WO2020134948A1 - 控制电路及显示装置 - Google Patents

控制电路及显示装置 Download PDF

Info

Publication number
WO2020134948A1
WO2020134948A1 PCT/CN2019/123385 CN2019123385W WO2020134948A1 WO 2020134948 A1 WO2020134948 A1 WO 2020134948A1 CN 2019123385 W CN2019123385 W CN 2019123385W WO 2020134948 A1 WO2020134948 A1 WO 2020134948A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
output
signal
terminal
Prior art date
Application number
PCT/CN2019/123385
Other languages
English (en)
French (fr)
Inventor
张良
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2020134948A1 publication Critical patent/WO2020134948A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Definitions

  • the present application relates to the field of display technology, in particular to a control circuit and a display device.
  • the display device When the display device is turned off, it will control all the active switches to be turned on to release the charge stored in the liquid crystal cell. However, during the process of the display device being turned off, the voltage input to the active switch drops too quickly, resulting in storage in the liquid crystal cell 'S charge cannot be discharged normally.
  • the embodiments of the present application aim to increase the voltage input to the active switch during the shutdown process of the display device by providing a control circuit and a display device, so as to quickly discharge the charge stored in the liquid crystal cell.
  • the control circuit includes:
  • the voltage generating circuit has a power input terminal, a signal input terminal and a voltage signal output terminal;
  • a voltage detection circuit the detection end of the voltage detection circuit is connected to the output end of the power supply, and is used to output a corresponding voltage detection signal when it is detected that the voltage output by the power supply falls to a reference value;
  • a main controller an input terminal of the main controller is connected to an output terminal of the voltage detection circuit, and is used to generate and output a corresponding control signal according to the voltage detection signal;
  • the pulse generating circuit has a first input terminal, a second input terminal and an output terminal.
  • the first input terminal of the pulse generating circuit is connected to the output terminal of the main controller, and the second input terminal of the pulse generating circuit is
  • the voltage signal output terminal of the voltage generation circuit is connected, and the output terminal of the pulse generation circuit is connected to the signal input terminal of the voltage generation circuit for outputting the voltage signal output from the control signal and the voltage generation circuit Pulse signal with increased duty ratio;
  • the power input end of the voltage generating circuit is connected to the output end of the power supply.
  • the voltage generating circuit is used to generate and output a corresponding voltage signal according to the pulse signal to control the active switch to open.
  • control circuit includes:
  • the voltage generating circuit has a power input terminal, a signal input terminal and a voltage signal output terminal;
  • a voltage detection circuit the detection end of the voltage detection circuit is connected to the output end of the power supply, and is used to output a corresponding voltage detection signal when it is detected that the voltage output by the power supply falls to a reference value;
  • a main controller an input terminal of the main controller is connected to an output terminal of the voltage detection circuit, and is used to generate and output a corresponding control signal according to the voltage detection signal;
  • a pulse generating circuit including a triangular wave generating circuit and an operational amplifier circuit; an input terminal of the triangular wave generating circuit is connected to an output terminal of the main controller, and an output terminal of the triangular wave generating circuit is connected to the operational amplifier
  • the first input terminal of the circuit is connected, the second input terminal of the operational amplifier circuit is connected to the voltage signal output terminal of the voltage generation circuit; the output terminal of the operational amplifier circuit is connected to the signal input terminal of the voltage generation circuit
  • the pulse generating circuit is configured to output a pulse signal with an increased duty ratio according to the control signal and the voltage signal output by the voltage generating circuit;
  • the power input end of the voltage generating circuit is connected to the output end of the power supply.
  • the voltage generating circuit is used to generate and output a corresponding voltage signal according to the pulse signal to control the active switch to open.
  • the present application also provides a display device, including a display panel, a circuit board, and the control circuit according to any one of the above, the circuit board is connected to the display panel, and the control circuit is arranged in the On the circuit board, the control circuit includes:
  • the voltage generating circuit has a power input terminal, a signal input terminal and a voltage signal output terminal;
  • a voltage detection circuit the detection end of the voltage detection circuit is connected to the output end of the power supply, and is used to output a corresponding voltage detection signal when it is detected that the voltage output by the power supply falls to a reference value;
  • a main controller an input terminal of the main controller is connected to an output terminal of the voltage detection circuit, and is used to generate and output a corresponding control signal according to the voltage detection signal;
  • the pulse generating circuit has a first input terminal, a second input terminal and an output terminal.
  • the first input terminal of the pulse generating circuit is connected to the output terminal of the main controller, and the second input terminal of the pulse generating circuit is
  • the voltage signal output terminal of the voltage generation circuit is connected, and the output terminal of the pulse generation circuit is connected to the signal input terminal of the voltage generation circuit for outputting the voltage signal output from the control signal and the voltage generation circuit Pulse signal with increased duty ratio;
  • the power input end of the voltage generating circuit is connected to the output end of the power supply.
  • the voltage generating circuit is used to generate and output a corresponding voltage signal according to the pulse signal to control the active switch to open.
  • the technical solution of the present application detects the voltage value of the power supply output through the voltage detection circuit, and when it detects that the voltage of the power supply output decreases to the reference value, outputs a corresponding voltage detection signal to the main controller, and the main controller detects the voltage according to the voltage
  • the signal outputs a corresponding control signal to the pulse generating circuit to control the pulse generating circuit to output a pulse signal with an increased duty cycle.
  • the pulse signal acts on the voltage generating circuit so that the voltage output from the voltage generating circuit to the active switch increases due to the active The higher the voltage of the switch, the better the open state of the active switch, so that the charge stored in the liquid crystal cell can be quickly discharged when the display device is turned off.
  • FIG. 1 is a structural block diagram of an embodiment of a control circuit of this application.
  • FIG. 2 is a structural block diagram of an embodiment of the voltage detection circuit in FIG. 1;
  • FIG. 3 is a structural block diagram of an embodiment of the pulse generating circuit in FIG. 1;
  • FIG. 4 is a schematic diagram of a circuit structure of an embodiment of the control circuit of the present application.
  • This application proposes a control circuit.
  • control circuit includes:
  • the detection end of the voltage detection circuit 10 is connected to the output end of the power supply 50, the output end of the voltage detection circuit 10 is connected to the input end of the main controller 20, and the output end of the main controller 20 It is connected to the first input terminal of the pulse generating circuit 30, the second input terminal of the pulse generating circuit 30 is connected to the voltage signal output terminal of the voltage generating circuit 40, and the output terminal of the pulse generating circuit 30 is connected to all The signal input terminal of the voltage generating circuit 40 is connected, and the power input terminal of the voltage generating circuit 40 is connected to the output terminal of the power supply 50.
  • the voltage detection circuit 10 is configured to output a corresponding voltage detection signal when it is detected that the voltage output by the power supply 50 drops to a reference value.
  • the voltage detection circuit 10 may use sampling resistor voltage division detection, a Hall sensor, or a special voltage detection chip to realize voltage detection, which is not limited here.
  • the main controller 20 is configured to generate and output a corresponding control signal according to the voltage detection signal.
  • the main controller 20 may use a microprocessor such as a single chip microcomputer, a digital signal processor DSP and a field programmable gate array FPGA, which is not limited here.
  • the pulse generating circuit 30 is configured to output a pulse signal with an increased duty ratio according to the control signal and the voltage signal output from the voltage generating circuit 40.
  • the pulse generating circuit 30 may include a triangle wave generating circuit 301 and an operational amplifier circuit 302, or other circuit designs may be used, which is not limited herein.
  • the voltage generating circuit 40 is configured to generate a corresponding voltage signal according to the pulse signal to control the active switch to open.
  • the voltage output from the output terminal VIN of the power supply 50 is detected by the voltage detection circuit 10.
  • the reference value is used to determine whether the display device enters the shutdown state.
  • the detection circuit 10 outputs a corresponding voltage detection signal to the main controller 20, and the main controller 20 outputs a corresponding control signal to the pulse generation circuit 30 according to the received voltage detection signal to control the pulse generation circuit 30 to generate a duty increase
  • the pulse signal acts on the voltage generating circuit 40 so that the voltage output by the voltage generating circuit 40 rises. This voltage acts on the active switch.
  • the active switch in this embodiment can be implemented by a thin film transistor, which is not limited in particular, and can ensure that all active switches can be normally opened during the shutdown process, so that the charge stored in the liquid crystal cell connected to the active switch can be Quick release.
  • This setting is equivalent to raising the voltage level of the active switch's turn-on voltage. The higher the voltage level of the active switch's turn-on voltage, the slower the downward trend of the active switch's voltage during shutdown and the better the active switch's open state. This allows the charge stored in the liquid crystal cell to be released quickly.
  • the voltage detection circuit 10 includes a voltage division detection circuit 101 and a switch circuit 102.
  • the detection terminal of the voltage division detection circuit 101 is the detection terminal of the voltage detection circuit 10.
  • the output terminal of the voltage division detection circuit 101 is connected to the controlled terminal of the switch circuit 102; the output terminal of the switch circuit 102 is the output terminal of the voltage detection circuit 10.
  • the voltage divider detection circuit 101 includes a first resistor R1 and a second resistor R2, and the first end of the first resistor R1 is the detection end of the voltage divider detection circuit 101
  • the second terminal of the first resistor R1 is the output terminal of the voltage division detection circuit 101, and is connected to the first terminal of the second resistor R2, and the second terminal of the second resistor R2 is grounded.
  • the first resistor R1 and the second resistor R2 are divided in series. According to the principle of voltage division, the larger the ratio of the first resistor R1 and the second resistor R2, the greater the voltage divided across the first resistor R1.
  • the voltage value divided by the first resistor R1 and the second resistor R2 can be adjusted to turn off or turn on the first electronic switch Q1 of the switch circuit 102, for example, when the display device works normally, the output voltage of the power supply is sufficient Large, the voltage output by the first resistor R1 and the second resistor R2 is greater than the conduction threshold of the first electronic switch Q1, the first electronic switch Q1 is turned on, when the display device is turned off, the power supply 50 output The voltage gradually decreases. When the voltage drops to the reference value, the output voltage divided by the first resistor R1 and the second resistor R2 is less than the conduction threshold of the first electronic switch Q1, at which time the first electronic switch Q1 is turned off.
  • the switch circuit 102 includes a first DC power supply VDD, a first electronic switch Q1, and a third resistor R3.
  • the output terminal of the first DC power supply VDD is connected to the The first end of the third resistor R3 is connected, the second end of the third resistor R3 is the output end of the switch circuit 102, and is connected to the first execution end of the first electronic switch Q1; the first The controlled terminal of the electronic switch Q1 is the controlled terminal of the switch circuit 102, and the second execution terminal of the first electronic switch Q1 is grounded.
  • the first electronic switch Q1 may be an N-type insulating field effect transistor, that is, an N-MOS tube, and the gate of the N-MOS tube is the controlled end of the first electronic switch Q1
  • the drain of the N-MOS tube is the first execution end of the first electronic switch Q1
  • the source of the N-MOS tube is the second execution end of the first electronic switch Q1.
  • the first electronic switch Q1 may also be implemented using a switching transistor such as a triode, an insulated gate bipolar transistor IGBT, etc., which is not limited here.
  • the voltage output to the first electronic switch Q1 is greater than its conduction threshold.
  • An electronic switch Q1 is in a conducting state, the voltage at the lower end of the third resistor R3 is 0, and a voltage detection signal representing 0V is output to the main controller 20, so that the main controller 20 generates a corresponding signal according to the received voltage detection signal Control signal; when the display device is turned off, the output voltage of the power supply 50 gradually decreases, and the output voltage after the voltage divider of the first resistor R1 and the second resistor R2 also becomes smaller, when the voltage output by the power supply 50 decreases to the reference value
  • the first electronic switch Q1 is switched from the on state to the off state, and the voltage at the lower end of the third resistor R3 changes from 0V to the first DC power supply VDD And output the
  • the control circuit further includes a main controller, and the main controller 20 may be integrated with an ADC (ADC is Analog-to-Digital Converter (analog/digital conversion) module can also be integrated with a software program for analyzing the received voltage detection signal that characterizes the voltage.
  • ADC Analog-to-Digital Converter
  • the received voltage detection signal is analyzed and processed to generate a corresponding control signal and output to the pulse generation circuit 30.
  • the pulse generating circuit 30 includes a triangular wave generating circuit 301 and an operational amplifier circuit 302; the input terminal of the triangular wave generating circuit 301 is the first input terminal of the pulse generating circuit 30, so The output terminal of the triangular wave generating circuit 301 is connected to the first input terminal of the operational amplifier circuit 302, and the second input terminal of the operational amplifier circuit 302 is the second input terminal of the pulse generating circuit 30; the operational amplifier The output terminal of the circuit 302 is the output terminal of the pulse generating circuit 30.
  • the operational amplifier circuit 302 may use an operational amplifier OP, the non-inverting input terminal of the operational amplifier OP is the first input terminal of the operational amplifier circuit 302, and the operational amplifier OP The inverting input terminal is the second input terminal of the operational amplifier circuit 302, and the output terminal of the operational amplifier OP is the output terminal of the operational amplifier circuit 302.
  • the main controller 20 outputs a corresponding control signal to the triangular wave generating circuit 301 according to the received voltage detection signal, for example, a voltage signal of 0V, to control the output amplitude of the triangular wave generating circuit 301
  • the received voltage detection signal for example, a voltage signal of 0V
  • a triangular wave with a small value for example, a triangular wave having an amplitude of 5V, is input to the non-inverting input terminal of the operational amplifier OP, and the voltage VGH output from the voltage generating circuit 40 is input to the inverting input terminal of the operational amplifier OP.
  • a square wave with a smaller duty is output through the output terminal of the operational amplifier OP, for example, a square wave with a duty ratio of 50% is output.
  • the main controller 20 outputs the corresponding signal according to the received voltage detection signal, such as the voltage signal of the first DC power supply VDD Control signal to the triangular wave generating circuit 301 to control the amplitude of the triangular wave generated by the triangular wave generating circuit 301 to increase, for example, output a triangular wave with an amplitude of 9V, the triangular wave and the voltage VGH are output through the output terminal of the operational amplifier OP
  • a square wave with an increased duty cycle for example, outputs a square wave with a 90% duty cycle.
  • the characteristics of the operational amplifier OP are: if the voltage input at the non-inverting input terminal is greater than the voltage input at the inverting input terminal, the output of the operational amplifier circuit 302 is high, if the voltage input at the non-inverting input terminal is smaller than the voltage input at the inverting input terminal, The output of the operational amplifier circuit 302 is low. In this way, when the amplitude of the input triangle wave increases, the duty ratio of the square wave output by the operational amplifier circuit 302 increases accordingly. This square wave with an increased duty ratio acts on the voltage generating circuit 40, so that the voltage output by the voltage generating circuit 40 becomes larger.
  • the voltage generating circuit 40 includes a second electronic switch Q2, an inductor L, a diode D, and a capacitor C; one end of the inductor L is a power input terminal of the voltage generating circuit 40, The other end of the inductor L is interconnected with the first execution end of the second electronic switch Q2 and the anode of the diode D; the controlled end of the second electronic switch Q2 is the signal of the voltage generating circuit 40 The input terminal, the second execution terminal of the second electronic switch Q2 is grounded; the negative electrode of the diode D is the voltage signal output terminal of the voltage generating circuit 40, and is connected to one end of the capacitor C, the capacitor C The other end is grounded.
  • the second electronic switch Q2 may be an N-type insulating field effect transistor, that is, an N-MOS tube, and the gate of the N-MOS tube is the controlled end of the second electronic switch Q2
  • the drain of the N-MOS tube is the first execution end of the second electronic switch Q2
  • the source of the N-MOS tube is the second execution end of the second electronic switch Q2.
  • the second electronic switch Q2 may also be implemented using a switching transistor such as a triode, an insulated gate bipolar transistor IGBT, etc., which is not limited here.
  • the pulse generating circuit 30 generates a corresponding pulse signal according to the received control signal and the voltage signal output by the voltage generating circuit 40, and outputs it to the controlled end of the second electronic switch Q2 of the voltage generating circuit 40,
  • the second electronic switch Q2 is controlled to be turned on or off.
  • the pulse generating circuit 30 outputs a pulse signal with a small duty according to the corresponding control signal, for example, a pulse signal with a 50% duty cycle.
  • the pulse generating circuit 30 according to the corresponding Control signal, output pulse signal with increased duty cycle, for example, output pulse signal with 90% duty cycle.
  • the voltage generating circuit 40 is also used to feed back the generated voltage VGH to the second input terminal of the pulse generating circuit 30, so as to adjust the output voltage to maintain within a certain range, to avoid the output voltage being too large or biased. Small and cause abnormal shutdown.
  • the present application also proposes a display device including the control circuit as described above, a display panel and a circuit board, the circuit board is connected to the display panel, and the control circuit is arranged on the circuit board .
  • the control circuit is used in the display device of the present application, the embodiment of the display device of the present application includes the above control All the technical solutions of all the embodiments of the circuit, and the technical effects achieved are also the same, which will not be repeated here.
  • the display panel includes but is not limited to a liquid crystal display panel, an organic light emitting diode display panel, a field emission display panel, a plasma display panel, a curved panel
  • the liquid crystal panel includes a thin film transistor liquid crystal display panel, a TN panel (TN Twisted Nematic, twisted nematic type), VA panel (VA is wide viewing angle), IPS panel (IPS is In-Plane Switching, plane switching), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种控制电路及显示装置,该控制电路中,电压检测电路(10)的检测端与供电电源(50)连接,电压检测电路(10)的输出端与主控制器(20)的输入端连接,主控制器(20)的输出端与脉冲产生电路(30)的第一输入端连接,脉冲产生电路(30)的第二输入端与电压产生电路(40)的电压信号输出端连接,脉冲产生电路(30)的输出端与电压产生电路(40)的信号输入端连接,电压产生电路(40)的电源输入端与供电电源(50)连接。

Description

控制电路及显示装置
相关申请
本申请要求2018年12月24日申请的,申请号201811585912.4,名称为“控制电路及显示装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及显示技术领域,尤其涉及一种控制电路及显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
显示装置在关机时,会控制所有的主动开关打开,将液晶单元中存储的电荷进行释放,然而,在显示装置关机的过程中,由于输入至主动开关的电压下降过快,导致液晶单元中存储的电荷不能正常释放。
发明内容
本申请实施例通过提供一种控制电路及显示装置,旨在实现在显示装置关机的过程中,提高输入至主动开关的电压,以快速释放液晶单元中存储的电荷。
为实现上述目的,本申请提供一种控制电路,所述控制电路,包括:
供电电源;
电压产生电路,具有电源输入端、信号输入端及电压信号输出端;
电压检测电路,所述电压检测电路的检测端与所述供电电源的输出端连接,用于在检测到所述供电电源输出的电压降低到参考值时,输出相应的电压检测信号;
主控制器,所述主控制器的输入端与所述电压检测电路的输出端连接,用于根据所述电压检测信号产生对应的控制信号并输出;
脉冲产生电路,具有第一输入端、第二输入端及输出端,所述脉冲产生电路的第一输入端与所述主控制器的输出端连接,所述脉冲产生电路的第二输入端与所述电压产生电路的电压信号输出端连接,所述脉冲产生电路的输出端与所述电压产生电路的信号输入端连接,用于根据所述控制信号及所述电压产生电路输出的电压信号输出占空比增大的脉冲信号;
所述电压产生电路的电源输入端与所述供电电源的输出端连接,所述电压产生电路,用于根据所述脉冲信号产生对应的电压信号并输出,以控制主动开关打开。
为实现上述目的,本申请还提供一种控制电路,所述控制电路,包括:
供电电源;
电压产生电路,具有电源输入端、信号输入端及电压信号输出端;
电压检测电路,所述电压检测电路的检测端与所述供电电源的输出端连接,用于在检测到所述供电电源输出的电压降低到参考值时,输出相应的电压检测信号;
主控制器,所述主控制器的输入端与所述电压检测电路的输出端连接,用于根据所述电压检测信号产生对应的控制信号并输出;
脉冲产生电路,所述脉冲产生电路包括三角波产生电路及运算放大电路;所述三角波产生电路的输入端与所述主控制器的输出端连接,所述三角波产生电路的输出端与所述运算放大电路的第一输入端连接,所述运算放大电路的第二输入端与所述电压产生电路的电压信号输出端连接;所述运算放大电路的输出端与所述电压产生电路的信号输入端连接,所述脉冲产生电路,用于根据所述控制信号及所述电压产生电路输出的电压信号输出占空比增大的脉冲信号;
所述电压产生电路的电源输入端与所述供电电源的输出端连接,所述电压产生电路,用于根据所述脉冲信号产生对应的电压信号并输出,以控制主动开关打开。
为实现上述目的,本申请还提供一种显示装置,包括显示面板、电路板及如上任一项所述的控制电路,所述电路板与所述显示面板连接,所述控制电路布置在所述电路板上,所述控制电路包括:
供电电源;
电压产生电路,具有电源输入端、信号输入端及电压信号输出端;
电压检测电路,所述电压检测电路的检测端与所述供电电源的输出端连接,用于在检测到所述供电电源输出的电压降低到参考值时,输出相应的电压检测信号;
主控制器,所述主控制器的输入端与所述电压检测电路的输出端连接,用于根据所述电压检测信号产生对应的控制信号并输出;
脉冲产生电路,具有第一输入端、第二输入端及输出端,所述脉冲产生电路的第一输入端与所述主控制器的输出端连接,所述脉冲产生电路的第二输入端与所述电压产生电路的电压信号输出端连接,所述脉冲产生电路的输出端与所述电压产生电路的信号输入端连接,用于根据所述控制信号及所述电压产生电路输出的电压信号输出占空比增大的脉冲信号;
所述电压产生电路的电源输入端与所述供电电源的输出端连接,所述电压产生电路,用于根据所述脉冲信号产生对应的电压信号并输出,以控制主动开关打开。
本申请的技术方案,通过电压检测电路检测供电电源输出的电压值,在检测到供电电源输出的电压降低到参考值时,输出对应的电压检测信号至主控制器,主控制器根据该电压检测信号输出对应的控制信号至脉冲产生电路,以控制脉冲产生电路输出占空比增大的脉冲信号,该脉冲信号作用于电压产生电路,使得电压产生电路输出至主动开关的电压升高,由于主动开关的电压越高,主动开关的打开状态会更好,从而使得在显示装置在关机时液晶单元中存储的电荷能够快速释放。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请控制电路一实施例的结构框图;
图2为图1中的电压检测电路一实施例的结构框图;
图3为图1中的脉冲产生电路一实施例的结构框图;
图4为本申请控制电路一实施例的电路结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种控制电路。
参照图1,在本申请一实施例中,该控制电路包括:
供电电源50、电压检测电路10、主控制器20、脉冲产生电路30以及电压产生电路40,其中,所述电压产生电路40,具有电源输入端、信号输入端及电压信号输出端;所述脉冲产生电路30,具有第一输入端、第二输入端及输出端。所述电压检测电路10的检测端与所述供电电源50的输出端连接,所述电压检测电路10的输出端与所述主控制器20的输入端连接,所述主控制器20的输出端与所述脉冲产生电路30的第一输入端连接,所述脉冲产生电路30的第二输入端与所述电压产生电路40的电压信号输出端连接,所述脉冲产生电路30的输出端与所述电压产生电路40的信号输入端连接,所述电压产生电路40的电源输入端与所述供电电源50的输出端连接。
本实施例中,所述电压检测电路10,用于在检测到所述供电电源50输出的电压降低到参考值时,输出相应的电压检测信号。该电压检测电路10可以采用采样电阻分压检测、霍尔传感器或者专门的电压检测芯片等实现电压检测,此处不限。
本实施例中,所述主控制器20,用于根据所述电压检测信号产生对应的控制信号并输出。所述主控制器20可以采用单片机、数字信号处理器DSP及现场可编程门阵列FPGA等微处理器,此处不限。
本实施例中,所述脉冲产生电路30,用于根据所述控制信号及所述电压产生电路40输出的电压信号输出占空比增大的脉冲信号。该脉冲产生电路30可以包括三角波产生电路301与运算放大电路302,也可以采用其他电路设计,此处不限。
本实施例中,所述电压产生电路40,用于根据所述脉冲信号产生对应的电压信号,以控制主动开关打开。
本实施例中,通过电压检测电路10检测供电电源50输出端VIN输出的电压,当检测到供电电源50输出的电压降低到参考值时,该参考值用于判断显示装置是否进入关机状态,电压检测电路10输出对应的电压检测信号至主控制器20,主控制器20根据接收到的电压检测信号,输出对应的控制信号至脉冲产生电路30,以控制脉冲产生电路30产生占空比增大的脉冲信号,该脉冲信号作用于电压产生电路40,使得电压产生电路40输出的电压升高。该电压作用于主动开关,本实施例的主动开关可以采用薄膜晶体管实现,具体不限,可以确保在关机过程中所有的主动开关能够正常打开,使得与主动开关连接的液晶单元中存储的电荷能够快速释放。如此设置,相当于提高主动开关的开启电压的电压准位,主动开关的开启电压的电压准位越高,在关机过程中主动开关的电压下降趋势越缓慢,主动开关的打开状态会更好,也就使得液晶单元中存储的电荷的能够快速释放。
在一实施例中,参照图2,所述电压检测电路10包括:分压检测电路101及开关电路102,所述分压检测电路101的检测端为所述电压检测电路10的检测端,所述分压检测电路101的输出端与所述开关电路102的受控端连接;所述开关电路102的输出端为所述电压检测电路10的输出端。
作为本申请一实施例,参照图4,所述分压检测电路101包括第一电阻R1及第二电阻R2,所述第一电阻R1的第一端为所述分压检测电路101的检测端,所述第一电阻R1的第二端为所述分压检测电路101的输出端,并与所述第二电阻R2的第一端连接,所述第二电阻R2的第二端接地。
具体的,第一电阻R1及第二电阻R2采用串联分压,按照分压的原理,第一电阻R1与第二电阻R2的比值越大,第一电阻R1上所分得的电压就越大,经第一电阻R1及第二电阻R2分压后的电压值的大小可以调整开关电路102的第一电子开关Q1关闭或导通,例如,在显示装置正常工作时,供电电源输出的电压足够大,经第一电阻R1及第二电阻R2分压后输出的电压大于第一电子开关Q1的导通阈值,此时第一电子开关Q1导通,在显示装置关机时,供电电源50输出的电压逐渐下降,当电压下降到参考值时,经第一电阻R1及第二电阻R2分压后输出的电压小于第一电子开关Q1的导通阈值,此时第一电子开关Q1关闭。
作为本申请一实施例,参照图4,所述开关电路102,包括第一直流电源VDD、第一电子开关Q1及第三电阻R3,所述第一直流电源VDD的输出端与所述第三电阻R3的第一端连接,所述第三电阻R3的第二端为所述开关电路102的输出端,并与所述第一电子开关Q1的第一执行端连接;所述第一电子开关Q1的受控端为所述开关电路102的受控端,所述第一电子开关Q1的第二执行端接地。
作为本申请一实施例,所述第一电子开关Q1可以为N型绝缘性场效应管,即N-MOS管,所述N-MOS管的栅极为所述第一电子开关Q1的受控端,所述N-MOS管的漏极为所述第一电子开关Q1的第一执行端,所述N-MOS管的源极为所述第一电子开关Q1的第二执行端。在其他实施例中,所述第一电子开关Q1还可以采用三极管、绝缘栅双极型晶体管IGBT等开关管来实现,此处不做限制。
具体的,在显示装置正常工作时,由于供电电源50输出的电压足够大,经第一电阻R1和第二电阻R2分压后,输出至第一电子开关Q1的电压大于其导通阈值,第一电子开关Q1处于导通状态,第三电阻R3下端的电压则为0,并将表征0V的电压检测信号输出至主控制器20,以供主控制器20根据所接收的电压检测信号产生对应的控制信号;在显示装置关机时,供电电源50输出的电压逐渐下降,经第一电阻R1和第二电阻R2分压后输出的电压也变小,当供电电源50输出的电压降低到参考值时,输出至第一电子开关Q1的电压小于其导通阈值,第一电子开关Q1由导通状态转换成关闭状态,此时第三电阻R3下端的电压由0V变为第一直流电源VDD的电压值,并输出至主控制器20,以供主控制器20根据所接收的电压检测信号产生对应的控制信号。
在一实施例中,参照图1,所述控制电路还包括主控制器,所述主控制器20内可以集成有ADC(ADC即Analog-to-Digital Converter,模/数转换)模块,也可以集成有用于分析接收到的表征电压大小的电压检测信号的软件程序。通过运行或执行存储在主控制器20的存储器内的软件程序和/或模块,对接收到的电压检测信号进行分析处理,从而产生对应的控制信号并输出至脉冲产生电路30。
在一实施例中,参照图3,所述脉冲产生电路30包括三角波产生电路301及运算放大电路302;所述三角波产生电路301的输入端为所述脉冲产生电路30的第一输入端,所述三角波产生电路301的输出端与所述运算放大电路302的第一输入端连接,所述运算放大电路302的第二输入端为所述脉冲产生电路30的第二输入端;所述运算放大电路302的输出端为所述脉冲产生电路30的输出端。
作为本申请一实施例,参照图4,所述运算放大电路302可以采用运算放大器OP,所述运算放大器OP的同相输入端为所述运算放大电路302的第一输入端,所述运算放大器OP的反相输入端为所述运算放大电路302的第二输入端,所述运算放大器OP的输出端为所述运算放大电路302的输出端。
具体的,在显示装置正常工作时,此时主控制器20根据所接收到的电压检测信号,例如0V的电压信号,输出对应的控制信号至三角波产生电路301,以控制三角波产生电路301输出幅值较小的三角波,例如,输出幅值为5V的三角波,该三角波输入至运算放大器OP的同相输入端,而电压产生电路40输出的电压VGH输入至运算放大器OP的反相输入端,该三角波与电压VGH做差后经运算放大器OP的输出端输出占空比较小的方波,例如,输出占空比为50%的方波。在显示装置关机时,供电电源50输出的电压逐渐下降,当降低到参考值时,此时主控制器20根据所接收到的电压检测信号,例如第一直流电源VDD的电压信号,输出对应的控制信号至三角波产生电路301,以控制三角波产生电路301产生的三角波的幅值升高,例如,输出幅值为9V的三角波,该三角波与电压VGH做差后经运算放大器OP的输出端输出占空比增大的方波,例如,输出占空比为90%的方波。
其中,运算放大器OP的特性为:若同相输入端输入的电压比反相输入端输入的电压大,运算放大电路302输出高,若同相输入端输入的电压比反相输入端输入的电压小,运算放大电路302输出低,如此设置,当输入的三角波的幅值升高,运算放大电路302输出的方波的占空比对应增大。该占空比增大的方波作用于电压产生电路40,可以使得电压产生电路40输出的电压变大。
在一实施例中,参照图4,所述电压产生电路40包括第二电子开关Q2、电感L、二极管D及电容C;所述电感L的一端为所述电压产生电路40的电源输入端,所述电感L的另一端与所述第二电子开关Q2的第一执行端及所述二极管D的正极互连;所述第二电子开关Q2的受控端为所述电压产生电路40的信号输入端,所述第二电子开关Q2的第二执行端接地;所述二极管D的负极为所述电压产生电路40的电压信号输出端,并与所述电容C的一端连接,所述电容C的另一端接地。
作为本申请一实施例,所述第二电子开关Q2可以为N型绝缘性场效应管,即N-MOS管,所述N-MOS管的栅极为所述第二电子开关Q2的受控端,所述N-MOS管的漏极为所述第二电子开关Q2的第一执行端,所述N-MOS管的源极为所述第二电子开关Q2的第二执行端。在其他实施例中,所述第二电子开关Q2还可以采用三极管、绝缘栅双极型晶体管IGBT等开关管来实现,此处不做限制。
具体的,所述脉冲产生电路30根据接收到的控制信号以及电压产生电路40输出的电压信号,产生对应的脉冲信号,并输出至电压产生电路40的第二电子开关Q2的受控端,以控制第二电子开关Q2导通或关闭。在显示装置正常工作时,脉冲产生电路30根据对应的控制信号,输出占空比较小的脉冲信号,例如,输出50%占空比的脉冲信号,在显示装置关机时,脉冲产生电路30根据对应的控制信号,输出占空比增大的脉冲信号,例如,输出90%占空比的脉冲信号。由于作用于第二电子开关Q2的脉冲信号的占空比越大,第二电子开关Q2的导通时间越长,电感L中存储的电感能量就越大,电压产生电路40输出的电压越高。在显示装置关机时,通过增大输入至电压产生电路40的脉冲信号的占空比,能够有效的提高电压产生电路40输出的电压VGH,该电压作用于主动开关,可以使得主动开关的打开状态更好,液晶单元中存储的电荷释放速度更快。其中,所述电压产生电路40,还用于将产生的电压VGH反馈至脉冲产生电路30的第二输入端,以调节输出的电压维持在一定的范围内,避免由于输出的电压偏大或偏小而导致关机异常。
应当理解的是,由于此时显示装置处于关机状态,供电电源50输出的电压是逐渐下降,因此,电压产生电路40输出的电压VGH仍然是下降的趋势,也即,电压产生电路40输出的电压VGH是逐渐减小的。然而,本申请的技术方案,在显示装置关机过程中,通过增大输入至电压产生电路40的脉冲信号的占空比,能够实现在相同的时间段内输出至主动开关的电压更大,从而能够确保在关机过程中主动开关的打开状态更好,液晶单元中存储的电荷能够更快释放。
本申请还提出一种显示装置,该显示装置包括如上所述的控制电路,还包括显示面板及电路板,所述电路板与所述显示面板连接,所述控制电路布置在所述电路板上。该控制电路的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本申请的显示装置中使用了上述控制电路,因此,本申请的显示装置的实施例包括上述控制电路全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
本实施例中,显示面板包括但不限于液晶显示面板、有机发光二极管显示面板、场发射显示面板、等离子显示面板、曲面型面板,所述液晶面板包括薄膜晶体管液晶显示面板、TN面板(TN即Twisted Nematic,扭曲向列型)、VA类面板(VA即广视角类)、IPS面板(IPS即In-Plane Switching,平面转换)等。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (17)

  1. 一种控制电路,其中,所述控制电路,包括:
    供电电源;
    电压产生电路,具有电源输入端、信号输入端及电压信号输出端;
    电压检测电路,所述电压检测电路的检测端与所述供电电源的输出端连接,用于在检测到所述供电电源输出的电压降低到参考值时,输出相应的电压检测信号;
    主控制器,所述主控制器的输入端与所述电压检测电路的输出端连接,用于根据所述电压检测信号产生对应的控制信号并输出;
    脉冲产生电路,具有第一输入端、第二输入端及输出端,所述脉冲产生电路的第一输入端与所述主控制器的输出端连接,所述脉冲产生电路的第二输入端与所述电压产生电路的电压信号输出端连接,所述脉冲产生电路的输出端与所述电压产生电路的信号输入端连接,用于根据所述控制信号及所述电压产生电路输出的电压信号输出占空比增大的脉冲信号;以及
    所述电压产生电路的电源输入端与所述供电电源的输出端连接,所述电压产生电路,用于根据所述脉冲信号产生对应的电压信号并输出,以控制主动开关打开。
  2. 如权利要求1所述的控制电路,其中,所述电压检测电路包括分压检测电路及开关电路,所述分压检测电路的检测端为所述电压检测电路的检测端,所述分压检测电路的输出端与所述开关电路的受控端连接,所述开关电路的输出端为所述电压检测电路的输出端。
  3. 如权利要求2所述的控制电路,其中,所述分压检测电路包括第一电阻及第二电阻,所述第一电阻的第一端为所述分压检测电路的检测端,所述第一电阻的第二端为所述分压检测电路的输出端,并与所述第二电阻的第一端连接,所述第二电阻的第二端接地。
  4. 如权利要求2所述的控制电路,其中,所述开关电路包括第一直流电源、第一电子开关及第三电阻,所述第一直流电源的输出端与所述第三电阻的第一端连接,所述第三电阻的第二端为所述开关电路的输出端,并与所述第一电子开关的第一执行端连接;所述第一电子开关的受控端为所述开关电路的受控端,所述第一电子开关的第二执行端接地。
  5. 如权利要求4所述的控制电路,其中,所述第一电子开关为N型绝缘性场效应管,所述N型绝缘性场效应管的栅极为所述第一电子开关的受控端,所述N型绝缘性场效应管的漏极为所述第一电子开关的第一执行端,所述N型绝缘性场效应管的源极为所述第一电子开关的第二执行端。
  6. 如权利要求1所述的控制电路,其中,所述电压产生电路包括第二电子开关、电感、二极管及电容;所述电感的一端为所述电压产生电路的电源输入端,所述电感的另一端与所述第二电子开关的第一执行端及所述二极管的正极互连;所述第二电子开关的受控端为所述电压产生电路的信号输入端,所述第二电子开关的第二执行端接地;所述二极管的负极为所述电压产生电路的电压信号输出端,并与所述电容的一端连接,所述电容的另一端接地。
  7. 如权利要求6所述的控制电路,其中,所述第二电子开关为N型绝缘性场效应管,所述N型绝缘性场效应管的栅极为所述第二电子开关的受控端,所述N型绝缘性场效应管的漏极为所述第二电子开关的第一执行端,所述N型绝缘性场效应管的源极为所述第二电子开关的第二执行端。
  8. 如权利要求7所述的控制电路,其中,所述脉冲产生电路输出的脉冲信号的占空比越大,所述第二电子开关的导通时间越长。
  9. 如权利要求1所述的控制电路,其中,所述脉冲产生电路包括三角波产生电路及运算放大电路;所述三角波产生电路的输入端为所述脉冲产生电路的第一输入端,所述三角波产生电路的输出端与所述运算放大电路的第一输入端连接,所述运算放大电路的第二输入端为所述脉冲产生电路的第二输入端;所述运算放大电路的输出端为所述脉冲产生电路的输出端。
  10. 如权利要求9所述的控制电路,其中,所述运算放大电路包括运算放大器,所述运算放大器的同相输入端为所述运算放大电路的第一输入端,所述运算放大器的反相输入端为所述运算放大电路的第二输入端,所述运算放大器的输出端为所述运算放大电路的输出端。
  11. 如权利要求1所述的控制电路,其中,所述主动开关为薄膜晶体管。
  12. 一种控制电路,其中,所述控制电路,包括:
    供电电源;
    电压产生电路,具有电源输入端、信号输入端及电压信号输出端;
    电压检测电路,所述电压检测电路的检测端与所述供电电源的输出端连接,用于在检测到所述供电电源输出的电压降低到参考值时,输出相应的电压检测信号;
    主控制器,所述主控制器的输入端与所述电压检测电路的输出端连接,用于根据所述电压检测信号产生对应的控制信号并输出;
    脉冲产生电路,所述脉冲产生电路包括三角波产生电路及运算放大电路;所述三角波产生电路的输入端与所述主控制器的输出端连接,所述三角波产生电路的输出端与所述运算放大电路的第一输入端连接,所述运算放大电路的第二输入端与所述电压产生电路的电压信号输出端连接;所述运算放大电路的输出端与所述电压产生电路的信号输入端连接,所述脉冲产生电路,用于根据所述控制信号及所述电压产生电路输出的电压信号输出占空比增大的脉冲信号;以及
    所述电压产生电路的电源输入端与所述供电电源的输出端连接,所述电压产生电路,用于根据所述脉冲信号产生对应的电压信号并输出,以控制主动开关打开。
  13. 一种显示装置,其中,所述显示装置包括:显示面板、电路板及控制电路,所述电路板与所述显示面板连接,所述控制电路布置在所述电路板上,所述控制电路包括:
    供电电源;
    电压产生电路,具有电源输入端、信号输入端及电压信号输出端;
    电压检测电路,所述电压检测电路的检测端与所述供电电源的输出端连接,用于在检测到所述供电电源输出的电压降低到参考值时,输出相应的电压检测信号;
    主控制器,所述主控制器的输入端与所述电压检测电路的输出端连接,用于根据所述电压检测信号产生对应的控制信号并输出;
    脉冲产生电路,具有第一输入端、第二输入端及输出端,所述脉冲产生电路的第一输入端与所述主控制器的输出端连接,所述脉冲产生电路的第二输入端与所述电压产生电路的电压信号输出端连接,所述脉冲产生电路的输出端与所述电压产生电路的信号输入端连接,用于根据所述控制信号及所述电压产生电路输出的电压信号输出占空比增大的脉冲信号;以及
    所述电压产生电路的电源输入端与所述供电电源的输出端连接,所述电压产生电路,用于根据所述脉冲信号产生对应的电压信号并输出,以控制主动开关打开。
  14. 如权利要求13所述的显示装置,其中,所述电压检测电路包括分压检测电路及开关电路,所述分压检测电路的检测端为所述电压检测电路的检测端,所述分压检测电路的输出端与所述开关电路的受控端连接,所述开关电路的输出端为所述电压检测电路的输出端。
  15. 如权利要求14所述的显示装置,其中,所述开关电路包括第一直流电源、第一电子开关及第三电阻,所述第一直流电源的输出端与所述第三电阻的第一端连接,所述第三电阻的第二端为所述开关电路的输出端,并与所述第一电子开关的第一执行端连接;所述第一电子开关的受控端为所述开关电路的受控端,所述第一电子开关的第二执行端接地。
  16. 如权利要求13所述的显示装置,其中,所述电压产生电路包括第二电子开关、电感、二极管及电容;所述电感的一端为所述电压产生电路的电源输入端,所述电感的另一端与所述第二电子开关的第一执行端及所述二极管的正极互连;所述第二电子开关的受控端为所述电压产生电路的信号输入端,所述第二电子开关的第二执行端接地;所述二极管的负极为所述电压产生电路的电压信号输出端,并与所述电容的一端连接,所述电容的另一端接地。
  17. 如权利要求13所述的显示装置,其中,所述显示面板为液晶显示面板。
PCT/CN2019/123385 2018-12-24 2019-12-05 控制电路及显示装置 WO2020134948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811585912.4A CN109523968B (zh) 2018-12-24 2018-12-24 控制电路及显示装置
CN201811585912.4 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020134948A1 true WO2020134948A1 (zh) 2020-07-02

Family

ID=65796093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123385 WO2020134948A1 (zh) 2018-12-24 2019-12-05 控制电路及显示装置

Country Status (2)

Country Link
CN (1) CN109523968B (zh)
WO (1) WO2020134948A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109523968B (zh) * 2018-12-24 2021-02-19 惠科股份有限公司 控制电路及显示装置
CN110989813B (zh) * 2019-11-27 2021-06-18 北京兆维自服装备技术有限公司 一种供电控制装置、方法及电子设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060066550A1 (en) * 2004-09-24 2006-03-30 Hsin-Chung Huang Electronic discharging control circuit and method thereof for lcd
CN102237794A (zh) * 2010-04-23 2011-11-09 罗姆股份有限公司 开关电源的控制电路和控制方法、发光装置及电子设备
CN103996389A (zh) * 2014-05-08 2014-08-20 京东方科技集团股份有限公司 一种电源电路和显示装置
CN204558001U (zh) * 2015-04-16 2015-08-12 昆山龙腾光电有限公司 关机残影消除电路及栅极驱动电路
CN107516503A (zh) * 2017-10-12 2017-12-26 深圳市华星光电技术有限公司 液晶面板驱动电路及液晶面板驱动方法
US20180035512A1 (en) * 2016-07-27 2018-02-01 Rohm Co., Ltd. Semiconductor Device
CN107731186A (zh) * 2017-10-31 2018-02-23 京东方科技集团股份有限公司 一种控制电路、控制方法及显示装置
CN107784990A (zh) * 2017-10-31 2018-03-09 京东方科技集团股份有限公司 液晶显示面板的放电方法、放电调节电路和显示装置
CN108172179A (zh) * 2017-12-14 2018-06-15 昆山龙腾光电有限公司 电源管理电路
CN108257570A (zh) * 2018-02-09 2018-07-06 京东方科技集团股份有限公司 消除关机残影的控制电路、其控制方法及液晶显示装置
CN207781164U (zh) * 2018-01-02 2018-08-28 合肥京东方光电科技有限公司 一种残影消除电路、显示装置及其驱动电路
CN109523968A (zh) * 2018-12-24 2019-03-26 惠科股份有限公司 控制电路及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395805C (zh) * 2002-12-28 2008-06-18 鸿富锦精密工业(深圳)有限公司 发光二极管驱动装置
US8040309B2 (en) * 2006-01-31 2011-10-18 Chimei Innolux Corproation Display panel with image sticking elimination circuit and driving circuit with the same
KR101330216B1 (ko) * 2006-11-02 2013-11-18 삼성디스플레이 주식회사 액정 표시 장치
JP5024789B2 (ja) * 2007-07-06 2012-09-12 Nltテクノロジー株式会社 発光制御回路、発光制御方法、面照明装置及び該面照明装置を備えた液晶表示装置
KR101422146B1 (ko) * 2007-08-08 2014-07-23 삼성디스플레이 주식회사 구동장치, 이를 갖는 액정표시장치 및 액정표시장치의구동방법
CN101609642B (zh) * 2009-07-14 2011-07-20 深圳晶辰电子科技股份有限公司 等离子显示器电源时序控制装置
CN103165084B (zh) * 2013-03-11 2015-08-19 深圳市华星光电技术有限公司 液晶显示器及其led背光源
CN103354083B (zh) * 2013-07-11 2015-06-17 京东方科技集团股份有限公司 背光源驱动电路及显示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060066550A1 (en) * 2004-09-24 2006-03-30 Hsin-Chung Huang Electronic discharging control circuit and method thereof for lcd
CN102237794A (zh) * 2010-04-23 2011-11-09 罗姆股份有限公司 开关电源的控制电路和控制方法、发光装置及电子设备
CN103996389A (zh) * 2014-05-08 2014-08-20 京东方科技集团股份有限公司 一种电源电路和显示装置
CN204558001U (zh) * 2015-04-16 2015-08-12 昆山龙腾光电有限公司 关机残影消除电路及栅极驱动电路
US20180035512A1 (en) * 2016-07-27 2018-02-01 Rohm Co., Ltd. Semiconductor Device
CN107516503A (zh) * 2017-10-12 2017-12-26 深圳市华星光电技术有限公司 液晶面板驱动电路及液晶面板驱动方法
CN107731186A (zh) * 2017-10-31 2018-02-23 京东方科技集团股份有限公司 一种控制电路、控制方法及显示装置
CN107784990A (zh) * 2017-10-31 2018-03-09 京东方科技集团股份有限公司 液晶显示面板的放电方法、放电调节电路和显示装置
CN108172179A (zh) * 2017-12-14 2018-06-15 昆山龙腾光电有限公司 电源管理电路
CN207781164U (zh) * 2018-01-02 2018-08-28 合肥京东方光电科技有限公司 一种残影消除电路、显示装置及其驱动电路
CN108257570A (zh) * 2018-02-09 2018-07-06 京东方科技集团股份有限公司 消除关机残影的控制电路、其控制方法及液晶显示装置
CN109523968A (zh) * 2018-12-24 2019-03-26 惠科股份有限公司 控制电路及显示装置

Also Published As

Publication number Publication date
CN109523968B (zh) 2021-02-19
CN109523968A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2020134948A1 (zh) 控制电路及显示装置
US8824172B2 (en) Apparatus and method for standby power reduction of a flyback power converter
WO2020073426A1 (zh) 芯片异常检测电路及芯片异常检测装置
WO2020048009A1 (zh) 过流保护驱动电路及显示装置
WO2015010261A1 (zh) 一种电子烟usb充电器
WO2020056870A1 (zh) 驱动电路、升压芯片及显示装置
WO2012122701A1 (zh) 一种电流检测电路及其控制电路和电源转换电路
US20080258927A1 (en) Monitoring device for motherboard voltage
WO2017124577A1 (zh) 基于fpga的主备板卡在位自动检测及切换的系统及方法
WO2020113709A1 (zh) 驱动保护电路、显示装置及驱动保护方法
WO2019019503A1 (zh) 一种像素补偿电路
WO2020087601A1 (zh) 电源电路、显示面板的驱动电路及显示装置
WO2013166895A1 (zh) 一种无源射频识别上电复位电路及无源射频识别标签
WO2016058231A1 (zh) 集成触摸屏的液晶显示面板及液晶显示装置
WO2020093529A1 (zh) 显示面板中存储器的保护电路及显示面板
WO2020052137A1 (zh) 电源电路及测试装置
WO2016119471A1 (zh) 上电复位电路
WO2017197732A1 (zh) 一种数字电源提供电路及液晶驱动装置
WO2016179847A1 (zh) 一种液晶显示面板及装置
WO2019010752A1 (zh) 扫描驱动电路及显示装置
WO2019206040A1 (zh) 电源使能电路
WO2020062459A1 (zh) 显示装置的驱动电路、显示装置和显示面板
WO2017215341A1 (zh) 电池电量检测装置及移动电子设备
US20120091937A1 (en) Control circuit for fan
WO2019015058A1 (zh) 放电信号触发电路及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19903500

Country of ref document: EP

Kind code of ref document: A1