WO2023221144A1 - 天线单元、天线模组以及移动终端 - Google Patents

天线单元、天线模组以及移动终端 Download PDF

Info

Publication number
WO2023221144A1
WO2023221144A1 PCT/CN2022/094283 CN2022094283W WO2023221144A1 WO 2023221144 A1 WO2023221144 A1 WO 2023221144A1 CN 2022094283 W CN2022094283 W CN 2022094283W WO 2023221144 A1 WO2023221144 A1 WO 2023221144A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
layer
antenna
antenna unit
dielectric
Prior art date
Application number
PCT/CN2022/094283
Other languages
English (en)
French (fr)
Inventor
董翔宇
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280004363.5A priority Critical patent/CN117441264A/zh
Priority to PCT/CN2022/094283 priority patent/WO2023221144A1/zh
Publication of WO2023221144A1 publication Critical patent/WO2023221144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present disclosure relates to the field of electronic technology, and in particular, to an antenna unit, an antenna module and a mobile terminal.
  • Mobile terminals such as mobile phones, tablets, and communication watches have become indispensable technological products in people's life, study, and entertainment. With the development of communication technology, more and more mobile terminals integrate antennas for communication, which have the advantages of high transmission rate and low transmission delay.
  • the antenna of the mobile terminal is prone to the problem of beam out of control, which is not conducive to improving its radiation range.
  • the present disclosure provides an antenna unit, an antenna module and a mobile terminal, which can flexibly adjust the beam width of the antenna radiation and increase its radiation range.
  • an antenna unit including a radiation structure and a coupling transmission structure.
  • the radiating structure includes a radiating layer.
  • the coupling transmission structure is disposed on the radiation structure, and the coupling transmission structure includes a frequency selective surface.
  • the frequency selection surface is insulated from the radiating layer, and the frequency selecting surface is coupled to the radiating layer.
  • the above-mentioned antenna unit emits electromagnetic waves through the radiation layer, couples the frequency selection surface to the radiation layer, and uses the frequency selection surface to radiate electromagnetic waves, so that the unit factor of the antenna unit is smaller than the unit factor of the radiation layer.
  • the antenna unit increases the beam width of the antenna unit by coupling the transmission structure without changing the radiation structure.
  • the antenna unit is then used to form an antenna array with a fixed radiation structure, which can also increase the beam width of the antenna array, increase the radiation range of the antenna array, and ensure the communication performance of the mobile terminal.
  • the coupling transmission structure further includes a shielding layer.
  • the shielding layer is sandwiched between the radiation layer and the frequency selection surface, and is insulated from the radiation layer and the frequency selection surface respectively.
  • the shielding layer is provided with a coupling gap, and the radiation layer is coupled to the frequency selective surface through the coupling gap.
  • the coupling transmission structure further includes a second dielectric layer and a third dielectric layer.
  • the second dielectric layer is sandwiched between the shielding layer and the frequency selective surface
  • the third dielectric layer is sandwiched between the shielding layer and the radiation layer. between.
  • the second dielectric layer is attached to the radiation layer.
  • the radiating layer is a microstrip patch, and/or the frequency selective surface includes a microstrip patch.
  • the radiation structure further includes a first dielectric layer, which carries the radiation layer and is spaced apart from the coupling transmission structure.
  • the effective radiation length of the radiating layer is L1
  • the effective radiation length of the frequency selective surface is L2
  • the dielectric constant of the first dielectric layer is K1
  • the dielectric constant of the second dielectric layer is K2
  • the dielectric constant of the second dielectric layer is K2.
  • the dielectric constant of the dielectric layer is the dielectric thickness t1
  • the dielectric constant of the third dielectric layer is K3
  • the dielectric constant of the third dielectric layer is the dielectric thickness t2;
  • the coupling slit includes a first slit and a second slit, and the extension direction of the first slit intersects the extension direction of the second slit.
  • the coupling transmission structure is attached to the radiation layer. and/or, the impedance of the frequency selective surface matches and couples to the impedance of the radiating layer.
  • the frequency selection surface has at least two layers, which are stacked and insulated between two adjacent frequency selection surfaces.
  • an antenna module including a feed component and the antenna unit in any of the above embodiments.
  • the feed component includes feed lines corresponding to the antenna units.
  • the antenna module uses the antenna unit in any of the above embodiments. Since the unit factor of the antenna unit is small, the beam width of the antenna array is large, which can improve its radiation range and ensure the communication performance of the mobile terminal.
  • At least two antenna units are spaced apart along the same direction to form a one-element millimeter wave antenna array. and/or, the impedance of the frequency selective surface is matched and coupled to the impedance of the radiating layer to increase the beamwidth of the antenna array.
  • a mobile terminal including a control module and the antenna module in any of the above embodiments, and the control module is electrically connected to the feed component.
  • the above-mentioned mobile terminal uses the above-mentioned antenna module.
  • the unit factor of the antenna unit is small, which makes the beam width of the antenna array large, which can improve its radiation range and ensure the communication performance of the mobile terminal.
  • the mobile terminal further includes a housing component, and the antenna unit is fixed on the housing component.
  • the housing assembly includes a back cover, and the antenna unit is attached to the inner side of the back cover.
  • FIG. 1 is a schematic structural diagram of a mobile terminal shown in an embodiment.
  • FIG. 2 is an assembly schematic diagram of the antenna module shown in FIG. 1 being installed on the back cover.
  • FIG. 3 is a half-section schematic diagram of the antenna unit of FIG. 2 .
  • FIG. 4 is an exploded schematic diagram of the structure of the antenna unit shown in FIG. 2 .
  • Figure 5 is an exploded schematic diagram of an antenna unit shown in another embodiment.
  • FIG. 6 is an expanded schematic diagram of the radiation layer, shielding layer and frequency selective surface shown in one embodiment.
  • FIG. 7 is a schematic diagram of a shielding layer in an embodiment.
  • Figure 8 is a schematic diagram of a shielding layer shown in another embodiment.
  • FIG. 9 is a flow chart of an antenna array design method shown in an embodiment.
  • Frequency Selective Surface can form a band-rejection characteristic or a band-pass characteristic within a specific operating frequency band to achieve frequency selection of electromagnetic waves.
  • the antenna may be composed of one antenna unit or an antenna array formed by an arrangement of multiple antenna units.
  • Polarization is usually the polarization of electromagnetic waves. When electromagnetic waves propagate in space, the direction of the electric field intensity vector has a fixed pattern. Polarization methods are divided into vertical polarization and horizontal polarization.
  • the antenna radiates electromagnetic waves to the surrounding space.
  • Electromagnetic waves consist of electric and magnetic fields. It can be artificially specified: the direction of the electric field is the polarization direction of the antenna. Generally used antennas are single polarized.
  • the antenna has different radiation or reception capabilities in different directions in space. This is the directivity of the antenna.
  • Pattern a measure of antenna directivity. There are usually two or more lobes in the direction pattern, the largest lobe is called the main lobe, and the remaining lobes are called secondary lobes.
  • the angle between the two half-power points of the main lobe is defined as the beam width (beam width) of the antenna pattern). It is called the half-power (angular) lobe width.
  • the narrower the main lobe width the better the directivity and the stronger the anti-interference ability.
  • Beam width includes horizontal beam width and vertical beam width.
  • the pattern of the main lobe of the antenna can be obtained through the q-th power simulation of COS ⁇ , that is, the pattern of the main lobe of the antenna can be obtained through COSq ⁇ .
  • the beam width of the antenna can be calculated.
  • q is the unit factor of the antenna. The smaller the q value, the larger the beam width of the antenna.
  • the q of the radiating layer of the antenna is usually fixed.
  • the antenna array feeds the antenna array through a feed unit (such as a feed network) to achieve a radiation function.
  • a feed unit such as a feed network
  • the beam width of the antenna array will become narrower. For example, assume that the number of antenna elements in the antenna array is N and the beam width of a single antenna element is A°.
  • the beam width of the antenna array is K° ⁇ A°/N.
  • Antenna gain refers to the ratio of the power density of the signal generated by the actual antenna and the ideal radiating unit at the same point in space under the condition that the input power is equal.
  • the effective radiation length is generally considered to be approximately equal to one-half of the radiation waveform ⁇ .
  • a mobile terminal 10 including a control module 11 and an antenna module 12 .
  • the antenna module 12 includes a feed component 300 and an antenna unit 200 . There are at least two antenna units 200 and they are arranged to form an antenna array 12a.
  • the feeding component 300 includes a feeding line 310 corresponding to the antenna unit 200 one-to-one.
  • the control module 11 is electrically connected to the power feeding component 300 .
  • the antenna unit 200 includes a radiation structure 210 and a coupling transmission structure 220 .
  • the radiating structure 210 includes a radiating layer 211 .
  • the coupling transmissive structure 220 is disposed on the radiation structure 210 , and the coupling transmissive structure 220 includes a frequency selective surface 221 .
  • the frequency selection surface 221 is insulated from the radiation layer 211 , and the frequency selection surface 221 is coupled with the radiation layer 211 .
  • the above-mentioned antenna unit 200 emits electromagnetic waves through the radiation layer 211, couples the frequency selection surface 221 with the radiation layer 211, and uses the frequency selection surface 221 to radiate electromagnetic waves, so that the unit factor of the antenna unit 200 is smaller than the unit factor of the radiation layer 211.
  • the antenna unit 200 increases the beam width of the antenna array 12a by coupling the transmission structure 220 without changing the radiation structure 210, thereby preventing the beam width from being too narrow and ensuring the communication performance of the mobile terminal 10.
  • the specific implementation form of the feeding unit can be in various forms, as long as it can feed the antenna unit 200 .
  • the feeding unit includes a feeding network capable of feeding the antenna unit 200 respectively, and the feeding network includes a feeding line 310 connected to the antenna unit 200 .
  • the mobile terminal 10 includes smart devices such as mobile phones, tablet computers, wearable devices, microwave sensing devices, and wearable devices.
  • the antenna module 12 of the present disclosure can improve the radiation performance of these mobile terminals 10 and improve product competitiveness.
  • the coverage of the 5G antenna of the traditional mobile terminal 10 is usually improved by increasing the number of arrays or increasing the scale of the array. This requires high computing power and high design difficulty of the mobile terminal 10 , which is not conducive to reducing the cost of the mobile terminal 10 .
  • the antenna unit 200 of the present disclosure can increase the beam width of the antenna array 12a, improve its coverage capability, and avoid insufficient coverage capability caused by too narrow beam width.
  • the computing power of the mobile terminal 10 will not be limited, and its coverage will not be improved due to the inability to implement data post-processing.
  • the use of the antenna unit 200 of the present disclosure does not increase the structural design difficulty of the mobile terminal 10, and the adjustment is flexible, which can effectively reduce costs.
  • the coupling transmission structure 220 of the present disclosure can be used to increase the beam width of the antenna unit 200 and improve the coverage of the antenna array 12a.
  • the antenna array 12a is a 5G antenna array 12a
  • the coupling transmission structure 220 can also be used to improve its coverage, so that the mobile terminal 10 has communication performance of high transmission rate, low transmission delay, and wide coverage.
  • the pattern of its main lobe can be obtained through COSq1A simulation.
  • the beam width is A1, and its unit factor is q1.
  • the radiation structure and the coupling transmission structure are used to form an antenna unit.
  • the main lobe pattern of the antenna unit can be obtained through COSqA simulation.
  • the beam width is A2, and its unit factor is q2.
  • Q2 ⁇ q1 such that the beam width A2 of the antenna unit is greater than the beam width A1 of the first antenna.
  • At least two first antennas are arranged to form a first antenna array, and its beam width is B1, and the beam width of a second antenna array composed of antenna units according to the same number and arrangement is B2. Since A2>A1, so B2> B1.
  • control module includes a control circuit board, and the power feeding component is disposed on the control circuit board.
  • the feed component can be manufactured independently and then integrated into the control circuit board.
  • the feed assembly can also be manufactured integrally with the control circuit board.
  • the mobile terminal 10 further includes a housing component 13 , and the antenna unit 200 is fixed on the housing component 13 .
  • the antenna unit 200 can be installed using the housing assembly 13, making the internal structure of the mobile terminal 10 more compact.
  • the antenna unit 200 is provided with the coupling transmission structure 220, the radiation range of the antenna unit 200 can be adjusted without changing the shape of the housing assembly 13, making the design of the mobile terminal 10 more flexible.
  • the housing assembly 13 includes a back cover 100 , and the antenna unit 200 is attached to the inner side of the back cover 100 . Furthermore, the space of the back cover 100 can be fully utilized to install the antenna unit 200, making the installation more convenient and making it easier to avoid interference sources.
  • At least two antenna units 200 are arranged at intervals along the same direction to form a one-element millimeter wave antenna array 12a.
  • the antenna unit 200 of the present disclosure can be used to obtain a one-element millimeter wave antenna array 12a, which facilitates the use of the coupling transmission structure 220 to increase the beam width of the antenna array 12a and reduce the difficulty of beam control of the one-element millimeter wave antenna array 12a, thereby ensuring 5G Millimeter wave related index requirements.
  • the impedance of the frequency selective surface is matched and coupled to the impedance of the radiating layer. In this way, the loss can be reduced and the coupling efficiency can be improved to increase the beam width of the antenna unit, thereby increasing the beam width of the antenna array and improving the radiation performance of the antenna module.
  • the coupling transmission structure 220 further includes a shielding layer 222 , and the shielding layer 222 is sandwiched between the radiation layer 211 and the frequency selective surface 221 , and are insulated from the radiation layer 211 and the frequency selection surface 221 respectively.
  • the shielding layer 222 is provided with a coupling gap 222a, and the radiation layer 211 is coupled to the frequency selective surface 221 through the coupling gap 222a.
  • the shielding layer 222 is disposed between the receiving layer and the radiation layer 211, and the frequency selection surface 221 and the radiation layer 211 are coupled through the coupling gap 222a, which is beneficial to improving the anti-interference capability.
  • the "insulation arrangement" between the shielding layer 222, the radiation layer 211 and the frequency selection surface 221 can be implemented in a variety of ways, including insulation methods during the circuit board manufacturing process. In the embodiment of the present disclosure, it is implemented using a dielectric layer or the like.
  • the coupling transmission structure 220 also includes a second dielectric layer 223 and a third dielectric layer 224.
  • the second dielectric layer 223 is sandwiched between the shielding layer 222 and the frequency Between the selection surfaces 221, the third dielectric layer 224 is sandwiched between the shielding layer 222 and the radiation layer 211.
  • the dielectric constant and the thickness of the dielectric layer can be flexibly adjusted to optimize the phase difference between the frequency selection surface 221 and the radiation layer 211, reduce energy loss inside the antenna unit 200, so that electromagnetic waves can be radiated as much as possible, and improve the efficiency of the antenna unit. 200 radiation performance.
  • the internal loss can be reduced at least by adjusting the thickness of the dielectric component, so that the antenna unit 200 has the advantages of low internal loss and good radiation performance.
  • the second dielectric layer 223 is attached to the radiation layer 211 .
  • the coupling transmission structure 220 can be disposed on the radiation structure 210 by attaching the second dielectric layer 223 to the radiation layer 211 . That is, the coupling structure and the coupling transmission structure 220 can be manufactured separately and flexibly assembled to obtain the required performance of the antenna array 12a.
  • the corresponding coupling transmission structure 220 is then designed, and then the coupling transmission structure 220 is used to flexibly adjust the radiation range of the initial antenna array 12a to obtain the desired radiation range.
  • the radiation range of the required array antenna is then designed, and then the coupling transmission structure 220 is used to flexibly adjust the radiation range of the initial antenna array 12a to obtain the desired radiation range.
  • the radiation structure 210 also includes a first dielectric layer 212.
  • the first dielectric layer 212 carries the radiation layer 211 and is connected with The coupling transmission structures 220 are spaced apart. In this way, the first dielectric layer 212 is used so that the radiation structure 210 can be manufactured through a circuit board manufacturing process, and then assembled with the coupling transmission structure 220 .
  • the effective radiation length of the radiation layer 211 is L1
  • the effective radiation length of the frequency selective surface 221 is L2
  • the medium of the first dielectric layer 212 is L2.
  • the dielectric constant of the second dielectric layer 223 is K1
  • the dielectric constant of the second dielectric layer 223 is K2
  • the dielectric constant of the second dielectric layer 223 is t1
  • the dielectric constant of the third dielectric layer 224 is K3
  • the dielectric constant of the third dielectric layer 224 is K3.
  • the dielectric constant is the medium thickness t2; where, In this way, the effective radiation length of the designed frequency selection surface 221 can be calculated using the above formula, and then the beam width of the antenna unit 200 can be increased to obtain the required radiation range of the antenna array 12a.
  • the dielectric constants of the second dielectric layer 223 and the third dielectric layer 224 can be the same or different, and can be selected according to actual needs. When the second dielectric layer 223 and the third dielectric layer 224 are used, the combination of the two can be more flexible.
  • K2 K3.
  • the second dielectric layer 223 and the third dielectric layer 224 can be made of the same material, which is beneficial to reducing the manufacturing cost of the coupling transmission structure 220 .
  • the second dielectric layer 223 includes a first dielectric plate 203 and at least one first prepreg 204 .
  • the first dielectric plate 203 and at least one first prepreg 204 are arranged between the frequency selection surface 221 and the shielding layer 222, and the third dielectric layer 224 is sandwiched between the radiation layer 211 and the shielding layer 222.
  • the prepreg can be flexibly adjusted. The amount is used to optimize the phase difference between the receiving layer and the radiation layer 211, reduce the energy loss inside the antenna unit 200, so that the electromagnetic waves can be radiated as much as possible, and the radiation performance of the antenna unit 200 is improved. In this way, when the antenna unit 200 is designed and manufactured, the internal loss can be reduced at least by adjusting the thickness of the dielectric component, so that the antenna unit 200 has the advantages of low internal loss and good radiation performance.
  • first prepregs 204 there are at least two first prepregs 204 , and at least two first prepregs 204 are sandwiched between the frequency selection surface 221 and the shielding layer 222 .
  • the combination of the number and thickness of the first prepreg 204 can be flexibly adjusted to optimize the phase difference between the radiation layer 211 and the frequency selection surface 221, reduce energy loss inside the coupling transmission structure 220, so that electromagnetic waves can be radiated as much as possible, and improve Coupling the radiative properties of the transmissive structure 220.
  • the thickness of the first prepreg 204 is 0.1 mm. In this way, two or more first prepregs 204 are used for adjustment to reduce loss.
  • the thickness of the first prepreg 204 is 0.1 mm
  • the thickness of the first prepreg 204 is 0.2 mm
  • the thickness of the first prepreg 204 is 0.3 mm.
  • two or more of the above three first prepregs 204 are used for adjustment to reduce loss.
  • the dielectric constants of the above three first prepregs 204 are also different, so they have a more flexible adjustment range.
  • the third dielectric layer 224 includes a second dielectric plate 205 .
  • the number of first dielectric plates 203 is n1, the number of first prepregs 204 is n2, and the number of second dielectric plates 205 is n3; the dielectric constant of the first dielectric plate 203 is r1, and the dielectric constant of the first dielectric plate 203 is r1.
  • the phase difference can be adjusted to reduce internal friction and improve Coupling the radiative properties of the transmissive structure 220.
  • the adjustment is flexible to improve the flexibility of debugging the coupling transmission structure 220 of the present disclosure, and can perform local optimization for the beam, thereby achieving greater beam shaping capabilities.
  • the first dielectric plate 203 and the second dielectric plate 205 are dielectric substrates, and their dielectric constant and thickness can be flexibly required; the first prepreg 204 is a prepreg, and its dielectric constant and thickness can be flexibly required.
  • the third dielectric layer 224 also includes a second prepreg 206, and at least one second prepreg 206 is sandwiched between the radiation layer 211 and the shielding layer. between 222.
  • the second prepreg 206 can also be used to change the phase of the radiation layer 211, so that electromagnetic waves can be coupled to the frequency selective surface 221 through the coupling gap 222a, thereby reducing transmission loss.
  • the number of first dielectric plates 203 is n1, the number of first prepregs 204 is n2, the number of second dielectric plates 205 is n3, and the number of second dielectric plates 205 is n3.
  • the number of dielectric plates 205 is n4; the dielectric constant of the first dielectric plate 203 is r1, and the dielectric constant of the first dielectric plate 203 is t1; the dielectric constant of the first prepreg 204 is r2, and the dielectric constant of the first prepreg 204 is r2.
  • the dielectric constant of the dielectric thickness is t2; the dielectric constant of the second dielectric plate 205 is r3; the dielectric constant of the second dielectric plate 205 is the dielectric thickness t3; the dielectric constant of the second prepreg 206 is r4.
  • the adjustment is flexible to improve the flexibility of debugging the coupling transmission structure 220 of the present disclosure, and can perform local optimization for the beam, thereby achieving greater beam shaping capabilities.
  • the coupling gap 222a includes a first gap 201 and a second gap 202, and the extension direction of the first gap 201 is in line with the second gap 202. intersect in the extended direction.
  • the radiation layer 211 is coupled to the frequency selective surface 221 through the first gap 201 and the second gap 202 . In this way, the radiation layer 211 and the frequency selective surface 221 are coupled through the first gap 201 and the second gap 202, and the extension direction of the first gap 201 intersects the extension direction of the second gap 202.
  • the frequency selection range of the coupling transmission structure 220 can be expanded by simply adjusting the size (length or width, etc.) of the first slit 201 and the second slit 202, which is beneficial to reducing the number of metal layers of the coupling transmission structure 220, and thereby Can reduce losses.
  • the frequency selection range of the coupling transmission structure is adjusted by adjusting the first gap and the second gap.
  • the coupling transmission structure of the present disclosure has smaller process requirements and can utilize traditional microprocessors. This can be achieved with a tape processing process, which is beneficial to reducing the manufacturing cost of the coupling transmission structure.
  • the length of the first slit can be extended indirectly or directly by adjusting the total length of the slit in the first direction; or it can be extended by adjusting the total length of the slit in the second direction, that is, indirectly Or directly extend the length of the second gap, or expand or reduce the width of the first gap and/or the width of the second gap to obtain the required frequency selection range.
  • the adjustment of the frequency selection range is more flexible.
  • the extension direction of the first slit intersects the extension direction of the second slit includes “the first slit” and the “second slit” directly intersecting, or the extension direction of the "first slit” and the “second slit” ” intersect, or the extension directions of the “first gap” and the “second gap” intersect.
  • the first slit is in the first direction
  • the second slit is in the second direction
  • the first direction intersects the second direction
  • the lengths of the “first slit” and the “second slit” can be selected according to the characteristics of the antenna unit, and their length ranges from 0mm to 10mm.
  • the length of the "first gap” and/or the “second gap” is 1 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, etc.
  • the first slit 201 and the second slit 202 are in a strip shape and are arranged crosswise. In this way, the use of strip-shaped slits is beneficial to reducing losses, and the cross arrangement facilitates optimization, so that the performance of the coupling transmission structure 220 of the present disclosure is better.
  • the first slit 201 and the second slit 202 are arranged perpendicular to each other. In this way, it is convenient for the first slit 201 to be arranged along the first direction (such as the The adjustment of the second gap 202 (including the adjustment of the length and width) makes the radiation performance of the antenna unit 200 of the present disclosure better.
  • the shielding layer 222 further includes a coupling branch 207 , and the coupling branch 207 is disposed on the first gap 201 and/or the second gap 202 .
  • the coupling branches 207 can reduce the loss at the edge, improve the frequency selection range, and further improve the radiation efficiency and performance of the antenna unit 200 of the present disclosure under the same size of the first gap 201 and the second gap 202 .
  • the coupling branch 207 includes a first extended slit 208.
  • the first extended slit 208 is spaced parallel to the first slit 201 and connected to the second slit 202;
  • the coupling branch 207 also includes a second extended slit 209.
  • the second extended slit 209 is spaced parallel to the second slit 202 and connected to the first slit 201.
  • the second extended slit 209 and the first extended slit 208 are spaced apart from the shielding layer 222. .
  • the length of the first slot 201 is indirectly extended through the first extended slot 208
  • the length of the second slot 202 is indirectly extended through the second extended slot 209, thereby achieving expansion of the frequency selection range of the antenna unit 200 of the present disclosure.
  • first extended slits 208 there are at least two first extended slits 208 and at least two second extended slits 209 .
  • the frequency selection range of the antenna unit 200 of the present disclosure can be expanded, and the loss can be reduced.
  • the first gap 201 and/or the second gap 202 are microstrip gaps. In this way, it is beneficial to improve the reliability of the antenna unit 200 of the present disclosure and reduce the manufacturing cost.
  • the frequency selection range of the coupling transmission structure can be flexibly expanded, making the design of the antenna unit of the present disclosure more flexible and with less loss.
  • the first slit 201 and the second slit 202 form a symmetrical image, and the center of the image coincides with the center of the shielding layer 222 .
  • the antenna unit 200 of the present disclosure it is convenient for the antenna unit 200 of the present disclosure to be optimized at the beginning of the design to reduce interference, and it is easier to obtain the adjustment rules, and then it is easier to adjust the length, width or depth of the first gap 201 and the second gap 202 according to actual needs, so as to Obtain the required antenna unit 200.
  • first slit and the second slit form a "cross" shape (as shown in Figure 6), or form a "Jerusalem” shape (as shown in Figure 8), and so on.
  • the radiation layer is a microstrip patch.
  • microstrip patches can be used to realize microwave emission, making the design of the radiation layer more flexible and able to meet the antenna design requirements of different frequencies.
  • the frequency selective surface includes a microstrip patch (not labeled).
  • the coupling transmission structure of the present disclosure can be combined using a variety of frequency selective surfaces to meet different needs.
  • This also enables the range of the phase difference of the coupling transmission structure of the present disclosure to be larger.
  • the antenna unit of the present disclosure has a large frequency selection range and a large phase selection range.
  • the antenna composed of the coupling antenna unit of the present disclosure has a wider bandwidth, which is beneficial to improving the antenna performance, thereby improving the performance of the mobile terminal equipped with the antenna. performance.
  • the antenna unit of the present disclosure can be locally optimized for spherical waves, thereby achieving greater beam shaping capabilities.
  • the coupling transmission structure is attached to the radiation layer.
  • the radiating structure and the coupling transmission structure can be manufactured separately and then assembled together, so that based on the radiation effect of the initial antenna array composed of the radiating structure, the corresponding coupling transmission structure can be designed, and then the coupling transmission structure can be used to flexibly adjust the initial antenna array. radiation range to obtain the required radiation range of the array antenna.
  • the number of layers of the frequency selection surface is at least two, and they are stacked, and two adjacent frequency selection surfaces are insulated. In this way, the coupling freedom of the coupling transmission structure of the present disclosure can be improved, which is beneficial to the design of high-phase antenna units (such as antenna units with phase requirements >360°, or even >500°).
  • the frequency selection surface when the order of the frequency selection surface continues to be increased, that is, when its equivalent LC filter characteristics are not equivalent to an inductor and a capacitor, the overall degree of freedom of its coupling will further increase.
  • the size is conducive to further reducing the radiation loss of the antenna unit, making the antenna unit of the present disclosure have a larger phase range, lower loss, and better performance.
  • the adjustment of the coupling transmission structure of the present disclosure can also be achieved by changing the number of shielding layers.
  • the shielding layer is at least two layers, and are sequentially stacked and sandwiched between the radiation layer and the frequency selective surface. In this way, the phase difference of the coupling transmission structure can be adjusted by providing at least two shielding layers, and the frequency selection range of the antenna unit can also be optimized.
  • the methods of changing the number of layers of the frequency selection surface and the number of layers of the shielding layer can be flexibly combined to improve the design flexibility of the coupling transmission structure of the present disclosure and further satisfy the adjustment of the antenna unit.
  • the above coupling transmission structure is used to increase the beam width of the antenna array, so that the structural design of the mobile terminal is flexible and is not limited by the number of radiation layers (that is, the computing power requirements of the mobile terminal Low).
  • the beam width of the antenna array has little impact on the structure of the mobile terminal during the adjustment process, and has little impact on the arrangement of the coupling structure.
  • an antenna array design method including:
  • S100 obtains the initial first radiation pattern of the initial antenna array.
  • S200 selects the frequency selection surface of the coupling transmission structure according to the deviation between the first radiation pattern and the set second radiation pattern, and makes the number of coupling transmission structures correspond to the number of radiation structures of the initial antenna array.
  • S300 attaches the coupling transmission structure to the radiation layer of the corresponding radiation structure one by one to form an antenna array.
  • the above method is used to obtain the initial first radiation pattern of the antenna array when the radiation structure is determined.
  • the frequency selective surface of the coupled transmission structure is then selected to reduce the unit factor of the radiation structure based on the first radiation pattern.
  • the coupling transmission structure is attached to the radiation layer of the corresponding radiation structure one by one to increase the beam width range of the antenna array and prevent the antenna beam from being too narrow and affecting the communication performance of the mobile terminal.
  • the improvement of the coverage of 5G antennas of traditional mobile terminals is usually achieved by increasing the number of arrays or increasing the scale of the arrays.
  • the antenna unit of the present disclosure can increase the beam width of the antenna array, improve its coverage capability, and avoid insufficient coverage capability caused by too narrow beam width.
  • there is no need to increase the number of arrays or increase the scale of the array which makes the size design of the mobile terminal more flexible and can take into account miniaturization design.
  • the computing power of the mobile terminal will not be limited, and its coverage will not be improved due to the inability to implement data post-processing.
  • using the antenna design method of the present disclosure will not increase the difficulty of structural design of the mobile terminal, and can adjust the beam width of the flexible antenna array, which is easy to implement and can effectively reduce costs.
  • the antenna design method of the present disclosure can be used to increase the beam width required by the antenna array by designing the coupling transmission structure, without increasing the cost of the mobile terminal.
  • the structural design is difficult and the adjustment is flexible, which can effectively reduce costs.
  • step S100 the coupling structures are arranged on the manufactured housing assembly to form an initial antenna array, and then the initial first radiation pattern can be tested to obtain.
  • the deviation between the first radiation pattern and the set second radiation pattern can be considered as a deviation in the beam width.
  • the beam width may be too narrow.
  • step S200 it is usually sufficient that the beam width requirement of the antenna array adjusted by the coupling transmission structure meets the beam width requirement of the second radiation pattern.
  • the coupling transmission structure when determining the coupling transmission structure, it also includes: according to the formula The effective radiation length value of the frequency selective surface of the coupling transmission structure is calculated; wherein, the radiation structure includes a first dielectric layer and a radiation layer disposed on the first dielectric layer, and the coupling transmission structure also includes a shielding layer, a second dielectric layer and a third Three dielectric layers, the shielding layer is sandwiched between the radiation layer and the frequency selection surface, and is insulated from the radiation layer and the frequency selection surface respectively.
  • the shielding layer is provided with a coupling gap, and the radiation layer is coupled to the frequency selection surface through the coupling gap.
  • the second dielectric layer is sandwiched between the shielding layer and the frequency selection surface, and the third dielectric layer is sandwiched between the shielding layer and the radiation layer; the effective radiation length of the radiation layer is L1, and the effective radiation length of the frequency selection surface is L2.
  • the dielectric constant of the second dielectric layer is K1, the dielectric constant of the second dielectric layer is K2, the dielectric constant of the second dielectric layer is the dielectric thickness t1; the dielectric constant of the third dielectric layer is K3, and the dielectric constant of the third dielectric layer is K3.
  • the dielectric constant of is the dielectric thickness t2.
  • the method further includes determining the number of layers of the frequency selective surface according to the phase step requirements of the antenna array. In this way, the design flexibility of the antenna unit of the present disclosure can be further improved, and the performance adjustment of various antenna arrays can be further satisfied.
  • the method further includes: adjusting the phase range of the frequency selection surface according to the design requirements of the beam width and coverage of the antenna array, and in combination with the number of radiation structures of the antenna array.
  • the coupling freedom of the coupling transmission structure of the present disclosure can be improved, which is beneficial to the design of high-phase antenna units (such as antenna units with phase requirements >360°, or even >500°).
  • the frequency selection surface when the order of the frequency selection surface continues to be increased, that is, when its equivalent LC filter characteristics are not equivalent to an inductor and a capacitor, the overall degree of freedom of its coupling will further increase.
  • the size is conducive to further reducing the radiation loss of the antenna unit, making the antenna unit of the present disclosure have a larger phase range, lower loss, and better performance.
  • the antenna array of the mobile terminal in any of the above embodiments can be obtained by the antenna array design method in any of the above embodiments.
  • first”, “second”, etc. are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined by “first,” “second,” etc. may explicitly or implicitly include at least one of these features. In the description of the present disclosure, “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features may be in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种天线单元、天线模组以及移动终端。该天线单元(200)包括辐射结构(210)以及耦合透射结构(220)。辐射结构(210)包括辐射层(211)。耦合透射结构(220)设置于辐射结构(210)上,耦合透射结构(220)包括频率选择表面(221)。频率选择表面(221)与辐射层(211)绝缘设置,且频率选择表面(221)与辐射层(211)相耦合。该天线单元、天线模组及移动终端,能够灵活调整天线辐射的波束宽度,增大其辐射范围。

Description

天线单元、天线模组以及移动终端 技术领域
本公开涉及电子技术领域,特别是涉及一种天线单元、天线模组以及移动终端。
背景技术
手机、平板电脑、通信手表等移动终端已经成为人们生活、学习和娱乐过程中必不可少的科技产品。随着通信技术的发展,越来越多的移动终端集成天线进行通信,进而具有传输速率高,传输延迟低等优势。
但在相关技术中,移动终端的天线容易出现波束失控的问题而不利于提高其辐射范围。
发明内容
本公开提供一种天线单元、天线模组以及移动终端,能够灵活调整天线辐射的波束宽度,增大其辐射范围。
其技术方案如下:
根据本公开实施例的第一方面,提供一种天线单元,包括辐射结构以及耦合透射结构。辐射结构包括辐射层。耦合透射结构设置于辐射结构上,耦合透射结构包括频率选择表面。频率选择表面与辐射层绝缘设置,且频率选择表面与辐射层相耦合。
本公开的实施例提供的技术方案可以包括以下有益效果:
上述天线单元通过辐射层来发射电磁波,并使频率选择表面与辐射层相耦合,利用频率选择表面来辐射电磁波,以使天线单元的单元因子小于辐射层的单元因子。如此,该天线单元在不改变辐射结构的情况下,通过耦合透射结构来增大天线单元的波束宽度。进而应用了该天线单元组成天线阵列,辐射结构固定,也可以能够增大天线阵列的波束宽度,增大其天线阵列的辐射范围,保证移动终端的通信性能。
下面进一步对本公开的技术方案进行说明:
在其中一个实施例中,耦合透射结构还包括屏蔽层,屏蔽层夹设于辐射层与频率选择表面之间,并分别与辐射层及频率选择表面绝缘设置。屏蔽层设有耦合缝隙,辐射层通过耦合缝隙与频率选择表面相耦合。
在其中一个实施例中,耦合透射结构还包括第二介质层和第三介质层,第二介质层夹设于屏蔽层与频率选择表面之间,第三介质层夹设于屏蔽层与辐射层之间。
在其中一个实施例中,第二介质层贴设于辐射层上。
在其中一个实施例中,辐射层为微带贴片,和/或,频率选择表面包括微带贴片。
在其中一个实施例中,辐射结构还包括第一介质层,第一介质层承载辐射层,并与耦合透射结构间隔设置。
在其中一个实施例中,辐射层的有效辐射长度为L1,频率选择表面的有效辐射长度为L2,第一介质层的介电常数为K1,第二介质层的介电常数为K2,第二介质层的介电常数为介质厚度为t1;第三介质层的介电常数为K3,第三介质层的介电常数为介质厚度为t2;其中,
Figure PCTCN2022094283-appb-000001
在其中一个实施例中,耦合缝隙包括第一缝隙以及第二缝隙,第一缝隙的延长方向与第二缝隙的延长方向相交。
在其中一个实施例中,耦合透射结构贴设于辐射层上。和/或,频率选择表面的阻抗与辐射层的阻抗相匹配并耦合。
在其中一个实施例中,频率选择表面的层数至少为两个,并层叠设置,且相邻两个频率选择表面之间绝缘设置。
根据本公开实施例的第二方面,还提供了一种天线模组,包括馈电组件以及上述任一实施例中的天线单元。天线单元至少为两个,并排布组成天线阵列。馈电组件包括与天线单元一一对应的馈电线。
本公开的实施例提供的技术方案可以包括以下有益效果:
该天线模组应用了上述任一实施例中的天线单元,由于该天线单元的单元因子小,使得天线阵列的波束宽度大,能够提高其辐射范围,保证移动终端的通信性能。
下面进一步对本公开的技术方案进行说明:
在其中一个实施例中,至少两个天线单元沿同一方向间隔排布呈一元毫米波天 线阵列。和/或,频率选择表面的阻抗与辐射层的阻抗相匹配并耦合,以增大天线阵列的波束宽度。
根据本公开实施例的第三方面,还提供了一种移动终端,包括控制模组以及上述任一实施例中的天线模组,控制模组与馈电组件电性连接。
本公开的实施例提供的技术方案可以包括以下有益效果:
上述移动终端采用了上述天线模组,天线单元的单元因子小,使得天线阵列的波束宽度大,能够提高其辐射范围,保证移动终端的通信性能。
下面进一步对本公开的技术方案进行说明:
在其中一个实施例中,移动终端还包括壳体组件,天线单元固设于壳体组件上。
在其中一个实施例中,壳体组件包括后盖,天线单元贴设于后盖的内侧面。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
附图说明构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中所示的移动终端的结构示意图。
图2为图1所示的天线模组安装于后盖的装配示意图。
图3为图2的天线单元的半剖示意图。
图4为图2所示的天线单元的结构爆炸示意图。
图5为另一实施例中所示的天线单元的爆炸示意图。
图6为一实施例中所示的辐射层、屏蔽层以及频率选择表面的展开示意图。
图7为一实施例中所示的屏蔽层的示意图。
图8为另一实施例中所示的屏蔽层的示意图。
图9为一实施例中所示的天线阵列的设计方法的流程图。
附图标记说明:
10、移动终端;11、控制模组;12、天线模组;12a、天线阵列;13、壳体组件;100、后盖;200、天线单元;210、辐射结构;211、辐射层;212、第一介质层;220、耦合透射结构;221、频率选择表面;222、屏蔽层;222a、耦合缝隙;201、第一缝隙;202、第二缝隙;207、耦合枝节;208、第一延长缝隙;209、第二延长缝隙;223、第二介质层;203、第一介质板;204、第一半固化片;224、第三介质层;205、第二介质板;206、第二半固化片;300、馈电组件;310、馈电线。
具体实施方式
为使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本公开进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本公开,并不限定本公开的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本公开。
为方便理解,下面先对本公开实施例中所涉及的技术术语进行解释和描述。
频率选择表面(Frequency Selective Surface,FSS),可以在特定工作频段内形成带阻特性或是带通特性,实现对电磁波的频率选择作用。
天线可以通过一个天线单元构成,也可以通过多个天线单元排列形成的天线阵列构成。
极化,通常为电磁波的极化,当电磁波在空间传播时,其电场强度矢量的方向具有固定的规律。极化方式分为垂直极化和水平极化。
极化方向,天线向周围空间辐射电磁波。电磁波由电场和磁场构成。可以人为规定:电场的方向就是天线极化方向。一般使用的天线为单极化的。
方向性,天线对空间不同方向具有不同的辐射或接受能力,这就是天线的方向性。
方向图,衡量天线方向性。在方向图中通常都有两个瓣或多个瓣、其中最大的瓣称为主瓣、其余的瓣称为副瓣。主瓣两半功率点间的夹角定义为天线方向图的波瓣宽度(波束宽度))。称为半功率(角)瓣宽。主瓣瓣宽越窄,则方向性越好,抗干扰能力越强。
波束宽度包括水平波束宽度和垂直波束宽度。
天线的主瓣的方向图可以通过COSθ的q次方模拟获得,也即通过COSqθ可以得到天线的主辩的方向图。该方向图确定后,可以计算得到天线的波束宽度。q为该天线的单元因子,q值越小,天线的波束宽度大。天线的辐射层的q通常是固定。
多个天线单元排布组成天线阵列,天线阵列通过馈电单元(例如馈电网络),对天线阵列进行馈电,实现辐射功能。相对于单个天线单元,组成一元天线阵列后,天线阵列的波束宽度会变窄。例如,假设天线阵列中天线单元的数量为N,单个天线单元的波束宽度为A°。天线阵列的波束宽度为K°≈A°/N。
天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。通常来说,天线的方向图主瓣越窄,副瓣越小,则天线的增益越高。
有效辐射长度通常认为约等于辐射波形λ的二分之一。
下面结合附图对本公开的实施例进行阐述说明。
如图1至图2所示,在本公开的一些实施例中,提供一种移动终端10,包括控制模组11以及天线模组12。天线模组12包括馈电组件300以及天线单元200。天线单元200至少为两个,并排布组成天线阵列12a。馈电组件300包括与天线单元200一一对应的馈电线310。控制模组11与馈电组件300电性连接。
其中,如图3至图4所示,天线单元200包括辐射结构210以及耦合透射结构220。辐射结构210包括辐射层211。耦合透射结构220设置于辐射结构210上,耦合透射结构220包括频率选择表面221。频率选择表面221与辐射层211绝缘设置,且频率选择表面221与辐射层211相耦合。
上述天线单元200通过辐射层211来发射电磁波,并使频率选择表面221与辐 射层211相耦合,利用频率选择表面221来辐射电磁波,以使天线单元200的单元因子小于辐射层211的单元因子。该天线单元200在不改变辐射结构210的情况下,通过耦合透射结构220来增大天线阵列12a的波束宽度,避免出现波束宽度过窄,保证移动终端10的通信性能。
需要说明的是,馈电单元的具体实现形式可以有多种,能够为天线单元200馈电即可。
一些实施例中,馈电单元包括能够分别为天线单元200进行馈电的馈电网络,馈电网络包括与天线单元200连接的馈电线310。
移动终端10包括手机、平板电脑、穿戴设备、微波感应设备、可穿戴设备等智能设备。而本公开的天线模组12,可以提升这些移动终端10的辐射性能,提高产品竞争力。
可以理解地,传统的移动终端10的5G天线的覆盖范围的提高,通常通过提高阵列数量或增大阵列规模实现。这对移动终端10的计算能力要求较高以及设计难度较高,不利于降低移动终端10的成本。而本公开的天线单元200通过设置耦合透射结构220,能够增大天线阵列12a的波束宽度,提高其覆盖能力,避免出现波束宽度过窄导致其覆盖能力不足。此外,无需提高阵列数量或增大阵列规模,进而使得移动终端10的尺寸设计更加灵活,能够兼顾小型化设计。而且,不会限制移动终端10的计算能力,避免因无法实现数据后处理而无法提高其覆盖范围。综上所述,利用本公开的天线单元200,不会增加移动终端10的结构设计难度,且调整灵活,能够有效降低成本。
特别地,在移动终端10的外形结构已定,且辐射结构210也确定的情况下,利用本公开的耦合透射结构220可以提高天线单元200的波束宽度,提升天线阵列12a的覆盖范围。例如,天线阵列12a为5G天线阵列12a,也可以利用耦合透射结构220来提高其覆盖范围,进而使得移动终端10具有传输速率高,传输延迟低,覆盖范围广的通信性能。
具体地,只具有辐射结构形成的第一天线,其主瓣的方向图可以通过COSq1A模拟获得的波束宽度为A1,其单元因子为q1。利用该辐射结构与耦合透射结构配合形成天线单元,该天线单元的主瓣的方向图可以通过COSqA模拟获得的波束宽度为A2,其单元因子为q2。Q2<q1,使得天线单元的波束宽度A2大于第一天线的波束宽度A1。至少两个第一天线排布组成第一天线阵列,其波束宽度为B1,而天线单元按照同等数 量和排布方式组成的第二天线阵列的波束宽度为B2,由于A2>A1,所以B2>B1。
一些实施例中,控制模组包括控制电路板,馈电组件设置于控制电路板上。需要说明的是,馈电组件可以独立制造,再集成到控制电路板上。馈电组件也可以与控制电路板一体成型制造。
如图1所示,一些实施例中,移动终端10还包括壳体组件13,天线单元200固设于壳体组件13上。如此,可以利用壳体组件13来安装天线单元200,使得移动终端10的内部结构更加紧凑。此外,由于天线单元200设置有耦合透射结构220,进而无需改变壳体组件13的外形,也可以通过耦合透射结构220来调整天线单元200的辐射范围,使得该移动终端10的设计更加灵活。
可选地,如图2所示,一些实施例中,壳体组件13包括后盖100,天线单元200贴设于后盖100的内侧面。进而可以充分利用后盖100的空间来安装天线单元200,安装更加方便,也便于避让干扰源。
在上述任一实施例的基础上,一些实施例中,至少两个天线单元200沿同一方向间隔排布呈一元毫米波天线阵列12a。如此,利用本公开的天线单元200能够获得一元毫米波天线阵列12a,便于利用耦合透射结构220来增大该天线阵列12a的波束宽度,降低一元毫米波天线阵列12a的波束控制难度,从而保证5G毫米波的相关指标要求。
在上述任一实施例的基础上,一些实施例中,频率选择表面的阻抗与辐射层的阻抗相匹配并耦合。如此,可以减少损耗,提高耦合效率,以增大天线单元的波束宽度,进而能够增大天线阵列的波束宽度,提升天线模组的辐射性能。
在上述任一实施例的基础上,如图3以及图4所示,一些实施例中,耦合透射结构220还包括屏蔽层222,屏蔽层222夹设于辐射层211与频率选择表面221之间,并分别与辐射层211及频率选择表面221绝缘设置。屏蔽层222设有耦合缝隙222a,辐射层211通过耦合缝隙222a与频率选择表面221相耦合。如此,屏蔽层222设置于接收层与辐射层211之间,且频率选择表面221与辐射层211之间通过耦合缝隙222a相耦合,有利于提高抗干扰能力。
需要说明的是,屏蔽层222与辐射层211及频率选择表面221“绝缘设置”的具体实现方式可以有多种,包括但于线路板制造过程中的绝缘方法。在本公开的实施例中,利用介质层等方式实现。
在上述实施例的基础上,如图4所示,一些实施例中,耦合透射结构220还包括第二介质层223和第三介质层224,第二介质层223夹设于屏蔽层222与频率选择表面221之间,第三介质层224夹设于屏蔽层222与辐射层211之间。如此,可以灵活调整介质层的介电常数和介质厚度来优化频率选择表面221与辐射层211之间相位差,减少能量在天线单元200内部的损耗,使得电磁波可以尽可能辐射出去,提高天线单元200的辐射性能。如此,该天线单元200设计制造时,至少能够通过调整介质组件的厚度大小来降低内部损耗,使得该天线单元200具有内部损耗低,辐射性能好的优点。
进一步地,一些实施例中,第二介质层223贴设于辐射层211上。如此,可以在耦合结构设计好之后,通过第二介质层223贴设于辐射层211,将耦合透射结构220设置于辐射结构210上。也即,耦合结构和耦合透射结构220可以分别制造,在灵活组装,以获得所需天线阵列12a性能。
可以理解地,通过获得基于辐射结构210组成的初始天线阵列12a的辐射效果,再设计相应的耦合透射结构220,再利用该耦合透射结构220来灵活调整初始天线阵列12a的辐射范围,以获得所需的阵列天线的辐射范围。
在上述第二介质层223的任一实施例的基础上,如图4所示,一些实施例中,辐射结构210还包括第一介质层212,第一介质层212承载辐射层211,并与耦合透射结构220间隔设置。如此,利用第一介质层212使得辐射结构210可以通过电路板制造工艺制造得到,然后再与耦合透射结构220进行组装。
在上述实施例的基础上,如图3以及图4所示,一些实施例中,辐射层211的有效辐射长度为L1,频率选择表面221的有效辐射长度为L2,第一介质层212的介电常数为K1,第二介质层223的介电常数为K2,第二介质层223的介电常数为介质厚度为t1;第三介质层224的介电常数为K3,第三介质层224的介电常数为介质厚度为t2;其中,
Figure PCTCN2022094283-appb-000002
如此,在设计频率选择表面221的有效辐射长度,可以利用上述公式计算得到,进而可以提高天线单元200的波束宽度,以获得所需的天线阵列12a的辐射范围。
需要说明的是,第二介质层223和第三介质层224的介电常数可以相同也可以不同,可以根据实际需要进行选择。而当第二介质层223与第三介质层224,二者的组合可以更加灵活。
可选地,一些实施例中,K2=K3。此时,第二介质层223与第三介质层224可以通过同一材料制造获得,有利于降低耦合透射结构220的制造成本。
如图5所示,一些实施例中,第二介质层223包括第一介质板203和至少一个第一半固化片204。将第一介质板203和至少一个第一半固化片204设置于频率选择表面221和屏蔽层222之间,将第三介质层224夹设于辐射层211和屏蔽层222之间,可以灵活调整半固化片的数量来优化接收层与辐射层211之间相位差,减少能量在天线单元200内部的损耗,使得电磁波可以尽可能辐射出去,提高天线单元200的辐射性能。如此,该天线单元200设计制造时,至少能够通过调整介质组件的厚度大小来降低内部损耗,使得该天线单元200具有内部损耗低,辐射性能好的优点。
一些实施例中,第一半固化片204至少为两个,且至少有两个第一半固化片204夹设于频率选择表面221与屏蔽层222之间。如此,可以灵活调整第一半固化片204的数量与厚度的组合来优化辐射层211与频率选择表面221之间相位差,减少能量在耦合透射结构220内部的损耗,使得电磁波可以尽可能辐射出去,提高耦合透射结构220的辐射性能。
例如,第一半固化片204的厚度为0.1mm。如此,利用两种以上第一半固化片204来进行调节,以降低损耗。
再例如,一种第一半固化片204的厚度为0.1mm,一种第一半固化片204的厚度为0.2mm,一种第一半固化片204的厚度为0.3mm。如此,利用上述三种第一半固化片204中的两种以上来进行调节,以降低损耗。进一步地,上述三种第一半固化片204的介电常数也不同,则具有更加灵活的调整范围。
如图5所示,一些实施例中,第三介质层224包括第二介质板205。第一介质板203的数量为n1,第一半固化片204的数量为n2,第二介质板205的数量为n3;第一介质板203的介电常数为r1,第一介质板203的介电常数为介质厚度为t1;第一半固化片204的介电常数为r2,第一半固化片204的介电常数为介质厚度为t2;第二介质板205的介电常数为r3,第二介质板205的介电常数为介质厚度为t3;其中,n1≥1,n2≥1,n3≥1;n1×r1×t1+n2×r2×t2=n3×r3×t3。如此,结合上述公式,通过调整第一介质板203的层数以及厚度,第一半固化片204的层数以及厚度,第二介质板205的层数以及厚度的方式,调整相位差,减少内耗,提升耦合透射结构220的辐射性能。此外,调整灵活,以提高本公开的耦合透射结构220的调试的灵活度,能针对波束进行局部优化,从而实现较大的波束整形能力。
具体地,第一介质板203和第二介质板205为介质基板,其介电常数和厚度大小可以灵活要求;第一半固化片204为半固化片,其介电常数和厚度大小可以灵活要求。
在上述任一实施例的基础上,如图5所示,一些实施例中,第三介质层224还包括第二半固化片206,且至少有一个第二半固化片206夹设于辐射层211与屏蔽层222之间。如此,亦可利用第二半固化片206来改变辐射层211相位,使得电磁波能够通过耦合缝隙222a耦合给频率选择表面221,减少透射损耗。
在上述实施例的基础上,如图5所示,一些实施例中,第一介质板203的数量为n1,第一半固化片204的数量为n2,第二介质板205的数量为n3,第二介质板205的数量为n4;第一介质板203的介电常数为r1,第一介质板203的介电常数为介质厚度为t1;第一半固化片204的介电常数为r2,第一半固化片204的介电常数为介质厚度为t2;第二介质板205的介电常数为r3,第二介质板205的介电常数为介质厚度为t3;第二半固化片206的介电常数为r4,第二半固化片206的介电常数为介质厚度为t4;其中,n1≥1,n2≥1,n3≥1,n4≥1;n1×r1×t1+n2×r2×t2=n3×r3×t3+n4×r4×t4。如此,结合上述公式,通过调整第一介质板203的层数以及厚度,第一半固化片204的层数以及厚度,第二介质板205的层数以及厚度,第二半固化片206的层数以及厚度的方式,调整相位差,减少内耗,提升耦合透射结构220的辐射性能。此外,调整灵活,以提高本公开的耦合透射结构220的调试的灵活度,能针对波束进行局部优化,从而实现较大的波束整形能力。
在上述任一实施例的基础上,如图4以及图6所示,一些实施例中,耦合缝隙222a包括第一缝隙201以及第二缝隙202,第一缝隙201的延长方向与第二缝隙202的延长方向相交。辐射层211通过第一缝隙201以及第二缝隙202与频率选择表面221相耦合。如此,辐射层211与频率选择表面221之间通过第一缝隙201及第二缝隙202相耦合,而第一缝隙201的延长方向与第二缝隙202的延长方向相交。如此,只需通过调整第一缝隙201及第二缝隙202的尺寸大小(长度或宽度等)即可实现耦合透射结构220的选频范围的扩大,有利减少耦合透射结构220的金属层数,进而能够降低损耗。
同时,可以理解地,通过调整第一缝隙及第二缝隙来实现耦合透射结构的选频范围的调整,与传统技术相比,本公开的耦合透射结构对工艺要求较小,能利用传统的微带加工工艺就能实现,有利于降低耦合透射结构的制造成本。
具体地,在天线单元的制造调试过程中,能够通过调整第一方向上缝隙的总长,也即间接或直接延长第一缝隙的长度;或者能够通过调整第二方向上缝隙的总长,也即间接或直接延长第二缝隙的长度,或者扩大或缩小第一缝隙的宽度和/或第二缝隙的宽度,来获取所需的选频范围。与传统技术相比,选频范围的调整更加灵活。同时在扩大选频范围时,有利于减少天线单元的金属层数,进而能够降低损耗。结合前述介质层数的调节方式,可以有效地降低表面不对称对性能造成的不利影响。
需要说明的是,“第一缝隙的延长方向与第二缝隙的延长方向相交”包括“第一缝隙”与“第二缝隙”直接相交,或者“第一缝隙”的延长方向与“第二缝隙”相交,或者“第一缝隙”与“第二缝隙”的延长方向相交。
如,一示例性中,第一缝隙在第一方向上,第二缝隙在第二方向上,第一方向与第二方向相交。
需要说明的是,“第一缝隙”及“第二缝隙”的长度可根据天线单元的特点进行选择,其长度范围为0mm~10mm。示例性地,“第一缝隙”和/或“第二缝隙”的长度为1mm、2mm、4mm、6mm、8mm、10mm等。
在上述任一实施的基础上,一些实施例中,第一缝隙201与第二缝隙202呈条形状,并交叉设置。如此,利用条形缝隙有利于降低损耗,同时交叉设置便于进行优化,使得本公开的耦合透射结构220的性能更好。
在上述实施的基础上,如图6至图8所示,一些实施例中,第一缝隙201与第二缝隙202相互垂直设置。如此,便于第一缝隙201沿第一方向(如X方向或水平方向)设置,第二缝隙202沿第二方向(如Y方向或竖向方向)设置,便于有规律地进行第一缝隙201及第二缝隙202的调整(包括长度及宽度的调整),使得本公开的天线单元200的辐射性能更优。
在上述任一实施的基础上,如图7所示,一些实施例中,屏蔽层222还包括耦合枝节207,耦合枝节207设置于第一缝隙201和/或第二缝隙202上。如此,利用耦合枝节207可以在同样的第一缝隙201及第二缝隙202尺寸下,降低了边缘处的损耗,提高选频范围,进一步提高本公开的天线单元200的辐射效率,提升性能。
在上述实施的基础上,如图8所示,一些实施例中,耦合枝节207包括第一延长缝隙208,第一延长缝隙208与第一缝隙201平行间隔设置,并与第二缝隙202相连;耦合枝节207还包括第二延长缝隙209,第二延长缝隙209与第二缝隙202平行 间隔设置,并与第一缝隙201相连,第二延长缝隙209与第一延长缝隙208间隔设置于屏蔽层222。如此,通过第一延长缝隙208间接延长第一缝隙201的长度,通过第二延长缝隙209间接延长第二缝隙202的长度,实现本公开的天线单元200的选频范围的扩大。
一些实施例性的,第一延长缝隙208至少为两个,第二延长缝隙209至少为两个。如此,通过调整第一延长缝隙208的长度及数量以及调整第二延长缝隙209的长度及数量来扩大本公开的天线单元200的选频范围,又能减少损耗。
在上述任一实施的基础上,一些实施例中,第一缝隙201和/或第二缝隙202为微带缝隙。如此,有利于提高本公开的天线单元200的可靠性,降低制造成本。
在上述任一实施的基础上,一些实施例中,第一缝隙至少为两条,且相互平行设置;和/或,第二缝隙至少为两条,且相互平行设置。如此,可以灵活扩大耦合透射结构的选频范围,使得本公开的天线单元的设计更加灵活且损耗小。
在上述任一实施的基础上,如图6以及图8所示,一些实施例中,第一缝隙201与第二缝隙202构成对称图像,且该图形的中心与屏蔽层222的中心相重合。如此,便于本公开的天线单元200在设计之初进行优化,减少干扰,更容易获得调整规律,进而便于根据实际需求去调整第一缝隙201与第二缝隙202的长度、宽度或深度等,以获得所需的天线单元200。
如,第一缝隙与第二缝隙构成“十”字形图形(如图6所示),或者构成“耶路撒冷(Jerusalem)”图形(如图8所示)等等。
在上述任一实施例的基础上,一些实施例中,辐射层为微带贴片。如此,可以利用微带贴片实现微波的发射,使得辐射层的设计更加灵活,能够满足不同频率的天线设计要求。
在上述任一实施例的基础上,一些实施例中,频率选择表面包括微带贴片(未标注)。如此,使得本公开的耦合透射结构可以利用多种频率选择表面进行组合,以满足不同需求。也使得本公开的耦合透射结构的相位差的范围可以更大。如此,本公开的天线单元的选频范围大以及选相范围大,利用本公开的耦天线单元组成的天线,其带宽更宽,有利于提升天线性能,进而能提高设置有该天线的移动终端的性能。如,利用本公开的天线单元能针对球面波进行局部优化,从而实现较大的波束整形能力。
在上述任一实施例的基础上,一些实施例中,耦合透射结构贴设于辐射层上。 如此,辐射结构和耦合透射结构可以分别制造,再组装在一起,便于基于辐射结构组成的初始天线阵列的辐射效果,再设计相应的耦合透射结构,再利用该耦合透射结构来灵活调整初始天线阵列的辐射范围,以获得所需的阵列天线的辐射范围。
在上述任一实施例的基础上,一些实施例中,频率选择表面的层数至少为两个,并层叠设置,且相邻两个频率选择表面之间绝缘设置。如此,能提升本公开的耦合透射结构的耦合自由度,有利于满足高相位天线单元(如相位要求>360°,甚至>500°的天线单元)的设计。
可以理解地,继续增加频率选择表面的阶数时,即其等效的LC滤波特性不由一个电感以及一个电容等效而成时,其耦合的总体自由度会进一步增大,通过适当频率选择表面的尺寸,有利于进一步降低天线单元的辐射损耗,使得本公开的天线单元的相位范围更大,损耗更低,性能更佳。
当然了,除了通过改变频率选择表面的层数来调整本公开的耦合透射结构。在其他实施例中,本公开的耦合透射结构的相位差的调整还可以通过改变屏蔽层的层数实现。
一些实施例中,屏蔽层至少为两层,并依次叠加夹设于辐射层与频率选择表面之间。如此,可以通过设置至少两层屏蔽层的方式调整耦合透射结构的相位差,同时也能够进行天线单元的选频范围的优化。
当然了,改变频率选择表面的层数以及改变屏蔽层的层数的方式可以灵活组合,以提高本公开的耦合透射结构的设计灵活度,进一步满足天线单元的调节。
可以理解地,相比于现有技术,利用上述耦合透射结构来提高天线阵列的波束宽度,使得移动终端的结构设计灵活,不受辐射层数量的限制(也即,对移动终端的计算能力要求低)。此外,该天线阵列的波束宽度在调整过程中对移动终端的结构影响小,对耦合结构的排布方式影响小。
如图9所示,另一些实施例中,还提供了一种天线阵列的设计方法,包括:
S100获取初始天线阵列初始的第一辐射方向图。
S200根据第一辐射方向图与设定的第二辐射方向图的偏差,选择耦合透射结构的频率选择表面,并使得耦合透射结构的数量与初始天线阵列的辐射结构的数量一一对应。
S300将耦合透射结构一一对应贴合至对应辐射结构的辐射层上形成天线阵列。
如此,利用上述方法在辐射结构确定的情况下,获取天线阵列初始的第一辐射方向图。然后根据第一辐射方向图,选择耦合透射结构的频率选择表面来降低辐射结构的单元因子。最后将耦合透射结构一一对应贴合至对应辐射结构的辐射层上,来提高天线阵列的波束宽度范围,避免天线波束过窄而影响移动终端的通信性能。
可以理解地,传统的移动终端的5G天线的覆盖范围的提高,通常通过提高阵列数量或增大阵列规模实现。这对移动终端的计算能力要求较高以及设计难度较高,不利于降低移动终端的成本。而本公开的天线单元通过设置耦合透射结构,能够增大天线阵列的波束宽度,提高其覆盖能力,避免出现波束宽度过窄导致其覆盖能力不足。此外,无需提高阵列数量或增大阵列规模,进而使得移动终端的尺寸设计更加灵活,能够兼顾小型化设计。而且,不会限制移动终端的计算能力,避免因无法实现数据后处理而无法提高其覆盖范围。综上所述,利用本公开的天线设计方法,不会增加移动终端的结构设计难度,且可以调整灵活天线阵列的波束宽度,易于实施,能够有效降低成本。
特别地,在移动终端的外形结构已定,且天线阵列也确定的情况下,利用本公开的天线设计方法,通过设计耦合透射结构来提高天线阵列所需的波束宽度,不会增加移动终端的结构设计难度,且调整灵活,能够有效降低成本。
在步骤S100中,将耦合结构在制造好壳体组件上排布好形成初始天线阵列,然后可以测试得到初始的第一辐射方向图。
在步骤S200和S300中,根据第一辐射方向图与设定的第二辐射方向图的偏差,可以认为是波束宽度的偏差。具体可以为波束宽度过窄了。通过设计耦合透射结构,将其贴设于初始天线阵列,再次测试第一辐射方向图。如果与设定的第二辐射方向图还有偏差,则进行设计耦合透射结构,直至耦合透射结构与初始天线阵列的耦合结构一一对应形成的天线阵列的辐射方向图满足要求,在误差范围内即可。
在步骤S200中为了方便调校,通常利用耦合透射结构调整后的天线阵列的波束宽度要求满足设定第二辐射方向图的波束宽度要求即可。
在上述实施例的基础上,结合移动终端的实施例,一些实施例中,在确定耦合透射结构时,还包括:根据公式
Figure PCTCN2022094283-appb-000003
计算得到耦合透射结构的频率选择表面的有效辐射长度值;其中,辐射结构包括第一介质层以及 设置于第一介质层上的辐射层,耦合透射结构还包括屏蔽层、第二介质层和第三介质层,屏蔽层夹设于辐射层与频率选择表面之间,并分别与辐射层及频率选择表面绝缘设置,屏蔽层设有耦合缝隙,辐射层通过耦合缝隙与频率选择表面相耦合,第二介质层夹设于屏蔽层与频率选择表面之间,第三介质层夹设于屏蔽层与辐射层之间;辐射层的有效辐射长度为L1,频率选择表面的有效辐射长度为L2,第二介质层的介电常数为K1,第二介质层的介电常数为K2,第二介质层的介电常数为介质厚度为t1;第三介质层的介电常数为K3,第三介质层的介电常数为介质厚度为t2。如此,在设计频率选择表面的有效辐射长度,可以利用上述公式计算得到,进而可以提高天线单元的波束宽度,以获得所需的第二辐射方向图,使得天线阵列的辐射范围满足设计要求。
在上述方法实施例的基础上,一些实施例中,选择耦合透射结构的频率选择表面之后,还包括根据天线阵列的相位步进要求,确定频率选择表面的层数。如此,可以进一步提高本公开的天线单元的设计灵活度,进一步满足各种不同天线阵列性能调整。
在上述方法实施例的基础上,一些实施例中,方法还包括:根据天线阵列的波束宽度以及覆盖范围的设计要求,并结合天线阵列的辐射结构的数量,调整频率选择表面的相位范围大小。如此,能提升本公开的耦合透射结构的耦合自由度,有利于满足高相位天线单元(如相位要求>360°,甚至>500°的天线单元)的设计。
可以理解地,继续增加频率选择表面的阶数时,即其等效的LC滤波特性不由一个电感以及一个电容等效而成时,其耦合的总体自由度会进一步增大,通过适当频率选择表面的尺寸,有利于进一步降低天线单元的辐射损耗,使得本公开的天线单元的相位范围更大,损耗更低,性能更佳。
前述任一实施例中的移动终端的天线阵列能够通过上述任一实施例中的天线阵列的设计方法获得。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开的发明构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。

Claims (16)

  1. 一种天线单元,其特征在于,包括:
    辐射结构,包括辐射层;以及
    耦合透射结构,设置于所述辐射结构上,所述耦合透射结构包括频率选择表面,所述频率选择表面与所述辐射层绝缘设置,且所述频率选择表面与所述辐射层相耦合。
  2. 根据权利要求1所述的天线单元,其特征在于,所述耦合透射结构还包括屏蔽层,所述屏蔽层夹设于所述辐射层与所述频率选择表面之间,并分别与所述辐射层及所述频率选择表面绝缘设置,所述屏蔽层设有耦合缝隙,所述辐射层通过所述耦合缝隙与所述频率选择表面相耦合。
  3. 根据权利要求2所述的天线单元,其特征在于,所述耦合透射结构还包括第二介质层和第三介质层,所述第二介质层夹设于所述屏蔽层与所述频率选择表面之间,所述第三介质层夹设于所述屏蔽层与所述辐射层之间。
  4. 根据权利要求3所述的天线单元,其特征在于,所述第二介质层贴设于所述辐射层上。
  5. 根据权利要求3所述的天线单元,其特征在于,所述辐射结构还包括第一介质层,所述第一介质层承载所述辐射层,并与所述耦合透射结构间隔设置。
  6. 根据权利要求5所述的天线单元,其特征在于,所述辐射层的有效辐射长度为L1,所述频率选择表面的有效辐射长度为L2,所述第一介质层的介电常数为K1,所述第二介质层的介电常数为K2,所述第二介质层的介电常数为介质厚度为t1;所述第三介质层的介电常数为K3,所述第三介质层的介电常数为介质厚度为t2;其中,
    Figure PCTCN2022094283-appb-100001
  7. 根据权利要求3所述的天线单元,其特征在于,所述第二介质层和所述第三介质层为介质板,所述耦合透射结构还包括半固化片,所述半固化片夹设于所述辐射层和所述频率选择表面之间。
  8. 根据权利要求3所述的天线单元,其特征在于,所述耦合缝隙包括第一缝隙以及第二缝隙,所述第一缝隙的延长方向与所述第二缝隙的延长方向相交。
  9. 根据权利要求3所述的天线单元,其特征在于,所述辐射层为微带贴片,和/或,所述频率选择表面包括微带贴片。
  10. 根据权利要求1所述的天线单元,其特征在于,所述耦合透射结构贴设于所述辐射层上;和/或,所述频率选择表面的阻抗与所述辐射层的阻抗相匹配并耦合。
  11. 根据权利要求1至10任一项所述的天线单元,其特征在于,所述频率选择表 面的层数至少为两个,并层叠设置,且相邻两个所述频率选择表面之间绝缘设置。
  12. 一种天线模组,其特征在于,包括馈电组件以及权利要求1至11任一项的天线单元,所述天线单元至少为两个,并排布组成天线阵列,所述馈电组件包括与所述天线单元一一对应的馈电线。
  13. 根据权利要求12所述的天线模组,其特征在于,所述至少两个天线单元沿同一方向间隔排布呈一元毫米波天线阵列;和/或,所述频率选择表面的阻抗与所述辐射层的阻抗相匹配并耦合,以增大所述天线阵列的波束宽度。
  14. 一种移动终端,其特征在于,包括控制模组以及权利要求12或者13所述的天线模组,所述控制模组与所述馈电组件电性连接。
  15. 根据权利要求14所述的移动终端,其特征在于,所述移动终端还包括壳体组件,所述天线单元固设于所述壳体组件上。
  16. 根据权利要求15所述的移动终端,其特征在于,所述壳体组件包括后盖,所述天线单元贴设于所述后盖的内侧面。
PCT/CN2022/094283 2022-05-20 2022-05-20 天线单元、天线模组以及移动终端 WO2023221144A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004363.5A CN117441264A (zh) 2022-05-20 2022-05-20 天线单元、天线模组以及移动终端
PCT/CN2022/094283 WO2023221144A1 (zh) 2022-05-20 2022-05-20 天线单元、天线模组以及移动终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094283 WO2023221144A1 (zh) 2022-05-20 2022-05-20 天线单元、天线模组以及移动终端

Publications (1)

Publication Number Publication Date
WO2023221144A1 true WO2023221144A1 (zh) 2023-11-23

Family

ID=88834411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094283 WO2023221144A1 (zh) 2022-05-20 2022-05-20 天线单元、天线模组以及移动终端

Country Status (2)

Country Link
CN (1) CN117441264A (zh)
WO (1) WO2023221144A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570034A (zh) * 2012-01-04 2012-07-11 电子科技大学 基于共形有源频率选择表面的可重构天线
WO2018133427A1 (zh) * 2017-01-22 2018-07-26 深圳市景程信息科技有限公司 具有双极化性能的孔径耦合馈电的宽带贴片天线
KR101942399B1 (ko) * 2017-10-30 2019-01-25 한양대학교 산학협력단 안테나 및 이를 포함하는 통신 단말
CN109473769A (zh) * 2018-10-19 2019-03-15 湖北航天技术研究院总体设计所 一种弹载小型化多频段可重构共形天线
CN111969325A (zh) * 2020-06-23 2020-11-20 广州智讯通信系统有限公司 基于滤波天线的频率选择表面单元及频率选择表面
CN112864615A (zh) * 2021-02-25 2021-05-28 北京京东方技术开发有限公司 一种天线和无线电设备
CN114365348A (zh) * 2019-09-18 2022-04-15 Agc株式会社 天线单元及窗玻璃

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570034A (zh) * 2012-01-04 2012-07-11 电子科技大学 基于共形有源频率选择表面的可重构天线
WO2018133427A1 (zh) * 2017-01-22 2018-07-26 深圳市景程信息科技有限公司 具有双极化性能的孔径耦合馈电的宽带贴片天线
KR101942399B1 (ko) * 2017-10-30 2019-01-25 한양대학교 산학협력단 안테나 및 이를 포함하는 통신 단말
CN109473769A (zh) * 2018-10-19 2019-03-15 湖北航天技术研究院总体设计所 一种弹载小型化多频段可重构共形天线
CN114365348A (zh) * 2019-09-18 2022-04-15 Agc株式会社 天线单元及窗玻璃
CN111969325A (zh) * 2020-06-23 2020-11-20 广州智讯通信系统有限公司 基于滤波天线的频率选择表面单元及频率选择表面
CN112864615A (zh) * 2021-02-25 2021-05-28 北京京东方技术开发有限公司 一种天线和无线电设备

Also Published As

Publication number Publication date
CN117441264A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
US11322829B2 (en) Antenna assembly and electronic device
CN107331974B (zh) 一种基于脊间隙波导的圆极化天线
WO2012088837A1 (zh) 一种移动终端的阵列天线及其实现方法
CN212485544U (zh) 天线装置和电子设备
CN102044738A (zh) 具有机械连接的超材料天线
CN212485545U (zh) 天线装置和电子设备
JP2013516833A (ja) 電気的接地への周波数依存性接続を有するアンテナデバイス
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
CN113659325B (zh) 集成基片间隙波导阵列天线
WO2024139652A1 (zh) 天线装置与馈电网络组件
CN113659309B (zh) 天线装置和电子设备
CN113659336B (zh) 天线装置、电子设备及用于天线装置的去耦方法
WO2024060865A1 (zh) 探头天线及其探头
CN111162378B (zh) 一种微带天线
WO2023221144A1 (zh) 天线单元、天线模组以及移动终端
WO2022068548A1 (zh) 后盖及终端
WO2021227813A1 (zh) 天线装置和电子设备
WO2021227827A1 (zh) 天线装置和电子设备
CN117954849A (zh) 天线、天线阵列和电子设备
WO2023221145A1 (zh) 天线模组、移动终端以及天线阵列的辐射范围的调整方法
CN214378822U (zh) 电子设备
CN113659310B (zh) 天线装置和电子设备
CN111403901B (zh) 天线模组及电子设备
CN113991299A (zh) 天线组件和电子设备
CN108400436B (zh) 天线模块

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004363.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942180

Country of ref document: EP

Kind code of ref document: A1