WO2020133853A1 - 提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法 - Google Patents

提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法 Download PDF

Info

Publication number
WO2020133853A1
WO2020133853A1 PCT/CN2019/084874 CN2019084874W WO2020133853A1 WO 2020133853 A1 WO2020133853 A1 WO 2020133853A1 CN 2019084874 W CN2019084874 W CN 2019084874W WO 2020133853 A1 WO2020133853 A1 WO 2020133853A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
ferritic stainless
rolled
temperature
oxidation resistance
Prior art date
Application number
PCT/CN2019/084874
Other languages
English (en)
French (fr)
Inventor
陈礼清
魏亮亮
韩力强
刘后龙
马明玉
刘玲玲
习小慧
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020133853A1 publication Critical patent/WO2020133853A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention belongs to the technical field of metallurgical materials, and particularly relates to a composition design and preparation method of a B444M2 ferritic stainless steel with improved high-temperature oxidation resistance. Background technique
  • ferritic stainless steel Since the 1990s, with the three-step smelting technology (electric arc furnace + argon oxygen decarburization) Method + Vacuum Oxygen Decarburization Method) has been continuously improved, the content of carbon and nitrogen gap atoms in ferritic stainless steel has been greatly reduced, and its performance has been significantly improved.
  • the low-cost nickel-saving ferritic stainless steel not only exhibits a series of material intrinsic performance advantages, but also has excellent corrosion resistance, high temperature resistance, low thermal expansion coefficient and high thermal conductivity.
  • As a nickel-free chromium stainless steel the performance advantages of modern ferritic stainless steel are mainly manifested in its formability, economy, corrosion resistance and oxidation resistance comparable to nickel-containing stainless steel, and low cost, Notable features such as excellent resistance to stress corrosion. Therefore, ferritic stainless steel has been widely used in automobile exhaust systems.
  • the "reactive element effect" of rare earth elements can significantly improve the oxidation resistance of metal materials at high temperatures.
  • the active element effects of rare earth elements include: improving the adhesion of the oxide film and its anti-stripping ability; The growth mechanism of the film; reduce the oxidation reaction rate and change the microstructure of the oxide film. Therefore, it is feasible to increase the high-temperature oxidation resistance of ferritic stainless steel by adding rare earth elements.
  • Tungsten element is a high melting point alloy element, and its solid solution strengthening and precipitation hardening can further improve the thermomechanical fatigue performance of the material.
  • the addition of tungsten element will have a certain influence on the precipitation behavior in ferritic stainless steel, especially on the stability of the precipitated phase at high temperature.
  • the existing ferritic stainless steel materials for automotive exhaust systems cannot meet the requirements for use in higher service temperature environments (9 50 ⁇ 1100°C) and the hot end of the automotive manufacturing system for the new generation of automotive exhaust systems
  • the object of the present invention is to provide a composition design and preparation method of B444M2 ferritic stainless steel with improved high temperature oxidation resistance.
  • the ferritic stainless steel is a new type of ultra-pure medium chromium Ferritic stainless steel has excellent high-temperature oxidation resistance and good formability, meeting the mechanical properties of ferritic stainless steel for automotive exhaust systems.
  • the B444M2 ferritic stainless steel with improved high temperature oxidation resistance has a microstructure of ferrite, and Laves with a size of 200-400 nm are dispersed and distributed in the ferrite grain boundaries and within the crystal Phase precipitates.
  • the B444M2 ferritic stainless steel with improved high temperature oxidation resistance, the stainless steel at room temperature The yield strength is 360 ⁇ 370MPa, the tensile strength is 520 ⁇ 530MPa, the elongation is 26 ⁇ 30% ; the tensile strength at 1100 ° (: 18 ⁇ 20MPa.
  • the preparation method of the B444M2 ferritic stainless steel with improved high-temperature oxidation resistance is to smelt molten steel according to the set composition and cast into a billet, which is forged after high-temperature homogenization treatment; reheat the forged billet to Insulate at 1200°C ⁇ 15°C, and then obtain hot-rolled sheets after 6-8 passes; hot-rolled sheets are annealed and cold-rolled after removing surface scale to obtain cold-rolled sheets; cold-rolled sheets are at 1020°C ⁇ 15°C for 2 ⁇ 3min annealing.
  • the vacuum induction furnace is used for smelting, and the chemical composition control must comply with the technical requirements of the B444M2 ferritic stainless steel; subsequently, it is cast into a slab, air-cooled to room temperature, and the head and tail are cut off; second, the slab is placed into a resistor In the furnace, the temperature is kept at 1180°C ⁇ 15°C for more than 70 ⁇ 90min; Finally, the billet is forged, the initial forging temperature is 1100°C ⁇ 15°C, the final forging temperature is 900°C ⁇ 15°C, After forging, air cool to room temperature to obtain forging billet
  • the forging billet After heating the forging billet to 1200°C ⁇ 15°C for 3 ⁇ 4h, it is rolled to 4 ⁇ 5mm thickness through 6 ⁇ 8 passes on a 0450mm two-roller reversible hot rolling experimental unit, and the rolling temperature is 1050° C ⁇ 15°C, the final rolling temperature is 900°C ⁇ 15°C, the total reduction rate is 85 ⁇ 90%, hot-rolled sheet is obtained; the hot-rolled sheet is kept at 1050°C ⁇ 15°C for 4 ⁇ 6min Annealing, then air cooling to room temperature to obtain hot rolled annealed sheet;
  • the surface iron scale is removed, and then cold rolled on a cD325mmx400mm four-roller straight-pull reversible cold rolling machine, and finally rolled to a thickness of 0.8 ⁇ 1.5mm; Incubate at C ⁇ 15°C for 2 ⁇ 3min for annealing, and then air cool to room temperature.
  • the chemical composition design of the ferritic stainless steel of the present invention is mainly considered from the aspects of high temperature oxidation resistance, high temperature strength, formability and welding performance:
  • Rare earth elements can significantly improve the high temperature oxidation resistance of stainless steel materials due to its "reactive element” effect.
  • the ferrite stainless steel added with rare earth Ce element produces finer oxides during high-temperature oxidation, the oxide film is denser and has better adhesion. Therefore, when designing the composition of ferritic stainless steel, a small amount of C can be added e element to improve its anti-oxidation performance at high temperature and improve its service life under high temperature environment.
  • the rare earth also has the effect of purifying metamorphic inclusions in molten steel, which can improve the plastic toughness of steel and improve the formability of ferritic stainless steel.
  • C and N are interstitial elements, and since their amount of dissolution in ferrite is extremely low, it is easy to form chromium carbonitrides at grain boundaries. The presence of chromium carbonitrides in the heat-affected zone of the weld will cause chromium-depleted grain boundaries and intergranular corrosion, reducing the corrosion resistance of the welded joint.
  • the carbon and nitrogen contents should satisfy C+N ⁇ 10 ⁇ (mass fraction).
  • Nb and Ti are stable elements in ferritic stainless steel, which can preferentially form (Nb, Ti) (C, N) with C and N elements, thereby avoiding the formation of chromium carbonitrides and intergranular corrosion happened.
  • Tungsten metal has the characteristics of high melting point, high hardness and good high temperature strength.
  • the W element solid-dissolved in ferritic stainless steel can increase its strength at high temperature.
  • the W element has a certain promoting effect on the precipitation behavior in ferritic stainless steel and improves the stability of the precipitated phase at high temperature, thereby increasing the strength of the material. Therefore, in the design of ferritic stainless steel components, the solid solution strengthening/precipitation strengthening effect of the W element can be used to increase the strength of the material at higher temperatures.
  • the precipitation phase stably present at the interface of the oxide film/substrate under high temperature environment can also inhibit the in-growth of the oxide film and the diffusion of reactive elements, thereby improving the oxidation resistance of the new ferritic stainless steel at high temperature.
  • the high-temperature oxidation resistance of the ferritic stainless steel in the present invention in the atmospheric environment and the simulated automobile exhaust environment is significantly improved. After prolonged oxidation under high temperature environment (950 ⁇ 1050°C), the oxide film is dense and thin, without obvious peeling of the oxide film, and its oxidation reaction rate is also significantly reduced.
  • FIG. 1 is a photograph of the metallographic structure of a ferritic stainless steel after cold rolling annealing in an example of the present invention
  • FIG. 2 is a photograph of a transmission electron microscope structure of a ferritic stainless steel after cold rolling annealing in an embodiment of the present invention
  • FIG. 3 shows the existing B444M2 ferritic stainless steel (F1) and the ferritic stainless steel (F2) in the example of the present invention at 950 ⁇ 1.
  • FIG. 4 shows the scanning electrons of the surface morphology of the existing B444M2 ferritic stainless steel (Fl) (a) and the ferritic stainless steel (F2) (b) in the embodiment of the present invention after constant temperature oxidation in air at 1050°C for 5h Microscope photo
  • the equipment for observing the metallographic structure is Olympus Olympus BX53M; the surface morphology and cross-sectional morphology of the oxide film are observed using FEI Quanta600 scanning electron microscope and JEOL JXA—8530F electron Probe; Precipitation phase observation using FEI Tecnai G 2 F20 transmission electron microscope; Room temperature tensile test was conducted on CMT5105-SANS computer-controlled electronic universal testing machine; High temperature tensile test was conducted on MMS-300 thermal simulation testing machine.
  • the high-temperature oxidation-resistant B444M2 ferritic stainless steel of this embodiment has a chemical composition of
  • the balance is Fe; the microstructure is ferrite, and Laves phase precipitated particles with a size of 200-400nm are distributed in the ferrite grain boundaries and within the crystal; the tensile strength at room temperature is 523MPa, the yield strength is 364MPa, The elongation is 28.1%.
  • composition control must meet the technical standards of the stainless steel. Subsequently, it is cast into a blank (mold casting), air cooled to room temperature, and the head and tail are cut off. Secondly, put the slab in a resistance furnace at 120°C ⁇ 15°C for 120min. Finally, the cast billet was forged, the initial forging temperature was 1100°C, the final forging temperature was 900°C, and the forging billet was obtained by air cooling to room temperature after forging.
  • the 4mm thick hot-rolled annealed sheet was removed by grinding machine to remove the surface scale, it was cold-rolled on a 0325mmx400mm four-roller straight-pull reversible cold rolling machine of the State Key Laboratory of Rolling Technology and Continuous Rolling Automation of Northeastern University, and finally rolled to 1.0 mm thick, cold-rolled sheet was obtained.
  • the cold-rolled sheet was annealed at 1020°C for 2 minutes for annealing, and then air-cooled to room temperature.
  • FIG. 1 it can be seen from the photograph of the metallographic structure of the ferritic stainless steel after cold rolling and annealing in the examples of the present invention that the structure after annealing is equiaxed ferrite with an average grain size of ⁇ 5 011 .
  • FIG. 2 it can be seen from the transmission electron microscope micrograph of the ferritic stainless steel after cold rolling and annealing in the embodiment of the present invention that the Laves phase is dispersedly distributed inside the grains and at the grain boundaries.
  • the temperature is oxidized at a temperature of 1100°C for 5 hours in a simulated automobile exhaust environment It can be seen from the comparison of the electron probe photos of the cross-sectional morphology of the rear oxide film that the ferrite stainless steel in the embodiment of the present invention has a thinner oxide film and no defects such as cracks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明属于冶金材料技术领域,特别涉及一种提高高温抗氧化性能的B444M2型铁素体不锈钢的成分设计及其制备方法。铁素体不锈钢化学成分(按重量百分比)为:C 0~0.01%;Si 0.4~0.6%;Mn 0.25~0.35%;S 0~0.009%; P 0~0.01%;Cr 19~20%;Nb 0.4~0.5%;Ti 0.1~0.2%;N 0~0.01%;Mo 1.9~2.1%;W 0.4~0.6%;Ce 0.04~0.1%;余量为Fe。铁素体不锈钢的显微组织为铁素体,且在晶界及晶内弥散分布着尺寸为200~400nm的析出物。按设定成分冶炼钢水并铸成铸坯,经高温均匀化处理后即实施锻造;将锻造坯重新加热至1200℃±15℃保温,随后经6~8道次轧制后获得热轧板;热轧板经退火及除去表面氧化铁皮后进行冷轧获得冷轧板;冷轧板在1020℃±15℃保温1.5~2.5min退火。此时,可以获得成形性能良好且具有优异高温抗氧化性能的铁素体不锈钢材料。

Description

提高高温抗氧化性能的 B444M2型铁素体不锈钢及其制 备方法
技术领域
[0001] 本发明属于冶金材料技术领域, 特别涉及一种提高高温抗氧化性能的 B444M2 型铁素体不锈钢的成分设计及其制备方法。 背景技术
[0002] 随着汽车工业的快速发展, 汽车制造业中对包括不锈钢在内的汽车用钢需求呈 现多元化递增趋势。 由于汽车尾气排放等级化的实施和为实现节能减排而提出 的汽车轻量化等要求的进一步提高, 使用耐高温、 耐腐蚀性能优良的不锈钢材 料已成为一种发展趋势。 自 20世纪 70年代开始, 欧、 美和日本等国家即已广泛 采用 304奥氏体不锈钢等制作汽车排气系统; 进入 20世纪 90年代, 随着冶炼三步 法技术(电弧炉 +氩氧脱碳法 +真空吹氧脱碳法)不断提高, 铁素体不锈钢中碳、 氮 间隙原子含量得以大大降低, 其使用性能明显提升。 成本低廉的节镍类铁素体 型不锈钢不仅表现出一系列材料本征性能优势, 而且还具有优良的耐蚀性、 耐 高温特性、 热膨胀系数低以及热导率高等特点。 作为一种不含镍的铬系不锈钢 , 现代铁素体不锈钢的性能优势主要表现在其具有含镍不锈钢所媲美的成形性 、 经济性、 耐蚀性和抗氧化性方面, 并且具有低成本、 优异的耐应力腐蚀等显 著特点。 因此, 铁素体不锈钢目前已被广泛应用于汽车排气系统中。
[0003] 伴随着欧 V标准于 2006年 12月 13日在欧洲实施, 我国也已于 2010年全面实施相 应级别的排放标准。 汽车尾气排放标准以及燃油效率的不断提高, 导致排气温 度的升高, 局部工作温度将达到 950~1050°C, 甚至高达 1100°C。 因而, 与其相适 应的具有更加优良抗高温氧化性能、 更高高温强度和耐热疲劳性能要求的新一 代汽车排气系统用现代铁素体不锈钢材料的开发与应用成为一项亟待开展的重 要研究课题。
[0004] 稀土元素的“反应元素效应”能够显著提高金属材料在高温下的抗氧化性能。 稀 土元素的活性元素效应包括: 提高氧化膜的粘附性及其抗剥落能力; 改变氧化 膜的生长机制; 降低氧化反应速率及改变氧化膜的微观结构。 因而, 通过添加 稀土元素来提高铁素体不锈钢的高温抗氧化性能具有一定的可行性。 钨元素为 高熔点合金元素, 利用其固溶强化以及沉淀硬化作用能进一步改善材料的热机 械疲劳性能。 此外, 钨元素的添加会对铁素体不锈钢中的析出行为产生一定的 影响, 尤其对析出相在高温下的稳定性影响较为明显。 在高温氧化过程中, 存 在于氧化膜 /基体界面处的析出相会抑制反应元素的扩散进而降低氧化反应的速 率。 综上可见, 调控合金元素稀土(如 Ce)和 W及其含量, 利用这些元素对高温服 役性能产生的协同作用, 是探索新一代汽车排气歧管等高温部件用耐热铁素体 不锈钢(〜 1100°C)的重要方向。
发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 针对现有汽车排气系统用铁素体不锈钢材料无法满足在更高服役温度环境下(9 50~1100°C)的使用要求以及汽车制造业对新一代汽车排气系统热端用铁素体不锈 钢材料迫切需求的客观现状, 本发明的目的在于提供一种提高高温抗氧化性能 的 B444M2型铁素体不锈钢的成分设计及其制备方法, 该铁素体不锈钢是新型超 纯中铬铁素体不锈钢, 其高温抗氧化性能优异且具有良好的成形性能, 满足汽 车排气系统用铁素体不锈钢的力学性能要求。
[0006] 本发明的技术方案是:
[0007] 一种提高高温抗氧化性能的 B444M2型铁素体不锈钢, 按重量百分比计, 化学 成分为: C 0-0.01%; Si 0.4-0.6%; Mn 0.25-0.35%; S 0-0.009%; P
0-0.01%; Cr 19-20%; Nb 0.4~0.5%; Ti 0.1-0.2%; N 0-0.01%; Mo
1.9-2.1%; W 0.4-0.6%; Ce 0.04-0.1%; 余量为 Fe。
[0008] 所述的提高高温抗氧化性能的 B444M2型铁素体不锈钢, 该不锈钢的显微组织 为铁素体, 且在铁素体晶界及晶内弥散分布着尺寸为 200~400nm的 Laves相析出 物。
[0009] 所述的提高高温抗氧化性能的 B444M2型铁素体不锈钢, 该不锈钢在室温下的 屈服强度为 360~370MPa, 抗拉强度为 520~530MPa, 延伸率为 26~30% ; 在 1100 °(:下的抗拉强度为 18~20MPa。
[0010] 所述的提高高温抗氧化性能的 B444M2型铁素体不锈钢的制备方法, 按设定成 分冶炼钢水并铸成铸坯, 经高温均匀化处理后即实施锻造; 将锻造坯重新加热 至 1200°C±15°C保温, 随后经 6~8道次轧制后获得热轧板; 热轧板经退火及除去 表面氧化铁皮后进行冷轧获得冷轧板; 冷轧板在 1020°C±15°C保温 2~3min退火。
[0011] 所述的提高高温抗氧化性能的 B444M2型铁素体不锈钢的制备方法, 具体步骤 如下:
[0012] (1)冶炼及锻造
[0013] 首先, 采用真空感应炉冶炼, 化学成分控制须符合该 B444M2型铁素体不锈钢 的技术标准要求; 随后, 浇铸成坯, 空冷至室温, 切除头尾; 其次, 将铸坯放 入电阻炉中在 1180°C±15°C温度下保温 70~90min以上; 最后, 将铸坯进行锻造, 始锻温度为 1100°C±15°C, 终锻温度为 900°C±15°C, 锻后空冷至室温获得锻造坯
[0014] (2)热轧及退火
[0015] 将锻造坯加热至 1200°C±15°C保温 3~4h后, 在 0450mm二辊可逆热轧实验机组 上经 6~8道次轧至 4~5mm厚, 开轧温度为 1050°C±15°C, 终轧温度为 900°C±15°C , 总压下率为 85~90%, 获得热轧板; 热轧板在 1050°C±15°C下保温 4~6min进行退 火, 然后空冷至室温, 获得热轧退火板;
[0016] (3)冷轧及退火
[0017] 将 4~5mm厚热轧退火板经磨床去除表面氧化铁皮后, 在 cD325mmx400mm四辊 直拉式可逆冷轧机上进行冷轧, 最终轧至 0.8~1.5mm厚; 冷轧板在 1020°C±15°C 下保温 2~3min进行退火, 随后空冷至室温。
[0018] 本发明铁素体不锈钢的化学成分设计主要从抗高温氧化性能、 高温强度、 成形 性能以及焊接性能方面考虑的:
[0019] 稀土元素因其“反应元素”效应能显著提高不锈钢材料的高温抗氧化性能。 添加 稀土 Ce元素的铁素体不锈钢在高温氧化时生成的氧化物更为细小, 氧化膜更加 致密且粘附性较好。 因此, 在铁素体不锈钢的成分设计时可以通过加入少量的 C e元素来提高其在高温下抗氧化性能, 提高其在高温环境下的使用寿命。 此外, 稀土还具有净化钢液变质夹杂物的作用, 能提高钢的塑韧性, 改善铁素体不锈 钢的成形性能。
[0020] C、 N为间隙元素, 因其在铁素体中的溶解量极低, 故容易在晶界处形成铬的 碳氮化物。 铬的碳氮化物存在于焊接热影响区会造成晶界贫铬及晶间腐蚀, 降 低焊接接头的耐蚀性能。 在铁素体不锈钢的成分设计时, 碳、 氮含量应满足 C+N <10 <(质量分数)。
[0021] Nb、 Ti为铁素体不锈钢中的稳定元素, 其能够优先和 C、 N元素形成 (Nb, Ti)( C, N) , 进而避免铬的碳氮化物的形成以及晶间腐蚀现象的发生。
[0022] 金属钨具有高熔点、 硬度大和高温强度好的特点, 固溶在铁素体不锈钢中的 W 元素能够提高其在高温下的强度。 W元素对铁素体不锈钢中的析出行为有一定的 促进作用并提高析出相在高温下的稳定性, 进而提高材料的强度。 因而在铁素 体不锈钢成分设计时, 可以利用 W元素固溶强化 /析出强化效应提高材料在更高 温度下的强度。 此外, 在高温环境下稳定存在于氧化膜 /基体界面处的析出相还 能够抑制氧化膜的向内生长以及反应元素的扩散, 进而提高该新型铁素体不锈 钢在高温下的抗氧化性能。
发明的有益效果
有益效果
[0023] 本发明的优点及有益效果是:
[0024] 与现有 B444M2型铁素体相比, 本发明中铁素体不锈钢在大气环境下以及模拟 汽车尾气环境下的高温抗氧化性能显著提高。 在高温环境下 (950~1050°C)长时间 氧化后, 氧化膜致密且厚度较薄, 氧化膜无明显剥落, 其氧化反应速率也显著 降低。
对附图的简要说明
附图说明
[0025] 图 1为本发明实例中铁素体不锈钢冷轧退火后的金相组织照片;
[0026] 图 2为本发明实施例中铁素体不锈钢冷轧退火后的透射电镜组织照片;
[0027] 图 3为现有 B444M2铁素体不锈钢 (F1)和本发明实例中铁素体不锈钢 (F2)在 950~1 050°C空气中恒温氧化 100h后的单位面积氧化增重 (Weight gain, mg/cm 2)比较图
[0028] 图 4为现有 B444M2铁素体不锈钢 (Fl)(a)和本发明实施例中铁素体不锈钢 (F2)(b) 在 1050°C空气中恒温氧化 5h后表面形貌的扫描电子显微镜照片;
[0029] 图 5为现有 B444M2铁素体不锈钢 (Fl)(a)和本发明实施例中铁素体不锈钢 (F2)(b) 在 1100°C模拟汽车尾气环境中恒温氧化 5h后氧化膜截面形貌的电子探针照片。 发明实施例
本发明的实施方式
[0030] 在本发明实施例中, 观测金相组织的设备为奥林巴斯 Olympus BX53M; 氧化膜 表面形貌和截面形貌的观察分别使用 FEI Quanta600型扫描电子显微镜和 JEOL JXA— 8530F型电子探针; 析出相的观察采用 FEI Tecnai G 2 F20型透射电子显微 镜; 室温拉伸实验在 CMT5105-SANS微机控制电子万能试验机上进行; 高温拉 伸试验在 MMS-300热力模拟试验机上进行。
[0031] 实施例 1
[0032] 本实施例高温抗氧化 B444M2型铁素体不锈钢, 其化学成分按照质量百分比为
: 0.007%C、 0.50%Si、 0.32%Mn、 0.009%S、 0.01%P、 19.1%Cr、 0.45%Nb、 0.1 37%Ti、 0.0071%N、 1.95%Mo、 0.58%W、 0.056%Ce, 余量为 Fe; 其显微组织为 铁素体, 在铁素体晶界及晶内分布着尺寸为 200~400nm的 Laves相析出粒子; 室 温下的抗拉强度为 523MPa, 屈服强度为 364MPa, 延伸率为 28.1%。
[0033] 上述高温抗氧化 B444M2型铁素体不锈钢的制备方法如下:
[0034] (1)冶炼及锻造
[0035] 采用 150kg真空感应炉冶炼, 成分控制须符合该不锈钢的技术标准要求。 随后 , 浇铸成坯 (模铸), 空冷至室温, 切除头尾。 其次, 将铸坯放入电阻炉中在 1180 °C±15°C温度下保温 120min。 最后, 将铸坯进行锻造, 始锻温度为 1100°C, 终锻 温度为 900°C, 锻后空冷至室温获得锻造坯。
[0036] (2)热轧及退火
[0037] 将上述锻造坯加热至 1200°C保温 4h后, 在东北大学轧制技术及连轧自动化国家 重点实验室的 0450mm二辊可逆热轧实验机组上经 7道次轧至 4mm厚, 开轧温度 为 1050°C, 终轧温度为 900°C, 总压下率为 90%, 获得热轧板。 热轧板在 1050°C 下保温 5min进行退火, 然后空冷至室温, 获得热轧退火板。
[0038] (3)冷轧及退火
[0039] 将 4mm厚热轧退火板经磨床去除表面氧化铁皮后, 在东北大学轧制技术及连轧 自动化国家重点实验室的 0325mmx400mm四辊直拉式可逆冷轧机上进行冷轧, 最终轧至 1.0mm厚, 获得冷轧板。 冷轧板在 1020°C下保温 2min进行退火, 随后空 冷至室温。
[0040] (4)退火后的冷轧板经酸洗处理后得到光洁表面。
[0041] 如图 1所示, 从本发明实例中铁素体不锈钢冷轧退火后的金相组织照片可以看 出, 退火后的组织为等轴状铁素体, 平均晶粒尺寸为~5 011。
[0042] 如图 2所示, 从本发明实施例中铁素体不锈钢冷轧退火后的透射电镜组织照片 可以看出, 在晶粒内部及晶界处弥散分布着 Laves相。
[0043] 如图 3所示, 从现有 B444M2铁素体不锈钢 (F1)和本发明实例中铁素体不锈钢 (F2 )在950~1050°(:空气中恒温氧化 100h后的单位面积氧化增重比较可以看出, 本发 明实施例中的铁素体不锈钢氧化增重较小, 抗氧化性能较现有 B444M2铁素体不 锈钢更加优异。
[0044] 如图 4所示, 从现有 B444M2铁素体不锈钢 (Fl)(a)和本发明实施例中铁素体不锈 钢 (F2)(b)在 1050°C空气中恒温氧化 5h后表面形貌的扫描电子显微镜照片比较可以 看出, 本发明实施例中的铁素体不锈钢表面生成的氧化物更加均匀、 致密、 细 小。
[0045] 如图 5所示, 从现有 B444M2铁素体不锈钢 (Fl)(a)和本发明实施例中铁素体不锈 钢 (F2)(b)在 1100°C模拟汽车尾气环境中恒温氧化 5h后氧化膜截面形貌的电子探针 照片比较可以看出, 本发明实施例中的铁素体不锈钢生成的氧化膜更薄且无裂 纹等缺陷。
[0046] 实施例结果表明, 本发明在现有的 B444M2型铁素体不锈钢化学成分的基础上 , 添加合金元素 Ce和 W, 提出综合利用稀土元素的“反应元素效应”以及析出相对 反应元素扩散和氧化膜生长的抑制作用来提高铁素体不锈钢的高温抗氧化性能

Claims

权利要求书
[权利要求 1] 一种提高高温抗氧化性能的 B444M2型铁素体不锈钢, 其特征在于, 按重量百分比计, 化学成分为: C 0-0.01%; Si 0.4~0.6%; Mn 0.25-0.35%; S 0-0.009%; P 0-0.01%; Cr 19-20%; Nb
0.4-0.5%; Ti 0.1-0.2%; N 0-0.01%; Mo 1.9-2.1%; W
0.4-0.6%; Ce 0.04-0.1%; 余量为 Fe。
[权利要求 2] 根据权利要求 1所述的提高高温抗氧化性能的 B444M2型铁素体不锈钢 , 其特征在于, 该不锈钢的显微组织为铁素体, 且在铁素体晶界及晶 内弥散分布着尺寸为 200~400nm的 Laves相析出物。
[权利要求 3] 根据权利要求 1所述的提高高温抗氧化性能的 B444M2型铁素体不锈钢 , 其特征在于, 该不锈钢在室温下的屈服强度为 360~370MPa, 抗拉 强度为 520~530MPa, 延伸率为 26~30% ; 在 1100°C下的抗拉强度为 18 〜 20MPa。
[权利要求 4] 一种权利要求 1至 3之一所述的提高高温抗氧化性能的 B444M2型铁素 体不锈钢的制备方法, 其特征在于, 按设定成分冶炼钢水并铸成铸坯 , 经高温均匀化处理后即实施锻造; 将锻造坯重新加热至 1200°C±15 °C保温, 随后经 6~8道次轧制后获得热轧板; 热轧板经退火及除去表 面氧化铁皮后进行冷轧获得冷轧板; 冷轧板在 1020°C±15°C保温 2~3mi n退火。
[权利要求 5] 根据权利要求 4所述的提高高温抗氧化性能的 B444M2型铁素体不锈钢 的制备方法, 其特征在于, 具体步骤如下:
(1)冶炼及锻造
首先, 采用真空感应炉冶炼, 化学成分控制须符合该 B444M2型铁素 体不锈钢的技术标准要求; 随后, 浇铸成坯, 空冷至室温, 切除头尾 ; 其次, 将铸坯放入电阻炉中在 1180°C±15°C温度下保温 70~90min以 上; 最后, 将铸坯进行锻造, 始锻温度为 1100°C±15°C, 终锻温度为 9 00°C±15°C, 锻后空冷至室温获得锻造坯;
(2)热轧及退火 将锻造坯加热至 1200°C±15°C保温 3~4h后, 在 0450mm二辊可逆热轧 实验机组上经 6~8道次轧至 4~5mm厚, 开轧温度为 1050°C±15°C, 终 轧温度为 900°C±15°C, 总压下率为 85~90%, 获得热轧板; 热轧板在 1 050°C±15°C下保温 4~6min进行退火, 然后空冷至室温, 获得热轧退火 板;
(3)冷轧及退火
将 4~5mm厚热轧退火板经磨床去除表面氧化铁皮后, 在 cD325mmx400 mm四辊直拉式可逆冷轧机上进行冷轧, 最终轧至 0.8~ 1.5mm厚; 冷 轧板在 1020°C±15°C下保温 2~3min进行退火, 随后空冷至室温。
PCT/CN2019/084874 2018-12-24 2019-04-29 提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法 WO2020133853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811579140.3 2018-12-24
CN201811579140.3A CN109355478B (zh) 2018-12-24 2018-12-24 提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法

Publications (1)

Publication Number Publication Date
WO2020133853A1 true WO2020133853A1 (zh) 2020-07-02

Family

ID=65330061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084874 WO2020133853A1 (zh) 2018-12-24 2019-04-29 提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法

Country Status (2)

Country Link
CN (1) CN109355478B (zh)
WO (1) WO2020133853A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355478B (zh) * 2018-12-24 2021-02-05 东北大学 提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法
CN109913758B (zh) * 2019-03-29 2020-08-11 东北大学 高温强度和成形性能良好的铁素体不锈钢板及其制备方法
CN115029642A (zh) * 2022-07-25 2022-09-09 西安稀有金属材料研究院有限公司 具有良好力学性能、耐点蚀性能的不锈钢板及其制备方法
CN115287539B (zh) * 2022-08-05 2023-06-30 鞍钢联众(广州)不锈钢有限公司 高温强度良好的汽车排气系统不锈钢板及其制备方法
CN116516121B (zh) * 2023-05-16 2023-12-01 广东海洋大学 一种片层状晶粒尺寸异构的321奥氏体不锈钢带及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788102A (zh) * 2004-04-07 2006-06-14 新日铁住金不锈钢株式会社 成形性优良的铁素体系不锈钢板及其制造方法
JP2009007601A (ja) * 2007-06-26 2009-01-15 Nisshin Steel Co Ltd 集熱機器用フェライト系ステンレス鋼材
CN108342659A (zh) * 2018-01-31 2018-07-31 江苏理工学院 一种经济型耐腐蚀铁素体不锈钢及其制造工艺
CN109355478A (zh) * 2018-12-24 2019-02-19 东北大学 提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251086B (zh) * 2010-05-19 2013-07-17 宝山钢铁股份有限公司 一种含钼型铁素体不锈钢及其制造方法
JP5908936B2 (ja) * 2014-03-26 2016-04-26 新日鐵住金ステンレス株式会社 フランジ用フェライト系ステンレス鋼板とその製造方法およびフランジ部品
CN105506489B (zh) * 2014-09-25 2018-11-06 宝钢不锈钢有限公司 一种抗高温氧化的铁素体耐热不锈钢及其制造方法
JP6383503B2 (ja) * 2016-02-02 2018-08-29 日新製鋼株式会社 Nb含有フェライト系ステンレス熱延鋼板及びその製造方法、並びにNb含有フェライト系ステンレス冷延鋼板及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788102A (zh) * 2004-04-07 2006-06-14 新日铁住金不锈钢株式会社 成形性优良的铁素体系不锈钢板及其制造方法
JP2009007601A (ja) * 2007-06-26 2009-01-15 Nisshin Steel Co Ltd 集熱機器用フェライト系ステンレス鋼材
CN108342659A (zh) * 2018-01-31 2018-07-31 江苏理工学院 一种经济型耐腐蚀铁素体不锈钢及其制造工艺
CN109355478A (zh) * 2018-12-24 2019-02-19 东北大学 提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法

Also Published As

Publication number Publication date
CN109355478B (zh) 2021-02-05
CN109355478A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2020133853A1 (zh) 提高高温抗氧化性能的b444m2型铁素体不锈钢及其制备方法
CN100370048C (zh) 耐热性铁素体系不锈钢及其制造方法
TWI465587B (zh) 耐氧化性優異之肥粒鐵系不鏽鋼
JP5234214B2 (ja) フェライト系ステンレス鋼
US20060054253A1 (en) Ferritic heat-resistant steel and method for producing it
CN103874778A (zh) 铁素体系不锈钢
JP2011140709A (ja) 耐熱性に優れるフェライト系ステンレス鋼
TWI625398B (zh) 肥粒鐵系不銹鋼
WO2022123812A1 (ja) オーステナイト系ステンレス鋼帯の製造方法
JP6796708B2 (ja) フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品
CN112695256A (zh) 一种铁素体马氏体钢包壳材料及其制备方法
CN105506489A (zh) 一种抗高温氧化的铁素体耐热不锈钢及其制造方法
JPH10140296A (ja) 熱間加工性に優れるAl含有オーステナイト系ステンレス鋼
JP7270444B2 (ja) フェライト系ステンレス鋼板およびその製造方法
CN114622133B (zh) 一种超超临界汽轮机转子锻件用耐热钢及其制备方法
JP6866241B2 (ja) オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品
JP3915717B2 (ja) 薄肉ステンレス鋼板
CN100471975C (zh) 耐热性铁素体系不锈钢及其制造方法
JP3705391B2 (ja) 熱延板の低温靱性に優れたNb含有フェライト系ステンレス鋼
JP2021080541A (ja) 耐熱合金
WO2023170996A1 (ja) フェライト系ステンレス鋼板および排気部品
JP5343558B2 (ja) 析出強化型フェライト系ステンレス鋼およびその製造方法
CN115747654A (zh) 一种抗高温氧化铁素体不锈钢及其制造方法和应用
JPH02101118A (ja) 耐熱性,加工性,溶接性の優れたフェライト系ステンレス熱延鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903247

Country of ref document: EP

Kind code of ref document: A1