WO2020134426A1 - 一种工业机器人平面精度标定方法 - Google Patents

一种工业机器人平面精度标定方法 Download PDF

Info

Publication number
WO2020134426A1
WO2020134426A1 PCT/CN2019/112853 CN2019112853W WO2020134426A1 WO 2020134426 A1 WO2020134426 A1 WO 2020134426A1 CN 2019112853 W CN2019112853 W CN 2019112853W WO 2020134426 A1 WO2020134426 A1 WO 2020134426A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
calibration
error
plane
kinematics
Prior art date
Application number
PCT/CN2019/112853
Other languages
English (en)
French (fr)
Inventor
夏颖
王继虎
王杰高
Original Assignee
南京埃斯顿机器人工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿机器人工程有限公司 filed Critical 南京埃斯顿机器人工程有限公司
Publication of WO2020134426A1 publication Critical patent/WO2020134426A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the invention belongs to the technical field of robot kinematics calibration, relates to an industrial robot kinematics calibration method based on a relative position relation error model, and is a method for industrial robot plane accuracy calibration.
  • Robot accuracy is an important indicator for evaluating robot performance.
  • Robot accuracy includes repeated positioning accuracy and absolute positioning accuracy.
  • the traditional robot precision calibration method mostly uses laser tracker and other precision measurement equipment for calibration, such as the document "Robot Kinematic Parameter Calibration Method Based on Laser Tracker [J]" (Ren Yongjie, Jiji Ji, Xueyou Yang, etc. Metrology Journal, 2008, 29(3): 198-202.), there are problems such as high calibration cost, complicated operation, and need to be equipped with professional operation.
  • the present invention proposes a low-cost industrial robot plane accuracy calibration method based on the relative position error model, which can effectively improve the positioning accuracy of the robot, the calibration cost is low, the calibration process is simple to operate, the calibration efficiency is high, and the motion The learning model is versatile.
  • the problem to be solved by the present invention is: in the existing robot accuracy calibration technology, the repeat positioning accuracy is high, but the absolute positioning accuracy is low, the calibration cost is high, the operation is complicated, and it cannot meet the requirements of the workplace with high accuracy requirements.
  • An industrial robot plane accuracy calibration method includes the following steps:
  • a i Rot(x, ⁇ i-1 )Trans(x,a i-1 )Rot(z, ⁇ i )Trans(z,d i )
  • the transformation matrix of the robot end link coordinate system relative to the base coordinate system is:
  • N represents the number of degrees of freedom of the robot
  • R N is a 3 ⁇ 3 rotation matrix
  • P N is a 3 ⁇ 1 offset matrix
  • the differential matrix of the link error of the robot end link coordinate system relative to the base standard system is:
  • the end position error of the robot is described as:
  • i T N(1,4) represents the elements of the first row and fourth column of the i T N matrix
  • the error model of the robot's relative position relationship is derived as:
  • dP t1 -dP t2 [M ⁇ 1 -M ⁇ 2 ] ⁇ +[Md 1 -Md 2 ] ⁇ d+[Ma 1 -Ma 2 ] ⁇ a+[M ⁇ 1 -M ⁇ 2 ] ⁇
  • the initial value of the robot kinematics parameter uses the nominal DH parameter value, at the same time, the robot joint angle and the collected robot end coordinate value are substituted into the robot relative position relationship error model, and the robot motion is obtained by the least square method
  • Update robot kinematics parameters update the robot DH parameter values from the obtained robot kinematics error parameter values, recalculate the robot kinematics error model, and iterate repeatedly until the relative position root mean square error meets the set value;
  • Robot kinematics parameter compensation The final recognized kinematics parameter error is compensated to the robot controller to complete the robot kinematics parameter calibration.
  • the robot accuracy calibration method based on the relative positional relationship model proposed by the present invention uses a low-cost distance measuring device to measure the relative position distance of the robot end, compared to robot kinematics using an absolute distance calibration acquisition device such as a laser tracker Parameter calibration has the advantages of low calibration cost, high calibration efficiency, and simple use of calibration equipment.
  • FIG. 1 is a flowchart of a robot calibration process based on a relative position error model of the present invention
  • FIG. 2 is a schematic diagram of the relative position error of the robot end of the present invention.
  • FIG. 4 is a comparison diagram of robot error identification before and after in an example of the present invention.
  • the invention proposes an industrial robot accuracy calibration method, the purpose is to improve the planar accuracy of the industrial robot by reducing the relative position error, to meet the accuracy requirements of the robot production task, the method is convenient to operate, the cost is low, and can effectively improve the robot accuracy, Suitable for most tandem industrial robots.
  • the invention proposes a low-cost industrial robot plane accuracy calibration method based on a relative position relationship error model.
  • the steps are as follows:
  • a i Rot(x, ⁇ i-1 )Trans(x,a i-1 )Rot(z, ⁇ i )Trans(z,d i )
  • a i is the transformation matrix of a single link, that is, the transformation matrix of the link relative to the previous link, i represents the ith link, and x and z represent the x coordinate axis and the z coordinate axis.
  • Rot is a rotation transformation.
  • Rot(x, ⁇ ) means to rotate ⁇ angle around the x axis.
  • Trans is a translation transformation matrix.
  • Trans(z, d) represents translation by d distance along the z axis.
  • the total link transformation matrix T N is obtained by multiplying a single link transformation matrix.
  • the transformation matrix of the robot end link coordinate system relative to the base coordinate system is:
  • N is the number of degrees of freedom of the robot, that is, a robot with N degrees of freedom is obtained by multiplying N linkage transformation matrices.
  • the T N matrix is divided into blocks, R N is a rotation matrix, that is, the 3 ⁇ 3 matrix of T N is represented as R N , and P N is an offset matrix, that is, the 3 ⁇ 1 matrix of T N is represented as P N.
  • the differential matrix of the link error of the robot end link coordinate system relative to the base standard system is:
  • i T N(1,4) represents the elements of the first row and fourth column of the i T N matrix
  • i T N(1,4) , i T N(2,4) , i T N(3,4) are i
  • the offset matrix of the homogeneous matrix T N is P N mentioned in the previous formula.
  • the coordinate position of the actual flange end of the robot can be expressed as
  • the relative position error between any two points in the robot working space is the difference between the actual relative position and the nominal relative position:
  • first point is denoted as t1
  • second point is denoted as t2
  • P t1 indicates the theoretical position of the first point
  • P t2 indicates the theoretical position of the second point.
  • the two points here can represent any two points in the working space of the robot. Specifically, it can be understood as any two calibration points in a set of calibration points.
  • dP t1 -dP t2 [M ⁇ 1 -M ⁇ 2 ] ⁇ +[Md 1 -Md 2 ] ⁇ d+[Ma 1 -Ma 2 ] ⁇ a+[M ⁇ 1 -M ⁇ 2 ] ⁇
  • the appropriate plane satisfies: 1), the calibration plane must be within the robot's working space; 2), which plane area of the robot needs to be improved in accuracy, the calibration is performed in the plane area; 3), the calibration plane
  • the area should not be too large or too small. There is no specific standard for this. It should be analyzed and determined according to the actual robot and working conditions.
  • the set of suitable calibration points satisfies: "a group" must be greater than the number of robot kinematics error parameters. The more calibration points, the more accurate the calibration result, but the calibration accuracy will not be reached if a certain number is reached change. Therefore, it is also determined based on the actual situation.
  • the distance measuring equipment is used to record the coordinate values of each calibration point of the robot end in the Cartesian coordinate system.
  • the commonly used distance measuring equipment includes grid plates, laser rangefinders, visual equipment, etc., according to the site environment and experimental conditions. Measuring equipment.
  • the initial value of the kinematics parameters of the robot uses the nominal DH parameter value, at the same time, the robot joint angle and the collected robot end coordinate values are substituted into the robot relative position relationship error model, and the robot is obtained by the least square method
  • Update the robot kinematics parameters update the robot's nominal parameters from the obtained robot kinematics error parameter values, and recalculate the robot kinematics error model. Iterate repeatedly until the root-mean-square error of the relative position meets the set value, generally iterate 2 to 4 times to get the result. At this time, the accuracy of the robot in this plane is greatly improved, usually reaching two to three orders of magnitude.
  • Robot kinematics parameter compensation The final recognized kinematics parameter error is compensated to the robot controller to complete the robot kinematics parameter calibration.
  • a i Rot(x, ⁇ i-1 )Trans(x,a i-1 )Rot(z, ⁇ i )Trans(z,d i )
  • the transformation matrix of the robot's end link coordinate system relative to the base coordinate system can be obtained as:
  • T 6 A 1 ⁇ A 2 ...A 6
  • dP t1 -dP t2 [M ⁇ 1 -M ⁇ 2 ] ⁇ +[Md 1 -Md 2 ] ⁇ d+[Ma 1 -Ma 2 ] ⁇ a+[M ⁇ 1 -M ⁇ 2 ] ⁇
  • Update robot kinematics parameters compensate the obtained robot kinematics error parameter values to the robot's nominal parameters, recalculate the robot kinematics error model, and after 2 iterations, the relative position root mean square error value meets the setting value. See Table 2 for the robot kinematics parameters after compensation.
  • Robot kinematics parameter compensation The final identified kinematics parameter error is compensated into the robot controller, and verification is performed again. The verification results are shown in Table 3.
  • the invention uses the working plane of the robot as the object for collecting the calibration data of the robot, which can simplify the calibration measurement steps.
  • the accuracy of the calibrated robot in its working space is greatly improved, and the accuracy in its working plane can be optimized. .
  • the present invention can use a low-cost distance measuring device to obtain the relative positional relationship of the robot end, including but not limited to grid plate, laser rangefinder, vision device and other distance measuring devices, which does not require expensive absolute distance measuring devices, which reduces Calibration costs.
  • the invention selects the working plane of the robot as the measurement object, the plane accuracy of the robot can reach the optimal, and at the same time, a cheaper distance measuring device can be used, which reduces the calibration cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种工业机器人精度标定方法,具体为建立机器人末端的相对位置误差模型,由标定点计算运动学误差,进而进行补偿,完成机器人运动学参数标定。该方法通过降低相对位置误差提高工业机器人的平面精度,满足机器人生产任务对精度的要求,操作便捷,成本较低,并且能够有效提高机器人精度,适用于大多数串联型工业机器人。

Description

一种工业机器人平面精度标定方法 技术领域
本发明属于机器人运动学标定技术领域,涉及基于相对位置关系误差模型的工业机器人运动学标定方法,为一种工业机器人平面精度标定方法。
背景技术
机器人精度是评价机器人性能的一个重要指标,机器人精度包括重复定位精度和绝对定位精度。
现今的机器人重复定位精度较高,但绝对定位精度却很低,实际中机器人到达的末端位姿和理论值之间存在着一定的差异,导致机器人无法应用于精度要求较高的工作场合。在各种误差来源中,机器人结构参数和关节角度所产生的误差占所有误差来源的80%以上,因此对机器人运动学参数进行标定能够极大地提高机器人的绝对精度。
传统的机器人精度标定方法中多使用激光跟踪仪等精密测量设备进行标定,如文献《基于激光跟踪仪的机器人运动学参数标定方法[J]》(任永杰,邾继贵,杨学友,等.计量学报,2008,29(3):198-202.)中,存在标定成本较高,操作复杂,需要配备专业人员操作等问题。基于上述技术情况,本发明提出一种低成本的基于相对位置关系误差模型的工业机器人平面精度标定方法,能够有效地提高机器人的定位精度,标定成本低,标定过程操作简单,标定效率高,运动学模型通用性强。
发明内容
本发明要解决的问题是:现有机器人精度标定技术中,重复定位精度较高,但绝对定位精度却很低,标定成本较高,操作复杂,无法满足精度要求较高的工作场合的需求。
本发明的技术方案为:一种工业机器人平面精度标定方法,包括以下步骤:
1)建立机器人运动学模型:机器人使用改进的DH法建立模型,模型中包含四个运动学参数:连杆长度a i-1、连杆转角α i-1、关节偏置d i和关节转角θ i,机器人的单个连杆变换矩阵描述为:
A i=Rot(x,α i-1)Trans(x,a i-1)Rot(z,θ i)Trans(z,d i)
机器人末端连杆坐标系相对于基坐标系的变换矩阵为:
Figure PCTCN2019112853-appb-000001
其中N表示机器人自由度的个数,R N为3×3的旋转矩阵,P N为3×1的偏移矩阵;
2)建立相对位置误差模型:将相邻两连杆之间的连杆误差微分变化矩阵dA i看做是四个运动学误差参数δa i-1 δα i-1 δd i δθ i的线性函数,根据高数原理当误差足够小时忽略函数的高阶项:
Figure PCTCN2019112853-appb-000002
机器人末端连杆坐标系相对于基座标系的连杆误差微分矩阵为:
Figure PCTCN2019112853-appb-000003
机器人的末端位置误差描述为:
Figure PCTCN2019112853-appb-000004
其中,
Figure PCTCN2019112853-appb-000005
B di、B ai-1和B αi-1依此类推, iT N(1,4)表示 iT N矩阵第一行第四列的元素
将机器人的末端位置误差dP t写成如下形式:
dP t=[Mθ]δθ+[Md]δd+[Ma]δa+[Mα]δα
机器人实际法兰末端坐标位置表示为
Figure PCTCN2019112853-appb-000006
那么在机器人工作空间内任意两点之间的相对位置误差为实际相对位置与名义相对位置之差:
Figure PCTCN2019112853-appb-000007
推导出机器人的相对位置关系误差模型为:
dP t1-dP t2=[Mθ 1-Mθ 2]δθ+[Md 1-Md 2]δd+[Ma 1-Ma 2]δa+[Mα 1-Mα 2]δα
3)选取合适的标定点:在机器人工作空间内选择一个机器人工作平面作为标定平面,在标定平面内选取一组标定点,标定点均匀地分布在标定平面内,且标定点个数大于机器人运动学误差参数的个数;
4)采集标定所需的数据:让机器人的末端沿着每个标定点依次移动,保持机器人末端姿态不变,记录下每个标定点处机器人的关节角度,同时,使用距离测量设备记录机器人末端在笛卡尔坐标系下的各个标定点的坐标值;
5)计算运动学误差参数:机器人运动学参数的初始值使用名义DH参数值,同时将机器人关节角度和采集到的机器人末端坐标值代入机器人相对位置关系误差模型中,通过最小二乘法获得机器人运动学误差参数δa δα δd δθ的值;
6)更新机器人运动学参数:由得到的机器人运动学误差参数值更新机器人的DH参数值,重新计算机器人运动学误差模型,反复迭代直到相对位置均方根误差满足设定值;
7)机器人运动学参数补偿:将最终辨识出的运动学参数误差补偿到机器人的控制器中,完成机器人运动学参数标定。
本发明方法具有以下有益效果:
1)本发明所提出的机器人工作平面的标定,机器人末端实行点到点的移动,不需要预先进行轨迹规划,标定过程操作简单,同时标定后的机器人在该平面内的定位精度能够得到极大的提升。
2)本发明所提出的基于相对位置关系模型的机器人精度标定方法,使用低成本的距离测量设备测量机器人末端的相对位置距离,相比于使用激光跟踪仪等绝对距离标定采集设备进行机器人运动学参数标定,具有标定成本低,标定效率高,标定设备使用简单等优点。
3)本发明所提出的使用四个参数建立机器人运动学误差模型,降低了机器人运动学误差模型辨识的复杂程度,机器人模型通用性强,标定方法的实际工程应用价值较大。
4)本发明所提出的精度标定方法只需要测量机器人末端的相对位置关系,避免了因标定机器人基坐标系而引入的新的误差。
附图说明
图1是本发明基于相对位置误差模型的机器人标定过程流程图;
图2是本发明机器人末端相对位置关系误差示意图;
图3是本发明的机器人实验平台系统架构图;
图4是本发明一个实例中的机器人误差辨识前后对比图。
具体实施方式
本发明提出一种工业机器人精度标定方法,目的是通过降低相对位置误差提高工业 机器人的平面精度,满足机器人生产任务对精度的要求,该方法操作便捷,成本较低,并且能够有效提高机器人精度,适用于大多数串联型工业机器人。
本发明提出了一种低成本的基于相对位置关系误差模型的工业机器人平面精度标定方法,步骤如下:
(1)建立机器人运动学模型:机器人使用改进的DH法建立模型,模型中包含四个运动学参数:连杆长度a i-1、连杆转角α i-1、关节偏置d i和关节转角θ i,模型具体参见教材《机器人技术基础》(熊友伦,华中科技大学出版社),因此机器人的单个连杆变换矩阵可以描述为:
A i=Rot(x,α i-1)Trans(x,a i-1)Rot(z,θ i)Trans(z,d i)
A i是单个连杆的变换矩阵,即该连杆相对于上一个连杆的变换矩阵,i表示第i个连杆,x、z表示x坐标轴z坐标轴。Rot是旋转变换,例如Rot(x,α)表示绕x轴旋转α角度。Trans是平移变换矩阵,例如Trans(z,d)表示沿z轴平移d距离。总的连杆变换矩阵T N由单个连杆变换矩阵相乘得到,机器人末端连杆坐标系相对于基坐标系的变换矩阵为:
Figure PCTCN2019112853-appb-000008
其中N为机器人自由度的个数,即N个自由度的机器人就是由N个连杆变换矩阵相乘得到的。将T N矩阵分块,R N为旋转矩阵,即将T N的3×3矩阵表示为R N,P N为偏移矩阵,即将T N的3×1矩阵表示为P N
(2)建立相对位置误差模型:将相邻两连杆之间的连杆误差微分变化矩阵dA i看做是四个运动学误差参数δa i-1 δα i-1 δd i δθ i的线性函数,当误差足够小时忽略函数的高阶项:
Figure PCTCN2019112853-appb-000009
这里所述的足够小是高数中将函数微分化的一个术语,例如e^-8~e^-15都可以算作是足够小,需要注意与这里机器人误差参数辨识中的误差不是同一个概念。
机器人末端连杆坐标系相对于基座标系的连杆误差微分矩阵为:
Figure PCTCN2019112853-appb-000010
因此,机器人的末端位置误差可以描述为:
Figure PCTCN2019112853-appb-000011
其中,
Figure PCTCN2019112853-appb-000012
B di、B ai-1和B αi-1依此类推。 iT N(1,4)表示 iT N矩阵第一行第四列的元素, iT N(1,4)iT N(2,4)iT N(3,4)iT N这个齐次矩阵的偏移矩阵,即之前公式中提到的P N
同时,机器人的末端位置误差dP t可以写成如下形式:
dP t=[Mθ]δθ+[Md]δd+[Ma]δa+[Mα]δα
机器人实际法兰末端坐标位置可以表示为
Figure PCTCN2019112853-appb-000013
因此,那么在机器人工作空间内任意两点之间的相对位置误差为实际相对位置与名义相对位置之差为:
Figure PCTCN2019112853-appb-000014
其中,将第一个点记作t1,将第二个点记作t2,
Figure PCTCN2019112853-appb-000015
表示第一个点的实际位置,
Figure PCTCN2019112853-appb-000016
表示第二个点的实际位置,P t1表示第一个点的理论位置,P t2表示第二个点的理论位置。这里两点可以代表在机器人的工作空间中任意的两个点,具体的,可以理解为一组标定点中的任意两个标定点。
整合以上公式,可以推导出机器人的相对位置关系误差模型为:
dP t1-dP t2=[Mθ 1-Mθ 2]δθ+[Md 1-Md 2]δd+[Ma 1-Ma 2]δa+[Mα 1-Mα 2]δα
(3)选取合适的标定点:在机器人工作空间内选择合适的机器人工作平面作为标定平面,在标定平面内选取一组合适的标定点,使得其均匀地分布在该平面内。
所述合适的平面满足:1)、标定平面必须在机器人的工作空间内;2)、需要机器人在哪一个平面区域内的精度进行提高,就在该平面区域内进行标定;3)、标定平面的面 积不宜过大或者过小,这个没有具体的标准,根据实际机器人和工况进行分析确定。
所述一组合适的标定点满足:“一组”必须要大于机器人运动学误差参数的个数,标定点个数越多,标定结果越准确,但是达到一定的个数,标定精度就不会改变。所以,也是结合实际情况进行判断确定。
(4)采集标定所需的数据:让机器人的末端沿着每个标定点依次移动,保持机器人末端姿态不变,记录下每个标定点处机器人的关节角度。同时,使用距离测量设备记录机器人末端在笛卡尔坐标系下的各个标定点的坐标值,常用的距离测量设备有栅格板、激光测距仪、视觉设备等,根据现场环境和实验条件选择合适的测量设备。
(5)计算运动学误差参数:机器人运动学参数的初始值使用名义DH参数值,同时将机器人关节角度和采集到的机器人末端坐标值代入机器人相对位置关系误差模型中,通过最小二乘法获得机器人运动学误差参数δa δα δd δθ的值。
(6)更新机器人运动学参数:由得到的机器人运动学误差参数值更新机器人的名义参数,重新计算机器人运动学误差模型。反复迭代直到相对位置均方根误差满足设定值,一般迭代2~4次就可以得到结果。此时,机器人在该平面内的精度得到极大的提升,通常能达到两到三个数量级。
(7)机器人运动学参数补偿:将最终辨识出的运动学参数误差补偿到机器人的控制器中,完成机器人运动学参数标定。
下面通过具体实施例来说明本发明的实施。
(1)建立机器人运动学模型:以六轴机器人为例,机器人使用改进的DH法建立模型,机器人的连杆变换矩阵可以描述为:
A i=Rot(x,α i-1)Trans(x,a i-1)Rot(z,θ i)Trans(z,d i)
机器人的名义DH参数参照表1。
表1机器人名义DH参数
关节 α(°) a(mm) d(mm) θ(°)
1 0 0 310 θ 1
2 -90 160 0 θ 2
3 0 780 0 θ 3
4 -90 196 690 θ 4
5 90 0 0 θ 5
6 -90 0 60 θ 5
可以求出机器人末端连杆坐标系相对于基坐标系的变换矩阵为:
T 6=A 1·A 2…A 6
(2)建立相对位置误差模型:机器人末端名义位置P t=F(a,α,d,θ),机器人末端实际位置为
Figure PCTCN2019112853-appb-000017
机器人的两点之间的相对位置误差为:
Figure PCTCN2019112853-appb-000018
以此建立机器人相对位置误差模型:
dP t1-dP t2=[Mθ 1-Mθ 2]δθ+[Md 1-Md 2]δd+[Ma 1-Ma 2]δa+[Mα 1-Mα 2]δα
(3)选取合适的标定点:在机器人的工作空间内选取一个240*240mm的平面作为机器人的工作平面,将机器人的工作平面等分成大小相同的80*80mm的正方形,将每个小正方形的顶点作为机器人的标定点。
(4)采集标定所需的数据:让机器人的末端沿着每个标定点依次移动,保持机器人末端姿态不变,记录下每个标定点处机器人的关节角度。同时,使用栅格板记录机器人末端在笛卡尔坐标系下的各个标定点的坐标值。
(5)计算运动学误差参数:利用最小二乘法得到机器人的误差参数δa δα δd δθ的值。
(6)更新机器人运动学参数:将得到的机器人运动学误差参数值补偿到机器人的名义参数中,重新计算机器人运动学误差模型,经过2次迭代,相对位置均方根误差值即满足设定值。最终得到补偿后的机器人运动学参数见表2。
表2补偿后的机器人DH参数
关节 α(°) a(mm) d(mm) θ(°)
1 0 0 310 θ 1+0.0017
2 -90 156.7173 0.0377 θ 2-0.0625
3 0 781.3731 0 θ 3-0.0364
4 -90 196 683.5724 θ 4-0.0717
5 90 0 2.4924 θ 5+0.0072
6 -90 0 60 θ 6
(7)机器人运动学参数补偿:将最终辨识出的运动学参数误差补偿到机器人的控制器中,再次进行验证,验证结果见表3。
表3机器人标定前后位置误差对比
  最大误差 平均误差
标定前 23.2522 12.1091
标定后 1.4514 0.4841
机器人的位置误差辨识前后对比如图4所示,可以看出经过标定,机器人的精度得到了极大的提高。
本发明将机器人的工作平面作为机器人标定数据的采集对象,可以简化标定测量步骤,标定后的机器人在其工作空间内的精度得到极大提升的同时,在其工作平面内的精度能够达到最优。
本发明可以采用低成本的距离测量设备来获得机器人末端的相对位置关系,包括但不限于栅格板、激光测距仪、视觉设备等距离测量设备,不需要昂贵的绝对距离测量设备,降低了标定成本。
本发明将机器人的工作平面选定为测量对象,机器人的平面精度可以达到最优,同时可以使用较便宜的距离测量设备,降低了标定成本。以上实例只作为本发明的一个优选实例,凡是不偏离本发明的技术实质,所作的任何修改、替换、改进等均属于本发明的保护范围。

Claims (3)

  1. 一种工业机器人平面精度标定方法,其特征是包括以下步骤:
    1)建立机器人运动学模型:机器人使用改进的DH法建立模型,模型中包含四个运动学参数:连杆长度a i-1、连杆转角α i-1、关节偏置d i和关节转角θ i,机器人的单个连杆变换矩阵描述为:
    A i=Rot(x,α i-1)Trans(x,a i-1)Rot(z,θ i)Trans(z,d i)
    机器人末端连杆坐标系相对于基坐标系的变换矩阵为:
    Figure PCTCN2019112853-appb-100001
    其中N表示机器人自由度的个数,R N为3×3的旋转矩阵,P N为3×1的偏移矩阵;
    2)建立相对位置误差模型:将相邻两连杆之间的连杆误差微分变化矩阵dA i看做是四个运动学误差参数δa i-1 δα i-1 δd i δθ i的线性函数,根据高数原理当误差足够小时忽略函数的高阶项:
    Figure PCTCN2019112853-appb-100002
    机器人末端连杆坐标系相对于基座标系的连杆误差微分矩阵为:
    Figure PCTCN2019112853-appb-100003
    机器人的末端位置误差描述为:
    Figure PCTCN2019112853-appb-100004
    其中,
    Figure PCTCN2019112853-appb-100005
    B di、B ai-1和B αi-1依此类推, iT N(1,4)表示 iT N矩阵第一行第四列的元素
    将机器人的末端位置误差dP t写成如下形式:
    dP t=[Mθ]δθ+[Md]δd+[Ma]δa+[Mα]δα
    机器人实际法兰末端坐标位置表示为
    Figure PCTCN2019112853-appb-100006
    那么在机器人工作空间内任意两点之间的相对位置误差为实际相对位置与名义相对位置之差:
    Figure PCTCN2019112853-appb-100007
    推导出机器人的相对位置关系误差模型为:
    dP t1-dP t2=[Mθ 1-Mθ 2]δθ+[Md 1-Md 2]δd+[Ma 1-Ma 2]δa+[Mα 1-Mα 2]δα
    3)选取合适的标定点:在机器人工作空间内选择一个机器人工作平面作为标定平面,在标定平面内选取一组标定点,标定点均匀地分布在标定平面内,且标定点个数大于机器人运动学误差参数的个数;
    4)采集标定所需的数据:让机器人的末端沿着每个标定点依次移动,保持机器人末端姿态不变,记录下每个标定点处机器人的关节角度,同时,使用距离测量设备记录机器人末端在笛卡尔坐标系下的各个标定点的坐标值;
    5)计算运动学误差参数:机器人运动学参数的初始值使用名义DH参数值,同时将机器人关节角度和采集到的机器人末端坐标值代入机器人相对位置关系误差模型中,通过最小二乘法获得机器人运动学误差参数δa δα δd δθ的值;
    6)更新机器人运动学参数:由得到的机器人运动学误差参数值更新机器人的DH参数值,重新计算机器人运动学误差模型,反复迭代直到相对位置均方根误差满足设定值;
    7)机器人运动学参数补偿:将最终辨识出的运动学参数误差补偿到机器人的控制器中,完成机器人运动学参数标定。
  2. 根据权利要求1所述的一种工业机器人平面精度标定方法,其特征是步骤4)中使用的距离测量设备包括栅格板、激光测距仪和视觉设备,根据现场环境和实验条件选择合适的测量设备。
  3. 根据权利要求1所述的一种工业机器人平面精度标定方法,其特征是步骤3)中选择机器人的标定平面时选择原则为:1)、标定平面必须在机器人的工作空间内;2)、需要机器人在哪一个平面区域内的精度进行提高,就在该平面区域内选择标定平面;3)、标定平面的面积根据实际机器人和工况确定。
PCT/CN2019/112853 2018-12-29 2019-10-23 一种工业机器人平面精度标定方法 WO2020134426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811642156.4 2018-12-29
CN201811642156.4A CN109773786B (zh) 2018-12-29 2018-12-29 一种工业机器人平面精度标定方法

Publications (1)

Publication Number Publication Date
WO2020134426A1 true WO2020134426A1 (zh) 2020-07-02

Family

ID=66499544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112853 WO2020134426A1 (zh) 2018-12-29 2019-10-23 一种工业机器人平面精度标定方法

Country Status (2)

Country Link
CN (1) CN109773786B (zh)
WO (1) WO2020134426A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112861317A (zh) * 2021-01-11 2021-05-28 合肥工业大学 补偿旋转轴倾斜误差的关节式坐标测量机运动学建模方法
CN113094642A (zh) * 2021-04-14 2021-07-09 电子科技大学 一种面向区域内机械臂定位误差估算的新增采样的方法
CN113146613A (zh) * 2021-01-22 2021-07-23 吉林省计量科学研究院 一种工业机器人d-h参数三维自标定校准装置及方法
CN113715062A (zh) * 2021-09-14 2021-11-30 西安交通大学 一种机械臂连杆参数的标定方法
CN113733088A (zh) * 2021-09-07 2021-12-03 河南大学 一种基于双目视觉的机械臂运动学自标定方法
CN114488810A (zh) * 2022-01-25 2022-05-13 上海交通大学 机器人末端姿态跟踪预测控制方法及系统和机器人
CN114523474A (zh) * 2022-03-01 2022-05-24 合肥工业大学 一种距离限制的工业机器人运动学参数估计方法
CN114833834A (zh) * 2022-06-01 2022-08-02 浙江大学 一种基于多源误差建模的工业机器人精度补偿方法
CN115107024A (zh) * 2022-06-27 2022-09-27 北京工业大学 一种基于激光追踪仪多站位技术的工业机器人运动学参数辨识方法
CN115797467A (zh) * 2023-02-02 2023-03-14 深圳市德驰微视技术有限公司 车辆相机标定结果检测方法、装置、设备及存储介质
CN116787443A (zh) * 2023-07-26 2023-09-22 中国科学院宁波材料技术与工程研究所 基于单位对偶四元数的并联机构运动学标定方法和系统
CN117349990A (zh) * 2023-12-05 2024-01-05 武汉科技大学 一种机器人快速标定的方法及系统
CN117901122A (zh) * 2024-03-19 2024-04-19 成都信息工程大学 基于Logistic-Tent混沌映射Levenberg Marquardt的机器人定位方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109773786B (zh) * 2018-12-29 2022-04-19 南京埃斯顿机器人工程有限公司 一种工业机器人平面精度标定方法
CN111055289B (zh) * 2020-01-21 2021-09-28 达闼科技(北京)有限公司 机器人的手眼标定方法、装置、机器人及存储介质
CN112318498B (zh) * 2020-09-23 2022-06-24 天津大学 一种考虑参数耦合的工业机器人标定方法
CN112720457B (zh) * 2020-12-03 2022-03-18 深圳众为兴技术股份有限公司 机器人标定方法、装置、电子设备及存储介质
CN113568369B (zh) * 2021-07-16 2022-09-30 英诺威讯智能科技(杭州)有限公司 全自动机器人零点标定的系统内置测量相对精度方法
CN113618738B (zh) * 2021-08-23 2024-04-19 上海大学 一种机械臂运动学参数标定方法及系统
CN114800501B (zh) * 2022-04-26 2023-09-01 伟创力电脑(苏州)有限公司 一种用于机器人的平面内自动标定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8918210B2 (en) * 2011-03-18 2014-12-23 Denso Wave Incorporated Method of detecting an inter-axis offset of 6-axis robot
CN106737855A (zh) * 2016-08-22 2017-05-31 南京理工大学 一种综合位姿误差模型与刚度补偿的机器人精度补偿方法
CN108406771A (zh) * 2018-03-09 2018-08-17 江南大学 一种平面约束误差模型及机器人自标定方法
CN108705531A (zh) * 2018-04-17 2018-10-26 上海达野智能科技有限公司 工业机器人的运动学参数标定方法、标定系统、电子设备
CN109773786A (zh) * 2018-12-29 2019-05-21 南京埃斯顿机器人工程有限公司 一种工业机器人平面精度标定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104608129B (zh) * 2014-11-28 2016-06-08 江南大学 基于平面约束的机器人标定方法
CN107369167A (zh) * 2017-07-20 2017-11-21 江南大学 一种基于双平面约束误差模型的机器人自标定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8918210B2 (en) * 2011-03-18 2014-12-23 Denso Wave Incorporated Method of detecting an inter-axis offset of 6-axis robot
CN106737855A (zh) * 2016-08-22 2017-05-31 南京理工大学 一种综合位姿误差模型与刚度补偿的机器人精度补偿方法
CN108406771A (zh) * 2018-03-09 2018-08-17 江南大学 一种平面约束误差模型及机器人自标定方法
CN108705531A (zh) * 2018-04-17 2018-10-26 上海达野智能科技有限公司 工业机器人的运动学参数标定方法、标定系统、电子设备
CN109773786A (zh) * 2018-12-29 2019-05-21 南京埃斯顿机器人工程有限公司 一种工业机器人平面精度标定方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112861317B (zh) * 2021-01-11 2022-09-30 合肥工业大学 补偿旋转轴倾斜误差的关节式坐标测量机运动学建模方法
CN112861317A (zh) * 2021-01-11 2021-05-28 合肥工业大学 补偿旋转轴倾斜误差的关节式坐标测量机运动学建模方法
CN113146613A (zh) * 2021-01-22 2021-07-23 吉林省计量科学研究院 一种工业机器人d-h参数三维自标定校准装置及方法
CN113146613B (zh) * 2021-01-22 2022-11-04 吉林省计量科学研究院 一种工业机器人d-h参数三维自标定校准装置及方法
CN113094642A (zh) * 2021-04-14 2021-07-09 电子科技大学 一种面向区域内机械臂定位误差估算的新增采样的方法
CN113094642B (zh) * 2021-04-14 2023-03-31 电子科技大学 一种面向区域内机械臂定位误差估算的新增采样的方法
CN113733088A (zh) * 2021-09-07 2021-12-03 河南大学 一种基于双目视觉的机械臂运动学自标定方法
CN113733088B (zh) * 2021-09-07 2024-05-14 河南大学 一种基于双目视觉的机械臂运动学自标定方法
CN113715062A (zh) * 2021-09-14 2021-11-30 西安交通大学 一种机械臂连杆参数的标定方法
CN114488810A (zh) * 2022-01-25 2022-05-13 上海交通大学 机器人末端姿态跟踪预测控制方法及系统和机器人
CN114488810B (zh) * 2022-01-25 2023-12-12 上海交通大学 机器人末端姿态跟踪预测控制方法及系统和机器人
CN114523474B (zh) * 2022-03-01 2023-06-27 合肥工业大学 一种距离限制的工业机器人运动学参数估计方法
CN114523474A (zh) * 2022-03-01 2022-05-24 合肥工业大学 一种距离限制的工业机器人运动学参数估计方法
CN114833834A (zh) * 2022-06-01 2022-08-02 浙江大学 一种基于多源误差建模的工业机器人精度补偿方法
CN114833834B (zh) * 2022-06-01 2023-10-10 浙江大学 一种基于多源误差建模的工业机器人精度补偿方法
CN115107024A (zh) * 2022-06-27 2022-09-27 北京工业大学 一种基于激光追踪仪多站位技术的工业机器人运动学参数辨识方法
CN115797467A (zh) * 2023-02-02 2023-03-14 深圳市德驰微视技术有限公司 车辆相机标定结果检测方法、装置、设备及存储介质
CN116787443B (zh) * 2023-07-26 2023-11-21 中国科学院宁波材料技术与工程研究所 基于单位对偶四元数的并联机构运动学标定方法和系统
CN116787443A (zh) * 2023-07-26 2023-09-22 中国科学院宁波材料技术与工程研究所 基于单位对偶四元数的并联机构运动学标定方法和系统
CN117349990A (zh) * 2023-12-05 2024-01-05 武汉科技大学 一种机器人快速标定的方法及系统
CN117349990B (zh) * 2023-12-05 2024-02-13 武汉科技大学 一种机器人快速标定的方法及系统
CN117901122A (zh) * 2024-03-19 2024-04-19 成都信息工程大学 基于Logistic-Tent混沌映射Levenberg Marquardt的机器人定位方法及系统
CN117901122B (zh) * 2024-03-19 2024-05-17 成都信息工程大学 基于Logistic-Tent混沌映射Levenberg Marquardt的机器人定位方法及系统

Also Published As

Publication number Publication date
CN109773786A (zh) 2019-05-21
CN109773786B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2020134426A1 (zh) 一种工业机器人平面精度标定方法
CN106737855B (zh) 一种综合位姿误差模型与刚度补偿的机器人精度补偿方法
CN107042528A (zh) 一种工业机器人的运动学标定系统及方法
CN112873199B (zh) 基于运动学与空间插值的机器人绝对定位精度标定方法
CN109304730B (zh) 一种基于激光测距仪的机器人运动学参数标定方法
CN110815206B (zh) 一种Stewart型并联机器人运动学标定方法
CN111203861B (zh) 一种机器人工具坐标系的标定方法及标定系统
CN111055273B (zh) 一种用于机器人的两步误差补偿方法
CN104890013A (zh) 一种基于拉线编码器的工业机器人标定算法
CN104833324A (zh) 一种基于测量头的机器人标定方法
CN113211445B (zh) 一种机器人参数标定方法、装置、设备及存储介质
CN112958960B (zh) 一种基于光学靶标的机器人手眼标定装置
CN114161425B (zh) 一种工业机器人的误差补偿方法
CN109465831B (zh) 一种提升工业机器人工具坐标系标定精度的方法
CN112318498A (zh) 一种考虑参数耦合的工业机器人标定方法
CN114474003A (zh) 一种基于参数辨识的车载建筑机器人误差补偿方法
CN111390914B (zh) 一种机器人零位和工具坐标标定方法
CN114714348A (zh) 一种工业机器人绝对定位精度提高方法
CN115502968A (zh) 一种基于标定修复刚柔耦合模型的机械臂末端位置误差补偿方法
CN116713993A (zh) 一种六轴串联机器人d-h参数标定方法及系统
CN113211436B (zh) 基于遗传算法的六自由度串联机器人误差标定方法
CN115237056B (zh) 工业机器人多工具快速纠偏方法
Mei et al. Calibration of a 6-DOF industrial robot considering the actual mechanical structures and CNC system
CN109895098A (zh) 一种机器人结构参数和手眼关系的统一标定模型
CN114800526A (zh) 基于激光跟踪仪通过点线面建系的工业机器人标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903809

Country of ref document: EP

Kind code of ref document: A1