WO2023221145A1 - 天线模组、移动终端以及天线阵列的辐射范围的调整方法 - Google Patents

天线模组、移动终端以及天线阵列的辐射范围的调整方法 Download PDF

Info

Publication number
WO2023221145A1
WO2023221145A1 PCT/CN2022/094284 CN2022094284W WO2023221145A1 WO 2023221145 A1 WO2023221145 A1 WO 2023221145A1 CN 2022094284 W CN2022094284 W CN 2022094284W WO 2023221145 A1 WO2023221145 A1 WO 2023221145A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
array
sub
radiation
arrays
Prior art date
Application number
PCT/CN2022/094284
Other languages
English (en)
French (fr)
Inventor
董翔宇
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/094284 priority Critical patent/WO2023221145A1/zh
Priority to CN202280004364.XA priority patent/CN117441267A/zh
Publication of WO2023221145A1 publication Critical patent/WO2023221145A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the present disclosure relates to the field of electronic technology, and in particular, to an antenna module, a mobile terminal, and a method for adjusting the radiation range of an antenna array.
  • Mobile terminals such as mobile phones, tablets, and communication watches have become indispensable technological products in people's life, study, and entertainment. With the development of communication technology, more and more mobile terminals integrate antennas for communication, which have the advantages of high transmission rate and low transmission delay.
  • the antenna of the mobile terminal is prone to the problem of beam out of control, which is not conducive to improving its radiation range.
  • the present disclosure provides a method for adjusting the radiation range of an antenna module, a mobile terminal and an antenna array, which can effectively avoid the problem that the radiation range of the antenna array becomes narrower as the number of antenna units increases.
  • an antenna module including an antenna array and a feeding component.
  • the antenna array includes at least two sets of sub-arrays with different radiation directions, and the sub-arrays include at least two antenna units arranged at intervals.
  • the feed component includes a feed line corresponding to the antenna unit, and the feed line is connected to the antenna unit.
  • the above-mentioned antenna module divides multiple antenna units into at least two sets of sub-arrays, and uses feed components to feed the antenna units for radiation.
  • making at least two sub-arrays have different radiation direction ranges can disperse the beam to a certain extent, thereby increasing the radiation range of the antenna array and effectively avoiding the problem that the radiation range of the antenna array becomes narrower as the number of antenna units increases.
  • the incident wave directions of at least two sub-arrays with different radiation directions are parallel to each other, and the transmitted wave direction of at least one sub-array is not on the same straight line as its incident wave direction.
  • the phase difference between the incident wave directions of at least two antenna units of at least one sub-array is zero, and there is a non-zero phase difference between the transmitted wave directions of at least two antenna units, So that the direction of the transmitted wave of the sub-array is not in the same straight line as the direction of the incident wave.
  • the phase difference between the transmitted waves of two adjacent antenna units in the sub-array is the same.
  • the antenna element includes a radiating layer.
  • the effective radiation lengths between the radiation layers of at least two antenna units in the sub-array are different, so that there is a non-zero phase difference between the transmitted wave directions of at least two antenna units.
  • the differences in effective radiation lengths between the radiation layers of two adjacent antenna units in the sub-array are the same.
  • the radiating layer includes a first frequency selective surface.
  • the radiation layer further includes a microstrip patch, which is disposed above the first frequency selection surface to increase the radiation efficiency of the antenna unit.
  • the antenna module further includes a coupling transmission structure disposed on the antenna unit, including a second frequency selective surface.
  • the second frequency selection surface is insulated from the antenna unit, and the frequency selection surface is coupled with the antenna unit.
  • unit factors of all antenna units are the same, and beam widths of all sub-arrays are the same.
  • the antenna array includes M groups of sub-arrays, and the M groups of sub-arrays are evenly spaced along the first direction.
  • the first direction includes a first end and a second end opposite to the first end. At least one group of sub-arrays arranged in the middle of the first direction is the first array.
  • the maximum radiation direction of the first array is located at K1°/2, and K1° is the beam width of the antenna array. Along the direction from the first array to the first end, the maximum radiation direction of the sub-array is less than K1°/2, and among the two adjacent sub-arrays, the maximum radiation direction of the sub-array located close to the first array is greater than the maximum radiation direction of the other sub-array.
  • the radiation direction is large C°.
  • the maximum radiation direction of the sub-array is greater than K1°/2, and among the two adjacent sub-arrays, the maximum radiation direction of the sub-array located close to the first array is greater than the maximum radiation direction of the other sub-array.
  • the radiation direction is small C°.
  • K1° ⁇ M.
  • a mobile terminal including a control module and the antenna module in any of the above embodiments, and the control module is electrically connected to the feed component.
  • the above-mentioned mobile terminal adopts the above-mentioned antenna module, so that the radiation direction range of at least two sub-arrays is different, which can disperse the beam to a certain extent, thereby improving the radiation range of the antenna array and effectively avoiding the loss of the antenna array due to the larger number of antenna units.
  • a method for adjusting the radiation range of an antenna array including:
  • the design requirements of the radiation range of the antenna array and the position of the M group of sub-arrays in the initial antenna array adjust the radiation direction of at least one group of sub-arrays so that the radiation directions of at least two sub-arrays in the M group of sub-arrays are different, Until the radiation range of the initial antenna array meets the design requirements.
  • the above method is used to arrange the N antenna units into an initial antenna array, and divide the initial antenna array into M groups of sub-arrays.
  • the design requirements of the radiation range of the antenna array and the position of the M group of sub-arrays in the initial antenna array adjust the radiation direction of at least one group of sub-arrays so that the radiation directions of at least two sub-arrays in the M group of sub-arrays are different.
  • the adjusted radiation range of the initial antenna array meets the design requirements to increase the beam width range of the antenna array.
  • the beam can be dispersed to a certain extent, the radiation range of the antenna array can be increased, and the problem that the radiation range of the antenna array becomes narrower due to the larger number of antenna units can be effectively avoided.
  • the design requirements include that K1° is greater than K2°; where K1° is the beam width of the antenna array required by the design requirements, and K2° is the beam width of the initial antenna array.
  • a method for adjusting the radiation direction of at least one group of sub-arrays includes:
  • the maximum radiation direction of the sub-array is less than K1°/2, and among the two adjacent sub-arrays, the maximum radiation direction of the sub-array located close to the first array is larger than that of the other sub-array.
  • the maximum radiation direction is greater than C°; along the direction from the first array to the second end, the maximum radiation direction of the sub-array is greater than K1°/2, and the maximum radiation of the sub-array set close to the first array among the two adjacent sub-arrays is The direction is C° smaller than the maximum radiation direction of the other subarray.
  • K1° ⁇ M.
  • K2° A° ⁇ N
  • is the beam width of the antenna unit.
  • the design requirements also include that the antenna gain of the antenna array is greater than or equal to G1, and before adjusting the radiation direction of at least one group of sub-arrays, it also includes:
  • G2 ⁇ G1 continue to increase the number of antenna units until G2 ⁇ G1.
  • the radiation range of the initial antenna array after the radiation range of the initial antenna array meets the design requirements, it also includes:
  • G3 is the antenna gain of the adjusted initial antenna array, G3 ⁇ G2;
  • G3 ⁇ G1 continue to increase the number of antenna units until G3 ⁇ G1.
  • the method of changing the radiation direction of the sub-array includes: making the effective radiation lengths between the radiation layers of two adjacent antenna units in the sub-array different, so that the incident wave direction of the sub-array is transmitted through the sub-array.
  • the wave directions are not in the same straight line.
  • the difference in effective radiation length between the radiation layers of two adjacent antenna units is the same.
  • FIG. 1 is a schematic structural diagram of a mobile terminal shown in an embodiment.
  • FIG. 2 is an assembly schematic diagram of the antenna module shown in FIG. 1 being installed on the back cover.
  • FIG. 3 is an expanded schematic diagram of the antenna array shown in FIG. 2 .
  • FIG. 4 is a schematic diagram of changes in incident waves and transmitted waves of the antenna array shown in FIG. 3 .
  • FIG. 5 is an exploded schematic diagram of an antenna unit and a coupling transmission structure shown in another embodiment.
  • FIG. 6 is a half-section schematic diagram of the antenna unit and coupling transmission structure shown in FIG. 5 .
  • Figure 7 is an exploded schematic diagram of an antenna unit shown in another embodiment.
  • FIG. 8 is an expanded schematic diagram of the radiation layer, shielding layer and frequency selective surface shown in one embodiment.
  • Figure 9 is a schematic diagram of a shielding layer in an embodiment.
  • Figure 10 is a schematic diagram of a shielding layer shown in another embodiment.
  • FIG. 11 is a flow chart of a method for adjusting the radiation range of an antenna array in an embodiment.
  • FIG. 12 is a flow chart of a method for adjusting the radiation direction of at least one group of sub-arrays in an embodiment.
  • FIG. 13 is a flow chart of a method for adjusting the antenna gain of the initial antenna array in the method for adjusting the radiation range of the antenna array shown in an embodiment.
  • FIG. 14 is a flow chart of an antenna gain method after the radiation range of the initial antenna array meets the design requirements shown in another embodiment.
  • Mobile terminal 11. Control module; 12. Antenna module; 12a. Antenna array; 101. Sub-array; 13. Housing assembly; 100. Back cover; 200. Antenna unit; 201. Incident wave; 202. Transmitted wave; 210. Radiation layer; 211. First frequency selective surface; 212. Microstrip patch; 220. First dielectric layer; 300. Feeding component; 310. Feeding line; 400. Coupling transmission structure; 410.
  • Frequency Selective Surface can form a band-rejection characteristic or a band-pass characteristic within a specific operating frequency band to achieve frequency selection of electromagnetic waves.
  • the antenna may be composed of one antenna unit or an antenna array formed by an arrangement of multiple antenna units.
  • the directionality of an antenna is usually measured using a pattern. There are usually two or more lobes in the pattern, the largest of which is called the main lobe, and the remaining lobes are called side lobes.
  • the angle between the two half-power points of the main lobe is defined as the beam width of the antenna pattern, also called the beam width (hereinafter referred to as beam width).
  • beam width The narrower the beam width of the main lobe, the better the directivity and the stronger the anti-interference ability.
  • Beam width includes horizontal beam width and vertical beam width.
  • the pattern of the main lobe of the antenna can be obtained through the q-th power simulation of COS ⁇ , that is, the pattern of the main lobe of the antenna can be obtained through COSq ⁇ .
  • the beam width of the antenna can be calculated.
  • q is the unit factor of the antenna. The smaller the q value, the larger the beam width of the antenna.
  • the q of the radiating layer of the antenna is usually fixed.
  • the antenna array feeds the antenna array through a feed component (such as a feed network) to achieve the radiation function.
  • a feed component such as a feed network
  • the beam width of the antenna array will become narrower. For example, assume that the number of antenna elements in the antenna array is N and the beam width of a single antenna element is A°.
  • the beam width of the antenna array is K° ⁇ A°/N.
  • Antenna gain refers to the ratio of the power density of the signal generated by the actual antenna and the ideal radiating unit at the same point in space under the condition that the input power is equal.
  • the effective radiation length is usually considered to be one-half of the radiation waveform ⁇ .
  • a mobile terminal 10 including a control module 11 and an antenna module 12 .
  • the antenna module 12 includes an antenna array 12a and a feeding component 300.
  • the control module 11 is electrically connected to the power feeding component 300 .
  • the antenna array 12a includes at least two groups of sub-arrays 101 with different radiation directions, and the sub-arrays 101 include at least two antenna units 200 arranged at intervals.
  • the feed assembly 300 includes a feed line 310 that corresponds to the antenna unit 200 one-to-one, and the feed line 310 is connected to the antenna unit 200 .
  • the above-mentioned antenna module 12 divides the plurality of antenna units 200 into at least two groups of sub-arrays 101, and uses the feed assembly 300 to feed the antenna units 200 for radiation.
  • the beam can be dispersed to a certain extent, thereby increasing the radiation range of the antenna array 12a, and effectively preventing the antenna array 12a from having a larger radiation range as the number of antenna units 200 increases.
  • the problem of narrowness is beneficial to improving the radiation efficiency of the antenna array 12a.
  • the scale of the antenna array 12a can be reduced, the area required for installing the antenna array 12a can be reduced, and the occupation of the internal structure of the terminal device can be reduced.
  • the feed component 300 can be implemented in various forms, as long as it can feed the antenna unit 200 .
  • the feed assembly 300 includes a feed network capable of feeding the antenna units 200 respectively, and the feed network includes a feed line 310 connected to the antenna unit 200 .
  • the mobile terminal 10 includes smart devices such as mobile phones, tablet computers, wearable devices, microwave sensing devices, and wearable devices.
  • the antenna module 12 of the present disclosure can improve the radiation performance of these mobile terminals 10 and improve product competitiveness.
  • control module 11 includes a control circuit board, and the power feeding component 300 is disposed on the control circuit board. It should be noted that the power feeding component 300 can be manufactured independently and then integrated into the control circuit board. The power feeding assembly 300 can also be integrally manufactured with the control circuit board.
  • the mobile terminal 10 further includes a housing component 13 , and the antenna structure is fixed on the housing component 13 .
  • the antenna unit 200 can be installed using the housing assembly 13, making the internal structure of the mobile terminal 10 more compact.
  • the antenna unit 200 is provided with the coupling transmission structure 400, the radiation range of the antenna unit 200 can be adjusted without changing the shape of the housing assembly 13, making the design of the mobile terminal 10 more flexible.
  • the housing assembly 13 includes a back cover 100 , and the antenna unit 200 is attached to the inner side of the back cover 100 . Furthermore, the space of the back cover 100 can be fully utilized to install the antenna unit 200, making the installation more convenient and making it easier to avoid interference sources.
  • At least two antenna units 200 are arranged at intervals along the same direction to form a one-element millimeter wave antenna array 12a.
  • the antenna unit 200 of the present disclosure can be used to obtain a one-element millimeter wave antenna array 12a, which facilitates the use of the coupling transmission structure 400 to increase the beam width of the antenna array 12a and reduce the difficulty of beam control of the one-element millimeter wave antenna array 12a, thereby ensuring 5G Millimeter wave related index requirements.
  • the incident wave 201 directions of at least two sub-arrays 101 with different radiation directions are parallel to each other, and the direction of the transmitted wave 202 of at least one sub-array 101 is The direction of its incident wave 201 is not on the same straight line.
  • the directions of the incident waves 201 of at least two groups of sub-arrays 101 with different radiation directions are parallel to each other, that is, the angles of the incident waves 201 of the at least two groups of sub-arrays 101 remain unchanged, and only the directions of the transmitted waves 202 are changed, so that the at least two groups of sub-arrays 101 have different directions.
  • the two sets of sub-arrays 101 have different radiation directions.
  • the angle of the incident wave 201 of the sub-array 101 in the antenna array 12a remains unchanged, the incident loss can be reduced, which is beneficial to the radiation efficiency.
  • the phase difference between the directions of incident waves 201 of at least two antenna units 200 of at least one sub-array 101 is zero, and the transmission of at least two antenna units 200 There is a non-zero phase difference between the wave 202 directions, so that the transmitted wave 202 direction of the sub-array 101 and its incident wave 201 direction are not on the same straight line. In this way, the phase difference in the direction of the incident wave 201 of the antenna unit 200 of the same sub-array 101 is zero, so that the angle of the incident wave 201 of the antenna unit 200 remains unchanged, and the incident loss can be reduced.
  • the antenna array 12a can adjust the radiation direction of the sub-array 101 by adjusting the direction of the transmitted wave 202 and the direction of the incident wave 201 of the sub-array 101 to be different from the same straight line, thereby reducing the incident loss and benefiting the radiation efficiency.
  • the phase differences between the transmitted waves 202 of two adjacent antenna units 200 in the sub-array 101 are the same.
  • the angle between the transmitted wave 202 and the incident wave 201 of the antenna unit 200 in the sub-array 101 is the same, avoiding unnecessary losses caused by different angles, so that after the adjustment of the radiation direction of the sub-array 101, Its radiation efficiency can still be guaranteed.
  • the antenna unit 200 includes a radiation layer 210 .
  • the effective radiation lengths between the radiation layers 210 of at least two antenna units 200 in the sub-array 101 are different, so that there is a non-zero phase difference between the directions of the transmitted waves 202 of the at least two antenna units 200 .
  • the radiation direction of the sub-array 101 can be adjusted simply by adjusting the effective radiation length of the radiation layer 210, which is easy to implement and makes the cost of the antenna array 12a low.
  • the radiation efficiency of the antenna array can be improved.
  • the difference in effective radiation length between the radiation layers 210 of two adjacent antenna units 200 in the subarray 101 is the same.
  • the effective radiation length of the radiation layer 210 of the antenna unit 200 in the sub-array 101 is uniformly increased in the same direction, so that the angles between the transmitted wave 202 and the incident wave 201 of the antenna unit 200 are all the same, thus avoiding interference caused by different included angles. Unnecessary losses are caused, so that after the radiation direction of the sub-array 101 is adjusted, its radiation efficiency can still be ensured.
  • the radiation layer 210 includes a first frequency selective surface 211 .
  • the first frequency selection surface 211 can be used to realize microwave radiation, making the design of the radiation layer 210 more flexible and able to meet antenna radiation requirements of different frequencies.
  • the radiation layer 210 further includes a microstrip patch 212 , and the microstrip patch 212 is disposed above the first frequency selection surface 211 . To increase the radiation efficiency of the antenna unit 200 and improve the radiation efficiency.
  • the length of the microstrip patch 212 is the effective radiation length of the radiation layer 210 .
  • the unit factors of all antenna units are the same, and the beam widths of all sub-arrays are the same. In this way, the beamwidths of the sub-arrays in the antenna array are the same. In this way, the same type and the same number of antenna units can be used to form sub-arrays, and the beam widths of all sub-arrays are the same. It is more convenient to adjust the coverage of the antenna array, and the design and manufacturing costs of the antenna array can be reduced.
  • the beam width of a traditional antenna array will become narrower after forming a one-element antenna array.
  • the antenna array includes N groups of antenna units, the beam width of the antenna units is A°, and the beam width of the antenna array is K1°; wherein, there are at least two groups of sub-arrays.
  • the antenna array includes M groups of sub-arrays, and the M groups of sub-arrays are evenly spaced along the first direction.
  • the first direction includes a first end and a second end opposite to the first end. At least one group of sub-arrays arranged in the middle of the first direction is the first array.
  • the maximum radiation direction of the first array is located at K1°/2, and K1° is the beam width of the antenna array. Along the direction from the first array to the first end, the maximum radiation direction of the sub-array is less than K1°/2, and among the two adjacent sub-arrays, the maximum radiation direction of the sub-array located close to the first array is greater than the maximum radiation direction of the other sub-array.
  • the radiation direction is large C°.
  • the maximum radiation direction of the sub-array is greater than K1°/2, and among the two adjacent sub-arrays, the maximum radiation direction of the sub-array located close to the first array is greater than the maximum radiation direction of the other sub-array.
  • the radiation direction is small C°.
  • at least one group of sub-arrays is set as the first array, and the maximum radiation direction of the first array is located at K1°/2, which can then make the maximum radiation directions of other sub-arrays gradually decrease by C° or gradually decrease with respect to the first array.
  • Increasing C° allows the radiation directions of the sub-arrays of the antenna array to be arranged in the set direction to avoid the narrowing of the beam width of the antenna array and affecting its coverage.
  • At least one group of sub-arrays arranged in the middle of the first direction is the first array can be understood as: when M is an even number, the number of sub-arrays in the first array is a multiple of 2, and it can be set The two sets of sub-arrays in the middle of the first direction are set as the first array, or the four sets of sub-arrays arranged in the middle of the first direction are set as the first array.
  • the number of sub-arrays in the first array is an odd multiple of 1 (such as 1, 3, 5, 7, etc.), and a group of sub-arrays arranged in the middle of the first direction can be set as the An array, or three groups of sub-arrays arranged in the middle of the first direction are set as the first array.
  • K1° ⁇ M.
  • the angle between the maximum radiation directions between the sub-arrays of the antenna array can be calculated based on the beam width requirements of the antenna array and the number of its antenna units, so that the radiation angle between the sub-arrays within the antenna array can be increased or submitted.
  • a C° distribution enables the antenna array to not only meet the coverage range, but also have good antenna gain and obtain good radiation performance.
  • the antenna array includes 45 groups of sub-arrays evenly spaced along the first direction.
  • a group of sub-arrays arranged in the middle of the first direction can be set as the first array, and when other arrays are arranged in the direction from the first array to the first end, among the two adjacent sub-arrays, the one closest to the first array
  • the maximum radiation direction of the set subarray is 2° smaller than the maximum radiation direction of the other subarray.
  • the maximum radiation direction of the sub-array located close to the first array is 2° smaller than the maximum radiation direction of the other sub-array. That is, the sub-array in the antenna array can be obtained by gradually increasing the maximum radiation direction of the sub-array by 2° along the first end to the second direction.
  • the antenna module 12 further includes a coupling transmission structure 400 disposed on the antenna unit 200 , including a second frequency selective surface 410 .
  • the second frequency selection surface 410 is insulated from the antenna unit 200 and is coupled to the antenna unit 200 .
  • the above-mentioned antenna module 12 emits electromagnetic waves through the antenna unit 200, couples the second frequency selection surface 410 with the antenna unit 200, and uses the second frequency selection surface 410 to radiate electromagnetic waves to reduce the unit factor of the antenna unit 200. .
  • the antenna unit 200 increases the beam width of the antenna unit 200 by coupling the transmission structure 400 without changing the radiation structure.
  • the antenna unit 200 is used to form the antenna array 12a, and the radiation structure is fixed. It can also increase the beam width of the antenna array 12a, increase the radiation range of the antenna array 12a, and ensure the communication performance of the mobile terminal 10.
  • the improvement of the coverage of 5G antennas of traditional mobile terminals is usually achieved by increasing the number of arrays or increasing the scale of the arrays.
  • the present disclosure can increase the beam width of the antenna array, improve its coverage capability, and avoid insufficient coverage capability caused by too narrow beam width.
  • there is no need to increase the number of arrays or increase the scale of the array which makes the size design of the mobile terminal more flexible and can take into account miniaturization design.
  • the computing power of the mobile terminal will not be limited, and its coverage will not be improved due to the inability to implement data post-processing.
  • the use of coupled transmission structures does not increase the difficulty of structural design of mobile terminals, and is flexible in adjustment, which can effectively reduce costs.
  • the coupling transmission structure of the present disclosure can be used to increase the beam width of the antenna unit and improve the coverage of the antenna array.
  • the antenna array is a 5G antenna array
  • the coupling transmission structure can also be used to improve its coverage, thereby enabling the mobile terminal to have high transmission rate, low transmission delay, and wide coverage communication performance.
  • the pattern of its main lobe can be obtained through COSq1A simulation, the beam width is A1, and its unit factor is q1.
  • the antenna unit is used to cooperate with the coupling transmission structure to form an antenna structure.
  • the main lobe pattern of the antenna structure can be obtained through COSqA simulation.
  • the beam width is A2, and its unit factor is q2. q2 ⁇ q1, such that the beam width A2 of the antenna structure is greater than the beam width A1 of the first antenna.
  • At least two first antennas are arranged to form a first antenna array with a beam width B1, and a second antenna array with the same number and arrangement of antenna structures has a beam width B2. Since A2>A1, so B2> B1.
  • the impedance of the second frequency selective surface is matched and coupled to the impedance of the radiating layer. In this way, the loss can be reduced, the coupling efficiency can be improved, and the beam width of the antenna structure can be increased, thereby increasing the beam width of the antenna array and improving the radiation performance of the antenna module.
  • the coupling transmission structure 400 further includes a shielding layer 420 , and the shielding layer 420 is sandwiched between the radiation layer 210 and the second frequency selective surface 410 between them, and are insulated from the radiation layer 210 and the second frequency selective surface 410 respectively.
  • the shielding layer 420 is provided with a coupling gap 421, and the radiation layer 210 is coupled to the second frequency selective surface 410 through the coupling gap 421.
  • the shielding layer 420 is disposed between the receiving layer and the radiating layer 210, and the second frequency selective surface 410 and the radiating layer 210 are coupled through the coupling gap 421, which is beneficial to improving the anti-interference capability.
  • the "insulation arrangement" between the shielding layer 420, the radiation layer 210 and the second frequency selective surface 410 can be implemented in a variety of ways, including insulation methods during the circuit board manufacturing process. In the embodiment of the present disclosure, it is implemented using a dielectric layer or the like.
  • the coupling transmission structure 400 further includes a second dielectric layer 430 and a third dielectric layer 440 .
  • the second dielectric layer 430 is sandwiched between the shielding layer 420 and the third dielectric layer 440 .
  • the third dielectric layer 440 is sandwiched between the shielding layer 420 and the radiation layer 210.
  • the dielectric constant and the thickness of the dielectric layer can be flexibly adjusted to optimize the phase difference between the second frequency selection surface 410 and the radiation layer 210, reducing energy loss inside the antenna structure, so that electromagnetic waves can be radiated as much as possible, and the antenna can be improved. Radiation performance of structures. In this way, when the antenna structure is designed and manufactured, the internal loss can be reduced at least by adjusting the thickness of the dielectric component, so that the antenna structure has the advantages of low internal loss and good radiation performance.
  • the second dielectric layer 430 is attached to the radiation layer 210 .
  • the coupling transmission structure 400 can be disposed on the antenna unit 200 by attaching the second dielectric layer 430 to the radiation layer 210 . That is, the coupling structure and the coupling transmission structure 400 can be manufactured separately and flexibly assembled to obtain the required performance of the antenna array 12a.
  • the corresponding coupling transmission structure 400 is then designed, and then the coupling transmission structure 400 is used to flexibly adjust the radiation range of the initial antenna array 12a to obtain the desired result.
  • the radiation range of the required array antenna is then designed, and then the coupling transmission structure 400 is used to flexibly adjust the radiation range of the initial antenna array 12a to obtain the desired result.
  • the antenna unit 200 further includes a first dielectric layer 220.
  • the first dielectric layer 220 carries the radiation layer 210 and is connected with the radiation layer 210.
  • the coupling transmission structures 400 are arranged at intervals. In this way, the first dielectric layer 220 is used so that the antenna unit 200 can be manufactured through a circuit board manufacturing process, and then assembled with the coupling transmission structure 400 .
  • the effective radiation length of the radiation layer 210 is L1, the effective radiation length of the second frequency selective surface 410 is L2, and the first dielectric layer 220
  • the dielectric constant of the second dielectric layer 430 is K1, the dielectric constant of the second dielectric layer 430 is K2, the dielectric constant of the second dielectric layer 430 is t1, and the dielectric constant of the third dielectric layer 440 is K3.
  • the dielectric constant of 440 is the dielectric thickness t2; where, In this way, the effective radiation length of the second frequency selection surface 410 can be calculated using the above formula, and the beam width of the antenna structure can be increased to obtain the required radiation range of the antenna array 12a.
  • the dielectric constants of the second dielectric layer and the third dielectric layer may be the same or different, and may be selected according to actual needs. When the second dielectric layer and the third dielectric layer are used, the combination of the two can be more flexible.
  • K2 K3.
  • the second dielectric layer and the third dielectric layer can be made of the same material, which is beneficial to reducing the manufacturing cost of the coupling transmission structure.
  • the second dielectric layer 430 includes a first dielectric plate 431 and at least one first prepreg 432 .
  • the first dielectric plate 431 and at least one first prepreg 432 are arranged between the second frequency selection surface 410 and the shielding layer 420, and the third dielectric layer 440 is sandwiched between the radiation layer 210 and the shielding layer 420, which can be flexibly adjusted.
  • the number of prepregs is used to optimize the phase difference between the receiving layer and the radiation layer 210, reduce energy loss inside the antenna structure, so that electromagnetic waves can be radiated as much as possible, and the radiation performance of the antenna structure is improved. In this way, when the antenna structure is designed and manufactured, the internal loss can be reduced at least by adjusting the thickness of the dielectric component, so that the antenna structure has the advantages of low internal loss and good radiation performance.
  • first prepregs 432 there are at least two first prepregs 432 , and at least two first prepregs 432 are sandwiched between the second frequency selective surface 410 and the shielding layer 420 .
  • the combination of the number and thickness of the first prepreg 432 can be flexibly adjusted to optimize the phase difference between the radiation layer 210 and the second frequency selective surface 410, reducing energy loss inside the coupling transmission structure 400, so that electromagnetic waves can be radiated as much as possible. , improving the radiation performance of the coupling transmission structure 400.
  • the thickness of the first prepreg is 0.1 mm. In this way, two or more first prepregs are used for adjustment to reduce loss.
  • the thickness of a first prepreg is 0.1 mm
  • the thickness of a first prepreg is 0.2 mm
  • the thickness of a first prepreg is 0.3 mm.
  • two or more of the above three first prepregs are used for adjustment to reduce loss.
  • the dielectric constants of the above three first prepregs are also different, which provides a more flexible adjustment range.
  • the third dielectric layer 440 includes a second dielectric plate 441 .
  • the number of first dielectric plates 431 is n1, the number of first prepregs 432 is n2, and the number of second dielectric plates 441 is n3; the dielectric constant of the first dielectric plate 431 is r1, and the dielectric constant of the first dielectric plate 431 is r1. is the dielectric thickness t1; the dielectric constant of the first prepreg 432 is r2, the dielectric constant of the first prepreg 432 is the dielectric thickness t2; the dielectric constant of the second dielectric plate 441 is r3, and the dielectric constant of the second dielectric plate 441 is r3.
  • the phase difference can be adjusted to reduce internal friction and improve Coupling the radiative properties of the transmissive structure 400.
  • the adjustment is flexible to improve the flexibility of debugging the coupling transmission structure 400 of the present disclosure, and can perform local optimization for the beam, thereby achieving greater beam shaping capabilities.
  • the first dielectric plate 431 and the second dielectric plate 441 are dielectric substrates, and their dielectric constant and thickness can be flexibly required; the first prepreg 432 is a prepreg, and its dielectric constant and thickness can be flexibly required.
  • the third dielectric layer 440 further includes a second prepreg 442 , and at least one second prepreg 442 is sandwiched between the radiation layer 210 and the shielding layer. between 420.
  • the second prepreg 442 can also be used to change the phase of the radiation layer 210 so that electromagnetic waves can be coupled to the second frequency selective surface 410 through the coupling gap 421 to reduce transmission loss.
  • the number of first dielectric plates 431 is n1, the number of first prepregs 432 is n2, the number of second dielectric plates 441 is n3, and the number of second dielectric plates 431 is n3.
  • the number of dielectric plates 441 is n4; the dielectric constant of the first dielectric plate 431 is r1, and the dielectric constant of the first dielectric plate 431 is t1; the dielectric constant of the first prepreg 432 is r2, and the dielectric constant of the first prepreg 432 is r2.
  • the dielectric constant of the second prepreg 441 is r3, the dielectric thickness of the second prepreg 441 is r3, and the dielectric constant of the second prepreg 442 is r4.
  • the adjustment is flexible to improve the flexibility of debugging the coupling transmission structure 400 of the present disclosure, and can perform local optimization for the beam, thereby achieving greater beam shaping capabilities.
  • the coupling gap 421 includes a first gap 401 and a second gap 402, and the extension direction of the first gap 401 is in line with the first gap 401 and the second gap 402.
  • the extending directions of the two slits 402 intersect.
  • the radiation layer 210 is coupled to the second frequency selective surface 410 through the first gap 401 and the second gap 402 .
  • the radiation layer 210 and the second frequency selective surface 410 are coupled through the first gap 401 and the second gap 402, and the extension direction of the first gap 401 intersects the extension direction of the second gap 402.
  • the frequency selection range of the coupling transmission structure 400 can be expanded by simply adjusting the size (length or width, etc.) of the first slit 401 and the second slit 402, which is beneficial to reducing the number of metal layers of the coupling transmission structure 400, and thereby Can reduce losses.
  • the frequency selection range of the coupling transmission structure 400 is adjusted by adjusting the first gap 401 and the second gap 402.
  • the coupling transmission structure 400 of the present disclosure has smaller process requirements and can This can be achieved using traditional microstrip processing technology, which is beneficial to reducing the manufacturing cost of the coupling transmission structure 400 .
  • the length of the first slot 401 can be indirectly or directly extended by adjusting the total length of the slot in the first direction; or the total length of the slot in the second direction can be adjusted, that is, the length of the first slot 401 can be extended indirectly or directly.
  • the adjustment of the frequency selection range is more flexible.
  • the extension direction of the first slit 401 intersects the extension direction of the second slit 402 includes “the first slit 401" and the “second slit 402" directly intersect, or the extension direction of the "first slit 401” It intersects with the "second gap 402", or the extension direction of the "first gap 401" intersects with the "second gap 402".
  • the first slit 401 is in the first direction
  • the second slit 402 is in the second direction
  • the first direction intersects the second direction
  • the lengths of the "first slot 401" and the “second slot 402" can be selected according to the characteristics of the antenna structure, and their length ranges from 0 mm to 10 mm.
  • the length of the "first gap 401" and/or the "second gap 402" is 1 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, etc.
  • the first slit 401 and the second slit 402 are in a strip shape and are arranged crosswise. In this way, the use of strip gaps is beneficial to reducing losses, and the cross arrangement facilitates optimization, so that the performance of the coupling transmission structure 400 of the present disclosure is better.
  • the first slit 401 and the second slit 402 are arranged perpendicularly to each other.
  • the first slit 401 to be arranged along the first direction (such as the X direction or the horizontal direction)
  • the second slit 402 to be arranged along the second direction (such as the Y direction or the vertical direction)
  • the adjustment of the second gap 402 makes the radiation performance of the antenna structure of the present disclosure better.
  • the shielding layer 420 further includes a coupling branch 403 , and the coupling branch 403 is disposed on the first gap 401 and/or the second gap 402 .
  • the coupling branches 403 can reduce the loss at the edge, improve the frequency selection range, and further improve the radiation efficiency and performance of the antenna structure of the present disclosure under the same size of the first gap 401 and the second gap 402.
  • the coupling branch 403 includes a first extended slit 404, which is spaced parallel to the first slit 401 and connected to the second slit 402;
  • the coupling branch 403 also includes a second extended slit 405.
  • the second extended slit 405 is spaced apart from the second slit 402 and is connected to the first slit 401.
  • the second extended slit 405 and the first extended slit 404 are spaced apart from the shielding layer 420. .
  • the length of the first slot 401 is indirectly extended through the first extended slot 404
  • the length of the second slot 402 is indirectly extended through the second extended slot 405, thereby achieving an expansion of the frequency selection range of the antenna structure of the present disclosure.
  • first extended slits there are at least two first extended slits and at least two second extended slits.
  • the frequency selection range of the antenna structure of the present disclosure can be expanded, and the loss can be reduced.
  • the first gap and/or the second gap are microstrip gaps. In this way, it is beneficial to improve the reliability of the antenna structure of the present disclosure and reduce the manufacturing cost.
  • the frequency selection range of the coupling transmission structure can be flexibly expanded, making the design of the antenna structure of the present disclosure more flexible and with less loss.
  • the first slit 401 and the second slit 402 form a symmetrical image, and the center of the image coincides with the center of the shielding layer 420 .
  • the antenna structure of the present disclosure can be optimized at the beginning of the design to reduce interference, and it is easier to obtain the adjustment rules, and then it is easier to adjust the length, width or depth of the first gap 401 and the second gap 402 according to actual needs to obtain required antenna structure.
  • first slit 401 and the second slit 402 form a "X" shape (as shown in FIG. 8 ), or a "Jerusalem” shape (as shown in FIG. 10 ), and so on.
  • the second frequency selective surface includes a microstrip patch (not labeled).
  • the coupling transmission structure of the present disclosure can be combined using a variety of second frequency selective surfaces to meet different needs. This also enables the range of the phase difference of the coupling transmission structure of the present disclosure to be larger.
  • the antenna structure of the present disclosure has a large frequency selection range and a large phase selection range.
  • the antenna composed of the coupling antenna structure of the present disclosure has a wider bandwidth, which is conducive to improving the performance of the antenna, thereby improving the performance of the mobile terminal equipped with the antenna. performance.
  • the antenna structure of the present disclosure can be used to locally optimize spherical waves, thereby achieving greater beam shaping capabilities.
  • the coupling transmission structure is attached to the radiation layer.
  • the antenna unit and the coupling transmission structure can be manufactured separately and then assembled together, so that based on the radiation effect of the initial antenna array composed of the antenna unit, the corresponding coupling transmission structure can be designed, and then the coupling transmission structure can be used to flexibly adjust the initial antenna array. radiation range to obtain the required radiation range of the array antenna.
  • the above-mentioned coupled transmission structure is used to increase the beam width of the antenna array, making the structural design of the mobile terminal flexible and not limited by the number of antenna units (that is, the computing power requirements of the mobile terminal) Low).
  • the beam width of the antenna array has little impact on the structure of the mobile terminal during the adjustment process, and has little impact on the arrangement of the coupling structure.
  • a method for adjusting the radiation range of the antenna array including:
  • S100 arranges N antenna units into an initial antenna array, and divides the initial antenna array into M sub-arrays, where M is less than N;
  • S200 adjusts the radiation direction of at least one group of sub-arrays according to the design requirements of the radiation range of the antenna array and the position of the M group of sub-arrays in the initial antenna array, so that at least two groups of M group of sub-arrays have different radiation directions. , until the radiation range of the initial antenna array meets the design requirements.
  • the above method is used to arrange the N antenna units into an initial antenna array, and divide the initial antenna array into M groups of sub-arrays.
  • the design requirements of the radiation range of the antenna array and the position of the M group of sub-arrays in the initial antenna array adjust the radiation direction of at least one group of sub-arrays so that the radiation directions of at least two sub-arrays in the M group of sub-arrays are different.
  • the adjusted radiation range of the initial antenna array meets the design requirements to increase the beam width range of the antenna array.
  • the beam can be dispersed to a certain extent, the radiation range of the antenna array can be increased, and the problem that the radiation range of the antenna array becomes narrower due to the larger number of antenna units can be effectively avoided.
  • the design requirements include K1° being greater than K2°; where K1° is the beam width of the antenna array required by the design requirements, and K2° is the beam width of the initial antenna array.
  • the beam width after the initial antenna array arrangement is K2°.
  • the method of adjusting the radiation direction of at least one group of sub-arrays includes:
  • S210 Arrange M groups of sub-arrays at even intervals along a first direction, where the first direction includes a first end and a second end opposite to the first end.
  • S220 defines at least one group of sub-arrays arranged in the middle of the first direction as the first array, and sets the maximum radiation direction of the first array to be located at K1°/2.
  • the maximum radiation direction of the sub-array is less than K1°/2, and among the two adjacent sub-arrays, the maximum radiation direction of the sub-array located close to the first array is larger than that of the other sub-array.
  • the maximum radiation direction of the subarray is greater than C°; along the direction from the first array to the second end, the maximum radiation direction of the subarray is greater than K1°/2, and the maximum radiation direction of the subarray set close to the first array among the two adjacent subarrays is The radiation direction is C° smaller than the maximum radiation direction of the other subarray.
  • At least one group of sub-arrays is set as the first array, and the maximum radiation direction of the first array is located at K1°/2, which can then make the maximum radiation directions of other sub-arrays gradually decrease by C° or gradually decrease with respect to the first array.
  • Increasing C° allows the radiation directions of the sub-arrays of the antenna array to be arranged in the set direction to avoid the narrowing of the beam width of the antenna array and affecting its coverage.
  • At least one group of sub-arrays arranged in the middle of the first direction is the first array can be understood as: when M is an even number, the number of sub-arrays in the first array is a multiple of 2, and it can be set The two sets of sub-arrays in the middle of the first direction are set as the first array, or the four sets of sub-arrays arranged in the middle of the first direction are set as the first array.
  • the number of sub-arrays in the first array is an odd multiple of 1 (such as 1, 3, 5, 7, etc.), and a group of sub-arrays arranged in the middle of the first direction can be set as the An array, or three groups of sub-arrays arranged in the middle of the first direction are set as the first array.
  • K1° ⁇ M.
  • the angle between the maximum radiation directions between the sub-arrays of the antenna array can be calculated based on the beam width requirements of the antenna array and the number of its antenna units, so that the radiation angle between the sub-arrays within the antenna array can be increased or submitted.
  • a C° distribution enables the antenna array to not only meet the coverage range, but also have good antenna gain and obtain good radiation performance.
  • the antenna array includes 45 groups of sub-arrays evenly spaced along the first direction
  • a group of sub-arrays arranged in the middle of the first direction can be set as the first array, and when other arrays are arranged in the direction from the first array to the first end, the two adjacent groups of sub-arrays , the maximum radiation direction of the sub-array arranged close to the first array is 2° smaller than the maximum radiation direction of the other sub-array.
  • the maximum radiation direction of the sub-array located close to the first array is 2° smaller than the maximum radiation direction of the other sub-array. That is, the sub-array in the antenna array can be obtained by gradually increasing the maximum radiation direction of the sub-array by 2° along the first end to the second direction.
  • K2° A° ⁇ N
  • is the beam width of the antenna unit.
  • the initial antenna array can be arranged according to the arrangement requirements of the one-element antenna array, and the beam width after arrangement is K2°. Then by dividing the initial antenna array into M groups of sub-arrays, and making at least two groups of sub-arrays have different radiation directions, the beam direction is dispersed, and the beam width of the adjusted initial antenna array can be increased, making K1° greater than K2 °, so that the radiation range of the adjusted antenna array meets the design requirements.
  • the design requirements also include that the antenna gain of the antenna array is greater than or equal to G1, and before adjusting the radiation direction of at least one group of sub-arrays, it also includes:
  • G2 ⁇ G1 continue to increase the number of antenna units until G2 ⁇ G1.
  • the beam width of the initial antenna array is adjusted to maximize the adjusted radiation range requirements of the initial antenna array and maintain the Sufficient antenna gain will not affect the overall radiation efficiency too much.
  • the radiation range of the initial antenna array meets the design requirements, it also includes:
  • G3 is the antenna gain of the adjusted initial antenna array, G3 ⁇ G2;
  • G3 ⁇ G1 continue to increase the number of antenna units until G3 ⁇ G1.
  • the adjusted initial antenna array after completing the adjustment to increase the radiation range of the initial antenna array, it also includes obtaining the antenna gain of the adjusted initial antenna array. If the antenna gain of the initial antenna array is insufficient, continue to increase the number of antenna units and sub-arrays to make the adjustment The final initial antenna array can meet the antenna gain requirements and radiation range requirements. Of course, if the adjusted initial antenna array also meets the antenna gain requirements, then the adjusted initial antenna array is set to the required antenna array to complete the adjustment of the antenna array.
  • the method of changing the radiation direction of the subarray includes: making the effective radiation lengths between the radiation layers of two adjacent antenna units in the subarray different, so that The direction of the incident wave of the subarray is not in the same straight line as the direction of its transmitted wave. In this way, the radiation direction of the sub-array can be adjusted simply by adjusting the effective radiation length of the radiation layer, which is easy to implement and makes the cost of the antenna array low.
  • the difference in effective radiation length between the radiation layers of two adjacent antenna units is the same.
  • the effective radiation length of the radiation layer of the antenna unit in the sub-array increases evenly in the same direction, so that the angle between the transmitted wave and the incident wave of the antenna unit is the same, avoiding unnecessary losses caused by different angles. , so that after the adjustment of the radiation direction of the sub-array, its radiation efficiency can still be guaranteed.
  • first”, “second”, etc. are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined by “first,” “second,” etc. may explicitly or implicitly include at least one of these features. In the description of the present disclosure, “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features may be in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Abstract

本发明公开了一种天线模组、移动终端以及天线阵列的辐射范围的调整方法。该天线模组(12),包括天线阵列(12a)以及馈电组件(300)。天线阵列(12a)包括辐射方向不同的至少两组子阵列(101),子阵列(101)包括间隔设置的至少两个天线单元(200)。馈电组件(300)包括与天线单元(200)一一对应的馈电线(310),馈电线与天线单元(200)连接。该天线模组、移动终端以及天线阵列的辐射范围的调整方法,能够有效避免天线阵列因天线单元的数量越多而其辐射范围越窄的问题。

Description

天线模组、移动终端以及天线阵列的辐射范围的调整方法 技术领域
本公开涉及电子技术领域,特别是涉及一种天线模组、移动终端以及天线阵列的辐射范围的调整方法。
背景技术
手机、平板电脑、通信手表等移动终端已经成为人们生活、学习和娱乐过程中必不可少的科技产品。随着通信技术的发展,越来越多的移动终端集成天线进行通信,进而具有传输速率高,传输延迟低等优势。
但在相关技术中,移动终端的天线容易出现波束失控的问题而不利于提高其辐射范围。
发明内容
本公开提供一种天线模组、移动终端以及天线阵列的辐射范围的调整方法,能够有效避免天线阵列因天线单元的数量越多而其辐射范围越窄的问题。
其技术方案如下:
根据本公开实施例的第一方面,提供一种天线模组,包括天线阵列以及馈电组件。天线阵列包括辐射方向不同的至少两组子阵列,子阵列包括间隔设置的至少两个天线单元。馈电组件包括与天线单元一一对应的馈电线,馈电线与天线单元连接。
本公开的实施例提供的技术方案可以包括以下有益效果:
上述天线模组将多个天线单元划分成至少两组子阵列,并利用馈电组件进行馈电,以利用天线单元进行辐射。此外,使至少两组子阵列的辐射方向范围不同,可以一定程度分散波束,进而能够提高天线阵列的辐射范围,能够有效避免天线阵列因天线单元的数量越多而其辐射范围越窄的问题。
下面进一步对本公开的技术方案进行说明:
在其中一个实施例中,辐射方向不同的至少两组子阵列的入射波方向相互平行,至少有一个子阵列的透射波方向与其入射波方向不在同一直线上。
在其中一个实施例中,至少有一个子阵列的至少两个天线单元的入射波方向之间的相位差为零,且至少两个天线单元的透射波方向之间存在不为零的相位差,以使该子阵列的透射波方向与其入射波方向不在同一直线上。
在其中一个实施例中,该子阵列中相邻两个天线单元的透射波之间存在相位差均相同。
在其中一个实施例中,天线单元包括辐射层。子阵列中的至少两个天线单元的辐射层之间的有效辐射长度不同,以使至少两个天线单元的透射波方向之间存在不为零的相位差。
在其中一个实施例中,子阵列中相邻两个天线单元的辐射层之间的有效辐射长度之差均相同。
在其中一个实施例中,辐射层包括第一频率选择表面。
在其中一个实施例中,辐射层还包括微带贴片,微带贴片设置于第一频率选择表面的上方,用于增大天线单元的辐射效率。
在其中一个实施例中,天线模组还包括设置于天线单元上的耦合透射结构,包括第二频率选择表面。第二频率选择表面与天线单元绝缘设置,且频率选择表面与天线单元相耦合。
在其中一个实施例中,在天线阵列中,所有天线单元的单元因子相同,所有子阵列的波束宽度相同。
在其中一个实施例中,天线阵列包括N组天线单元,天线单元的波束宽度为A°,天线阵列的波束宽度为K1°;其中,至少有两组子阵列的辐射反向不同,以使K1°大于K2°;K2°=A°÷N。
在其中一个实施例中,天线阵列包括M组子阵列,M组子阵列沿第一方向均匀间隔设置。第一方向包括第一端和与第一端相对设置的第二端。设置于第一方向的中间的至少一组子阵列为第一阵列,第一阵列的最大辐射方向位于K1°/2,K1°为天线阵列的波束宽度。沿第一阵列至第一端方向,子阵列的最大辐射方向小于K1°/2,且相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的 最大辐射方向大C°。沿第一阵列至第二端方向,子阵列的最大辐射方向大于K1°/2,且相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向小C°。
在其中一个实施例中,C°=K1°÷M。
根据本公开实施例的第二方面,还提供了一种移动终端,包括控制模组以及上述任一实施例中的天线模组,控制模组与馈电组件电性连接。
本公开的实施例提供的技术方案可以包括以下有益效果:
上述移动终端采用了上述天线模组,使至少两组子阵列的辐射方向范围不同,可以一定程度分散波束,进而能够提高天线阵列的辐射范围,能够有效避免天线阵列因天线单元的数量越多而其辐射范围越窄的问题,有利于提高移动终端的辐射性能。
根据本公开实施例的第三方面,还提供了一种天线阵列的辐射范围的调整方法,包括:
将N个天线单元排布呈初始天线阵列,并将初始天线阵列分隔成M组子阵列,M小于N;
根据天线阵列的辐射范围的设计要求和M组子阵列在初始天线阵列中位置情况,调整至少一组子阵列的辐射方向,以使M组子阵列中至少有两组子阵列的辐射方向不同,直至初始天线阵列的辐射范围满足设计要求。
本公开的实施例提供的技术方案可以包括以下有益效果:
如此,利用上述方法将N个天线单元排布呈初始天线阵列,并将初始天线阵列分隔成M组子阵列。根据天线阵列的辐射范围的设计要求和M组子阵列在初始天线阵列中位置情况,调整至少一组子阵列的辐射方向,以使M组子阵列中至少有两组子阵列的辐射方向不同。使得调整后的初始天线阵列的辐射范围满足设计要求,来提高天线阵列的波束宽度范围。进而可以一定程度分散波束,能够提高天线阵列的辐射范围,能够有效避免天线阵列因天线单元的数量越多而其辐射范围越窄的问题。
下面进一步对本公开的技术方案进行说明:
在其中一个实施例中,设计要求包括K1°大于K2°;其中,K1°为设计要求所要求的天线阵列的波束宽度,K2°为初始天线阵列的波束宽度。
在其中一个实施例中,调整至少一组子阵列的辐射方向的方法包括:
将M组子阵列沿第一方向均匀间隔设置,第一方向包括第一端和与第一端相对设置的第二端;
将设置于第一方向的中间的至少一组子阵列定为第一阵列,并使第一阵列的最大辐射方向位于K1°/2;
沿第一阵列至第一端方向,子阵列的最大辐射方向小于K1°/2,并使相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向大C°;沿第一阵列至第二端方向,子阵列的最大辐射方向大于K1°/2,并使相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向小C°。
在其中一个实施例中,C°=K1°÷M。
在其中一个实施例中,K2°=A°÷N,A°为天线单元的波束宽度。
在其中一个实施例中,设计要求还包括天线阵列的天线增益大于或等于G1,在调整至少一组子阵列的辐射方向之前还包括:
获取G2的数值,G2为初始天线阵列的天线增益;
如G2≥G1,则调整至少一组子阵列的辐射方向;
如G2<G1,则继续增加天线单元的数量,直至G2≥G1。
在其中一个实施例中,初始天线阵列的辐射范围满足设计要求之后,还包括:
获取G3的数值,G3为调整后的初始天线阵列的天线增益,G3<G2;
如G3≥G1,则完成初始天线阵列的辐射范围的调整;
如G3<G1,则继续增加天线单元的数量,直至G3≥G1。
在其中一个实施例中,改变子阵列的辐射方向的方法包括:在子阵列中,使相邻两个天线单元的辐射层之间的有效辐射长度不同,以使子阵列的入射波方向与其透射波方向不在同一直线上。
在其中一个实施例中,在子阵列中,相邻两个天线单元的辐射层之间的有效辐射长度之差均相同。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
附图说明构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中所示的移动终端的结构示意图。
图2为图1所示的天线模组安装于后盖的装配示意图。
图3为图2所示的天线阵列的展开示意图。
图4为图3所示的天线阵列的入射波和透射波的变化示意图。
图5为另一实施例中所示的天线单元与耦合透射结构的爆炸示意图。
图6为图5所示的天线单元与耦合透射结构的半剖示意图。
图7为另一实施例中所示的天线单元的爆炸示意图。
图8为一实施例中所示的辐射层、屏蔽层以及频率选择表面的展开示意图。
图9为一实施例中所示的屏蔽层的示意图。
图10为另一实施例中所示的屏蔽层的示意图。
图11为一实施例中所示的天线阵列的辐射范围的调整方法的流程图。
图12为一实施例中所示的调整至少一组子阵列的辐射方向的方法的流程图。
图13为一实施例中所示的天线阵列的辐射范围的调整方法中调整初始天线阵列的天线增益方法的流程图。
图14为另一实施例中所示的初始天线阵列的辐射范围满足设计要求之后的天线增益方法的流程图。
附图标记说明:
10、移动终端;11、控制模组;12、天线模组;12a、天线阵列;101、子阵列; 13、壳体组件;100、后盖;200、天线单元;201、入射波;202、透射波;210、辐射层;211、第一频率选择表面;212、微带贴片;220、第一介质层;300、馈电组件;310、馈电线;400、耦合透射结构;410、第二频率选择表面;420、屏蔽层;421、耦合缝隙;401、第一缝隙;402、第二缝隙;403、耦合枝节;404、第一延长缝隙;405、第二延长缝隙;430、第二介质层;431、第一介质板;432、第一半固化片;440、第三介质层;441、第二介质板;442、第二半固化片。
具体实施方式
为使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本公开进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本公开,并不限定本公开的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本公开。
为方便理解,下面先对本公开实施例中所涉及的技术术语进行解释和描述。
频率选择表面(Frequency Selective Surface,FSS),可以在特定工作频段内形成带阻特性或是带通特性,实现对电磁波的频率选择作用。
天线可以通过一个天线单元构成,也可以通过多个天线单元排列形成的天线阵列构成。
衡量天线方向性通常使用方向图,在方向图中通常都有两个瓣或多个瓣,其中最大的瓣称为主瓣,其余的瓣称为副瓣。而主瓣两半功率点间的夹角定义为天线方向图的波瓣宽度,也叫波束宽度(后文统一用波束宽度)。主瓣的波束宽度越窄,则方向性越好,抗干扰能力越强。
波束宽度包括水平波束宽度和垂直波束宽度。
天线的主瓣的方向图可以通过COSθ的q次方模拟获得,也即通过COSqθ可以得到天线的主辩的方向图。该方向图确定后,可以计算得到天线的波束宽度。q为该天线的单元因子,q值越小,天线的波束宽度大。天线的辐射层的q通常是固定。
多个天线单元排布组成天线阵列,天线阵列通过馈电组件(例如馈电网络), 对天线阵列进行馈电,实现辐射功能。相对于单个天线单元,组成一元天线阵列后,天线阵列的波束宽度会变窄。例如,假设天线阵列中天线单元的数量为N,单个天线单元的波束宽度为A°。天线阵列的波束宽度为K°≈A°/N。
天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。通常来说,天线的方向图主瓣越窄,副瓣越小,则天线的增益越高。
有效辐射长度通常认为是辐射波形λ的二分之一。
下面结合附图对本公开的实施例进行阐述说明。
如图1至图2所示,在本公开的一些实施例中,提供一种移动终端10,包括控制模组11以及天线模组12。天线模组12包括天线阵列12a以及馈电组件300。控制模组11与馈电组件300电性连接。
其中,如图2所示,天线阵列12a包括辐射方向不同的至少两组子阵列101,子阵列101包括间隔设置的至少两个天线单元200。馈电组件300包括与天线单元200一一对应的馈电线310,馈电线310与天线单元200连接。
上述天线模组12将多个天线单元200划分成至少两组子阵列101,并利用馈电组件300进行馈电,以利用天线单元200进行辐射。此外,使至少两组子阵列101的辐射方向范围不同,可以一定程度分散波束,进而能够提高天线阵列12a的辐射范围,能够有效避免天线阵列12a因天线单元200的数量越多而其辐射范围越窄的问题,有利于提高天线阵列12a的辐射效率。
此外,通过调整子阵列101的辐射方向来提高天线阵列12a的辐射范围,可以减少天线阵列12a规模,减少安装天线阵列12a的所需的面积,降低对终端设备的内部结构的占用。
需要说明的是,馈电组件300的具体实现形式可以有多种,能够为天线单元200馈电即可。
一些实施例中,馈电组件300包括能够分别为天线单元200进行馈电的馈电网络,馈电网络包括与天线单元200连接的馈电线310。
移动终端10包括手机、平板电脑、穿戴设备、微波感应设备、可穿戴设备等智能设备。而本公开的天线模组12,可以提升这些移动终端10的辐射性能,提高产 品竞争力。
一些实施例中,控制模组11包括控制电路板,馈电组件300设置于控制电路板上。需要说明的是,馈电组件300可以独立制造,再集成到控制电路板上。馈电组件300也可以与控制电路板一体成型制造。
如图1所示,一些实施例中,移动终端10还包括壳体组件13,天线结构固设于壳体组件13上。如此,可以利用壳体组件13来安装天线单元200,使得移动终端10的内部结构更加紧凑。此外,由于天线单元200设置有耦合透射结构400,进而无需改变壳体组件13的外形,也可以通过耦合透射结构400来调整天线单元200的辐射范围,使得该移动终端10的设计更加灵活。
可选地,如图2所示,一些实施例中,壳体组件13包括后盖100,天线单元200贴设于后盖100的内侧面。进而可以充分利用后盖100的空间来安装天线单元200,安装更加方便,也便于避让干扰源。
在上述任一实施例的基础上,一些实施例中,至少两个天线单元200沿同一方向间隔排布呈一元毫米波天线阵列12a。如此,利用本公开的天线单元200能够获得一元毫米波天线阵列12a,便于利用耦合透射结构400来增大该天线阵列12a的波束宽度,降低一元毫米波天线阵列12a的波束控制难度,从而保证5G毫米波的相关指标要求。
在上述任一实施例的基础上,如图4所示,一些实施例中,辐射方向不同的至少两组子阵列101的入射波201方向相互平行,至少有一个子阵列101的透射波202方向与其入射波201方向不在同一直线上。如此,辐射方向不同的至少两组子阵列101的入射波201方向相互平行,即该至少两组子阵列101入射波201的角度不变,只改变透射波202的方向不同,即可使得该至少两组子阵列101辐射方向不同。
此外,由于天线阵列12a中的子阵列101的入射波201角度不变,可以减少入射损耗,有利于通过辐射效率。
在上述任一实施例的基础上,一些实施例中,至少有一个子阵列101的至少两个天线单元200的入射波201方向之间的相位差为零,且至少两个天线单元200的透射波202方向之间存在不为零的相位差,以使该子阵列101的透射波202方向与其入射波201方向不在同一直线上。如此,同一子阵列101的天线单元200的入射波201方向的相位差为零,使得天线单元200的入射波201角度不变,可以减少入射损耗。 而使该子阵列101内的透射波202方向之间存在相位差,即可使得该子阵列101的透射波202方向与入射波201方向不在同一直线上,实现子阵列101的辐射方向的改变。也即,天线阵列12a可以通过调整子阵列101的透射波202方向与入射波201方向不在同一直线上来调整子阵列101的辐射方向,进而减少入射损耗,有利于通过辐射效率。
在上述实施例的基础上,如图4所示,一些实施例中,该子阵列101中相邻两个天线单元200的透射波202之间存在相位差均相同。如此,使得子阵列101内的天线单元200的透射波202与入射波201之间夹角均相同,避免因夹角不同而造成不必要的损耗,使得该子阵列101的辐射方向的调整后,仍可以保证其辐射效率。
如图4所示,一些实施例中,天线单元200包括辐射层210。子阵列101中的至少两个天线单元200的辐射层210之间的有效辐射长度不同,以使至少两个天线单元200的透射波202方向之间存在不为零的相位差。如此,只需通过调整辐射层210的有效辐射长度,即可实现子阵列101的辐射方向调整,易于实施,使得天线阵列12a的成本低。
此外,通过调整辐射层的有效辐射长度,并通过对辐射波形的组合,实现提升天线阵列的辐射效率。
在上述实施例的基础上,如图4所示,一些实施例中,子阵列101中相邻两个天线单元200的辐射层210之间的有效辐射长度之差均相同。如此,使得子阵列101内的天线单元200的辐射层210的有效辐射长度朝同一方向均匀增加,以使得天线单元200的透射波202与入射波201之间夹角均相同,避免因夹角不同而造成不必要的损耗,使得该子阵列101的辐射方向的调整后,仍可以保证其辐射效率。
在上述辐射层210的任一实施例的基础上,如图3以及图4所示,一些实施例中,辐射层210包括第一频率选择表面211。如此,可以利用第一频率选择表面211来实现微波的辐射,使得辐射层210的设计更加灵活,能够满足不同频率的天线辐射要求。
在上述实施例的基础上,如图3以及图4所示,一些实施例中,辐射层210还包括微带贴片212,微带贴片212设置于第一频率选择表面211的上方,用于增大天线单元200的辐射效率,提高辐射效率。
此外,微带贴片212的长度为辐射层210有效辐射长度。
在上述任一实施例的基础上,一些实施例中,在天线阵列中,所有天线单元的单元因子相同,所有子阵列的波束宽度相同。如此,天线阵列中的子阵列的波束宽度相同。如此,可以利用同一类型和同一数量的天线单元来构成子阵列,并使得所有子阵列的波束宽度相同,实施该天线阵列的覆盖范围的调整更加方便,可以降低天线阵列的设计以及制造成本。
相对于单个天线单元,组成一元天线阵列后,传统的天线阵列的波束宽度会变窄。例如,假设传统的天线阵列中天线单元的数量为N,单个天线单元的波束宽度为A°。传统的天线阵列的波束宽度为K°≈A°/N。在上述任一实施例的基础上,一些实施例中,天线阵列包括N组天线单元,天线单元的波束宽度为A°,天线阵列的波束宽度为K1°;其中,至少有两组子阵列的辐射反向不同,以使K1°大于K2°;K2°=A°÷N。如此,通过打散波束,使得至少有两组子阵列的辐射反向不同,可以提高天线阵列的波束宽度,使得K1°大于K2°,进而提高天线阵列的辐射范围。
进一步地,一些实施例中,天线阵列包括M组子阵列,M组子阵列沿第一方向均匀间隔设置。第一方向包括第一端和与第一端相对设置的第二端。设置于第一方向的中间的至少一组子阵列为第一阵列,第一阵列的最大辐射方向位于K1°/2,K1°为天线阵列的波束宽度。沿第一阵列至第一端方向,子阵列的最大辐射方向小于K1°/2,且相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向大C°。沿第一阵列至第二端方向,子阵列的最大辐射方向大于K1°/2,且相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向小C°。如此,将至少一组子阵列设为第一阵列,并使得第一阵列的最大辐射方向位于K1°/2,进而可以使得其他子阵列的最大辐射方向相对于第一阵列逐渐递减C°或逐渐增大C°,使得天线阵列的子阵列的辐射方向按照设定方向进行排布,避免天线阵列的波束宽度会变窄而影响其覆盖范围。
需要说明的是,“设置于第一方向的中间的至少一组子阵列为第一阵列”可以理解为:当M为偶数时,第一阵列中子阵列的数量为2的倍数,可以将设置于第一方向的中间的两组子阵列设为第一阵列,或者将设置于第一方向的中间的四组子阵列设为第一阵列。而当M为偶数时,第一阵列中子阵列的数量为1的奇数倍(例如1、3、5、7等等),可以将设置于第一方向的中间的一组子阵列设为第一阵列,或者将设置于第一方向的中间的三组子阵列设为第一阵列。
在上述任一实施例的基础上,一些实施例中,C°=K1°÷M。如此,天线阵列 的子阵列之间的最大辐射方向的夹角大小可以通过天线阵列的波束宽度要求以及其天线单元数量计算得到,使得天线阵列内的子阵列之间的辐射角度可以安装增加或递交一个C°分布,进而使天线阵列既能够满足覆盖范围,有具有良好的天线增益,能够获得良好的辐射性能。
具体地,天线阵列包括45组沿第一方向均匀间隔设置的子阵列,第一方向为曲线,K1°=90°,则C°=2°。如此,可以将设置于第一方向中间的一组子阵列设为第一阵列,而其他阵列则往第一阵列至第一端方向排布时,相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向小2°。而其他阵列则往第一阵列至第二端方向排布时,相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向小2°。也即,天线阵列中的子阵列可以沿第一端至第二方向,子阵列的最大辐射方向逐步增大2°获得。
在上述任一实施例的基础上,如图5以及图6所示,一些实施例中,天线模组12还包括设置于天线单元200上的耦合透射结构400,包括第二频率选择表面410。第二频率选择表面410与天线单元200绝缘设置,且频率选择表面与天线单元200相耦合。如此,上述天线模组12通过天线单元200来发射电磁波,并使第二频率选择表面410与天线单元200相耦合,利用第二频率选择表面410来辐射电磁波,以减小天线单元200的单元因子。如此,该天线单元200在不改变辐射结构的情况下,通过耦合透射结构400来增大天线单元200的波束宽度。进而应用了该天线单元200组成天线阵列12a,辐射结构固定,也可以能够增大天线阵列12a的波束宽度,增大其天线阵列12a的辐射范围,保证移动终端10的通信性能。
可以理解地,传统的移动终端的5G天线的覆盖范围的提高,通常通过提高阵列数量或增大阵列规模实现。这对移动终端的计算能力要求较高以及设计难度较高,不利于降低移动终端的成本。而本公开通过设置耦合透射结构,能够增大天线阵列的波束宽度,提高其覆盖能力,避免出现波束宽度过窄导致其覆盖能力不足。此外,无需提高阵列数量或增大阵列规模,进而使得移动终端的尺寸设计更加灵活,能够兼顾小型化设计。而且,不会限制移动终端的计算能力,避免因无法实现数据后处理而无法提高其覆盖范围。综上所述,利用耦合透射结构,不会增加移动终端的结构设计难度,且调整灵活,能够有效降低成本。
特别地,在移动终端的外形结构已定,且天线单元的结构也确定的情况下,利用本公开的耦合透射结构可以提高天线单元的波束宽度,提升天线阵列的覆盖范围。 例如,天线阵列为5G天线阵列,也可以利用耦合透射结构来提高其覆盖范围,进而使得移动终端具有传输速率高,传输延迟低,覆盖范围广的通信性能。
具体地,只具有天线单元形成的第一天线,其主瓣的方向图可以通过COSq1A模拟获得的波束宽度为A1,其单元因子为q1。利用该天线单元与耦合透射结构配合形成天线结构,该天线结构的主瓣的方向图可以通过COSqA模拟获得的波束宽度为A2,其单元因子为q2。q2<q1,使得天线结构的波束宽度A2大于第一天线的波束宽度A1。至少两个第一天线排布组成第一天线阵列,其波束宽度为B1,而天线结构按照同等数量和排布方式组成的第二天线阵列的波束宽度为B2,由于A2>A1,所以B2>B1。
在上述任一实施例的基础上,一些实施例中,第二频率选择表面的阻抗与辐射层的阻抗相匹配并耦合。如此,可以减少损耗,提高耦合效率,以增大天线结构的波束宽度,进而能够增大天线阵列的波束宽度,提升天线模组的辐射性能。
在上述任一实施例的基础上,如图3以及图4所示,一些实施例中,耦合透射结构400还包括屏蔽层420,屏蔽层420夹设于辐射层210与第二频率选择表面410之间,并分别与辐射层210及第二频率选择表面410绝缘设置。屏蔽层420设有耦合缝隙421,辐射层210通过耦合缝隙421与第二频率选择表面410相耦合。如此,屏蔽层420设置于接收层与辐射层210之间,且第二频率选择表面410与辐射层210之间通过耦合缝隙421相耦合,有利于提高抗干扰能力。
需要说明的是,屏蔽层420与辐射层210及第二频率选择表面410“绝缘设置”的具体实现方式可以有多种,包括但于线路板制造过程中的绝缘方法。在本公开的实施例中,利用介质层等方式实现。
在上述实施例的基础上,如图4所示,一些实施例中,耦合透射结构400还包括第二介质层430和第三介质层440,第二介质层430夹设于屏蔽层420与第二频率选择表面410之间,第三介质层440夹设于屏蔽层420与辐射层210之间。如此,可以灵活调整介质层的介电常数和介质厚度来优化第二频率选择表面410与辐射层210之间相位差,减少能量在天线结构内部的损耗,使得电磁波可以尽可能辐射出去,提高天线结构的辐射性能。如此,该天线结构设计制造时,至少能够通过调整介质组件的厚度大小来降低内部损耗,使得该天线结构具有内部损耗低,辐射性能好的优点。
进一步地,一些实施例中,第二介质层430贴设于辐射层210上。如此,可以 在耦合结构设计好之后,通过第二介质层430贴设于辐射层210,将耦合透射结构400设置于天线单元200上。也即,耦合结构和耦合透射结构400可以分别制造,在灵活组装,以获得所需天线阵列12a性能。
可以理解地,通过获得基于天线单元200组成的初始天线阵列12a的辐射效果,再设计相应的耦合透射结构400,再利用该耦合透射结构400来灵活调整初始天线阵列12a的辐射范围,以获得所需的阵列天线的辐射范围。
在上述第二介质层430的任一实施例的基础上,如图4所示,一些实施例中,天线单元200还包括第一介质层220,第一介质层220承载辐射层210,并与耦合透射结构400间隔设置。如此,利用第一介质层220使得天线单元200可以通过电路板制造工艺制造得到,然后再与耦合透射结构400进行组装。
在上述实施例的基础上,如图5以及图6所示,一些实施例中,辐射层210的有效辐射长度为L1,第二频率选择表面410的有效辐射长度为L2,第一介质层220的介电常数为K1,第二介质层430的介电常数为K2,第二介质层430的介电常数为介质厚度为t1;第三介质层440的介电常数为K3,第三介质层440的介电常数为介质厚度为t2;其中,
Figure PCTCN2022094284-appb-000001
如此,在设计第二频率选择表面410的有效辐射长度,可以利用上述公式计算得到,进而可以提高天线结构的波束宽度,以获得所需的天线阵列12a的辐射范围。
需要说明的是,第二介质层和第三介质层的介电常数可以相同也可以不同,可以根据实际需要进行选择。而当第二介质层与第三介质层,二者的组合可以更加灵活。
可选地,一些实施例中,K2=K3。此时,第二介质层与第三介质层可以通过同一材料制造获得,有利于降低耦合透射结构的制造成本。
如图7所示,一些实施例中,第二介质层430包括第一介质板431和至少一个第一半固化片432。将第一介质板431和至少一个第一半固化片432设置于第二频率选择表面410和屏蔽层420之间,将第三介质层440夹设于辐射层210和屏蔽层420之间,可以灵活调整半固化片的数量来优化接收层与辐射层210之间相位差,减少能量在天线结构内部的损耗,使得电磁波可以尽可能辐射出去,提高天线结构的辐射性能。如此,该天线结构设计制造时,至少能够通过调整介质组件的厚度大小来降低内部损耗,使得该天线结构具有内部损耗低,辐射性能好的优点。
一些实施例中,第一半固化片432至少为两个,且至少有两个第一半固化片432 夹设于第二频率选择表面410与屏蔽层420之间。如此,可以灵活调整第一半固化片432的数量与厚度的组合来优化辐射层210与第二频率选择表面410之间相位差,减少能量在耦合透射结构400内部的损耗,使得电磁波可以尽可能辐射出去,提高耦合透射结构400的辐射性能。
例如,第一半固化片的厚度为0.1mm。如此,利用两种以上第一半固化片来进行调节,以降低损耗。
再例如,一种第一半固化片的厚度为0.1mm,一种第一半固化片的厚度为0.2mm,一种第一半固化片的厚度为0.3mm。如此,利用上述三种第一半固化片中的两种以上来进行调节,以降低损耗。进一步地,上述三种第一半固化片的介电常数也不同,则具有更加灵活的调整范围。
如图7所示,一些实施例中,第三介质层440包括第二介质板441。第一介质板431的数量为n1,第一半固化片432的数量为n2,第二介质板441的数量为n3;第一介质板431的介电常数为r1,第一介质板431的介电常数为介质厚度为t1;第一半固化片432的介电常数为r2,第一半固化片432的介电常数为介质厚度为t2;第二介质板441的介电常数为r3,第二介质板441的介电常数为介质厚度为t3;其中,n1≥1,n2≥1,n3≥1;n1×r1×t1+n2×r2×t2=n3×r3×t3。如此,结合上述公式,通过调整第一介质板431的层数以及厚度,第一半固化片432的层数以及厚度,第二介质板441的层数以及厚度的方式,调整相位差,减少内耗,提升耦合透射结构400的辐射性能。此外,调整灵活,以提高本公开的耦合透射结构400的调试的灵活度,能针对波束进行局部优化,从而实现较大的波束整形能力。
具体地,第一介质板431和第二介质板441为介质基板,其介电常数和厚度大小可以灵活要求;第一半固化片432为半固化片,其介电常数和厚度大小可以灵活要求。
在上述任一实施例的基础上,如图7所示,一些实施例中,第三介质层440还包括第二半固化片442,且至少有一个第二半固化片442夹设于辐射层210与屏蔽层420之间。如此,亦可利用第二半固化片442来改变辐射层210相位,使得电磁波能够通过耦合缝隙421耦合给第二频率选择表面410,减少透射损耗。
在上述实施例的基础上,如图7所示,一些实施例中,第一介质板431的数量为n1,第一半固化片432的数量为n2,第二介质板441的数量为n3,第二介质板441的 数量为n4;第一介质板431的介电常数为r1,第一介质板431的介电常数为介质厚度为t1;第一半固化片432的介电常数为r2,第一半固化片432的介电常数为介质厚度为t2;第二介质板441的介电常数为r3,第二介质板441的介电常数为介质厚度为t3;第二半固化片442的介电常数为r4,第二半固化片442的介电常数为介质厚度为t4;其中,n1≥1,n2≥1,n3≥1,n4≥1;n1×r1×t1+n2×r2×t2=n3×r3×t3+n4×r4×t4。如此,结合上述公式,通过调整第一介质板431的层数以及厚度,第一半固化片432的层数以及厚度,第二介质板441的层数以及厚度,第二半固化片442的层数以及厚度的方式,调整相位差,减少内耗,提升耦合透射结构400的辐射性能。此外,调整灵活,以提高本公开的耦合透射结构400的调试的灵活度,能针对波束进行局部优化,从而实现较大的波束整形能力。
在上述任一实施例的基础上,如图5、图7以及图8所示,一些实施例中,耦合缝隙421包括第一缝隙401以及第二缝隙402,第一缝隙401的延长方向与第二缝隙402的延长方向相交。辐射层210通过第一缝隙401以及第二缝隙402与第二频率选择表面410相耦合。如此,辐射层210与第二频率选择表面410之间通过第一缝隙401及第二缝隙402相耦合,而第一缝隙401的延长方向与第二缝隙402的延长方向相交。如此,只需通过调整第一缝隙401及第二缝隙402的尺寸大小(长度或宽度等)即可实现耦合透射结构400的选频范围的扩大,有利减少耦合透射结构400的金属层数,进而能够降低损耗。
同时,可以理解地,通过调整第一缝隙401及第二缝隙402来实现耦合透射结构400的选频范围的调整,与传统技术相比,本公开的耦合透射结构400对工艺要求较小,能利用传统的微带加工工艺就能实现,有利于降低耦合透射结构400的制造成本。
具体地,在天线结构的制造调试过程中,能够通过调整第一方向上缝隙的总长,也即间接或直接延长第一缝隙401的长度;或者能够通过调整第二方向上缝隙的总长,也即间接或直接延长第二缝隙402的长度,或者扩大或缩小第一缝隙401的宽度和/或第二缝隙402的宽度,来获取所需的选频范围。与传统技术相比,选频范围的调整更加灵活。同时在扩大选频范围时,有利于减少天线结构的金属层数,进而能够降低损耗。结合前述介质层数的调节方式,可以有效地降低表面不对称对性能造成的不利影响。
需要说明的是,“第一缝隙401的延长方向与第二缝隙402的延长方向相交” 包括“第一缝隙401”与“第二缝隙402”直接相交,或者“第一缝隙401”的延长方向与“第二缝隙402”相交,或者“第一缝隙401”与“第二缝隙402”的延长方向相交。
如,一示例性中,第一缝隙401在第一方向上,第二缝隙402在第二方向上,第一方向与第二方向相交。
需要说明的是,“第一缝隙401”及“第二缝隙402”的长度可根据天线结构的特点进行选择,其长度范围为0mm~10mm。示例性地,“第一缝隙401”和/或“第二缝隙402”的长度为1mm、2mm、4mm、6mm、8mm、10mm等。
在上述任一实施的基础上,一些实施例中,第一缝隙401与第二缝隙402呈条形状,并交叉设置。如此,利用条形缝隙有利于降低损耗,同时交叉设置便于进行优化,使得本公开的耦合透射结构400的性能更好。
在上述实施的基础上,如图8至图9所示,一些实施例中,第一缝隙401与第二缝隙402相互垂直设置。如此,便于第一缝隙401沿第一方向(如X方向或水平方向)设置,第二缝隙402沿第二方向(如Y方向或竖向方向)设置,便于有规律地进行第一缝隙401及第二缝隙402的调整(包括长度及宽度的调整),使得本公开的天线结构的辐射性能更优。
在上述任一实施的基础上,如图7所示,一些实施例中,屏蔽层420还包括耦合枝节403,耦合枝节403设置于第一缝隙401和/或第二缝隙402上。如此,利用耦合枝节403可以在同样的第一缝隙401及第二缝隙402尺寸下,降低了边缘处的损耗,提高选频范围,进一步提高本公开的天线结构的辐射效率,提升性能。
在上述实施的基础上,如图10所示,一些实施例中,耦合枝节403包括第一延长缝隙404,第一延长缝隙404与第一缝隙401平行间隔设置,并与第二缝隙402相连;耦合枝节403还包括第二延长缝隙405,第二延长缝隙405与第二缝隙402平行间隔设置,并与第一缝隙401相连,第二延长缝隙405与第一延长缝隙404间隔设置于屏蔽层420。如此,通过第一延长缝隙404间接延长第一缝隙401的长度,通过第二延长缝隙405间接延长第二缝隙402的长度,实现本公开的天线结构的选频范围的扩大。
一些实施例性的,第一延长缝隙至少为两个,第二延长缝隙至少为两个。如此,通过调整第一延长缝隙的长度及数量以及调整第二延长缝隙的长度及数量来扩大本公 开的天线结构的选频范围,又能减少损耗。
在上述任一实施的基础上,一些实施例中,第一缝隙和/或第二缝隙为微带缝隙。如此,有利于提高本公开的天线结构的可靠性,降低制造成本。
在上述任一实施的基础上,一些实施例中,第一缝隙至少为两条,且相互平行设置;和/或,第二缝隙至少为两条,且相互平行设置。如此,可以灵活扩大耦合透射结构的选频范围,使得本公开的天线结构的设计更加灵活且损耗小。
在上述任一实施的基础上,如图8以及图10所示,一些实施例中,第一缝隙401与第二缝隙402构成对称图像,且该图形的中心与屏蔽层420的中心相重合。如此,便于本公开的天线结构在设计之初进行优化,减少干扰,更容易获得调整规律,进而便于根据实际需求去调整第一缝隙401与第二缝隙402的长度、宽度或深度等,以获得所需的天线结构。
如,第一缝隙401与第二缝隙402构成“十”字形图形(如图8所示),或者构成“耶路撒冷(Jerusalem)”图形(如图10所示)等等。
在上述任一实施例的基础上,一些实施例中,第二频率选择表面包括微带贴片(未标注)。如此,使得本公开的耦合透射结构可以利用多种第二频率选择表面进行组合,以满足不同需求。也使得本公开的耦合透射结构的相位差的范围可以更大。如此,本公开的天线结构的选频范围大以及选相范围大,利用本公开的耦天线结构组成的天线,其带宽更宽,有利于提升天线性能,进而能提高设置有该天线的移动终端的性能。如,利用本公开的天线结构能针对球面波进行局部优化,从而实现较大的波束整形能力。
在上述任一实施例的基础上,一些实施例中,耦合透射结构贴设于辐射层上。如此,天线单元和耦合透射结构可以分别制造,再组装在一起,便于基于天线单元组成的初始天线阵列的辐射效果,再设计相应的耦合透射结构,再利用该耦合透射结构来灵活调整初始天线阵列的辐射范围,以获得所需的阵列天线的辐射范围。
可以理解地,相比于现有技术,利用上述耦合透射结构来提高天线阵列的波束宽度,使得移动终端的结构设计灵活,不受天线单元数量的限制(也即,对移动终端的计算能力要求低)。此外,该天线阵列的波束宽度在调整过程中对移动终端的结构影响小,对耦合结构的排布方式影响小。
如图11至图14所示,另一些实施例中,还提供了一种天线阵列的辐射范围的 调整方法,包括:
S100将N个天线单元排布呈初始天线阵列,并将初始天线阵列分隔成M组子阵列,M小于N;
S200根据天线阵列的辐射范围的设计要求和M组子阵列在初始天线阵列中位置情况,调整至少一组子阵列的辐射方向,以使M组子阵列中至少有两组子阵列的辐射方向不同,直至初始天线阵列的辐射范围满足设计要求。
如此,利用上述方法将N个天线单元排布呈初始天线阵列,并将初始天线阵列分隔成M组子阵列。根据天线阵列的辐射范围的设计要求和M组子阵列在初始天线阵列中位置情况,调整至少一组子阵列的辐射方向,以使M组子阵列中至少有两组子阵列的辐射方向不同。使得调整后的初始天线阵列的辐射范围满足设计要求,来提高天线阵列的波束宽度范围。进而可以一定程度分散波束,能够提高天线阵列的辐射范围,能够有效避免天线阵列因天线单元的数量越多而其辐射范围越窄的问题。
在上述任一实施例的基础上,一些实施例中,设计要求包括K1°大于K2°;其中,K1°为设计要求所要求的天线阵列的波束宽度,K2°为初始天线阵列的波束宽度。如此,初始天线阵列排布后的波束宽度为K2°。然后通过将初始天线阵列划分成M组子阵列,并使得至少有两组子阵列的辐射反向不同,实现波束方向打散,可以提高调整后的初始天线阵列的波束宽度,使得K1°大于K2°,使得调整后的天线阵列的辐射范围满足设计要求。
在上述任一实施例的基础上,如12所示,一些实施例中,调整至少一组子阵列的辐射方向的方法包括:
S210将M组子阵列沿第一方向均匀间隔设置,第一方向包括第一端和与第一端相对设置的第二端。
S220将设置于第一方向的中间的至少一组子阵列定为第一阵列,并使第一阵列的最大辐射方向位于K1°/2。
S230沿第一阵列至第一端方向,子阵列的最大辐射方向小于K1°/2,并使相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向大C°;沿第一阵列至第二端方向,子阵列的最大辐射方向大于K1°/2,并使相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向小C°。
如此,将至少一组子阵列设为第一阵列,并使得第一阵列的最大辐射方向位于K1°/2,进而可以使得其他子阵列的最大辐射方向相对于第一阵列逐渐递减C°或逐渐增大C°,使得天线阵列的子阵列的辐射方向按照设定方向进行排布,避免天线阵列的波束宽度会变窄而影响其覆盖范围。
需要说明的是,“设置于第一方向的中间的至少一组子阵列为第一阵列”可以理解为:当M为偶数时,第一阵列中子阵列的数量为2的倍数,可以将设置于第一方向的中间的两组子阵列设为第一阵列,或者将设置于第一方向的中间的四组子阵列设为第一阵列。而当M为偶数时,第一阵列中子阵列的数量为1的奇数倍(例如1、3、5、7等等),可以将设置于第一方向的中间的一组子阵列设为第一阵列,或者将设置于第一方向的中间的三组子阵列设为第一阵列。
在上述任一实施例的基础上,一些实施例中,C°=K1°÷M。如此,天线阵列的子阵列之间的最大辐射方向的夹角大小可以通过天线阵列的波束宽度要求以及其天线单元数量计算得到,使得天线阵列内的子阵列之间的辐射角度可以安装增加或递交一个C°分布,进而使天线阵列既能够满足覆盖范围,有具有良好的天线增益,能够获得良好的辐射性能。
具体地,假如,天线阵列包括45组沿第一方向均匀间隔设置的子阵列,第一方向为曲线,K1°=90°,则C°=2°。如此,按照步骤S210至S230,可以将设置于第一方向中间的一组子阵列设为第一阵列,而其他阵列则往第一阵列至第一端方向排布时,相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向小2°。而其他阵列则往第一阵列至第二端方向排布时,相邻两组子阵列中,靠近第一阵列设置的子阵列的最大辐射方向比另一个子阵列的最大辐射方向小2°。也即,天线阵列中的子阵列可以沿第一端至第二方向,子阵列的最大辐射方向逐步增大2°获得。
在上述实施例的基础上,一些实施例中,K2°=A°÷N,A°为天线单元的波束宽度。如此,初始天线阵列可以按照一元天线阵列的排布要求进行排布,排布后的波束宽度为K2°。然后通过将初始天线阵列划分成M组子阵列,并使得至少有两组子阵列的辐射反向不同,实现波束方向打散,可以提高调整后的初始天线阵列的波束宽度,使得K1°大于K2°,使得调整后的天线阵列的辐射范围满足设计要求。
在上述任一实施例的基础上,如图13所示,一些实施例中,设计要求还包括天线阵列的天线增益大于或等于G1,在调整至少一组子阵列的辐射方向之前还包括:
获取G2的数值,G2为初始天线阵列的天线增益;
如G2≥G1,则调整至少一组子阵列的辐射方向;
如G2<G1,则继续增加天线单元的数量,直至G2≥G1。
如此,通过获取初始天线阵列的天线增益,在保证其天线增益满足要求的情况下,再进行初始天线阵列的波束宽度的调节,以尽可能使调整后的初始天线阵列辐射范围要求,并能够保持足够的天线增益,不会过多影响整体辐射效率。
在上述实施例的基础上,如图14所示,一些实施例中,初始天线阵列的辐射范围满足设计要求之后,还包括:
获取G3的数值,G3为调整后的初始天线阵列的天线增益,G3<G2;
如G3≥G1,则完成初始天线阵列的辐射范围的调整;
如G3<G1,则继续增加天线单元的数量,直至G3≥G1。
如此,完成初始天线阵列的辐射范围的提高调节后,还包括获取调整后初始天线阵列的天线增益,如初始天线阵列的天线增益不足,则继续增加天线单元的数量,增加子阵列,以使调整后的初始天线阵列能够满足天线增益要求和辐射范围要求。当然了,如果调整后的初始天线阵列也满足天线增益要求,则将调整后的初始天线阵列设为所需天线阵列,完成天线阵列的调整。
在上述任一实施例的基础上,一些实施例中,改变子阵列的辐射方向的方法包括:在子阵列中,使相邻两个天线单元的辐射层之间的有效辐射长度不同,以使子阵列的入射波方向与其透射波方向不在同一直线上。如此,只需通过调整辐射层的有效辐射长度,即可实现子阵列的辐射方向调整,易于实施,使得天线阵列的成本低。
在上述实施例的基础上,一些实施例中,在子阵列中,相邻两个天线单元的辐射层之间的有效辐射长度之差均相同。如此,使得子阵列内的天线单元的辐射层的有效辐射长度朝同一方向均匀增加,以使得天线单元的透射波与入射波之间夹角均相同,避免因夹角不同而造成不必要的损耗,使得该子阵列的辐射方向的调整后,仍可以保证其辐射效率。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、 “轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开的发明构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。

Claims (23)

  1. 一种天线模组,其特征在于,包括:
    天线阵列,包括辐射方向不同的至少两组子阵列,所述子阵列包括间隔设置的至少两个天线单元;以及
    馈电组件,包括与所述天线单元一一对应的馈电线,所述馈电线与所述天线单元连接。
  2. 根据权利要求1所述的天线模组,其特征在于,所述辐射方向不同的至少两组子阵列的入射波方向相互平行,至少有一个所述子阵列的透射波方向与其入射波方向不在同一直线上。
  3. 根据权利要求1所述的天线模组,其特征在于,至少有一个所述子阵列的至少两个天线单元的入射波方向之间的相位差为零,且所述至少两个天线单元的透射波方向之间存在不为零的相位差,以使该子阵列的透射波方向与其入射波方向不在同一直线上。
  4. 根据权利要求3所述的天线模组,其特征在于,该子阵列中相邻两个所述天线单元的透射波之间存在相位差均相同。
  5. 根据权利要求3所述的天线模组,其特征在于,所述天线单元包括辐射层,所述子阵列中的所述至少两个天线单元的辐射层之间的有效辐射长度不同,以使所述至少两个天线单元的透射波方向之间存在不为零的相位差。
  6. 根据权利要求5所述的天线模组,其特征在于,所述子阵列中相邻两个所述天线单元的辐射层之间的有效辐射长度之差均相同。
  7. 根据权利要求5所述的天线模组,其特征在于,所述辐射层包括第一频率选择表面。
  8. 根据权利要求7所述的天线模组,其特征在于,所述辐射层还包括微带贴片,所述微带贴片设置于所述第一频率选择表面的上方,用于增大天线单元的辐射效率。
  9. 根据权利要求1所述的天线模组,其特征在于,所述天线模组还包括设置于所述天线单元上的耦合透射结构,包括第二频率选择表面,所述第二频率选择表面与所述天线单元绝缘设置,且所述频率选择表面与所述天线单元相耦合。
  10. 根据权利要求1所述的天线模组,其特征在于,在所述天线阵列中,所有所述天线单元的单元因子相同,所有所述子阵列的波束宽度相同。
  11. 根据权利要求1至10任一项所述的天线模组,其特征在于,所述天线阵列包括N组所述天线单元,所述天线单元的波束宽度为A°,所述天线阵列的波束宽度为 K1°;其中,至少有两组所述子阵列的辐射反向不同,以使K1°大于K2°;K2°=A°÷N。
  12. 根据权利要求11所述的天线模组,其特征在于,所述天线阵列包括M组子阵列,所述M组子阵列沿第一方向均匀间隔设置,所述第一方向包括第一端和与所述第一端相对设置的第二端,设置于所述第一方向的中间的至少一组子阵列为第一阵列,所述第一阵列的最大辐射方向位于K1°/2,K1°为所述天线阵列的波束宽度;
    沿所述第一阵列至所述第一端方向,所述子阵列的最大辐射方向小于K1°/2,且相邻两组所述子阵列中,靠近所述第一阵列设置的子阵列的最大辐射方向比另一个所述子阵列的最大辐射方向大C°;沿所述第一阵列至所述第二端方向,所述子阵列的最大辐射方向大于K1°/2,且相邻两组所述子阵列中,靠近所述第一阵列设置的子阵列的最大辐射方向比另一个所述子阵列的最大辐射方向小C°。
  13. 根据权利要求12所述的天线模组,其特征在于,C°=K1°÷M。
  14. 一种移动终端,其特征在于,包括控制模组以及权利要求1至13任一项所述的天线模组,所述控制模组与所述馈电组件电性连接。
  15. 一种天线阵列的辐射范围的调整方法,其特征在于,包括:
    将N个天线单元排布呈初始天线阵列,并将所述初始天线阵列分隔成M组子阵列,M小于N;
    根据天线阵列的辐射范围的设计要求和所述M组子阵列在所述初始天线阵列中位置情况,调整至少一组所述子阵列的辐射方向,以使所述M组子阵列中至少有两组所述子阵列的辐射方向不同,直至所述初始天线阵列的辐射范围满足所述设计要求。
  16. 根据权利要求15所述的方法,其特征在于,所述设计要求包括K1°大于K2°;其中,K1°为所述设计要求所要求的天线阵列的波束宽度,K2°为初始天线阵列的波束宽度。
  17. 根据权利要求16所述的方法,其特征在于,调整至少一组所述子阵列的辐射方向的方法包括:
    将M组子阵列沿第一方向均匀间隔设置,所述第一方向包括第一端和与所述第一端相对设置的第二端;
    将设置于所述第一方向的中间的至少一组子阵列定为第一阵列,并使所述第一阵列的最大辐射方向位于K1°/2;
    沿所述第一阵列至所述第一端方向,所述子阵列的最大辐射方向小于K1°/2,并使相邻两组所述子阵列中,靠近所述第一阵列设置的子阵列的最大辐射方向比另一个 所述子阵列的最大辐射方向大C°;沿所述第一阵列至所述第二端方向,所述子阵列的最大辐射方向大于K1°/2,并使相邻两组所述子阵列中,靠近所述第一阵列设置的子阵列的最大辐射方向比另一个所述子阵列的最大辐射方向小C°。
  18. 根据权利要求16所述的方法,其特征在于,C°=K1°÷M。
  19. 根据权利要求16所述的方法,其特征在于,K2°=A°÷N,A°为所述天线单元的波束宽度。
  20. 根据权利要求15所述的方法,其特征在于,所述设计要求还包括天线阵列的天线增益大于或等于G1,在调整至少一组所述子阵列的辐射方向之前还包括:
    获取G2的数值,G2为所述初始天线阵列的天线增益;
    如G2≥G1,则调整至少一组所述子阵列的辐射方向;
    如G2<G1,则继续增加所述天线单元的数量,直至G2≥G1。
  21. 根据权利要求20所述的方法,其特征在于,所述初始天线阵列的辐射范围满足所述设计要求之后,还包括:
    获取G3的数值,G3为调整后的初始天线阵列的天线增益,G3<G2;
    如G3≥G1,则完成初始天线阵列的辐射范围的调整;
    如G3<G1,则继续增加所述天线单元的数量,直至G3≥G1。
  22. 根据权利要求15至21任一项所述的方法,其特征在于,改变所述子阵列的辐射方向的方法包括:在所述子阵列中,使相邻两个所述天线单元的辐射层之间的有效辐射长度不同,以使所述子阵列的入射波方向与其透射波方向不在同一直线上。
  23. 根据权利要求22所述的方法,其特征在于,在所述子阵列中,相邻两个所述天线单元的辐射层之间的有效辐射长度之差均相同。
PCT/CN2022/094284 2022-05-20 2022-05-20 天线模组、移动终端以及天线阵列的辐射范围的调整方法 WO2023221145A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/094284 WO2023221145A1 (zh) 2022-05-20 2022-05-20 天线模组、移动终端以及天线阵列的辐射范围的调整方法
CN202280004364.XA CN117441267A (zh) 2022-05-20 2022-05-20 天线模组、移动终端以及天线阵列的辐射范围的调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094284 WO2023221145A1 (zh) 2022-05-20 2022-05-20 天线模组、移动终端以及天线阵列的辐射范围的调整方法

Publications (1)

Publication Number Publication Date
WO2023221145A1 true WO2023221145A1 (zh) 2023-11-23

Family

ID=88834446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094284 WO2023221145A1 (zh) 2022-05-20 2022-05-20 天线模组、移动终端以及天线阵列的辐射范围的调整方法

Country Status (2)

Country Link
CN (1) CN117441267A (zh)
WO (1) WO2023221145A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066634A1 (en) * 2006-11-23 2010-03-18 Anders Derneryd Optimized radiation patterns
CN102904065A (zh) * 2012-10-19 2013-01-30 中兴通讯股份有限公司南京分公司 吸波装置及无线终端
JP2017224989A (ja) * 2016-06-15 2017-12-21 日本電信電話株式会社 アンテナ調整方法及び通信システム
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN110391506A (zh) * 2018-04-18 2019-10-29 上海华为技术有限公司 一种天线系统、馈电网络重构方法及装置
CN111463582A (zh) * 2019-01-22 2020-07-28 北京小米移动软件有限公司 天线模组及终端
US20210265741A1 (en) * 2016-09-27 2021-08-26 ZoneArt Networks Ltd. Antenna array

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066634A1 (en) * 2006-11-23 2010-03-18 Anders Derneryd Optimized radiation patterns
CN102904065A (zh) * 2012-10-19 2013-01-30 中兴通讯股份有限公司南京分公司 吸波装置及无线终端
JP2017224989A (ja) * 2016-06-15 2017-12-21 日本電信電話株式会社 アンテナ調整方法及び通信システム
US20210265741A1 (en) * 2016-09-27 2021-08-26 ZoneArt Networks Ltd. Antenna array
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN110391506A (zh) * 2018-04-18 2019-10-29 上海华为技术有限公司 一种天线系统、馈电网络重构方法及装置
CN111463582A (zh) * 2019-01-22 2020-07-28 北京小米移动软件有限公司 天线模组及终端

Also Published As

Publication number Publication date
CN117441267A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
US11322829B2 (en) Antenna assembly and electronic device
WO2018028323A1 (zh) 天线系统
CN212485544U (zh) 天线装置和电子设备
CN110197950B (zh) 一种双极化天线
CN111987422B (zh) 一种超低剖面多频宽带天线及通信设备
TWM627483U (zh) 雙天線系統
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
CN110112561B (zh) 一种单极化天线
CN113659325B (zh) 集成基片间隙波导阵列天线
WO2021227812A1 (zh) 天线装置、电子设备及用于天线装置的去耦方法
CN113346251A (zh) 一种基于辐射单元高度和频段的天线设置方法及天线
WO2023221145A1 (zh) 天线模组、移动终端以及天线阵列的辐射范围的调整方法
CN110233334B (zh) 基于基片集成镜像介质波导的水平极化漏波天线
WO2023221144A1 (zh) 天线单元、天线模组以及移动终端
US20230370536A1 (en) Back Cover and Terminal
CN214378822U (zh) 电子设备
WO2021227813A1 (zh) 天线装置和电子设备
WO2021227827A1 (zh) 天线装置和电子设备
CN110112557B (zh) 耦合馈电毫米波阵列天线
US20210151868A1 (en) Antenna module
WO2023221146A1 (zh) 移相单元、天线模组以及移动终端
CN112993553A (zh) 天线单元以及天线结构
CN112635997A (zh) 一种Vivaldi天线单元
RU150630U1 (ru) Фрагмент широкополосной фазированной антенной решетки в трех частотных диапазонах
CN217009563U (zh) 漏波天线及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942181

Country of ref document: EP

Kind code of ref document: A1