WO2020134486A1 - 仿羽毛纱聚酯纤维及其制备方法 - Google Patents

仿羽毛纱聚酯纤维及其制备方法 Download PDF

Info

Publication number
WO2020134486A1
WO2020134486A1 PCT/CN2019/113580 CN2019113580W WO2020134486A1 WO 2020134486 A1 WO2020134486 A1 WO 2020134486A1 CN 2019113580 W CN2019113580 W CN 2019113580W WO 2020134486 A1 WO2020134486 A1 WO 2020134486A1
Authority
WO
WIPO (PCT)
Prior art keywords
feather
yarn
polyester fiber
polyester
reaction
Prior art date
Application number
PCT/CN2019/113580
Other languages
English (en)
French (fr)
Inventor
范红卫
王丽丽
沈建根
Original Assignee
江苏恒力化纤股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒力化纤股份有限公司 filed Critical 江苏恒力化纤股份有限公司
Priority to JP2021525690A priority Critical patent/JP7053957B2/ja
Priority to US17/042,957 priority patent/US10961641B2/en
Publication of WO2020134486A1 publication Critical patent/WO2020134486A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/46Polyesters chemically modified by esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/682Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens
    • C08G63/6824Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6826Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/695Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
    • C08G63/6954Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon derived from polxycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/695Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
    • C08G63/6954Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon derived from polxycarboxylic acids and polyhydroxy compounds
    • C08G63/6956Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/866Antimony or compounds thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3

Definitions

  • the invention belongs to the technical field of modified polyester fiber, and relates to a feather-like yarn polyester fiber and a preparation method thereof.
  • polyester fiber Since polyester fiber has the characteristics of high strength, good elasticity, good heat resistance, good chemical resistance and good dimensional stability of fabrics, it has become an important supplement to natural fibers since its inception, and it has increasingly become the most important fabric in the textile industry With silk.
  • people's requirements for the quantity and quality of fiber materials are also constantly increasing. In order to meet the needs of people in the fields of consumption and decoration, it is necessary to develop differentiated fibers with new properties or added value.
  • polyester fiber Since ordinary polyester fiber is a smooth, uniform and streak-free cylinder in the longitudinal direction, its smooth surface leads to poor saturation force between polyester fibers, which increasingly causes the fiber tip to easily spread on the surface of the fabric to form fluff and fluff and pilling At the same time, due to the poor hygroscopicity and conductivity of polyester, the fibers are prone to static electricity after friction.
  • flat cross-section fibers can improve the gloss, bulkiness, hygroscopicity and elasticity of the fabric to a certain extent. And feel, and its fabric is not easy to pilling. It is a high-end fabric fiber that can be used to make plush toys, high-grade blankets, high-end knitted fabrics, and high-grade woven fabrics. However, flat-shaped fibers are prone to break , Poor profile and poor dyeing.
  • the polyester molecule does not contain hydrophilic groups, it is a hydrophobic fiber, and its molecular structure lacks active groups like cellulose or protein fibers that can bind to the dye.
  • the finished polyester fiber has a partially crystalline supramolecular structure, and the molecular chains of the crystalline parts are parallel to each other, and most of them are in trans conformation, while the amorphous regions are mostly in cis conformation. It can be seen from the molecular structure and crystallization of conventional PET that the molecular arrangement is quite close, which makes the conventional PET fiber have poor dyeing performance.
  • conventional PET fibers such as conventional polyester DTY tow dyeing usually need to be dyed with high-temperature and high-pressure disperse dyes, which requires high equipment, long dyeing time, large energy consumption, and cannot fundamentally change the polyester fiber. Poor dyeing performance The problem.
  • PET fiber waste is not directly cause harm to the environment, but due to the huge number of waste products after its use and the strong resistance to the atmosphere and microbial reagents, the fibers produced from it are not easy to handle, and will Indirectly harm the environment.
  • the main treatment methods of PET fiber waste are: landfill, incineration and recycling. From an environmental point of view, although landfill and incineration are the simplest methods, they have many shortcomings and will also cause certain pollution to the environment.
  • Chemical degradation recovery is an effective and scientific way to treat PET waste.
  • the main methods include alcoholysis, ammonolysis, etc.
  • the products of chemical degradation such as alcohol, acid, ester, etc. can also be reused as chemical raw materials.
  • the natural degradation time is very long (the degradation cycle of conventional PET fibers can reach 16 to 48 years), which greatly limits the application of chemical degradation recovery in the field of PET waste treatment.
  • the purpose of the present invention is to overcome the defects of the prior art that the dyeing performance is poor, the requirements for equipment are high, the dyeing cost is high, and the degradation rate is slow, to provide an excellent dyeing performance, low requirements for dyeing equipment, low dyeing cost, and fast natural degradation rate Feather-like polyester fiber and its preparation method.
  • the preparation method of the feather-like polyester fiber is to adopt a flat four-linked annular spinneret to obtain the modified polyester POY wire from the modified polyester melt system according to the POY process, and then to make the modified polyester POY wire according to the DTY process Modified polyester DTY silk, that is, polyester fiber imitating feather yarn;
  • the orifice of the flat quadruple annular spinneret is a flat quadruple ring.
  • the flat quadruple ring contains four parallel and spaced-apart i, and the four straight i are connected by a straight j that is perpendicular to each other.
  • the end of the j shape coincides with the middle of the i shape;
  • the preparation method of the modified polyester is as follows: terephthalic acid, ethylene glycol, main chain silicon-containing diol and fluorine-containing dibasic acid are uniformly mixed, and then the esterification reaction and the polycondensation reaction are carried out successively; the main chain contains silicon
  • the diol is dimethyl silicon diol, dimethyl diphenyl disiloxane diol or tetramethyl disiloxane diol
  • the fluorine-containing dibasic acid is 2,2-difluoro-1, 3-malonic acid, 2,2-difluoro-1,4-succinic acid, 2,2-difluoro-1,5-glutaric acid or 2,2,3,3-tetrafluoro-1,4 -Succinic acid.
  • the preparation method of the feather-like yarn polyester fiber of the present invention introduces the main chain silicon-containing glycol into the polyester synthesis process, thereby introducing the main chain silicon-containing glycol segment on the polyester molecular chain.
  • the polymer main chain contains -Si-O-Si- bonds, the gap between silicon and oxygen bonds is large, and the internal rotation activation energy is low, which is conducive to the free rotation of atoms and is conducive to improving the interaction force between the polymer chain and the chain
  • the distance between the chain and the chain, on the other hand, the Si atoms on the main chain of the polymer are connected to -CH 3 , -CH 3 is perpendicular to the plane where the Si-O-Si atoms are located, because the Si-C bond is more than the CC bond long, resulting in three H -CH 3 was stretched state, spanned three H atoms in -CH 3 can be rotated freely so that the distance between adjacent large Si-O molecular chains, side chains in addition
  • Disperse dyes are a class of dyes with relatively small molecules and no water-soluble groups in structure. Most of them exist in the form of particles with a particle size between several hundred nanometers and one micrometer.
  • the modified polyester of the present invention begins to be dyed, as the temperature continues to increase, since the polyester macromolecular chain contains -Si-O-Si- bonds, the silicon-oxygen bond is longer than the carbon-oxygen bond, and the internal rotation activation energy is low. The molecular chain containing carbon-oxygen bonds begins to move.
  • the temperature of the dyeing bath needs to be increased to 120-130°C, the movement of the macromolecular chain containing silicon-oxygen bonds is greater than that of the molecular chain containing only carbon-oxygen bonds.
  • the diffusion rate of the particulate dye into the fiber is significantly improved, and the free volume of the cavity formed by the macromolecular chain containing silicon-oxygen bonds is more efficient than the free volume formed by the molecular chain containing only carbon-oxygen bonds, making water, air or Other molecules such as dyes are more likely to penetrate into the modified polyester macromolecules, which has a positive effect on the dyeing and natural degradation of the modified polyester, which can reduce the dyeing temperature, shorten the dyeing time, reduce energy consumption, and improve the fiber. At the same time, it also increases the natural degradation rate of the fiber to a certain extent.
  • the invention also introduces a fluorine-containing dibasic acid through the synthesis process of polyester, thereby introducing a fluorine-containing dibasic acid segment on the polyester molecular chain.
  • the characteristic of the fluorine-containing dibasic acid is that the fluorine atom is on the alpha carbon .
  • the fluorine-containing dibasic acid is introduced in the hydrolysis process, because the fluorine atom is on the ⁇ carbon, the electron withdrawing ability is strong, so that the electron cloud density on the CO bond in the polyester is reduced, and the stability of the tetrahedral negative ion is reduced It is conducive to the nucleophilic addition reaction.
  • the present invention can further improve the degradation rate of polyester by increasing the free volume of the cavity and cooperating with the introduced fluorine-containing dibasic acid.
  • the cross-section of the fiber of the present invention is a flat four-link ring, which can ensure the good gloss, bulkiness, hygroscopicity, elasticity and feel of the fabric, while ensuring that the fiber has good spinnability.
  • the in-line i is an oval, the four in-line i have the same shape and size, are arranged at equal intervals, and are flush with both ends;
  • the distance between the two furthest sides of a single font i is W2, and the distance between the furthest sides of the four font i is L1;
  • the distance between the two furthest sides of a single font i is L2, and the distance between the furthest sides of the font j is W1;
  • L1/W1 is 10-15, and L2/W2 is 3-5; the L1/W1 and L2/W2 of the present invention need to be controlled within a certain range, and its excessively high will affect the spinnability of the fiber, resulting in the occurrence of wool, broken Head, poor profile or poor dyeing; too low, its flatness is low, it is difficult to guarantee its flat fiber related properties (good gloss, bulkiness, moisture absorption, elasticity and feel, no ball);
  • the flat quadruple ring has 2 axes of symmetry.
  • One axis of symmetry is parallel to the inline i and is located between the two inline i.
  • the other axis of symmetry is the axis of symmetry of the inline j.
  • the preparation steps of the modified polyester are as follows:
  • the pressurized pressure is normal pressure ⁇ 0.3MPa, the temperature of the esterification reaction is 250 ⁇ 260 °C, when the amount of water distilled in the esterification reaction reaches more than 90% of the theoretical value is the end point of the esterification reaction;
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to an absolute pressure of 500 Pa or less within 30 to 50 minutes.
  • the reaction temperature is 250 to 260°C and the reaction time is 30 ⁇ 50min, and then continue to evacuate to carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to below 100Pa absolute pressure, the reaction temperature is 270 ⁇ 275°C, and the reaction time is 50 ⁇ 90min.
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.2 to 2.0, and the main chain contains silicon-containing glycol and fluorine-containing dibasic acid.
  • the sum of the added amount is 3.2 to 5.0 mol% (mole percentage) of the added amount of terephthalic acid.
  • the molar ratio of the silicon-containing diol in the main chain to the fluorine-containing dibasic acid is 2 to 3: 1.5 to 2.
  • the added amounts of the catalyst, matting agent and stabilizer are 0.03 to 0.05 wt%, 0.20 to 0.25 wt% and 0.01 to 0.05 wt% (mass percentage) of the added amount of terephthalic acid, respectively.
  • the addition amount of the main chain silicon-containing glycol is preferably in this range, which can not only ensure that the modified fiber has good mechanical properties and crystallinity, but also significantly improve the fiber's dyeing performance and natural degradation rate, which is beneficial to For the production and application of fibers, the addition amount of silicon-containing diol in the main chain can be adjusted according to actual needs, but it should not be too large. If the addition amount is too high, the regularity of the polyester macromolecular structure will be destroyed too much, and the fiber will be crystallized. If the degree and mechanical properties are too large, it is not conducive to the production and application of fibers. If it is too low, the dyeing effect and natural degradation rate will not increase significantly.
  • the addition amount of the fluorine-containing dibasic acid of the present invention is not limited to this, and those skilled in the art can adjust it according to the actual situation, but the adjustment range should not be too large. If the addition amount is too large, the regularity of the polyester macromolecular structure is destroyed too much. If the crystallinity and mechanical properties of the fiber are too large, it is not conducive to the production and application of the fiber. If the addition amount is too low, the effect of improving the natural degradation rate is not obvious.
  • the catalyst is antimony trioxide, ethylene glycol antimony or antimony acetate
  • the matting agent is titanium dioxide
  • the stabilizer is triphenyl phosphate and triphosphate Methyl ester or trimethyl phosphite.
  • the number average molecular weight of the modified polyester is 25,000 to 30,000, and the molecular weight distribution index is 1.8 to 2.2.
  • the flow of the POY process is: metering, spinneret extrusion, cooling, oiling and winding;
  • the parameters of the POY process are: spinning temperature 280 ⁇ 290 °C, cooling temperature 17 ⁇ 20 °C, winding speed 3700 ⁇ 4100m/min;
  • the flow of the DTY process is: guide wire, heating and drawing, false twisting, heat setting and winding;
  • the parameters of the DTY process are: processing speed 450 ⁇ 800m/min, setting overfeed rate 3.5 ⁇ 5.5%, winding overfeed rate 3.0 ⁇ 5.0%, temperature of the first hot box 150 ⁇ 200°C, temperature of the second hot box 120 ⁇ 170°C, draw ratio 1.6 ⁇ 1.9.
  • the invention also provides the feather-like yarn polyester fiber prepared by the method for preparing the feather-like yarn polyester fiber as described above, which is a modified polyester DTY wire with a flat four-ring cross section;
  • the molecular chain of the modified polyester includes a terephthalic acid segment, an ethylene glycol segment, a main chain silicon-containing glycol segment and a fluorine-containing dibasic acid segment.
  • the monofilament fineness of the feather-like yarn polyester fiber is 1.0 to 1.5 dtex
  • the crimp shrinkage rate is 4.0 ⁇ 1.0%
  • the linear density deviation rate is ⁇ 1.2%
  • the breaking strength is 3.0 ⁇ 0.35 cN/dtex
  • breaking strength CV value ⁇ 4.0% breaking elongation rate 22.0 ⁇ 3.0%
  • breaking elongation CV value ⁇ 8.0% curl shrinkage coefficient of variation CV value ⁇ 9.0%
  • the oil content is 2 ⁇ 3wt%
  • the main chain silicon-containing glycol and fluorine-containing dibasic acid of the present invention are added in a small amount, which has little effect on the processing and mechanical properties of polyester fiber imitated feather yarn.
  • the processing performance and mechanical properties of the invention-like feather yarn polyester fiber are comparable to ordinary feather-like yarn polyester fiber (without the addition of silicon-containing glycol and fluorine-containing dibasic acid in the main chain);
  • the dyeing rate of the feather-like yarn polyester fiber at a temperature of 130°C is 89.6-93.7%
  • the K/S value is 23.62 ⁇ 26.54
  • the color fastness to soaping is reached Grade 5
  • dry rubbing fastness reaches grade 5
  • wet rubbing fastness is more than grade 4
  • the dyeing rate of the comparative sample under the temperature condition of 130°C is 82.3%
  • the K/S value is 20.11
  • color fastness to soaping is less than 5 grades
  • polyester staining is 4 to 5 grades
  • cotton staining is 4 grades
  • dry rubbing fastness is 4 to 5 grades
  • wet rubbing fastness is 3 to 4 grades
  • comparative sample The difference from the one-step spinning elastic composite yarn of the present invention is only that its material is ordinary polyester;
  • Feather-like yarn polyester fiber is placed at a temperature of 25°C and a relative humidity of 65% for 60 months, its intrinsic viscosity drops by 13 to 20%, and conventional polyester under the same conditions, its intrinsic viscosity drops by less than 5% .
  • the fluorine-containing dibasic acid is introduced into the polyester macromolecular chain in the present invention, since the fluorine atom is on the alpha carbon, the electron withdrawing ability is strong, which promotes the nucleophilic addition reaction and makes the ester in the polyester macromolecular chain The bond is broken, which significantly improves the degradation rate.
  • the addition of silicon-containing diols in the main chain increases the free volume of voids in the polyester and further increases the natural degradation rate.
  • the macromolecular chains in the polymer are not completely tightly packed, there are always gaps between the macromolecular chains, and the volume of this part of the void is the free volume.
  • the permeability and diffusivity of the small molecule are related to the size of the void (ie, the size of the free volume) in the polymer structure.
  • the larger the size of the free volume the higher the permeability of small molecules and the better the diffusibility.
  • Free volume is divided into cavity free volume and slit free volume.
  • the cavity free body has a larger space size than the slit free volume.
  • the cavity free volume is more obvious than the slit free volume.
  • the size and type of free volume mainly depend on the structure of the polymer.
  • the main factors affecting the structure of the polymer are steric hindrance, side group size, side group structure, etc.
  • When a position on the polymer main chain is substituted with a pendant group it will inevitably cause changes in the main chain activity, thereby changing the interaction force between chains, and the distance between chains will also change accordingly. This leads to changes in cohesive energy and free volume.
  • the polarity, size, and length of the substituents on the side chain of the polymer have certain effects on the rigidity of the molecular chain, the interaction between molecules, and the free volume fraction of the polymer structure. Therefore, different substituents have different effects, which often lead to different permeation and separation properties of polymers.
  • the invention significantly improves the dyeing performance and natural degradation rate of the polyester fiber of the feather-like yarn by introducing a diol containing silicon in the main chain into the polyester molecular chain.
  • the diol containing silicon in the main chain is dimethyl silicon glycol , Dimethyl diphenyl disiloxane diol or tetramethyl disiloxane diol, the structural formulas are as follows:
  • the rigidity of the polymer chain depends on the size of the rotating barrier in the molecular chain.
  • the structure of the main chain is different. Among them, the bond angle and bond length are different or the bonding method is different. The rigidity is also different. After the alcohol, the polymer main chain contains -Si-O-Si- bonds, the silicon-oxygen bond gap is large, and the internal rotation activation energy is low, which is conducive to the free rotation of the atoms.
  • the Si atoms on the polymer main chain and- CH 3 is connected, -CH 3 is perpendicular to the plane where Si-O-Si atoms are located, and because the Si-C bond is longer than the CC bond, the three H in -CH 3 are in an open state, the three in -CH 3 A stretched H atom can rotate freely, making the distance between adjacent Si-O molecular segments larger, and the inert methyl group of the outer chain hinders the access of the polymer, so the polymer material is very compliant and the void free volume Compared with the polymer material without introducing a silicon-containing diol in the main chain, when the Si atom on the main chain of the polymer is connected to the long-chain branched substituent, the main increase is the free volume of the slit.
  • the large size is small, and the effect of improving the permeability and diffusivity of small molecules is limited.
  • the molecular chains are prone to entanglement, which is not conducive to the increase of free volume.
  • the increase of the free volume of the cavity will make it easier for water, air or other molecules such as dyes to penetrate into the interior of the modified polyester macromolecule, which will have a positive effect on the dyeing and natural degradation of the modified polyester, which can reduce the dyeing temperature and shorten
  • the dyeing time reduces energy consumption, improves the dyeing rate of the fiber, and also increases the natural degradation rate of the fiber.
  • the oxidative degradation and hydrolysis rate of polymer materials are closely related to the rate of oxygen penetration into the material.
  • the macromolecular structure of polyester has high rigidity, low free volume fraction, and very low oxygen permeability.
  • Polyester in natural environment Oxidation and hydrolysis mainly take place on the surface of the polyester, which is one of the main reasons for the slow degradation of polyester in the natural environment.
  • the increase in the free volume of the space also facilitates the penetration of oxygen into the polyester macromolecule, which in turn has It is beneficial to improve the oxidative degradation and hydrolysis rate of polyester.
  • the hydrolysis and degradation of polyester under alkaline conditions is a nucleophilic addition-elimination process.
  • OH - attacks the C atom of the ester carbonyl RCOOR ⁇
  • a nucleophilic addition reaction occurs, forming an intermediate (ie, four-sided Negative ion of the tetrahedron)
  • the negative ion of the tetrahedron can eliminate OR ⁇ to obtain carboxylic acid RCOOH, break the ester bond, and at the same time OR ⁇ combines with H + to obtain alcohol HOR ⁇ .
  • the tetrahedral negative ion structure formed during the hydrolysis process is crowded and steric hindrance is large, which is not conducive to the nucleophilic addition reaction, so the degradation rate of polyester is slow.
  • the present invention also significantly improves the degradation rate of polyester by introducing a special structure of fluorine-containing dibasic acid into the polyester molecular chain.
  • the special feature of fluorine-containing dibasic acid is that the fluorine atom is on the alpha carbon.
  • the degradation rate of the polyester will not be significantly increased, because the presence of electron withdrawing groups on the ⁇ carbon only affects It is limited to the adjacent carbon and has little effect on the CO bond in the ester bond, so it has little effect on the nucleophilic addition reaction of the OH - attack ester carbonyl group.
  • the addition of fluorine-containing dibasic acid to the raw material for polyester preparation can significantly promote the progress of nucleophilic addition reaction, thereby increasing the degradation rate of polyester.
  • the main chain silicon-containing glycol and fluorine-containing dibasic acid can cooperate with each other to further improve the natural degradation rate of the polyester.
  • the method for preparing the feather-like yarn polyester fiber of the present invention improves the natural degradation rate of the feather-like yarn polyester fiber by introducing fluorine-containing dibasic acid into the polyester;
  • the preparation method of the feather-like polyester fiber of the present invention modifies the polyester by introducing a diol containing silicon in the main chain into the polyester to increase the void free volume and reduce the dyeing temperature, Shorten the dyeing time, improve the fiber dyeing rate, reduce energy consumption, while increasing the spinnability and natural degradation rate;
  • the feather-like polyester fiber of the present invention has excellent dyeing performance, fast natural degradation rate, good mechanical properties, and broad application prospects.
  • FIG. 1 is a schematic structural view of a flat four-connected annular spinneret of the present invention.
  • a method for preparing feather-like polyester fiber the steps are as follows:
  • the esterification reaction is carried out under pressure in a nitrogen atmosphere, the pressure is 0.3MPa, the temperature of the esterification reaction is 250°C, and the end point of the esterification reaction is when the amount of water distilled in the esterification reaction reaches 90.1% of the theoretical value ,
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.2, and the sum of the added amounts of dimethyl silicon glycol and 2,2-difluoro-1,3-malonic acid is the added amount of terephthalic acid 3.2mol%, the molar ratio of dimethylsilyl glycol to 2,2-difluoro-1,3-malonic acid is 3:1.5, and the addition amounts of antimony trioxide, titanium dioxide and triphenyl phosphate
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure of 499 Pa within 30 minutes, the reaction temperature is 250 °C, the reaction time is 30 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 99Pa absolute pressure, the reaction temperature is 270°C, the reaction time is 50min, and a modified polyester with a number average molecular weight of 25,000 and a molecular weight distribution index of 1.8 is prepared;
  • Modified polyester is obtained by measuring, extruding, cooling, lubricating and winding flat quadruple spinneret.
  • Polyester POY filament with flat quadruple loop is obtained.
  • the parameters of POY process are: spinning temperature 285°C , The cooling temperature is 20°C, and the winding speed is 4000m/min. Among them, the spinning hole of the flat quadruple ring spinneret is a flat quadruple ring.
  • the flat quadruple ring contains four parallel, two ends The oblong i-shapes that are flush and arranged at equal intervals, the four i-shapes i are connected by a z-shape j perpendicular to each other, the end of the j-shape j coincides with the middle of the i-shape, and the four i-shape i Same as the size, along the direction parallel to the j-shaped j, the distance between the two furthest sides of a single-shaped i is W2, and the distance between the furthest two sides of the four i-shaped i is L1;
  • the flat four-link ring has 2 symmetry axes;
  • a polyester DTY yarn with a flattened cross-section is prepared to obtain a feather-like polyester fiber;
  • the parameters of the DTY process are : Processing speed 600m/min, setting overfeed rate 4.5%, winding overfeed rate 4%, first hot box temperature 170°C, second hot box temperature 150°C, draw ratio 1.8.
  • Feather-like yarn polyester fiber has a monofilament fineness of 1.2 dtex, a crimp shrinkage rate of 3.0%, a linear density deviation rate of 1.0%, a breaking strength of 3.35 cN/dtex, a breaking strength CV of 3.6%, and a breaking elongation 25%, breaking elongation CV value is 7.5%, crimp shrinkage coefficient of variation CV value is 8.4%, boiling water shrinkage rate is 6.5%, oil content rate is 3wt%;
  • Feather-like yarn polyester fiber has a dyeing rate of 89.6% at a temperature of 130°C, a K/S value of 23.62, a color fastness to soaping up to grade 5, a dry rubbing fastness to grade 5, and a wet rubbing fastness Level 4-5;
  • Feather-like yarn polyester fiber was left at a temperature of 25°C and a relative humidity of 65% for 60 months, and its intrinsic viscosity decreased by 13%.
  • a method for preparing feather-like yarn polyester fiber the steps are basically the same as in Example 1, except that step (1) does not add 2,2-difluoro-1,3-malonic acid and dimethyl Based on silicon glycol, the monofilament fineness of the feather-like polyester fiber obtained is 1.2dtex, the crimp shrinkage rate is 3.1%, the linear density deviation rate is 1.1%, the breaking strength is 3.35cN/dtex, the breaking strength CV value It is 3.6%, the elongation at break is 24%, the CV at elongation at break is 7.4%, the coefficient of variation CV of the crimp shrinkage is 8.2%, the shrinkage at boiling water is 6.5%, and the oil content is 2.8wt%; 1Under the same test conditions, the dyeing rate of feather-like polyester fiber at a temperature of 130°C is 82.3%, the K/S value is 20.11, the color fastness to soaping is less than 5, and the polyester stains It is grade 4-5, cotton stain is grade 4, dry rubbing fastness is grade 4-5
  • Example 1 Compared with Example 1, it can be found that the addition of 2,2-difluoro-1,3-malonic acid and dimethyl silicon glycol in the present invention significantly improves the natural degradation performance and dyeing performance of the fiber, while 2,2- The addition of difluoro-1,3-malonic acid and dimethyl silicon glycol has little effect on other properties of the fiber, and it does not affect its processing properties and mechanical properties.
  • a method for preparing a feather-like polyester fiber the steps of which are basically the same as in Example 1, except that in step (1), 1,6-hexanediol is used instead of dimethyl silicon glycol.
  • Example 1 Under the same conditions as other test conditions, the dyeing rate of feather-like polyester fiber at a temperature of 130°C is 85.9%, the K/S value is 22.58, the polyester stain is 4 to 5 grades, and the cotton stain is It is grade 4, dry rubbing fastness reaches grade 4 to grade 5, and wet rubbing fastness is grade 4.
  • Example 1 Compared with Example 1, it can be found that due to the introduction of silicon-containing diol in the main chain, the polymer main chain contains -Si-O-Si- bonds, which makes the gap between the silicon-oxygen bonds larger and the internal rotation activation energy lower. It is conducive to the free rotation of atoms, thereby increasing the free volume of the cavity, so it is more conducive to improving the dyeing performance of the fiber relative to the long-chain branched substituent.
  • step 3 uses 3,3-difluoroglutaric acid instead of 2,2-difluoro-1 , 3-malonic acid, feather-like polyester fiber, after incubating for 60 months under the conditions of 25°C and 65% relative humidity, its intrinsic viscosity decreased by 4.7%.
  • Example 1 Compared with Example 1, it can be found that the fluorine-containing dibasic acid with a fluorine atom in the alpha carbon is more conducive to improving the natural degradation performance of the fiber than the fluorine-containing dibasic acid with the fluorine atom in the beta carbon because of the presence on the beta carbon
  • the electron-withdrawing group is generated, the effect is limited to the adjacent carbon, and the effect on the CO bond in the ester bond is very small. Therefore, the effect of the nucleophilic addition reaction of the OH - attack ester carbonyl group is small, and It has little effect on the natural degradation process of fibers.
  • a method for preparing feather-like polyester fiber the steps are as follows:
  • terephthalic acid ethylene glycol, dimethyl silicon glycol and 2,2-difluoro-1,4-succinic acid into a slurry, add ethylene glycol antimony, titanium dioxide and trimethyl phosphate and mix well ,
  • the esterification reaction is carried out under normal pressure in a nitrogen atmosphere, the temperature of the esterification reaction is 260 °C, when the amount of water distilled in the esterification reaction reaches 95% of the theoretical value is the end point of the esterification reaction, terephthalic acid
  • the molar ratio with ethylene glycol is 1:2.0, and the sum of the added amounts of dimethylsilyl glycol and 2,2-difluoro-1,4-succinic acid is 5.0mol% of the added amount of terephthalic acid.
  • the molar ratio of methyl silicon glycol to 2,2-difluoro-1,4-succinic acid is 3:2, and the addition amounts of ethylene glycol antimony, titanium dioxide and trimethyl phosphate are the addition amounts of terephthalic acid, respectively 0.05wt%, 0.25wt% and 0.05wt%;
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to an absolute pressure of 450 Pa within 50 minutes, the reaction temperature is 260 °C, the reaction time is 50 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 90Pa absolute pressure, the reaction temperature is 275°C, the reaction time is 90min, and a modified polyester with a number average molecular weight of 30,000 and a molecular weight distribution index of 2.2 is prepared;
  • Modified polyester is obtained by measuring, extruding, cooling, oiling and winding flat quadruple spinneret.
  • Polyester POY filament with flat quadruple loop is obtained.
  • the parameters of POY process are: spinning temperature 280°C , Cooling temperature 17 °C, winding speed 3700m/min;
  • the structure of the flat quadruple annular spinneret is basically the same as that of the spinneret in Example 1, except that L1/W1 is 10 and L2/W2 is 3.
  • the flat four-link ring has 2 symmetry axes;
  • a polyester DTY yarn with a flattened cross-section is prepared to obtain a feather-like polyester fiber;
  • the parameters of the DTY process are : Processing speed 600m/min, setting overfeed rate 4.5%, winding overfeed rate 4%, first hot box temperature 170°C, second hot box temperature 150°C, draw ratio 1.8.
  • Feather yarn polyester fiber has a monofilament fineness of 1.0 dtex, a crimp shrinkage rate of 5.0%, a linear density deviation rate of 1.2%, a breaking strength of 2.65 cN/dtex, a breaking strength CV of 4.0%, and a breaking elongation 19%, the breaking elongation CV value is 7.8%, the coefficient of variation of crimp shrinkage rate CV value is 8.8%, the boiling water shrinkage rate is 7.4%, and the oil content is 2wt%;
  • Feather-like yarn polyester fiber has a dyeing rate of 93.7% at a temperature of 130°C, a K/S value of 26.54, a color fastness to soaping up to grade 5, a dry rubbing fastness to grade 5, and a wet rubbing fastness Level 5;
  • a method for preparing feather-like polyester fiber the steps are as follows:
  • the esterification reaction is carried out under pressure in a nitrogen atmosphere.
  • the pressure is 0.2 MPa.
  • the temperature of the esterification reaction is 255°C. When the amount of water distilled in the esterification reaction reaches 92% of the theoretical value, it is the end point of the esterification reaction.
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.6, and the sum of the added amounts of dimethylsilyl glycol and 2,2-difluoro-1,5-glutaric acid is 3.4 mol%, the molar ratio of dimethylsilyl glycol to 2,2-difluoro-1,5-glutaric acid is 2:1.5, and the added amounts of antimony acetate, titanium dioxide and trimethyl phosphite are terephthalic acid respectively 0.04wt%, 0.22wt%, and 0.3wt% of formic acid addition;
  • the polycondensation reaction in the low-vacuum stage starts under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to 480 Pa absolute pressure within 40 minutes, the reaction temperature is 255 °C, the reaction time is 40 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 95Pa absolute pressure, the reaction temperature is 272°C, the reaction time is 70min, and a modified polyester with a number average molecular weight of 27000 and a molecular weight distribution index of 2.0 is prepared;
  • Modified polyester is metered, extruded from a flat quadruple spinneret, cooled, lubricated, and wound to obtain a polyester POY filament with a flat quadruple cross section.
  • the parameters of the POY process are: spinning temperature 290°C , Cooling temperature 20 °C, winding speed 4100m/min;
  • the structure of the flat quadruple annular spinneret is basically the same as that of the spinneret in Example 1, except that L1/W1 is 15, and L2/W2 is 5.
  • the flat quadruple ring has 2 symmetry axes;
  • a polyester DTY yarn with a flattened cross-section is prepared to obtain a feather-like polyester fiber;
  • the parameters of the DTY process are : Processing speed 600m/min, setting overfeed rate 4.5%, winding overfeed rate 4%, first hot box temperature 170°C, second hot box temperature 150°C, draw ratio 1.8.
  • Feather-like yarn polyester fiber has a monofilament fineness of 1.5 dtex, a crimp shrinkage rate of 4.7%, a linear density deviation rate of 1.0%, a breaking strength of 3.30 cN/dtex, a breaking strength CV of 3.6%, and a breaking elongation 24%, breaking elongation CV value is 7.5%, crimp shrinkage coefficient of variation CV value is 8.5%, boiling water shrinkage rate is 6.8%, oil content rate is 2.7% by weight;
  • Feather-like yarn polyester fiber has a dyeing rate of 90.3% at a temperature of 130°C, a K/S value of 24.62, a color fastness to soaping up to grade 5, a dry rubbing fastness to grade 5, and a wet rubbing fastness Level 4-5;
  • a method for preparing feather-like polyester fiber the steps are as follows:
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.9, dimethyldiphenyldisiloxanediol and 2,2,3,3-tetrafluoro-
  • the sum of the addition of 1,4-succinic acid is 3.5mol% of the addition of terephthalic acid, dimethyldiphenyldisiloxanediol and 2,2,3,3-tetrafluoro-1
  • the molar ratio of 4-succinic acid is 2:2, and the addition amounts of ethylene glycol antimony, titanium dioxide and triphenyl phosphate are 0.03wt%, 0.20wt% and 0.05wt% of the addition amount of terephthalic acid, respectively;
  • the polycondensation reaction in the low-vacuum stage starts under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to 480 Pa absolute pressure within 35 minutes, the reaction temperature is 258 °C, the reaction time is 45 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to an absolute pressure of 96Pa, the reaction temperature is 270°C, the reaction time is 55min, and a modified polyester with a number average molecular weight of 26000 and a molecular weight distribution index of 1.9 is prepared;
  • Modified polyester is obtained by measuring, extruding, cooling, lubricating and winding flat quadruple spinneret.
  • Polyester POY filament with flat quadruple loop is obtained.
  • the parameters of POY process are: spinning temperature 285°C , Cooling temperature 18 °C, winding speed 3800m/min;
  • the structure of the flat quadruple annular spinneret is basically the same as the spinneret in Example 1, except that L1/W1 is 12, and L2/W2 is 3.5, the flat four-link ring has 2 symmetry axes;
  • a polyester DTY yarn with a flattened cross-section is prepared to obtain a feather-like polyester fiber;
  • the parameters of the DTY process are : Processing speed 450m/min, setting overfeed rate 3.5%, winding overfeed rate 3.0%, first hot box temperature 150°C, second hot box temperature 120°C, draw ratio 1.6.
  • Feather yarn polyester fiber has a monofilament fineness of 1.2 dtex, a crimp shrinkage rate of 4.7%, a linear density deviation rate of 1.0%, a breaking strength of 3.2 cN/dtex, a breaking strength CV value of 3.7%, and a breaking elongation 24%, the breaking elongation CV value is 7.8%, the coefficient of variation of crimp shrinkage rate CV value is 8.6%, the boiling water shrinkage rate is 7%, and the oil content is 2.6wt%;
  • Feather-like yarn polyester fiber has a dyeing rate of 90.3% at a temperature of 130°C, a K/S value of 23.88, a color fastness to soaping up to grade 5, a dry rubbing fastness to grade 5, and a wet rubbing fastness Level 4-5;
  • Feather-like yarn polyester fiber was left at a temperature of 25°C and a relative humidity of 65% for 60 months, and its intrinsic viscosity decreased by 15%.
  • a method for preparing feather-like polyester fiber the steps are as follows:
  • the pressure is 0.15 MPa
  • the temperature of the esterification reaction is 260°C
  • the amount of water distilled in the esterification reaction reaches 96% of the theoretical value is The end point of the esterification reaction
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.2
  • the amount of methyldiphenyldisiloxanediol and 2,2-difluoro-1,3-malonic acid added The sum is 4.2mol% of terephthalic acid
  • the molar ratio of methyldiphenyldisiloxanediol to 2,2-difluoro-1,3-malonic acid is 2.5:1.5
  • antimony acetate
  • the added amounts of titanium dioxide and triphenyl phosphate are 0.04wt%, 0.25wt% and 0.04wt% of the added amount of terephthalic acid, respectively;
  • the polycondensation reaction in the low vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to 480 Pa absolute pressure within 50 minutes, the reaction temperature is 255 °C, the reaction time is 50 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 95Pa absolute pressure, the reaction temperature is 275°C, the reaction time is 80min, and a modified polyester with a number average molecular weight of 29000 and a molecular weight distribution index of 2.1 is prepared;
  • Modified polyester is obtained by measuring, extruding, cooling, lubricating and winding flat quadruple spinneret.
  • Polyester POY filament with flat quadruple loop is obtained.
  • the parameters of POY process are: spinning temperature 285°C , Cooling temperature 18 °C, winding speed 3800m/min;
  • the structure of the flat quadruple annular spinneret is basically the same as the spinneret in Example 1, except that L1/W1 is 12, and L2/W2 is 3.5, the flat four-link ring has 2 symmetry axes;
  • a polyester DTY yarn with a flattened cross-section is prepared to obtain a feather-like polyester fiber;
  • the parameters of the DTY process are :Processing speed 800m/min, setting overfeed rate 5.5%, winding overfeed rate 5.0%, first hot box temperature 200°C, second hot box temperature 170°C, draw ratio 11.9.
  • Feather-like yarn polyester fiber has a monofilament fineness of 1.2 dtex, a crimp shrinkage rate of 3.5%, a linear density deviation rate of 1.1%, a breaking strength of 2.9 cN/dtex, a breaking strength CV of 3.8%, and a breaking elongation 22%, the breaking elongation CV value is 7.8%, the coefficient of variation of crimp shrinkage rate CV value is 8.8%, the boiling water shrinkage rate is 6.8%, and the oil content is 2.5wt%;
  • Feather-like yarn polyester fiber has a dyeing rate of 91.2% at a temperature of 130°C, a K/S value of 24.72, a color fastness to soaping up to grade 5, a dry rubbing fastness to grade 5, and a wet rubbing fastness Level 5;
  • Feather-like yarn polyester fiber was placed under the conditions of 25°C and 65% relative humidity for 60 months, and its intrinsic viscosity decreased by 17%.
  • a method for preparing feather-like polyester fiber the steps are as follows:
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.2, and the sum of the added amounts of tetramethyldisiloxanediol and 2,2-difluoro-1,4-succinic acid is terephthalic acid 4.5mol% of formic acid added, the molar ratio of tetramethyldisiloxanediol to 2,2-difluoro-1,4-succinic acid is 2.5:2, antimony acetate, titanium dioxide and triphenyl phosphate
  • the addition amount is 0.05wt%, 0.20wt% and 0.01wt% of the addition amount of terephthalic acid respectively;
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to an absolute pressure of 450 Pa within 30 minutes, the reaction temperature is 260 °C, the reaction time is 30 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to an absolute pressure of 92Pa, the reaction temperature is 272°C, the reaction time is 85min, and a modified polyester with a number average molecular weight of 28000 and a molecular weight distribution index of 1.8 is prepared;
  • Modified polyester is metered, extruded from a flat quadruple spinneret, cooled, oiled and wound to obtain polyester POY filaments with flat quadruple loops in cross section.
  • the parameters of the POY process are: spinning temperature 287°C , Cooling temperature 20 °C, winding speed 3900m/min;
  • the structure of the flat quadruple annular spinneret is basically the same as that of the spinneret in Example 1, except that L1/W1 is 14, and L2/W2 is 5.
  • the flat quadruple ring has 2 symmetry axes;
  • a polyester DTY yarn with a flattened cross-section is prepared to obtain a feather-like polyester fiber;
  • the parameters of the DTY process are : Processing speed 500m/min, setting overfeed rate 4%, winding overfeed rate 4.2%, first hot box temperature 180°C, second hot box temperature 150°C, draw ratio 1.8.
  • Feather yarn polyester fiber has a monofilament fineness of 1.4 dtex, a crimp shrinkage rate of 4.7%, a linear density deviation rate of 1.2%, a breaking strength of 2.8 cN/dtex, a breaking strength CV value of 4.0%, and a breaking elongation 20%, the breaking elongation CV value is 7.8%, the coefficient of variation of crimp shrinkage rate CV value is 8.8%, the boiling water shrinkage rate is 7.5%, and the oil content rate is 2.7% by weight;
  • Feather-like yarn polyester fiber has a dyeing rate of 92.7% at a temperature of 130°C, a K/S value of 24.8, a color fastness to soaping up to grade 5, a dry rubbing fastness to grade 5, and a wet rubbing fastness Level 5;
  • a method for preparing feather-like polyester fiber the steps are as follows:
  • esterification reaction is carried out under pressure in a nitrogen atmosphere.
  • the pressure is 0.2 MPa.
  • the temperature of the esterification reaction is 255°C.
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.4, and the sum of the added amounts of tetramethyldisiloxanediol and 2,2-difluoro-1,5-glutaric acid is 4.8mol% of terephthalic acid is added, the molar ratio of tetramethyldisiloxanediol to 2,2-difluoro-1,5-glutaric acid is 3:2, antimony trioxide, titanium dioxide and The addition amount of trimethyl phosphite is 0.03wt%, 0.22wt% and 0.01wt% of the addition amount of terephthalic acid respectively;
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure within 490 Pa, the reaction temperature is 255 °C, the reaction time is 50 min, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 95Pa absolute pressure, the reaction temperature is 275°C, the reaction time is 55min, and a modified polyester with a number average molecular weight of 25,000 and a molecular weight distribution index of 2.2 is prepared;
  • Modified polyester is obtained by measuring, extruding, cooling, oiling and winding flat quadruple spinneret to obtain polyester POY yarn with flat quadruple loop in cross section.
  • the parameters of POY process are: spinning temperature 287 °C, cooling temperature 20 °C, winding speed 3900m/min;
  • the structure of the flat quadruple annular spinneret is basically the same as that of the spinneret in Example 1, except that L1/W1 is 14, L2/W2 It is 5, and the flat quadruple ring has 2 axes of symmetry;
  • a polyester DTY yarn with a flattened cross-section is prepared to obtain a feather-like polyester fiber;
  • the parameters of the DTY process are :Processing speed 500m/min, setting overfeed rate 5%, winding overfeed rate 4.2%, first hot box temperature 180°C, second hot box temperature 150°C, draw ratio 1.8.
  • Feather-like yarn polyester fiber has a monofilament fineness of 1.5 dtex, a crimp shrinkage rate of 5.0%, a linear density deviation rate of 1.1%, a breaking strength of 2.7 cN/dtex, a breaking strength CV value of 3.9%, and an elongation at break 20%, the breaking elongation CV value is 8.0%, the coefficient of variation of crimp shrinkage rate CV value is 8.8%, the boiling water shrinkage rate is 7.4%, and the oil content rate is 2.2 wt%;
  • Feather-like yarn polyester fiber has a dyeing rate of 93.2% at a temperature of 130°C, a K/S value of 25.54, a color fastness to soaping up to grade 5, a dry rubbing fastness to grade 5, and a wet rubbing fastness Level 5;
  • Feather-like yarn polyester fiber was placed under the conditions of 25°C and 65% relative humidity for 60 months, and its intrinsic viscosity decreased by 19%.
  • a method for preparing feather-like polyester fiber the steps are as follows:
  • terephthalic acid ethylene glycol, tetramethyldisiloxane diol and 2,2,3,3-tetrafluoro-1,4-succinic acid in a molar ratio of 1:2.0:0.05 to form a slurry
  • the esterification reaction is carried out under pressure in a nitrogen atmosphere, the pressure is 0.3MPa, the temperature of the esterification reaction is 255 °C, when the esterification reaction When the distillation amount of water reaches 92% of the theoretical value, it is the end point of the esterification reaction.
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.2.
  • Tetramethyldisiloxanediol and 2,2,3,3- The sum of the added amount of tetrafluoro-1,4-succinic acid is 5.0mol% of the added amount of terephthalic acid, tetramethyldisiloxanediol and 2,2,3,3-tetrafluoro-1,
  • the molar ratio of 4-succinic acid is 3:1.5, and the addition amounts of ethylene glycol antimony, titanium dioxide and triphenyl phosphate are 0.05wt%, 0.25wt% and 0.01wt% of the addition amount of terephthalic acid, respectively;
  • the polycondensation reaction in the low-vacuum stage starts under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to 480 Pa absolute pressure within 50 minutes, the reaction temperature is 260 °C, the reaction time is 40 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 95Pa absolute pressure, the reaction temperature is 272°C, the reaction time is 90min, and a modified polyester with a number average molecular weight of 29000 and a molecular weight distribution index of 2.1 is prepared;
  • Modified polyester is obtained by measuring, extruding, cooling, oiling and winding flat quadruple spinneret to obtain polyester POY yarn with flat quadruple loop in cross section.
  • the parameters of POY process are: spinning temperature 287 °C, cooling temperature 20°C, winding speed 3900m/min;
  • the structure of the flat quadruple annular spinneret is basically the same as that of the spinneret in Example 1, except that L1/W1 is 14, L2/W2 It is 5, and the flat quadruple ring has 2 axes of symmetry;
  • a polyester DTY yarn with a flattened cross-section is prepared to obtain a feather-like polyester fiber;
  • the parameters of the DTY process are :Processing speed 500m/min, setting overfeed rate 5%, winding overfeed rate 4.2%, first hot box temperature 180°C, second hot box temperature 150°C, draw ratio 1.8.
  • Feather yarn polyester fiber has a monofilament fineness of 1.5 dtex, a crimp shrinkage rate of 5.0%, a linear density deviation rate of 1.2%, a breaking strength of 2.65 cN/dtex, a breaking strength CV value of 4.0%, and an elongation at break 24%, breaking elongation CV value is 7.2%, crimp shrinkage coefficient of variation CV value is 9.0%, boiling water shrinkage rate is 7.4%, oil content rate is 2wt%;
  • Feather-like yarn polyester fiber has a dyeing rate of 93.4% at a temperature of 130°C, a K/S value of 26.34, a color fastness to soaping up to grade 5, a dry rubbing fastness to grade 5, and a wet rubbing fastness Level 5;
  • the feather-like yarn polyester fiber was left at a temperature of 25°C and a relative humidity of 65% for 60 months, and its intrinsic viscosity decreased by 20%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明涉及一种仿羽毛纱聚酯纤维及其制备方法,制备方法为:先将对苯二甲酸、乙二醇、主链含硅的二元醇和含氟二元酸混合均匀后先后进行酯化反应和缩聚反应制得改性聚酯,然后采用扁平四连环形喷丝板按POY工艺由改性聚酯熔体制得改性聚酯POY丝后再按DTY工艺将改性聚酯POY丝制成改性聚酯DTY丝,即得仿羽毛纱聚酯纤维;扁平四连环形喷丝板的喷丝孔为扁平四连环形。制得的产品在130℃的温度条件下的上染率为89.6~93.7%,在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降13~20%。本发明的制备方法,工艺简单,成本低廉;制得的产品,染色性能优良,自然降解速率快,应用前景好。

Description

仿羽毛纱聚酯纤维及其制备方法 技术领域
本发明属于改性聚酯纤维技术领域,涉及仿羽毛纱聚酯纤维及其制备方法。
背景技术
由于聚酯纤维具有强度高、弹性好、耐热性能好、耐化学品性能好及织物尺寸稳定性好的特性,其自问世以来作为天然纤维重要的补充,日益成为纺织行业中最主要的织物用丝。近年来随着人类生活水平的不断提高,在服用、装饰及产业用聚酯产品应用领域,人们对纤维材料的数量与品质的要求也在不断提高。为了适应人们在服用和装饰等领域的需求,需要开发具有新性能或附加值的差别化纤维。
由于普通聚酯纤维在纵向上为光滑、均匀且无条痕的圆柱体,其光滑的表面导致聚酯纤维间饱和力较差,日益导致纤维尖端容易散露在织物表面形成绒毛进而起毛起球,同时由于聚酯的吸湿性和导电性较差,纤维摩擦后极易产生静电。针对普通圆形截面纤维的以上问题,行业对纤维截面异形化进行了相关研究,研究发现扁平型截面的纤维(仿羽毛纱纤维)能够一定程度改善其织物的光泽、蓬松性、吸湿性、弹性及手感,同时其制得织物不易起球,其是一种高档面料用纤维,可用于制作毛绒玩具、高级毛毯、高档针织物和高级机织物等,但扁平型截面的纤维容易出现断头、异形度差及染色不良等问题。
但由于涤纶分子上不含有亲水性基团,属于疏水性纤维,其分子结构中缺少像纤维素或蛋白质纤维那样的能与染料发生结合的活性基团。涤纶纤维成品为部分结晶的超分子结构,其结晶部分分子链相互平行,大多呈反式构象,而无定形区则多呈顺式构象。由常规PET的分子结构及结晶情况可知,其分子排列相当紧密,使得常规PET纤维的染色性能差。因此常规PET纤维如常规的涤纶DTY丝束染色通常需在高温高压下采用分散染料进行染色,其对设备要求高,染色时间长,能耗大,且不能够从根本上改变涤纶纤维染色性能差的问题。
同时,随着PET产业的快速发展,虽然PET不会直接对环境造成危害,但由于其使用后的废品数目巨大且对大气和微生物试剂的抵抗性很强,其制得纤维废弃不易处理,会给环境间接造成危害。目前PET纤维废弃物的处理方法主要有:填埋、焚烧及回收利用。从环境角度而言,填埋和焚烧虽然是最简单的方法,却有许多缺陷,对环境亦会造成一定的污染。化学降解回收是处理PET废弃物有效而科学的途径,主要方法包括醇解、氨解等,化学降解的产物如醇、酸、酯等还可以作为化学原料重新利用。但由于PET结构致密、结晶度高,自然降解时间很长(常规PET纤维的降解周期可达16~48年),这大大限制了化学降解回收在PET废弃物处理领域的应用。
因此,开发一种染色性能优良、对染色设备要求低、染色成本低廉且自然降解速率快的仿羽毛纱聚酯纤维极具现实意义。
发明内容
本发明的目的是克服现有技术染色性能较差、对设备要求高、染色成本高且降解速率慢的缺陷,提供一种染色性能优良、对染色设备要求低、染色成本低廉且自然降解速率快的仿羽毛纱聚酯纤维及其制备方法。
为达到上述目的,本发明采用的技术方案如下:
仿羽毛纱聚酯纤维的制备方法,采用扁平四连环形喷丝板按POY工艺由改性聚酯熔体制得改性聚酯POY丝后,再按DTY工艺将改性聚酯POY丝制成改性聚酯DTY丝,即得仿羽毛纱聚酯纤维;
扁平四连环形喷丝板的喷丝孔为扁平四连环形,扁平四连环形包含四个相互平行且间隔排列的一字形i,四个一字形i通过一个与其相互垂直的一字形j连接,一字形j的端头与一字形i的中部重合;
所述改性聚酯的制备方法为:将对苯二甲酸、乙二醇、主链含硅的二元醇和含氟二元酸混合均匀后先后进行酯化反应和缩聚反应;主链含硅的二元醇为二甲基硅二醇、二甲基二苯基二硅氧烷二醇或四甲基二硅氧烷二醇,含氟二元酸为2,2-二氟-1,3-丙二酸、2,2-二氟-1,4-丁二酸、2,2-二氟-1,5-戊二酸或2,2,3,3-四氟-1,4-丁二酸。
本发明的仿羽毛纱聚酯纤维的制备方法,通过聚酯合成过程中引入主链含硅的二元醇,从而在聚酯分子链上引入了主链含硅的二元醇链段,一方面,高分子主链上含有-Si-O-Si-键,硅氧键间隙较大,内旋转活化能较低,有利于原子自由旋转,有利于改善高分子链与链间的相互作用力和链与链间的距离,另一方面,高分子主链上的Si原子与-CH 3连接,-CH 3垂直于Si-O-Si原子所在的平面,由于Si-C键比C-C键键长,导致-CH 3中的三个H呈撑开状态, -CH 3中的三个撑开的H原子可以自由旋转而使相邻的Si-O分子链段间距离变大,此外侧链的惰性甲基又阻碍了高分子的接近,因而高分子材料非常柔顺,空洞自由体积相对于未引入主链含硅的二元醇的高分子材料增大明显。分散染料是一类分子比较小且结构上不带水溶性基团的染料,其大多以颗粒形式存在,粒径在几百纳米到一微米之间。本发明改性聚酯开始染色时,随着温度的不断提高,由于聚酯大分子链中含有-Si-O-Si-键,硅氧键较碳氧键长,内旋转活化能较低,先于含碳氧键的分子链开始运动,当染浴温度需提高到120~130℃,含有硅氧键的大分子链运动的剧烈程度大于只含碳氧键分子链,同时由于空洞自由体积更大,因此颗粒状染料向纤维内部的扩散速率提升显著,含有硅氧键的大分子链形成的空洞自由体积比只含碳氧键分子链形成的自由体积效率更高,使水、空气或其它分子如染料等更容易渗透到改性聚酯大分子内部,对改性聚酯的染色及自然降解等产生积极的影响,可降低染色温度,缩短染色的时间,减少能耗,提高了纤维的上染率,同时也一定程度上提高了纤维的自然降解速率。
同时,本发明还通过聚酯合成过程中引入含氟二元酸,从而在聚酯分子链上引入了含氟二元酸链段,该含氟二元酸的特点在于氟原子在α碳上,当在水解过程中引入该含氟二元酸时,由于氟原子在α碳上,吸电子能力较强,使得聚酯中C-O键上的电子云密度降低,四面体的负离子的稳定性下降,有利于亲核加成反应的进行,同时由于α碳上含氟二元酸的空间位阻小于对苯二甲酸,进一步促进了亲核加成反应的进行,因而显著提高了降解速率。本发明通过增加空洞自由体积与引入的含氟二元酸相互配合能够进一步提高聚酯的降解速率。此外,本发明的纤维横截面呈扁平四连环形,能够在保证其制得织物良好光泽、蓬松性、吸湿性、弹性及手感的同时,保证纤维具有良好的可纺性。
作为优选的技术方案:
如上所述的仿羽毛纱聚酯纤维的制备方法,所述一字形i为长圆形,四个一字形i形状和尺寸相同,等间距排列且两端齐平;
沿平行于一字形j的方向,单个一字形i相距最远的两边之间的距离为W2,四个一字形i相距最远的两边之间的距离为L1;
沿平行于一字形i的方向,单个一字形i相距最远的两边之间的距离为L2,一字形j相距最远的两边之间的距离为W1;
L1/W1为10~15,L2/W2为3~5;本发明的L1/W1和L2/W2需控制在一定范围内,其过高会影响纤维的可纺性,导致出现毛丝、断头、异形度差或染色不良等问题;过低,其扁平度较低,难以保证其具有扁平型纤维的相关性能(良好的光泽、蓬松性、吸湿性、弹性及手感、不起球);
扁平四连环形共有2个对称轴,一条对称轴平行于一字形i,位于中间两个一字形i之间,另一条对称轴为一字形j的对称轴。
如上所述的方法,所述改性聚酯的制备步骤如下:
(1)酯化反应;
将对苯二甲酸、乙二醇、主链含硅的二元醇和含氟二元酸配成浆料,加入催化剂、消光剂和稳定剂混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为常压~0.3MPa,酯化反应的温度为250~260℃,当酯化反应中的水馏出量达到理论值的90%以上时为酯化反应终点;
(2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30~50min内由常压平稳抽至绝对压力500Pa以下,反应温度为250~260℃,反应时间为30~50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力100Pa以下,反应温度为270~275℃,反应时间为50~90min。
如上所述的仿羽毛纱聚酯纤维的制备方法,所述对苯二甲酸与乙二醇的摩尔比为1:1.2~2.0,所述主链含硅的二元醇和含氟二元酸的加入量之和为对苯二甲酸加入量的3.2~5.0mol%(摩尔百分比),所述主链含硅的二元醇与含氟二元酸的摩尔比为2~3:1.5~2,所述催化剂、消光剂和稳定剂的加入量分别为对苯二甲酸加入量的0.03~0.05wt%、0.20~0.25wt%和0.01~0.05wt%(质量百分比)。本发明的主链含硅的二元醇的添加量优选该范围既能保证改性后的纤维具有良好的力学性能和结晶度,同时还能显著提高纤维的染色性能和自然降解速率,有利于纤维的生产和应用,主链含硅的二元醇的添加量可根据实际需要适当调整,但不宜太过,添加量过高对聚酯大分子结构的规整性破坏太大,对纤维的结晶度以及力学性能影响过大,不利于纤维的生产和应用,过低则染色效果及自然降解速率提升不明显。本发明含氟二元酸的加入量并不限于此,本领域技术人员可实际情况进行调整,但调整幅度不宜过大,添加量 过大对聚酯大分子结构的规整性破坏太大,对纤维的结晶度以及力学性能影响过大,不利于纤维的生产和应用,添加量过低,则对自然降解速率的提升效果不明显。
如上所述的仿羽毛纱聚酯纤维的制备方法,所述催化剂为三氧化二锑、乙二醇锑或醋酸锑,所述消光剂为二氧化钛,所述稳定剂为磷酸三苯酯、磷酸三甲酯或亚磷酸三甲酯。
如上所述的仿羽毛纱聚酯纤维的制备方法,改性聚酯的数均分子量为25000~30000,分子量分布指数为1.8~2.2。
如上所述的仿羽毛纱聚酯纤维的制备方法,所述POY工艺的流程为:计量、喷丝板挤出、冷却、上油和卷绕;
所述POY工艺的参数为:纺丝温度280~290℃,冷却温度17~20℃,卷绕速度3700~4100m/min;
所述DTY工艺的流程为:导丝、加热拉伸、假捻、热定型和卷绕;
所述DTY工艺的参数为:加工速度450~800m/min,定型超喂率3.5~5.5%,卷绕超喂率3.0~5.0%,第一热箱温度150~200℃,第二热箱温度120~170℃,拉伸比1.6~1.9。
本发明还提供如上所述的仿羽毛纱聚酯纤维的制备方法制得的仿羽毛纱聚酯纤维,为横截面呈扁平四连环形的改性聚酯DTY丝;
所述改性聚酯的分子链包括对苯二甲酸链段、乙二醇链段、主链含硅的二元醇链段和含氟二元酸链段。
作为优选的技术方案:
如上所述的仿羽毛纱聚酯纤维,仿羽毛纱聚酯纤维的单丝纤度为1.0~1.5dtex,卷曲收缩率为4.0±1.0%,线密度偏差率≤1.2%,断裂强度为3.0±0.35cN/dtex,断裂强度CV值≤4.0%,断裂伸长率为22.0±3.0%,断裂伸长CV值≤8.0%,卷曲收缩率变异系数CV值≤9.0%,沸水收缩率为7.0±0.5%,含油率为2~3wt%,本发明的主链含硅的二元醇和含氟二元酸的添加量较小,其对仿羽毛纱聚酯纤维的加工及机械性能的影响较小,本发明的仿羽毛纱聚酯纤维的加工性能及机械性能与普通仿羽毛纱聚酯纤维(未添加主链含硅的二元醇和含氟二元酸)相当;
如上所述的仿羽毛纱聚酯纤维,仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为89.6~93.7%,K/S值为23.62~26.54,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度大于4级;在其他测试条件相同的条件下,对比样在130℃的温度条件下的上染率为82.3%,K/S值为20.11,耐皂洗色牢度小于5级,涤沾色为4~5级,棉沾色为4级,干摩擦牢度为4~5级,湿摩擦牢度为3~4级,对比样与本发明的一步纺弹力复合丝的区别仅在于其材质为普通聚酯;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降13~20%,常规涤纶在相同情况下,其特性粘度下降低于5%。本发明在聚酯大分子链中引入含氟二元酸时,由于氟原子在α碳上,吸电子能力较强,促进了亲核加成反应的进行,使聚酯大分子链中的酯键断裂,因而显著提高了降解速率,此外主链含硅的二元醇的添加,增大了聚酯中的空洞自由体积,进一步提高了自然降解速率。
发明机理:
聚合物中的大分子链不是完全紧密的堆砌,在大分子链之间总是有空隙存在,这部分空隙体积即为自由体积。要使小分子渗透到高分子内部,高分子内或高分子间要有足够大的空隙,所以小分子的渗透率和扩散性与高分子结构中的空隙大小(即自由体积的尺寸)有关,在一定范围内,自由体积的尺寸越大,小分子的渗透率越高,扩散性越好。自由体积又分为空洞自由体积和狭缝自由体积,空洞自由体较狭缝自由体积具更大的空间尺寸,对于小分子的渗透率的提升,空洞自由体积较狭缝自由体积效果更加明显。
自由体积的尺寸和类型主要取决于聚合物的结构,影响聚合物结构的主要因素为立体阻碍、侧基大小、侧基结构等。当聚合物主链上某一位置被侧基取代时,必然引起主链活动性的变化,从而改变了链与链间的相互作用力,链与链间的距离亦会发生相应的改变,结果导致内聚能和自由体积的变化,高分子侧链上的取代基的极性、大小、长短等对分子链的刚性、分子间的相互作用乃至聚合物结构的自由体积分数都有一定的影响,因此,取代基不同产生的效应不同,往往导致聚合物的渗透分离性能也各不相同。
本发明通过在聚酯分子链中引入主链含硅的二元醇显著提升了仿羽毛纱聚酯纤维的染色性能和自然降解速率,主链含硅的二元醇为二甲基硅二醇、二甲基二苯基二硅氧烷二醇或四甲基二硅氧烷二醇,结构式分别如下:
Figure PCTCN2019113580-appb-000001
高分子链的刚性决定于分子链内旋转势垒的大小,主链结构不同,其中键角和键长不等或键接方式不同,刚性也各不相同,本发明引入主链含硅的二元醇后,高分子主链上含有-Si-O-Si-键,硅氧键间隙较大,内旋转活化能较低,有利于原子自由旋转,同时高分子主链上的Si原子与-CH 3连接,-CH 3垂直于Si-O-Si原子所在的平面,由于Si-C键比C-C键键长,导致-CH 3中的三个H呈撑开状态,-CH 3中的三个撑开的H原子可以自由旋转而使相邻的Si-O分子链段间距离变大,此外侧链的惰性甲基又阻碍了高分子的接近,因而高分子材料非常柔顺,空洞自由体积相对于未引入主链含硅的二元醇的高分子材料增大明显;而当高分子主链上的Si原子与长支链取代基连接时,主要增大的是狭缝自由体积,增大幅度较小,对小分子的渗透率和扩散性的提升效果有限,同时由于长支链取代基的刚性较小,分子链之间容易发生缠结,不利于自由体积的增大。空洞自由体积的增大将使水、空气或其它分子如染料等更容易渗透到改性聚酯大分子内部,对改性聚酯的染色及自然降解等产生积极的影响,可降低染色温度,缩短染色的时间,减少能耗,提高了纤维的上染率,同时也提高了纤维的自然降解速率。
高分子材料的氧化降解和水解速率等与氧渗透到材料内部的速率密切相关,聚酯的大分子结构中刚性较大,自由体积分数低,氧的渗透率非常低,聚酯在自然环境中的氧化和水解主要在聚酯的表面进行,这是造成聚酯在自然环境中降解很慢的主要原因之一,空间自由体积的增大也有利于氧渗透到聚酯大分子内部,进而有利于提高聚酯的氧化降解和水解速率。
聚酯在碱性条件下的水解降解过程为亲核加成-消除过程,在水解反应开始时,OH -进攻酯羰基RCOOR`的C原子,发生亲核加成反应,形成中间体(即四面体的负离子),四面体的负离子可以消除OR`得到羧酸RCOOH,使酯键断裂,同时OR`与H +结合得到醇HOR`。然而,由于在水解过程中形成的四面体的负离子结构比较拥挤,空间位阻大,不利于亲核加成反应的进行,因此聚酯的降解速率较慢。
本发明还通过在聚酯分子链中引入特殊结构的含氟二元酸显著提高了聚酯的降解速率,含氟二元酸的特殊之处在于氟原子在α碳上,当在水解过程中引入该含氟二元酸时,由于氟原子在α碳上,吸电子能力较强,使得聚酯中C-O键上的的电子云密度降低,四面体的负离子的稳定性下降,有利于亲核加成反应的进行,同时由于α碳上含氟二元酸的空间位阻小于对苯二甲酸,进一步促进了亲核加成反应的进行,因而显著提高了降解速率。如在聚酯分子链中引入氟原子在β碳的含氟二元酸,则不会显著提高聚酯的降解速率,这是因为在β碳上存在吸电子基团时,所产生的影响仅局限于相邻碳上,而对酯键中C-O键产生的影响很小,因而对于OH -进攻酯羰基发生亲核加成的反应影响较小。在聚酯制备原料中加入含氟二元酸能够显著促进了亲核加成反应的进行,进而提高了聚酯的降解速率。主链含硅的二元醇和含氟二元酸能够相互配合进一步提高聚酯的自然降解速率。
有益效果:
(1)本发明的仿羽毛纱聚酯纤维的制备方法,通过在聚酯中引入含氟二元酸,提高了仿羽毛纱聚酯纤维的自然降解速率;
(2)本发明的仿羽毛纱聚酯纤维的制备方法,通过在聚酯中引入主链含硅的二元醇对聚酯进行改性,增大了空洞自由体积,降低了染色的温度,缩短了染色的时间,提高了纤维的上染率,降低能耗,同时增加了可纺性能和自然降解速率;
(3)本发明仿羽毛纱聚酯纤维的制备方法,成本低廉,工艺简单,极具应用前景;
(4)本发明的仿羽毛纱聚酯纤维,染色性能优良,自然降解速率快,机械性能好,应用前景广阔。
附图说明
图1为本发明的扁平四连环形喷丝孔的结构示意图。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范 围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种仿羽毛纱聚酯纤维的制备方法,其步骤如下:
(1)制备改性聚酯;
(1.1)酯化反应;
将对苯二甲酸、乙二醇、二甲基硅二醇和2,2-二氟-1,3-丙二酸配成浆料,加入三氧化二锑、二氧化钛和磷酸三苯酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.3MPa,酯化反应的温度为250℃,当酯化反应中的水馏出量达到理论值的90.1%时为酯化反应终点,对苯二甲酸与乙二醇的摩尔比为1:1.2,二甲基硅二醇和2,2-二氟-1,3-丙二酸的加入量之和为对苯二甲酸加入量的3.2mol%,二甲基硅二醇与2,2-二氟-1,3-丙二酸的摩尔比为3:1.5,三氧化二锑、二氧化钛和磷酸三苯酯的加入量分别为对苯二甲酸加入量的0.03wt%、0.20wt%和0.01wt%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30min内由常压平稳抽至绝对压力499Pa,反应温度为250℃,反应时间为30min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力99Pa,反应温度为270℃,反应时间为50min,制得数均分子量为25000,分子量分布指数为1.8的改性聚酯;
(2)制备聚酯POY丝;
改性聚酯经计量、扁平四连环形喷丝板挤出、冷却、上油和卷绕后得到横截面呈扁平四连环形的聚酯POY丝,POY工艺的参数为:纺丝温度285℃,冷却温度20℃,卷绕速度4000m/min;其中,扁平四连环形喷丝板的喷丝孔为扁平四连环形,如图1所示,扁平四连环形包含四个相互平行、两端齐平且等间隔排列的长圆形一字形i,四个一字形i通过一个与其相互垂直的一字形j连接,一字形j的端头与一字形i的中部重合,四个一字形i形状和尺寸相同,沿平行于一字形j的方向,单个一字形i相距最远的两边之间的距离为W2,四个一字形i相距最远的两边之间的距离为L1;
沿平行于一字形i的方向,单个一字形i相距最远的两边之间的距离为L2,一字形j相距最远的两边之间的距离为W1;L1/W1为12,L2/W2为4,扁平四连环形共有2个对称轴;
(3)制备聚酯DTY丝;
聚酯POY丝经导丝、加热拉伸、假捻、热定型和卷绕后制得横截面呈扁平四连环形的聚酯DTY丝,即得仿羽毛纱聚酯纤维;DTY工艺的参数为:加工速度600m/min,定型超喂率4.5%,卷绕超喂率4%,第一热箱温度170℃,第二热箱温度150℃,拉伸比1.8。
仿羽毛纱聚酯纤维的单丝纤度为1.2dtex,卷曲收缩率为3.0%,线密度偏差率为1.0%,断裂强度为3.35cN/dtex,断裂强度CV值为3.6%,断裂伸长率为25%,断裂伸长CV值为7.5%,卷曲收缩率变异系数CV值为8.4%,沸水收缩率为6.5%,含油率为3wt%;
仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为89.6%,K/S值为23.62,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度为4-5级;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降13%。
对比例1
一种仿羽毛纱聚酯纤维的制备方法,其步骤基本与实施例1相同,不同之处在于,步骤(1)并未添加2,2-二氟-1,3-丙二酸和二甲基硅二醇,其制得的仿羽毛纱聚酯纤维的单丝纤度为1.2dtex,卷曲收缩率为3.1%,线密度偏差率为1.1%,断裂强度为3.35cN/dtex,断裂强度CV值为3.6%,断裂伸长率为24%,断裂伸长CV值为7.4%,卷曲收缩率变异系数CV值为8.2%,沸水收缩率为6.5%,含油率为2.8wt%;在与实施例1其他测试条件相同的条件下,仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为82.3%,K/S值为20.11,耐皂洗色牢度小于5级,涤沾色为4~5级,棉沾色为4级,干摩擦牢度达到4~5级,湿摩擦牢度为3~4级;仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降4%。与实施例1对比可以发现,本发明通过添加2,2-二氟-1,3-丙二酸和二甲基硅二醇显著提升了纤维的自然降解性能和染色性能,同时2,2-二氟-1,3-丙二酸和二甲基硅二醇的添加对纤维其他性能影响较小,并不影响其加工性能及机械性能。
对比例2
一种仿羽毛纱聚酯纤维的制备方法,其步骤基本与实施例1相同,不同之处在于,步骤(1)中采用1,6-己二醇替代二甲基硅二醇,在与实施例1其他测试条件相同的条件下,仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为85.9%,K/S值为22.58,涤沾色为4~5级,棉沾色为4级,干摩擦牢度达到4~5级,湿摩擦牢度为4级。与实施例1对比可以发现,由于主链含硅的二元醇引入使得高分子主链上含有-Si-O-Si-键,使得硅氧键间隙较大,内旋转活化能较低,有利于原子自由旋转,从而增大了空洞自由体积,因此其相对于长支链取代基更有利于提升纤维的染色性能。
对比例3
一种仿羽毛纱聚酯纤维的制备方法,其步骤基本与实施例1相同,不同之处在于,步骤(1)中采用3,3-二氟戊二酸替代2,2-二氟-1,3-丙二酸,仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降4.7%。与实施例1对比可以发现,氟原子在α碳的含氟二元酸相对于氟原子在β碳的含氟二元酸更有利于提升纤维的自然降解性能,这是因为在β碳上存在吸电子基团时,所产生的影响仅局限于相邻碳上,而对酯键中C-O键产生的影响很小,因而对于OH -进攻酯羰基发生亲核加成的反应影响较小,进而对纤维的自然降解过程影响较小。
实施例2
一种仿羽毛纱聚酯纤维的制备方法,其步骤如下:
(1)制备改性聚酯;
(1.1)酯化反应;
将对苯二甲酸、乙二醇、二甲基硅二醇和2,2-二氟-1,4-丁二酸配成浆料,加入乙二醇锑、二氧化钛和磷酸三甲酯混合均匀后,在氮气氛围中在常压下进行酯化反应,酯化反应的温度为260℃,当酯化反应中的水馏出量达到理论值的95%时为酯化反应终点,对苯二甲酸与乙二醇的摩尔比为1:2.0,二甲基硅二醇和2,2-二氟-1,4-丁二酸的加入量之和为对苯二甲酸加入量的5.0mol%,二甲基硅二醇与2,2-二氟-1,4-丁二酸的摩尔比为3:2,乙二醇锑、二氧化钛和磷酸三甲酯的加入量分别为对苯二甲酸加入量的0.05wt%、0.25wt%和0.05wt%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在50min内由常压平稳抽至绝对压力450Pa,反应温度为260℃,反应时间为50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力90Pa,反应温度为275℃,反应时间为90min,制得数均分子量为30000,分子量分布指数为2.2的改性聚酯;
(2)制备聚酯POY丝;
改性聚酯经计量、扁平四连环形喷丝板挤出、冷却、上油和卷绕后得到横截面呈扁平四连环形的聚酯POY丝,POY工艺的参数为:纺丝温度280℃,冷却温度17℃,卷绕速度3700m/min;其中,扁平四连环形喷丝板与实施例1中的喷丝板结构基本相同,不同之处在于,L1/W1为10,L2/W2为3,扁平四连环形共有2个对称轴;
(3)制备聚酯DTY丝;
聚酯POY丝经导丝、加热拉伸、假捻、热定型和卷绕后制得横截面呈扁平四连环形的聚酯DTY丝,即得仿羽毛纱聚酯纤维;DTY工艺的参数为:加工速度600m/min,定型超喂率4.5%,卷绕超喂率4%,第一热箱温度170℃,第二热箱温度150℃,拉伸比1.8。
仿羽毛纱聚酯纤维的单丝纤度为1.0dtex,卷曲收缩率为5.0%,线密度偏差率为1.2%,断裂强度为2.65cN/dtex,断裂强度CV值为4.0%,断裂伸长率为19%,断裂伸长CV值为7.8%,卷曲收缩率变异系数CV值为8.8%,沸水收缩率为7.4%,含油率为2wt%;
仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为93.7%,K/S值为26.54,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度为5级;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降14%。
实施例3
一种仿羽毛纱聚酯纤维的制备方法,其步骤如下:
(1)制备改性聚酯;
(1.1)酯化反应;
将对苯二甲酸、乙二醇、二甲基硅二醇和2,2-二氟-1,5-戊二酸配成浆料,加入醋酸锑、二氧化钛和亚磷酸三甲酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.2MPa,酯化反应的温度为255℃,当酯化反应中的水馏出量达到理论值的92%时为酯化反应终点,对苯二甲酸与乙二醇的摩尔比为1:1.6,二甲基硅二醇和2,2-二氟-1,5-戊二酸的加入量之和为对苯二甲酸加入量的3.4mol%,二甲基硅二醇与2,2-二氟-1,5-戊二酸的摩尔比为2:1.5,醋酸锑、二氧化钛和亚磷酸三甲酯的加入量分别为对苯二甲酸加入量的0.04wt%、0.22wt%和0.3wt%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在40min内由常压平稳抽至绝对压力480Pa,反应温度为255℃,反应时间为40min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力95Pa,反应温度为272℃,反应时间为70min,制得数均分子量为27000,分子量分布指数为2.0的改性聚酯;
(2)制备聚酯POY丝;
改性聚酯经计量、扁平四连环形喷丝板挤出、冷却、上油和卷绕后得到横截面呈扁平四连环形的聚酯POY丝,POY工艺的参数为:纺丝温度290℃,冷却温度20℃,卷绕速度4100m/min;其中,扁平四连环形喷丝板与实施例1中的喷丝板结构基本相同,不同之处在于,L1/W1为15,L2/W2为5,扁平四连环形共有2个对称轴;
(3)制备聚酯DTY丝;
聚酯POY丝经导丝、加热拉伸、假捻、热定型和卷绕后制得横截面呈扁平四连环形的聚酯DTY丝,即得仿羽毛纱聚酯纤维;DTY工艺的参数为:加工速度600m/min,定型超喂率4.5%,卷绕超喂率4%,第一热箱温度170℃,第二热箱温度150℃,拉伸比1.8。
仿羽毛纱聚酯纤维的单丝纤度为1.5dtex,卷曲收缩率为4.7%,线密度偏差率为1.0%,断裂强度为3.30cN/dtex,断裂强度CV值为3.6%,断裂伸长率为24%,断裂伸长CV值为7.5%,卷曲收缩率变异系数CV值为8.5%,沸水收缩率为6.8%,含油率为2.7wt%;
仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为90.3%,K/S值为24.62,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度为4-5级;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降14%。
实施例4
一种仿羽毛纱聚酯纤维的制备方法,其步骤如下:
(1)制备改性聚酯;
(1.1)酯化反应;
将对苯二甲酸、乙二醇、二甲基二苯基二硅氧烷二醇和2,2,3,3-四氟-1,4-丁二酸配成浆料,加入乙二醇锑、二氧化钛和磷酸三苯酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.25MPa,酯化反应的温度为250℃,当酯化反应中的水馏出量达到理论值的94%时为酯化反应终点,对苯二甲酸与乙二醇的摩尔比为1:1.9,二甲基二苯基二硅氧烷二醇和2,2,3,3-四氟-1,4-丁二酸的加入量之和为对苯二甲酸加入量的3.5mol%,二甲基二苯基二硅氧烷二醇与2,2,3,3-四氟-1,4-丁二酸的摩尔比为2:2,乙二醇锑、二氧化钛和磷酸三苯酯的加入量分别为对苯二甲酸加入量的0.03wt%、0.20wt%和0.05wt%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在35min内由常压平稳抽至绝对压力480Pa,反应温度为258℃,反应时间为45min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力96Pa,反应温度为270℃,反应时间为55min,制得数均分子量为26000,分子量分布指数为1.9的改性聚酯;
(2)制备聚酯POY丝;
改性聚酯经计量、扁平四连环形喷丝板挤出、冷却、上油和卷绕后得到横截面呈扁平四连环形的聚酯POY丝,POY工艺的参数为:纺丝温度285℃,冷却温度18℃,卷绕速度3800m/min;其中,扁平四连环形喷丝板与实施例1中的喷丝板结构基本相同,不同之处在于,L1/W1为12,L2/W2为3.5,扁平四连环形共有2个对称轴;
(3)制备聚酯DTY丝;
聚酯POY丝经导丝、加热拉伸、假捻、热定型和卷绕后制得横截面呈扁平四连环形的聚酯DTY丝,即得仿羽毛纱聚酯纤维;DTY工艺的参数为:加工速度450m/min,定型超喂率3.5%,卷绕超喂率3.0%,第一热箱温度150℃,第二热箱温度120℃,拉伸比1.6。
仿羽毛纱聚酯纤维的单丝纤度为1.2dtex,卷曲收缩率为4.7%,线密度偏差率为1.0%,断裂强度为3.2cN/dtex,断裂强度CV值为3.7%,断裂伸长率为24%,断裂伸长CV值为7.8%,卷曲收缩率变异系数CV值为8.6%,沸水收缩率为7%,含油率为2.6wt%;
仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为90.3%,K/S值为23.88,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度为4-5级;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降15%。
实施例5
一种仿羽毛纱聚酯纤维的制备方法,其步骤如下:
(1)制备改性聚酯;
(1.1)酯化反应;
将对苯二甲酸、乙二醇、二甲基二苯基二硅氧烷二醇和2,2-二氟-1,3-丙二酸配成浆料,加入醋酸锑、二氧化钛和磷酸三苯酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.15MPa,酯化反应的温度为260℃,当酯化反应中的水馏出量达到理论值的96%时为酯化反应终点,对苯二甲酸与乙二醇的摩尔比为1:1.2,甲基二苯基二硅氧烷二醇和2,2-二氟-1,3-丙二酸的加入量之和为对苯二甲酸加入量的4.2mol%,甲基二苯基二硅氧烷二醇与2,2-二氟-1,3-丙二酸的摩尔比为2.5:1.5,醋酸锑、二氧化钛和磷酸三苯酯的加入量分别为对苯二甲酸加入量的0.04wt%、0.25wt%和0.04wt%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在50min内由常压平稳抽至绝对压力480Pa,反应温度为255℃,反应时间为50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力95Pa,反应温度为275℃,反应时间为80min,制得数均分子量为29000,分子量分布指数为2.1的改性聚酯;
(2)制备聚酯POY丝;
改性聚酯经计量、扁平四连环形喷丝板挤出、冷却、上油和卷绕后得到横截面呈扁平四连环形的聚酯POY丝,POY工艺的参数为:纺丝温度285℃,冷却温度18℃,卷绕速度3800m/min;其中,扁平四连环形喷丝板与实施例1中的喷丝板结构基本相同,不同之处在于,L1/W1为12,L2/W2为3.5,扁平四连环形共有2个对称轴;
(3)制备聚酯DTY丝;
聚酯POY丝经导丝、加热拉伸、假捻、热定型和卷绕后制得横截面呈扁平四连环形的聚酯DTY丝,即得仿羽毛纱聚酯纤维;DTY工艺的参数为:加工速度800m/min,定型超喂率5.5%,卷绕超喂率5.0%,第一热箱温度200℃,第二热箱温度170℃,拉伸比11.9。
仿羽毛纱聚酯纤维的单丝纤度为1.2dtex,卷曲收缩率为3.5%,线密度偏差率为1.1%,断裂强度为2.9cN/dtex,断裂强度CV值为3.8%,断裂伸长率为22%,断裂伸长CV值为7.8%,卷曲收缩率变异系数CV值为8.8%,沸水收缩率为6.8%,含油率为2.5wt%;
仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为91.2%,K/S值为24.72,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度为5级;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降17%。
实施例6
一种仿羽毛纱聚酯纤维的制备方法,其步骤如下:
(1)制备改性聚酯;
(1.1)酯化反应;
将对苯二甲酸、乙二醇、四甲基二硅氧烷二醇和2,2-二氟-1,4-丁二酸配成浆料,加入醋酸锑、二氧化钛和磷酸三苯酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.3MPa,酯化反应的温度为250℃,当酯化反应中的水馏出量达到理论值的94%时为酯化反应终点,对苯二甲酸与乙二醇的摩尔比为1:1.2,四甲基二硅氧烷二 醇和2,2-二氟-1,4-丁二酸的加入量之和为对苯二甲酸加入量的4.5mol%,四甲基二硅氧烷二醇与2,2-二氟-1,4-丁二酸的摩尔比为2.5:2,醋酸锑、二氧化钛和磷酸三苯酯的加入量分别为对苯二甲酸加入量的0.05wt%、0.20wt%和0.01wt%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30min内由常压平稳抽至绝对压力450Pa,反应温度为260℃,反应时间为30min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力92Pa,反应温度为272℃,反应时间为85min,制得数均分子量为28000,分子量分布指数为1.8的改性聚酯;
(2)制备聚酯POY丝;
改性聚酯经计量、扁平四连环形喷丝板挤出、冷却、上油和卷绕后得到横截面呈扁平四连环形的聚酯POY丝,POY工艺的参数为:纺丝温度287℃,冷却温度20℃,卷绕速度3900m/min;其中,扁平四连环形喷丝板与实施例1中的喷丝板结构基本相同,不同之处在于,L1/W1为14,L2/W2为5,扁平四连环形共有2个对称轴;
(3)制备聚酯DTY丝;
聚酯POY丝经导丝、加热拉伸、假捻、热定型和卷绕后制得横截面呈扁平四连环形的聚酯DTY丝,即得仿羽毛纱聚酯纤维;DTY工艺的参数为:加工速度500m/min,定型超喂率4%,卷绕超喂率4.2%,第一热箱温度180℃,第二热箱温度150℃,拉伸比1.8。
仿羽毛纱聚酯纤维的单丝纤度为1.4dtex,卷曲收缩率为4.7%,线密度偏差率为1.2%,断裂强度为2.8cN/dtex,断裂强度CV值为4.0%,断裂伸长率为20%,断裂伸长CV值为7.8%,卷曲收缩率变异系数CV值为8.8%,沸水收缩率为7.5%,含油率为2.7wt%;
仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为92.7%,K/S值为24.8,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度为5级;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降18%。
实施例7
一种仿羽毛纱聚酯纤维的制备方法,其步骤如下:
(1)制备改性聚酯;
(1.1)酯化反应;
将对苯二甲酸、乙二醇、四甲基二硅氧烷二醇和2,2-二氟-1,5-戊二酸配成浆料,加入三氧化二锑、二氧化钛和亚磷酸三甲酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.2MPa,酯化反应的温度为255℃,当酯化反应中的水馏出量达到理论值的91%时为酯化反应终点,对苯二甲酸与乙二醇的摩尔比为1:1.4,四甲基二硅氧烷二醇和2,2-二氟-1,5-戊二酸的加入量之和为对苯二甲酸加入量的4.8mol%,四甲基二硅氧烷二醇与2,2-二氟-1,5-戊二酸的摩尔比为3:2,三氧化二锑、二氧化钛和亚磷酸三甲酯的加入量分别为对苯二甲酸加入量的0.03wt%、0.22wt%和0.01wt%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在50min内由常压平稳抽至绝对压力490Pa,反应温度为255℃,反应时间为50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力95Pa,反应温度为275℃,反应时间为55min,制得数均分子量为25000,分子量分布指数为2.2的改性聚酯;
(2)制备聚酯POY丝;
改性聚酯经计量、扁平四连环形喷丝板挤出、冷却、上油和卷绕后得到横截面呈扁平四连环形的聚酯POY丝,,POY工艺的参数为:纺丝温度287℃,冷却温度20℃,卷绕速度3900m/min;其中,扁平四连环形喷丝板与实施例1中的喷丝板结构基本相同,不同之处在于,L1/W1为14,L2/W2为5,扁平四连环形共有2个对称轴;
(3)制备聚酯DTY丝;
聚酯POY丝经导丝、加热拉伸、假捻、热定型和卷绕后制得横截面呈扁平四连环形的聚酯DTY丝,即得仿羽毛纱聚酯纤维;DTY工艺的参数为:加工速度500m/min,定型超喂率5%,卷绕超喂率4.2%,第一热箱温度180℃,第二热箱温度150℃,拉伸比1.8。
仿羽毛纱聚酯纤维的单丝纤度为1.5dtex,卷曲收缩率为5.0%,线密度偏差率为1.1%,断裂强度为2.7cN/dtex,断裂强度CV值为3.9%,断裂伸长率为20%,断裂伸长CV值为8.0%,卷曲收缩率变异系数CV值为8.8%,沸水收缩率为7.4%,含油率为2.2wt%;
仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为93.2%,K/S值为25.54,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度为5级;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降19%。
实施例8
一种仿羽毛纱聚酯纤维的制备方法,其步骤如下:
(1)制备改性聚酯;
(1.1)酯化反应;
将对苯二甲酸、乙二醇、四甲基二硅氧烷二醇和2,2,3,3-四氟-1,4-丁二酸以1:2.0:0.05的摩尔比配成浆料,加入乙二醇锑、二氧化钛和磷酸三苯酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.3MPa,酯化反应的温度为255℃,当酯化反应中的水馏出量达到理论值的92%时为酯化反应终点,对苯二甲酸与乙二醇的摩尔比为1:1.2,四甲基二硅氧烷二醇和2,2,3,3-四氟-1,4-丁二酸的加入量之和为对苯二甲酸加入量的5.0mol%,四甲基二硅氧烷二醇与2,2,3,3-四氟-1,4-丁二酸的摩尔比为3:1.5,乙二醇锑、二氧化钛和磷酸三苯酯的加入量分别为对苯二甲酸加入量的0.05wt%、0.25wt%和0.01wt%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在50min内由常压平稳抽至绝对压力480Pa,反应温度为260℃,反应时间为40min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力95Pa,反应温度为272℃,反应时间为90min,制得数均分子量为29000,分子量分布指数为2.1的改性聚酯;
(2)制备聚酯POY丝;
改性聚酯经计量、扁平四连环形喷丝板挤出、冷却、上油和卷绕后得到横截面呈扁平四连环形的聚酯POY丝,,POY工艺的参数为:纺丝温度287℃,冷却温度20℃,卷绕速度3900m/min;其中,扁平四连环形喷丝板与实施例1中的喷丝板结构基本相同,不同之处在于,L1/W1为14,L2/W2为5,扁平四连环形共有2个对称轴;
(3)制备聚酯DTY丝;
聚酯POY丝经导丝、加热拉伸、假捻、热定型和卷绕后制得横截面呈扁平四连环形的聚酯DTY丝,即得仿羽毛纱聚酯纤维;DTY工艺的参数为:加工速度500m/min,定型超喂率5%,卷绕超喂率4.2%,第一热箱温度180℃,第二热箱温度150℃,拉伸比1.8。
仿羽毛纱聚酯纤维的单丝纤度为1.5dtex,卷曲收缩率为5.0%,线密度偏差率为1.2%,断裂强度为2.65cN/dtex,断裂强度CV值为4.0%,断裂伸长率为24%,断裂伸长CV值为7.2%,卷曲收缩率变异系数CV值为9.0%,沸水收缩率为7.4%,含油率为2wt%;
仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为93.4%,K/S值为26.34,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度为5级;
仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降20%。

Claims (10)

  1. 仿羽毛纱聚酯纤维的制备方法,其特征是:采用扁平四连环形喷丝板按POY工艺由改性聚酯熔体制得改性聚酯POY丝后,再按DTY工艺将改性聚酯POY丝制成改性聚酯DTY丝,即得仿羽毛纱聚酯纤维;
    扁平四连环形喷丝板的喷丝孔为扁平四连环形,扁平四连环形包含四个相互平行且间隔排列的一字形i,四个一字形i通过一个与其相互垂直的一字形j连接,一字形j的端头与一字形i的中部重合;
    所述改性聚酯的制备方法为:将对苯二甲酸、乙二醇、主链含硅的二元醇和含氟二元酸混合均匀后先后进行酯化反应和缩聚反应;主链含硅的二元醇为二甲基硅二醇、二甲基二苯基二硅氧烷二醇或四甲基二硅氧烷二醇,含氟二元酸为2,2-二氟-1,3-丙二酸、2,2-二氟-1,4-丁二酸、2,2-二氟-1,5-戊二酸或2,2,3,3-四氟-1,4-丁二酸。
  2. 根据权利要求1所述的仿羽毛纱聚酯纤维的制备方法,其特征在于,所述一字形i为长圆形,四个一字形i形状和尺寸相同,等间距排列且两端齐平;
    沿平行于一字形j的方向,单个一字形i相距最远的两边之间的距离为W2,四个一字形i相距最远的两边之间的距离为L1;
    沿平行于一字形i的方向,单个一字形i相距最远的两边之间的距离为L2,一字形j相距最远的两边之间的距离为W1;
    L1/W1为10~15,L2/W2为3~5;
    扁平四连环形共有2个对称轴。
  3. 根据权利要求1所述的仿羽毛纱聚酯纤维的制备方法,其特征在于,所述改性聚酯的制备步骤如下:
    (1)酯化反应;
    将对苯二甲酸、乙二醇、主链含硅的二元醇和含氟二元酸配成浆料,加入催化剂、消光剂和稳定剂混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为常压~0.3MPa,酯化反应的温度为250~260℃,当酯化反应中的水馏出量达到理论值的90%以上时为酯化反应终点;
    (2)缩聚反应;
    酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30~50min内由常压平稳抽至绝对压力500Pa以下,反应温度为 250~260℃,反应时间为30~50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力100Pa以下,反应温度为270~275℃,反应时间为50~90min。
  4. 根据权利要求3所述的仿羽毛纱聚酯纤维的制备方法,其特征在于,所述对苯二甲酸与乙二醇的摩尔比为1:1.2~2.0,所述主链含硅的二元醇和含氟二元酸的加入量之和为对苯二甲酸加入量的3.2~5.0mol%,所述主链含硅的二元醇与含氟二元酸的摩尔比为2~3:1.5~2,所述催化剂、消光剂和稳定剂的加入量分别为对苯二甲酸加入量的0.03~0.05wt%、0.20~0.25wt%和0.01~0.05wt%。
  5. 根据权利要求4所述的仿羽毛纱聚酯纤维的制备方法,其特征在于,所述催化剂为三氧化二锑、乙二醇锑或醋酸锑,所述消光剂为二氧化钛,所述稳定剂为磷酸三苯酯、磷酸三甲酯或亚磷酸三甲酯。
  6. 根据权利要求5所述的仿羽毛纱聚酯纤维的制备方法,其特征在于,改性聚酯的数均分子量为25000~30000,分子量分布指数为1.8~2.2。
  7. 根据权利要求1所述的仿羽毛纱聚酯纤维的制备方法,其特征在于,所述POY工艺的流程为:计量、喷丝板挤出、冷却、上油和卷绕;
    所述POY工艺的参数为:纺丝温度280~290℃,冷却温度17~20℃,卷绕速度3700~4100m/min;
    所述DTY工艺的流程为:导丝、加热拉伸、假捻、热定型和卷绕;
    所述DTY工艺的参数为:加工速度450~800m/min,定型超喂率3.5~5.5%,卷绕超喂率3.0~5.0%,第一热箱温度150~200℃,第二热箱温度120~170℃,拉伸比1.6~1.9。
  8. 采用如权利要求1~7任一项所述的仿羽毛纱聚酯纤维的制备方法制得的仿羽毛纱聚酯纤维,其特征是:为横截面呈扁平四连环形的改性聚酯DTY丝;
    所述改性聚酯的分子链包括对苯二甲酸链段、乙二醇链段、主链含硅的二元醇链段和含氟二元酸链段。
  9. 根据权利要求8所述的仿羽毛纱聚酯纤维,其特征在于,仿羽毛纱聚酯纤维的单丝纤度为1.0~1.5dtex,卷曲收缩率为4.0±1.0%,线密度偏差率≤1.2%,断裂强度为3.0±0.35cN/dtex,断裂强度CV值≤4.0%,断裂伸长率为 22.0±3.0%,断裂伸长CV值≤8.0%,卷曲收缩率变异系数CV值≤9.0%,沸水收缩率为7.0±0.5%,含油率为2~3wt%。
  10. 根据权利要求8所述的仿羽毛纱聚酯纤维,其特征在于,仿羽毛纱聚酯纤维在130℃的温度条件下的上染率为89.6~93.7%,K/S值为23.62~26.54,耐皂洗色牢度达到5级,干摩擦牢度达到5级,湿摩擦牢度大于4级;仿羽毛纱聚酯纤维在温度为25℃且相对湿度为65%的条件下放置60个月后,其特性粘度下降13~20%。
PCT/CN2019/113580 2018-12-27 2019-10-28 仿羽毛纱聚酯纤维及其制备方法 WO2020134486A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021525690A JP7053957B2 (ja) 2018-12-27 2019-10-28 起毛調ポリエステル繊維およびその製造方法
US17/042,957 US10961641B2 (en) 2018-12-27 2019-10-28 Feather-like polyester fiber and preparing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811613945.5A CN109750369B (zh) 2018-12-27 2018-12-27 仿羽毛纱聚酯纤维及其制备方法
CN201811613945.5 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020134486A1 true WO2020134486A1 (zh) 2020-07-02

Family

ID=66404061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113580 WO2020134486A1 (zh) 2018-12-27 2019-10-28 仿羽毛纱聚酯纤维及其制备方法

Country Status (4)

Country Link
US (1) US10961641B2 (zh)
JP (1) JP7053957B2 (zh)
CN (1) CN109750369B (zh)
WO (1) WO2020134486A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109750369B (zh) * 2018-12-27 2020-05-22 江苏恒力化纤股份有限公司 仿羽毛纱聚酯纤维及其制备方法
CN114574987B (zh) * 2021-12-29 2024-04-12 福建长源纺织有限公司 一种潮湿环境中具有保暖效果的聚酯纤维材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139435A (zh) * 2006-09-08 2008-03-12 东丽纤维研究所(中国)有限公司 具有优异阻燃性能的聚酯及其制备方法
CN204661875U (zh) * 2014-12-31 2015-09-23 上海德福伦化纤有限公司 一种栅栏形涤纶短纤维及其所用的喷丝板
KR20160081624A (ko) * 2014-12-31 2016-07-08 도레이케미칼 주식회사 염착성이 우수한 난연성 폴리에스테르 수지, 이의 제조방법 및 이를 포함하는 심색성이 우수한 난연섬유
CN109750369A (zh) * 2018-12-27 2019-05-14 江苏恒力化纤股份有限公司 仿羽毛纱聚酯纤维及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458554A (en) * 1965-06-16 1969-07-29 Dow Corning Fluorinated organosilicon compounds
JP5768320B2 (ja) * 2009-02-20 2015-08-26 セントラル硝子株式会社 含フッ素ジカルボン酸誘導体およびそれを用いた高分子化合物
CN102391488B (zh) * 2011-09-26 2013-06-05 四川东方绝缘材料股份有限公司 含氟硅磷抗滴落阻燃聚对苯二甲酸乙二醇酯的制备方法
CN103469339B (zh) * 2013-09-26 2016-02-10 江苏立新化纤科技有限公司 一种氟聚酯dty纤维的制备方法
CN104674358B (zh) * 2014-06-17 2017-01-25 福建百宏聚纤科技实业有限公司 一种异形喷丝板
CN106008940B (zh) * 2016-05-30 2018-11-30 江苏双星彩塑新材料股份有限公司 一种太阳能电池背板及用于该背板的膜用聚酯的制备方法
TWI650451B (zh) * 2016-07-27 2019-02-11 新光合成纖維股份有限公司 仿羽絨纖維、用於製造該纖維之噴絲板及方法
CN108385195B (zh) * 2017-12-14 2019-12-24 江苏恒力化纤股份有限公司 一种聚酯dty纤维及其制备方法
CN109750379B (zh) * 2018-12-27 2020-10-16 江苏恒力化纤股份有限公司 超亮光涤纶低弹丝及其制备方法
CN109722727B (zh) * 2018-12-27 2020-08-14 江苏恒力化纤股份有限公司 可降解超亮光fdy纤维及其制备方法
CN109735941B (zh) * 2018-12-27 2020-08-14 江苏恒力化纤股份有限公司 超亮光涤纶预取向丝及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139435A (zh) * 2006-09-08 2008-03-12 东丽纤维研究所(中国)有限公司 具有优异阻燃性能的聚酯及其制备方法
CN204661875U (zh) * 2014-12-31 2015-09-23 上海德福伦化纤有限公司 一种栅栏形涤纶短纤维及其所用的喷丝板
KR20160081624A (ko) * 2014-12-31 2016-07-08 도레이케미칼 주식회사 염착성이 우수한 난연성 폴리에스테르 수지, 이의 제조방법 및 이를 포함하는 심색성이 우수한 난연섬유
CN109750369A (zh) * 2018-12-27 2019-05-14 江苏恒力化纤股份有限公司 仿羽毛纱聚酯纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, ZHIQIAN: "Study on the PET Fiber Modified by Silicon Compound", CHINA MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY I, no. 01, 31 January 2014 (2014-01-31), ISSN: 1674-0246, DOI: 20200121180648A *

Also Published As

Publication number Publication date
JP2021535271A (ja) 2021-12-16
CN109750369B (zh) 2020-05-22
US20210054535A1 (en) 2021-02-25
JP7053957B2 (ja) 2022-04-12
CN109750369A (zh) 2019-05-14
US10961641B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
CN105908282B (zh) 一种33dtex/144f的涤纶细旦丝的制备方法
JP6689409B2 (ja) 異収縮混繊糸及びその製造方法
CN101525786B (zh) 一种有色异型尺寸稳定聚酯复丝纤维及其制备方法
CN109735940B (zh) 浮深仿麻涤纶纤维的制备方法
WO2020134488A1 (zh) 仿毛型聚酯长丝及其制备方法
WO2020134486A1 (zh) 仿羽毛纱聚酯纤维及其制备方法
CN102517660A (zh) 涤纶超棉柔绒纤维的制造方法
CN105926060A (zh) 一种熔体直纺超细旦涤纶长丝及其制备方法
CN104532388A (zh) 一种有色异型尺寸稳定型涤纶单丝及其制备方法
CN101586266A (zh) 一种有色异型尺寸稳定聚酯单丝纤维及其制备方法
JP2003526023A (ja) ポリ(トリメチレンテレフタラート)の微細デニール糸
WO2020134494A1 (zh) 半消光涤纶牵伸丝及其制备方法
CN109234820A (zh) 一种聚乳酸短纤维的制备方法
CN106521680A (zh) 一种聚丙烯腈基扁平纤维的制备方法
CN112391692A (zh) W型异形锦纶6纤维的制备方法
CN109943892B (zh) 一种超细旦直纺全消光涤纶长丝的生产工艺
CN114232127A (zh) 一种超低热收缩率聚酯短纤维及其制备方法
CN108251909A (zh) 一种共混-共聚改性超细旦聚酯纤维及其制备方法
CN109722732B (zh) 一种超细旦聚酯纤维及其制备方法
CN114381867A (zh) 一种全消光工字型涤纶纺织物的制备方法
CN109518297B (zh) 一种中空涤纶长丝及其制备方法
CN109735938B (zh) 镂空菱形面料用涤纶低弹丝的制备方法
CN115559014B (zh) 一种抗静电仿羊毛涤纶长丝的制备方法
CN109735980A (zh) 条码纱的制备方法
CN115584567B (zh) 一种共聚改性仿麻涤纶长丝的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903490

Country of ref document: EP

Kind code of ref document: A1