和微带结构152构成的第一组并联短截线及第二组并联短截线放置于PCB板底层(以图1 虚线所在电路层为参考标准),并通过金属化过孔160与主传输线141相连;第二滤波器52的主传输线142放置于PCB板底层,两组并联短截线154和155放置于PCB板顶层,并通过其他金属化过孔160与主传输线141相连。
进一步地,如图4所示,在介质基板11上,所述滤波器51包括至少一节所述并联短截线,所述并联短截线通过所述金属化过孔与所述主传输线电连接,且所述并联短截线上远离所述金属化过孔的一端开路。优选地,在本发明的又一个实施例中,所述滤波器51包括两节并联短截线:第一并联短截线153和第二并联短截线154,所述第一并联短截线153和第二并联短截线154可通过同一所述金属化过孔16与所述主传输线14电连接,且所述第一并联短截线153和第二并联短截线154远离所述金属化过孔16的一端皆开路。
从而在实现滤波效果的同时,减少金属化过孔的使用,优化并联短截线的设计。
进一步地,所述合路器还包括两个接地板,所述介质基板11采用多层,设有所述滤波器的所述介质基板11设于两个所述接地板之间,使合路器的结构显得紧凑合理。
具体地,如图5和6所示,合路器50所采用的滤波器51,其主传输线14及终端开路的并联短截线15分别印制在PCB板的顶层(以图5实线所在电路层为参考标准)和底层(以图5虚线所在电路层为参考标准),终端开路的并联短截线15的一端通过金属化过孔16与主传输线14相连。本实施例中,合路器50中的滤波器51包括两截所述并联短截线15,2个金属化过孔16分别设置在靠近输入端12和输出端13的位置。通过调整终端开路的并联短截线15的尺寸和金属化过孔16的位置,可以实现特定带宽的阻带抑制。终端开路的并联短截线15与主传输线14之间夹着PCB板,可起耦合作用。
本发明的并联短截线15与传统开路短截线相比,能明显缩短长度;同时,并联短截线15与主传输线14的投影基本重合,能明显缩小所述合路器50的宽度,进而大大缩小了所述合路器50的体积。
如图7所示,本发明提供的又一个实施例中,为了合路器50驻波的优化及抑制,各所述滤波器51中至少一节所述并联短截线15可由两段以上的微带结构151和152构成,所述并联短截线15的尺寸与所述主传输线14不同,即主传输线14和并联短截线15采用宽度不等的电路;至少一节所述并联短截线15的中心线偏离所述主传输线14的中心线,以调节电路性能。本实施例中,采用3节并联短截线15,3节并联短截线15和主传输线14都采用不同的尺寸设计,其中微带结构151的一端通过金属化过孔16与主传输线14相连,另一端与微带结构152相连组成1节并联短截线,微带结构152偏离主传输线14的中心线,用于调节电路性能;并联短截线153和并联短截线154的一端均通过金属化过孔16与主传输线14相连,各节并联短截线15之间设有间隙。
如图8所示,本发明提供的又一个实施例中,揭示了一种滤波器51,所述滤波器51还包括与所述主传输线14设置在同一电路层且与所述主传输线14不在同一直线上的并联短截线17,该并联短截线17与所述主传输线14的投影不重合,即滤波器51中至少包括一节常规并联短截线17,本实施例中,采用一节投影与主传输线14重合的并联短截线15和一节常规并联短截线17,分别位于PCB板的底层(以图8虚线所在电路层为参考标准)和顶层,位于底层的并联短截线15的一端通过金属化过孔16与主传输线14实现电性连接,另一端开路;位于顶层的常规并联短截线17的一端可直接与相同电路层的主传输线14实现电性连接,另一端开路。
通过两种并联短截线15和17的混合使用,合路器尺寸可以在长度和宽度上折中,缩小合路器尺寸。
如图9所示,为了进一步缩小合路器50尺寸,本发明提供的另一个实施例中,该合路器50包括至少两个介质基板11,各所述滤波器51中所述主传输线14设置在两个相邻所述介质基板11之间,两相邻所述介质基板11上远离所述主传输线14的一侧皆设有所述并联短截线153和154,各所述并联短截线153和154皆与所述主传输线14电连接。其中,所述介质基板11可为多层PCB板,主传输线14位于中间层,两节并联短截线153和154分别位于PCB板的顶层和底层,一端通过金属化过孔16与主传输线 14相连,大大缩小了合路器尺寸。同理,可以将主传输线14放置于顶层(以图9并联短截线154所在电路层为参考标准),并联短截线153和154放置于中间层与底层(以图9并联短截线153所在电路层为参考标准),通过金属化过孔16与主传输线14相连。
如图10所示,本发明提供的再一个实施例中,各所述滤波器51中所述主传输线141和142通过金属化过孔162分段设置在所述介质基板11的不同电路层上,所述主传输线141靠近所述金属化162过孔的延长线上设有至少一节所述并联短截线154。具体地,本实施例的主传输线141与142分别放置于PCB板的顶层和底层,通过金属化过孔162相连;并联短截线153印制在PCB板的底层,通过金属化过孔161将其中一端与主传输线141相连;并联短截线154为主传输线141在分段处的延长线,通过与主传输线142的耦合实现滤波效果。
同理,所述第二滤波器52具有与所述第一滤波器51相同的实施例,在此不再赘述。
相应地,如图11所示,本发明实施例还提供了一种移相器组件200,包括两个移相器30和40及上述合路器50,所述合路器50设于两个相邻所述移相器30和40之间,所述两个移相器30和40的输出端分别与所述合路器50的不同输入端连接。在同一腔体中,两个移相器可以根据实际需要任意搭配合路器的数量,可以为一个或多个。各移相器组件200也可以对应拼接成一个集成移相器组件,并放置于同一个腔体中,相互拼接的两个相邻移相器可固接成一体式,其中一个移相器的输出端与另一个移相器的输入端连接,起始移相器组件200的输入端作为集成移相器组件的输入端,结尾移相器组件200的输出端作为集成移相器组件的输出端。具体地,在一个实施例中,所述移相器组件200包括第一移相器40、第二移相器30及至少一个上述合路器50,合路器50放置于两个移相器之间。第一移相器40的信号从输入口401输入,输出口402与合路器50的输入口102相连;第二移相器30的信号从输入口301输入,输出口302与合路器50的输入口103相连;两个移相器30和40输出端经过合路器50后由输出口101输出。为了使布局紧凑,提升移相器组件的性能,优选地, 两个移相器电路及合路器电路印制在同一PCB板上。
本实施例的移相器组件200有两个输出端口101,进一步的,组合移相器1可以扩展为若干个输出端口,假设第一移相器40的输出端口数为M个、第二移相器30的输出端口数为N个,合路器50的个数为K个,则K小于等于M,N中的最小值,优选地,K、M、N相等且大于等于1。
进一步地,在移相器组件200中,两所述移相器30和40及所述合路器50设于同一电路板的同一层面上。
本发明的另一种实施例中,还提供了一种移相器组件100,如图12所示,包括移相器20及上述合路器50中的滤波器51,所述移相器20的输入口201和/或输出口202设有所述滤波器51,以提升移相器组件100的滤波性能,所述移相器电路与滤波器电路可集成放置在同一个腔体内。具体地,结合图5和图6所示,所述滤波器51包括输入端12、输出端13、主传输线14及并联短截线15;所述主传输线14电连接所述输入端12与所述输出端13;所述并联短截线15的一端与所述主传输线14电连接,另一端皆开路,所述主传输线14在所述并联短截线15所在电路层上的投影与所述并联短截线15部分或全部重合。51还包括导通所述介质基板不同电路层的金属化过孔16,每节所述并联短截线通过金属化过孔16与所述主传输线14电连接。
相应地,本发明还提供了一种天线,包括至少一种上述移相器组件100或200,因此所述天线具有所述移相器组件100或200的优点,在一定程度上可减小所述天线的尺寸。
综上所述,本发明克服了传统定势思维,改变了传统的带状线滤波器、合路器及移相器组件结构,通过并联短截线的使用,大大缩小了滤波器、合路器的体积,降低了成本,易于与移相器等部件集成。本发明的带状线滤波器及合路器作为一基础元件,具有乐观的应用前景。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 一种合路器,包括介质基板和设置在所述介质基板上的至少两个滤波器,各所述滤波器的输入端分别作为所述合路器的一个输入端,各所述滤波器的输出端连接以作为所述合路器的输出端,其特征在于,
    所述滤波器还包括主传输线及并联短截线;所述主传输线电连接所述滤波器的输入端与输出端;所述并联短截线的一端与所述主传输线电连接,另一端皆开路,每个所述滤波器的主传输线与其匹配使用的并联短截线分布在不同电路层上。
  2. 根据权利要求1所述的合路器,其特征在于,所述主传输线在所述并联短截线所在电路层上的投影与所述并联短截线部分或全部重合。
  3. 根据权利要求1或2所述的合路器,其特征在于,至少一个所述滤波器的主传输线和其他滤波器的主传输线设置在不同电路层上,或者各所述滤波器的主传输线设置在同一电路层上。
  4. 根据权利要求1所述的合路器,其特征在于,还包括导通所述介质基板不同电路层的金属化过孔,各所述滤波器中每节所述并联短截线通过金属化过孔与所述主传输线电连接。
  5. 根据权利要求4所述的合路器,其特征在于,所述滤波器包括至少一节所述并联短截线,所述并联短截线通过所述金属化过孔与所述主传输线电连接,且所述并联短截线上远离所述金属化过孔的一端开路。
  6. 根据权利要求4所述的合路器,其特征在于,各所述滤波器中的所述主传输线通过金属化过孔分段设置在所述介质基板的不同电路层上,所述主传输线的分段处设有至少一节所述并联短截线,且所述并联短截线位于同层的一段所述主传输线的延长线上。
  7. 根据权利要求1所述的合路器,其特征在于,各所述滤波器中至少一节所述并联短截线由两段以上的微带结构构成,所述并联短截线的尺寸与所述主传输线不同,至少一节所述并联短截线的中心线偏离所述主传输线的中心线。
  8. 根据权利要求1所述的合路器,其特征在于,所述滤波器还包括与所述主传输线设置在同一电路层且与所述主传输线不在同一直线上的并 联短截线。
  9. 根据权利要求1所述的合路器,其特征在于,包括至少两个所述介质基板,各所述滤波器中所述主传输线设置在两个相邻所述介质基板之间,两相邻所述介质基板上远离所述主传输线的一侧皆设有所述并联短截线,各所述并联短截线皆与所述主传输线电连接。
  10. 一种移相器组件,其特征在于,包括两个移相器及如权利要求1-9中任一项所述的合路器,所述合路器设于两个所述移相器之间,两个所述移相器的输出端分别与所述合路器的不同输入端连接。
  11. 根据权利要求10所述的移相器组件,其特征在于,两所述移相器及所述合路器设于同一电路板的同一层面上。
  12. 一种天线,其特征在于,包括权利要求10或11所述的移相器组件。
PCT/CN2018/097596 2017-12-29 2018-07-27 合路器、移相器组件及天线 WO2019128219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711478888.XA CN108023147B (zh) 2017-12-29 2017-12-29 合路器、移相器组件及天线
CN201711478888.X 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128219A1 true WO2019128219A1 (zh) 2019-07-04

Family

ID=62072239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097596 WO2019128219A1 (zh) 2017-12-29 2018-07-27 合路器、移相器组件及天线

Country Status (2)

Country Link
CN (1) CN108023147B (zh)
WO (1) WO2019128219A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190165442A1 (en) * 2017-11-29 2019-05-30 Canon Kabushiki Kaisha Branch circuit
CN112599947A (zh) * 2020-12-21 2021-04-02 广东博纬通信科技有限公司 一种天线内置合路器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023147B (zh) * 2017-12-29 2023-07-21 京信通信技术(广州)有限公司 合路器、移相器组件及天线
CN108232379A (zh) * 2017-12-29 2018-06-29 京信通信系统(中国)有限公司 移相结构及天线
CN210430115U (zh) * 2019-05-13 2020-04-28 华为技术有限公司 移相器、阵列天线及基站
CN114498041B (zh) * 2020-10-27 2023-09-22 华为技术有限公司 一种传输线组件、天线组件和移动终端
CN113422189B (zh) * 2021-05-07 2022-04-22 中国科学院空天信息创新研究院 带有端口相移的功分器及其设计方法、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082326A (zh) * 2009-11-26 2011-06-01 中国移动通信集团公司 一种支持异系统独立电调的智能天线设备及方法
US20120139813A1 (en) * 2009-06-18 2012-06-07 Jaume Anguera Wireless device providing operability for broadcast standards and method enabling such operability
US20130249652A1 (en) * 2012-03-20 2013-09-26 Cisco Technology, Inc. Gigahertz common-mode filter for multi-layer planar structure
CN106159398A (zh) * 2016-08-31 2016-11-23 广东通宇通讯股份有限公司 宽频合路器
CN108023147A (zh) * 2017-12-29 2018-05-11 京信通信系统(中国)有限公司 合路器、移相器组件及天线
CN207624875U (zh) * 2017-12-29 2018-07-17 京信通信系统(中国)有限公司 合路器、移相器组件及天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329978A1 (en) * 2002-01-21 2003-07-23 Calearo S.r.l. Support base for an antenna and method for assembling said support base on the bodywork of a vehicle
EP2068393A1 (en) * 2007-12-07 2009-06-10 Panasonic Corporation Laminated RF device with vertical resonators
CN102856614B (zh) * 2012-08-30 2015-01-14 南通大学 一种紧凑型微波分布式双通带带通滤波器
CN203377357U (zh) * 2013-08-13 2014-01-01 武汉虹信通信技术有限责任公司 一种小型化lte基站天线内置微带合路器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120139813A1 (en) * 2009-06-18 2012-06-07 Jaume Anguera Wireless device providing operability for broadcast standards and method enabling such operability
CN102082326A (zh) * 2009-11-26 2011-06-01 中国移动通信集团公司 一种支持异系统独立电调的智能天线设备及方法
US20130249652A1 (en) * 2012-03-20 2013-09-26 Cisco Technology, Inc. Gigahertz common-mode filter for multi-layer planar structure
CN106159398A (zh) * 2016-08-31 2016-11-23 广东通宇通讯股份有限公司 宽频合路器
CN108023147A (zh) * 2017-12-29 2018-05-11 京信通信系统(中国)有限公司 合路器、移相器组件及天线
CN207624875U (zh) * 2017-12-29 2018-07-17 京信通信系统(中国)有限公司 合路器、移相器组件及天线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190165442A1 (en) * 2017-11-29 2019-05-30 Canon Kabushiki Kaisha Branch circuit
US10818993B2 (en) * 2017-11-29 2020-10-27 Canon Kabushiki Kaisha Branch circuit
CN112599947A (zh) * 2020-12-21 2021-04-02 广东博纬通信科技有限公司 一种天线内置合路器

Also Published As

Publication number Publication date
CN108023147A (zh) 2018-05-11
CN108023147B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2019128219A1 (zh) 合路器、移相器组件及天线
CN207624875U (zh) 合路器、移相器组件及天线
CN103413995B (zh) 基于ltcc技术的c波段高性能平衡滤波器
WO2018027539A1 (zh) 馈电网络
CN110444840B (zh) 基于枝节负载谐振器的双频差分带通滤波器
US20080252393A1 (en) Balun circuit suitable for integration with chip antenna
JP2010515331A (ja) デュアルバンド−crlh伝送線路を用いた電力分配器、及び電力合成器
CN103187603A (zh) 一种基于磁电耦合抵消技术的宽阻带ltcc带通滤波器
CN112909461B (zh) 一种互补双工结构全频段吸收双频带通滤波器
WO2018094994A1 (zh) 电调天线馈电装置及方法
US11158924B2 (en) LTCC wide stopband filtering balun based on discriminating coupling
CN107579317B (zh) 基于槽线和微带多模谐振器的巴伦带通滤波器
CN110350273B (zh) 一种双通带毫米波基片集成波导滤波器
CN104425859A (zh) 一种基于基片集成波导和互补螺旋谐振环的双工器
KR20100042299A (ko) 이중 대역통과 여파기
CN114649656B (zh) 一种双通带滤波移相器
CN110611144A (zh) 一种小型化宽带前向波定向耦合器单元电路
KR100332889B1 (ko) 이동통신용 듀얼폰 단말기의 원칩화된 출력파워 제어장치및 그 제조방법
US20200280115A1 (en) Integrated filter system and antenna system
TWI699094B (zh) 通訊系統及通訊方法
JP2009130518A (ja) トリプレクサ回路
CN218039765U (zh) 功分滤波器的上层微带结构及双频等分Gysel功分滤波器
CN115313011B (zh) 一种具有高功分比的双频Gysel功分滤波器
CN103490127A (zh) 三通带滤波器
CN114884600B (zh) 一种基于多层电路定向滤波器的频分复用器及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18896005

Country of ref document: EP

Kind code of ref document: A1