WO2020130875A2 - Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления - Google Patents

Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления Download PDF

Info

Publication number
WO2020130875A2
WO2020130875A2 PCT/RU2019/000854 RU2019000854W WO2020130875A2 WO 2020130875 A2 WO2020130875 A2 WO 2020130875A2 RU 2019000854 W RU2019000854 W RU 2019000854W WO 2020130875 A2 WO2020130875 A2 WO 2020130875A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
macropores
carrier
magnesium
calcium
Prior art date
Application number
PCT/RU2019/000854
Other languages
English (en)
French (fr)
Other versions
WO2020130875A3 (ru
Inventor
Екатерина Васильевна ПАРХОМЧУК
Антон Игоревич ЛЫСИКОВ
Виктория Сергеевна СЕМЕЙКИНА
Александр Валерьевич ПОЛУХИН
Ксения Александровна САШКИНА
Константин Владимирович ФЕДОТОВ
Андрей Владимирович КЛЕЙМЕНОВ
Original Assignee
Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз") filed Critical Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз")
Publication of WO2020130875A2 publication Critical patent/WO2020130875A2/ru
Publication of WO2020130875A3 publication Critical patent/WO2020130875A3/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the field of preparation of catalysts used in hydroprocesses on a protective layer of a catalyst used for catalytic purification of raw materials from mechanical impurities, reducing the content of impurities of silicon oxide, metals, aggregated macromolecules, coke. Processing of raw materials with a high content of undesirable impurities in oil hydrotreatment plants leads to a decrease in the life of the catalysts and the deterioration of technical and economic indicators.
  • a catalytic system is used that includes several catalyst layers, including a catalyst of the protective layer located in front of the catalysts of the main layer.
  • Haldor Topsoe company offers catalysts with a high capacity for the absorption of metals (Ni, V, Fe) and silicon, for example, with the name TK-453, as catalysts for the NiMo protective layer, and the company KNT-groups offers a number of catalysts that do not contain active components (KNT-300, KNT-310, KNT-326), and containing 8-13 wt.% MoOz and 0.5-4 wt.% NiO (KNT-330, KNT-351).
  • Patent RU 2140964 describes a protective layer catalyst for hydrotreating petroleum fractions based on alumina having 2-5 wt.% A-alumina, 73-85 wt.% B-alumina and 25-10 wt.% G -alumina.
  • the composition of the catalytic package of several layers includes 2-10 wt.% Of the catalyst of the protective layer obtained by impregnating the carrier - aluminum oxide - with aqueous solutions of salts of the active components, followed by drying and calcination.
  • Patent RU 2653494 describes a g-ABO3-based protective layer catalyst containing a bimetal complex compound [Ni (HO)] [MoO (CHO)] with a concentration of 5, 3-7, 9 wt.%, While the sulfidized catalyst contains 75-85 % nickel in the NiMoS phase.
  • the catalyst has a specific surface area of 265-285 m 2 / g, pore volume 0.70- 0.72 cm 3 / g, average pore diameter 10-10.5 nm, represents granules with a cross-section in the form of a circle with a diameter of 3 ⁇ 0.1 mm and up to 20 mm long.
  • a catalyst for a protective layer for hydrotreating oil fractions (RU 2319543) is described, containing molybdenum oxide (3.0-0.9.0 wt.%), Nickel and / or cobalt oxide (0.5-4.0), silicon oxide (0, 8-3, 0 wt.%), Alumina (up to 100%), molded in the form of hollow cylindrical granules.
  • a common disadvantage of the described catalysts of the protective layer is the low proportion of large pores, which complicates the supply of reagents to the inner surface of the catalyst, does not provide a sufficiently high capacity for metals, silicon oxide, asphaltenes and coke.
  • the complexity of the catalytic processing of heavy petroleum feedstocks lies in the low mobility and low reactivity of the macromolecules contained in it, as well as the deactivation of the catalysts due to poisoning by-products of cracking and hydrocracking reactions, including carbon deposits, metal impurities and organometallic compounds. It is known that the catalytic activity and the stability of the catalysts substantially depend on the texture characteristics of the support: pore size distribution, volume, and also specific surface area.
  • a well-developed network of transport macropores facilitates the supply of reagents to the inner surface of the catalyst, reduces the negative impact of deposits of reaction by-products (US 4328127, US 4572778, US 5416054, US 5968348), and alkaline additives increase the functioning time of the catalyst (Ancheyta J. Deactivation of heavy oil hydroprocessing catalysts : fundamentals and modeling / Hoboken, New Jersey: John Wiley & Sons. 2016).
  • hydroprocessing catalysts are prepared on supports having an alumina core with predominantly microporosity surrounded by a shell of another alumina having at least 25% macropores.
  • the disadvantage of this approach is the complexity and multi-stage synthesis of the material with the required porous structure. In this case, the number and cohesion of macropores during the synthesis are not controlled, which does not allow for uniform accessibility of the inner surface of the catalyst.
  • the invention solves the problem of obtaining a carrier and a catalyst of a protective layer with alkaline impurities and with a strictly defined structure of macropores, including their size, relative spatial arrangement, connectivity and other characteristics.
  • the proposed catalyst for the protective layer during the processing of heavy petroleum feedstocks is a strong and wear-resistant structured catalyst with a high capacity for metals, coke and silicon, high stability, reduced activity in the coke formation reaction and reduced requirements for the viscosity of the feed and the content of macromolecules in it.
  • the problem is solved by using materials with a regular spatial structure of macropores and introducing calcium and / or magnesium compounds into the composition of the catalyst.
  • a catalyst for the protective layer for the processing of heavy petroleum feedstocks aluminum oxide is used, which contains macropores that form a spatial structure, and the proportion of macropores with a size in the range from 50 nm to 15 ⁇ m is at least 30% in the total specific pore volume, with a specific surface area of less than 100 m 2 / g, with a fraction of the outer surface of at least 50% and a specific pore volume of at least 0.1 cm 3 / g, and the composition of the catalyst includes no more than 10 wt.% alkaline additives in the form of calcium or magnesium compounds.
  • synthetic templates are used - polymer microspheres with a diameter of 50 to 2000 nm made of polystyrene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, both in the form of individual substances and their mixtures.
  • templates of natural origin are used - starch, cellulose, both in the form of individual substances and their mixtures.
  • a macroporous carrier obtained using organic templates is impregnated with a solution of calcium and / or magnesium salts.
  • the spatial structure of macropores means the spatial arrangement of transport macropores, ensuring the connectivity of the macropores with each other.
  • the specificity of the proposed method lies in the introduction of a structure-forming additive — a template — at the stage of mixing the precursors of the carrier and catalyst, for example, aluminum hydroxide, alumina, pseudoboehmite, boehmite, etc.
  • the template is then removed by burning or extraction, while the particle size and the content of the template in the initial mixture determine the properties of the micro- / meso- / macroporous structure of the resulting product, the carrier, for example, aluminum oxide.
  • the carrier for example, aluminum oxide.
  • methods known in the art can be used, including impregnation of a previously prepared carrier with a spatial structure of macropores with compounds that are precursors of the active component, or the preparation of mixtures of precursor compounds of the active component, carrier and templates, as well as hydrothermal treatment of these mixtures.
  • the obtained catalysts based on a porous support consisting of alumina and containing alkaline additives, have a significantly higher specific surface area available for high molecular weight reagents, and an increased specific volume of macropores compared to samples of a similar composition obtained in the absence of polymer templates, and also show a reduced rate of coke formation on the surface of the catalyst in the conditions of hydroprocessing of heavy oils.
  • the porous structure of the material with the presence of a significant proportion of macropores is especially important when developing catalysts for the processing of heavy oil fractions.
  • carriers and catalysts of the protective layer based on them are characterized in that said catalysts contain macropores forming a regular spatial structure, and the proportion of macropores ranging in size from 50 nm to 15 ⁇ m is at least 30% of the total specific pore volume of said catalysts, and can be especially effective in the hydroprocessing of heavy oil fractions.
  • the material of the carrier corresponds in composition to alumina with a content of not more than 10 wt.% Calcium and / or magnesium.
  • These catalysts with a spatial structure of macropores are obtained using templates of both synthetic origin — polymer microspheres with diameters from 50 to 2000 nm, which can be made from styrene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, in the form of individual substances, or mixtures thereof, and from natural materials - starch, cellulose, microcrystalline cellulose and others.
  • the content of the alkaline component in these catalysts should not exceed 10 wt.% Calcium and / or magnesium, because with a high content of alkaline compounds, there is a significant decrease in catalytic activity comparable to conventional thermal hydrocracking.
  • polystyrene (PS) microspheres are used as a commercial product or obtained by emulsion polymerization of styrene according to the previously described method (RU 2527573).
  • PS polystyrene
  • aluminum hydroxide AYuN of the Industrial Industrial Catalysts brand is used, represented by the crystalline boehmite phase (93%) with an admixture of bayerite (7%).
  • Samples of alumina supports are prepared by adding finely divided AUON to the powder in a dilute solution of nitric acid ( 10-4 M) in the absence and presence of dry PS powder, respectively.
  • the mass content of PS template in the paste is 20%.
  • the resulting composite pastes are extruded to obtain granules with a diameter of 2.5 mm, a length of 5 mm
  • the granules are dried in air for 24 hours and calcined in air at 800 ° ⁇ for 8 hours.
  • the phase composition of macroporous carriers obtained after calcination is represented by a mixture of g- and d-modifications of ABO3.
  • the granules are impregnated with Mg (N03) 2 solutions, the impregnation is carried out from a twofold excess of the required volume of the impregnation solution, calculated taking into account the moisture capacity of the support, dried in air for 24 hours and calcined at 350 ° C for 4 hours.
  • the obtained template aluminum oxide samples have regular spatial structure macropores with an average size of 160 nm, measured and visualized using scanning electron microscopy.
  • the mass loss during heat treatment for lMg / ABO3 and 5Mg / Ab03 was 20 and 12%, respectively. This indicates a less intensive occurrence of coke formation processes for a catalyst with a smaller number of acid sites — 5Mg / Ab0 3 .
  • the resulting catalyst can be used as a catalyst for the protective layer with an extended life during the hydroprocessing of heavy oil feedstocks.
  • PMMA microspheres as a commercial product or obtained by emulsion polymerization of methyl methacrylate are used as a structure-forming template.
  • aluminum oxide aluminum hydroxide AUON from Disperal, represented by the crystalline boehmite phase, is used.
  • Alumina support samples are prepared by adding finely divided pseudoboehmite microspheres to the aqueous PMMA solution, whereby aluminum hydroxide and the template are co-precipitated.
  • the volume of solution of PMMA microspheres is selected so that the mass content of PMMA template based on the dry composite is 20%.
  • the precipitate is separated by decantation, dried, milled, an aqueous solution of nitric acid ( 10-4 M) is added in an amount sufficient to form a paste.
  • the resulting composite pastes are extruded to obtain granules with a diameter of 2.5 mm, a length of 5 mm
  • the granules are dried in air for 24 hours and calcined in air at 800 ° ⁇ for 8 h.
  • the phase composition of the macroporous carriers obtained after calcination is represented by the g and d modifications of ABO3.
  • the granules are impregnated with a solution of Ca (Oz) g, the impregnation is carried out from a twofold excess of the required volume of the impregnating solution, calculated taking into account the moisture capacity of the carrier, dried in air for 24 hours and calcined at 350 ° C for 4 hours.
  • the obtained alumina sample using a template has a spatial structure of macropores with an average size of 150 nm, measured and visualized using scanning electron microscopy, the total pore volume measured using mercury porosimetry is 0.75 cm 3 / g with a specific surface area of 157 m 2 / g Relative to a free-of-charge catalyst based on aluminum oxide, when testing a sample with a calcium additive as a protective layer in the hydroprocessing of heavy oil, the catalyst deactivation rate is 1.5 times lower.
  • the obtained alumina with alkaline additives can be used as a catalyst for the protective layer with an extended life during the hydroprocessing of heavy oil feedstocks.
  • starch is used in the form of a heated aqueous suspension.
  • aluminum hydroxide AYUON from the company ZAO Industrial Catalysts is used, represented by the crystalline phase of boehmite (93%) with an admixture of bayerite (7%).
  • Samples of alumina supports are prepared by adding an aqueous suspension of 10 wt.% Starch, heated to 90 ° C in a state of a transparent gel, and an aqueous solution of nitric acid (10 -4 M) to a fine pseudoboehmite powder with the formation of a composite paste of aluminum hydroxide and a template.
  • Composite pastes are extruded to obtain granules with a diameter of 2.5 mm, a length of 5 mm The granules are dried in air for 24 hours and calcined in air at 800 ° C for 8 hours.
  • the granules are impregnated with a solution of Mg (NCb) 2 and Ca (Oz) 2 of equal concentration, the impregnation is carried out from a twofold excess of the required volume of the impregnation solution, calculated taking into account the moisture capacity of the carrier, dried in air for 24 hours and calcined at 350 ° C for 4 hours.
  • the obtained template samples of aluminum oxide have a spatial structure of macropores with an average size of 500 nm, measured and visualized using scanning electron microscopy, the total pore volume measured using mercury porosimetry is 0.70 cm 3 / g with a specific surface area of 150 m 2 / g .
  • alumina with alkaline additives can be used as a catalyst for the protective layer with an extended life during the hydroprocessing of heavy oil feedstocks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к катализаторам, используемым в процессах гидропереработки тяжелого нефтяного сырья и остатков. Катализатор содержит макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор указанного катализатора, а в качестве носителя он содержит оксид алюминия. Катализатор содержит кальций не более 10 мас. %, магний - не более 10 мас. %. Изобретение относится также к способу приготовления описанного катализатора. Предлагаемый катализатор защитного слоя в процессе переработки тяжелого нефтяного сырья является прочным и износостойким структурированным катализатором, обладающим высокой емкостью по металлам, коксу и кремнию, высокой стабильностью, сниженной активностью в реакции коксообразования и сниженными требованиями к вязкости сырья и содержанию в нем макромолекул.

Description

КАТАЛИЗАТОР ЗАЩИТНОГО СЛОЯ ДЛЯ ПЕРЕРАБОТКИ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ
Изобретение относится к области приготовления катализаторов, используемых в гидропроцессах на защитном слое катализатора, применяемом для каталитической очистки сырья от механических примесей, снижения содержания примесей оксида кремния, металлов, агрегированных макромолекул, кокса. Переработка сырья с повышенным содержанием нежелательных примесей на установках гидропереработки нефтей приводит к снижению срока службы катализаторов и ухудшению технико-экономических показателей. Для увеличения срока службы основных катализаторов и предотвращения снижения их активности используют каталитическую систему, включающую несколько слоев катализаторов, в том числе катализатор защитного слоя, расположенный впереди катализаторов основного слоя.
Компания Хальдор Топсе предлагает в качестве катализаторов защитного слоя NiMo катализаторы с высокой емкостью по поглощению металлов (Ni, V, Fe) и кремния, например, с наименованием ТК-453, а компания KNT-групп - ряд катализаторов, как не имеющих в своем составе активных компонентов (КНТ-300, КНТ-310, КНТ-326), так и содержащих 8-13 мас.% МоОз и 0,5-4 мас.% NiO (КНТ-330, КНТ-351). Катализаторы защитного слоя позволяют снизить влияние отложений на перепад давления в реакторе, улучшить распределение газо-сырьевого потока в реакторе, обеспечивают удаление содержащихся в сырье механических примесей, непредельных соединений и каталитических ядов до поступления газо-сырьевой смеси на катализатор основного слоя, что способствует повышению длительности межрегенерационного цикла и общего срока службы каталитической системы. В патенте RU 2140964 описан катализатор защитного слоя для гидроочистки нефтяных фракций на основе оксида алюминия, имеющего в своем составе 2-5 мас.% a-оксида алюминия, 73-85 мас.% b-оксида алюминия и 25-10 мас.% g-оксида алюминия. В состав каталитического пакета из нескольких слоев входит 2-10 мас.% катализатора защитного слоя, полученного путем пропитки носителя - оксида алюминия - водными растворами солей активных компонентов с последующей сушкой и прокалкой.
Патент RU 2653494 описывает катализатор защитного слоя на основе g- АЬОз, содержащий биметаллическое комплексное соединение [Ni(HO)][MoO(CHO)] с концентрацией 5, 3-7, 9 мас.%, при этом сульфидированный катализатор содержит 75-85% никеля в составе NiMoS фазы. Катализатор имеет удельную поверхность 265-285 м2/г, объем пор 0,70- 0,72 см3/г, средний диаметр пор 10-10,5 нм, представляет собой гранулы с сечением в виде круга диаметром 3±0,1 мм и длиной до 20 мм.
Описан катализатор защитного слоя для гидроочистки нефтяных фракций (RU 2319543), содержащий оксид молибдена (3, 0-9,0 мас.%), оксид никеля и/или кобальта (0, 5-4,0), оксид кремния (0,8-3 ,0 мас.%), оксид алюминия (до 100%), сформованный в виде полых цилиндрических гранул.
Общим недостатком описанных катализаторов защитного слоя является низкая доля крупных пор, что затрудняет подвод реагентов к внутренней поверхности катализатора, не обеспечивает достаточно высокой емкости по металлам, оксиду кремния, асфальтенам и коксу. Сложность каталитической переработки тяжелого нефтяного сырья заключается в малой подвижности и низкой реакционной способности содержащихся в нем макромолекул, а также дезактивации катализаторов вследствие отравления побочными продуктами реакций крекинга и гидрокрекинга, включающих в себя углеродистые отложения, металлические примеси и металлорганические соединения. Известно, что каталитическая активность и стабильность работы катализаторов существенно зависят от текстурных характеристик носителя: распределения пор по размерам, их объема, а также от величины удельной поверхности. В случае малого размера пор внутренняя поверхность катализатора становится недоступной для макромолекул. Задача усложняется тем, что при переработке тяжелого нефтяного сырья побочный процесс образования коксовых отложений протекает с высокой скоростью, в результате узкие поры блокируются, площадь поверхности падает, и катализатор дезактивируется. Для решения указанных проблем предлагается использовать катализаторы с существенной долей крупных пор размером более 50 нм, которые по существующей классификации относятся к макропорам, а избыточную активность катализатора в реакции коксообразования снижать путем внесения в состав носителя и/или катализатора щелочные добавки в виде соединений кальция и/или магния. Развитая сеть транспортных макропор облегчает подвод реагентов к внутренней поверхности катализатора, уменьшает негативное влияние отложений побочных продуктов реакции (US 4328127, US 4572778, US 5416054, US 5968348), а щелочные добавки увеличивают время функционирования катализатора (Ancheyta J. Deactivation of heavy oil hydroprocessing catalysts: fundamentals and modeling / Hoboken, New Jersey: John Wiley&Sons. 2016).
Существующие методы создания макропор в катализаторах гидропереработки основаны на различных методах физических или химических воздействий на готовый не макропористый материал носителя. Например, в патенте US 4547485 описан способ приготовления носителя на основе оксида алюминия с бимодальным распределением пор по размерам в диапазонах 9-20 нм и 100-500 нм. Метод приготовления заключается в нагревании оксида алюминия до 1400°F, смешении его с не нагретым оксидом алюминия и нагревании смеси до 1400°F. Данный способ энерго- и трудоемок, а также характеризуется стохастическим распределением пор по размеру, благодаря чему не удается получить катализаторы с воспроизводимой каталитической активностью. В патенте US 4465789 катализаторы гидропереработки получены на носителях, имеющих ядро из оксида алюминия с преимущественной микропористостью, окруженное оболочкой другого оксида алюминия, имеющего по крайней мере 25% макропор. Недостатком этого подхода является усложнение и многостадийность синтеза материала с требуемой пористой структурой. При этом количество и связность макропор в ходе синтеза не контролируются, что не позволяет обеспечить равномерную доступность внутренней поверхности катализатора.
Таким образом, в литературе не известны способы получения катализаторов защитного слоя, имеющих сниженную активность в реакции коксообразования, с контролируемым и заданным объемом транспортных макропор для процесса переработки, в том числе гидроочистки, тяжелого нефтяного сырья.
Изобретение решает задачу получения носителя и катализатора защитного слоя с щелочными примесями и со строго заданной структурой макропор, включая их размер, взаимное пространственное расположение, связность и другие характеристики.
Предлагаемый катализатор защитного слоя в процессе переработки тяжелого нефтяного сырья является прочным и износостойким структурированным катализатором, обладающим высокой емкостью по металлам, коксу и кремнию, высокой стабильностью, сниженной активностью в реакции коксообразования и сниженными требованиями к вязкости сырья и содержанию в нем макромолекул.
Задача решается с помощью использования материалов с регулярной пространственной структурой макропор и введения соединений кальция и/или магния в состав катализатора. В качестве катализатора защитного слоя для переработки тяжелого нефтяного сырья используют оксид алюминия, который содержит макропоры, образующие пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, с удельной поверхностью не менее 100 м2/г, с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г, и в состав катализатора входит не более 10 мас.% щелочной добавки в виде соединений кальция или магния.
Для получения пространственной структуры макропор используют синтетические темплаты - полимерные микросферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата, как в виде индивидуальных веществ, так и их смесей.
Для получения пространственной структуры макропор используют темплаты природного происхождения - крахмала, целлюлозы, как в виде индивидуальных веществ, так и их смесей.
Для внесения щелочных добавок в катализатор макропористый носитель, полученный с использованием органических темплатов, пропитывают раствором солей кальция и/или магния. Под пространственной структурой макропор подразумевается пространственное расположение транспортных макропор, обеспечивающих связность макропор между собой. Специфика предлагаемой методики заключается во введении структурообразующей добавки - темплата - на стадии смешения предшественников носителя и катализатора, например, гидроксида алюминия, глинозема, псевдобемита, бемита и т.д. Темплат затем удаляют выжиганием или экстракцией, при этом размер частиц и содержание темплата в исходной смеси определяют свойства микро-/мезо-/макропористой структуры получаемого продукта - носителя, например, оксида алюминия. Для дальнейшего приготовления катализатора можно использовать известные в данной области техники способы, включая пропитку ранее приготовленного носителя с пространственной структурой макропор соединениями- предшественниками активного компонента, либо приготовление смесей из соединений-предшественников активного компонента, носителя и темплатов, а также гидротермальную обработку указанных смесей.
Авторами было обнаружено, что получаемые катализаторы на основе пористого носителя, состоящие из оксида алюминия и содержащие щелочные добавки, имеют значительно более высокую величину удельной поверхности, доступной для высокомолекулярных реагентов, и увеличенный удельный объем макропор по сравнению с образцами аналогичного состава, полученными в отсутствие полимерных темплатов, а также показывают сниженную скорость коксообразования на поверхности катализатора в условиях гидропереработки тяжелых нефтей.
Как следует из предыдущего описания, пористая структура материала с наличием существенной доли макропор особенно важна при разработке катализаторов для переработки тяжелых нефтяных фракций. В соответствии с настоящим изобретением носители и катализаторы защитного слоя на их основе отличаются тем, что указанные катализаторы содержат макропоры, образующие регулярную пространственную структуру, причем доля макропор размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор указанных катализаторов, и могут быть особенно эффективны при гидропереработке тяжелых фракций нефти. Материал носителя соответствует по составу оксиду алюминия с содержанием не более 10 мас.% кальция и/или магния. Указанные катализаторы с пространственной структурой макропор получают с использованием темплатов как синтетического происхождения - полимерных микросфер диаметром от 50 до 2000 нм, которые могут быть изготовлены из стирола, метилметакрилата, этилметакрилата, бутилметакрилата, в виде индивидуальных веществ, или их смесей, так и из природных материалов - крахмала, целлюлозы, микрокристаллической целлюлозы и других. Содержание щелочного компонента в указанных катализаторах не должно превышать 10 мас.% кальция и/или магния, т.к. при высоком содержании соединений щелочной природы происходит значительное снижение каталитической активности, сравнимой с обычным термическим гидрокрекингом.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
В качестве структурообразующего темплата используют полистирольные (ПС) микросферы в виде коммерческого продукта или полученные путем эмульсионной полимеризации стирола по описанной ранее методике (RU 2527573). В качестве предшественника оксида алюминия используют гидроокись алюминия АЮОН марки ЗАО «Промышленные катализаторы», представленную кристаллической фазой бемита (93%) с примесью байерита (7%).
Образцы носителей из оксида алюминия получают добавлением к порошку мелкодисперсного АЮОН разбавленного раствора азотной кислоты (Ю-4 М) в отсутствии и в присутствии сухого порошка ПС темплата, соответственно. Для темплатного образца массовое содержание ПС темплата в пасте составляет 20%. Полученные композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч. Фазовый состав макропористых носителей, полученных после прокаливания, представлен смесью g- и d-модификаций АЬОз.
Затем гранулы пропитывают растворами Mg(N03)2, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 ч и прокаливают при 350°С в течение 4 ч. Полученные темплатные образцы оксида алюминия обладают регулярной пространственной структурой макропор со средним размером 160 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии. Текстурные свойства темплатных образцов АЬОз, а также полученных на их основе катализаторов защитного слоя гидропереработки тяжелого нефтяного остатка 1 Mg/ АЬОз (1 мас.% Mg) и 5Mg/Ah03 (5 мас.% Mg) являются практически идентичными: площадь удельной поверхности по БЭТ лежит в диапазоне 108-117 м2/г, объем мезопор по данным N2/77K - 0,49-0,55 см3/г, площадь удельной поверхности по данным ртутной порометрии - 140-173 м2/г, общий объем пор - 0,79-0,81 см3/г. В бестемплатном образце сравнения макропоры не упорядочены и составляют незначительную долю в общем объеме пор.
В условиях гидропереработки тяжелого нефтяного остатка для макропористых катализаторов с различным содержанием магния - 1 Mg/ АЬОз и 5Mg/Ab03 - наблюдается различное изменение текстурных свойств. Образец с меньшим числом кислотных центров (5Mg/Ab03) в меньшей степени показывает изменение удельной поверхности и объема мезопор по сравнению с образцом lMg/АЬОз, имеющим большую концентрацию кислотных центров. После испытаний катализатора 5Mg/Ab03 в качестве защитного слоя гидропереработки остатка в течение 1225 ч его текстурные свойства меняются незначительно, уменьшаются значения удельной поверхности и объема пор, причем наибольшие изменения произошли в мезопорах - уменьшение объема мезо- и макропор достигло 35 и 20%, соответственно. При испытаниях менее кислого образца 1 Mg/АЬОз в течение 194 ч изменение объема мезопор превышает 50%. Таким образом, макропористый катализатор с меньшей кислотностью показывает меньшую скорость дезактивации даже несмотря на более длительные каталитические эксперименты на этом образце. Отработанные катализаторы после испытаний в качестве защитного слоя исследованы методом термогравиметрии для определения количества коксовых отложений. Согласно полученным данным, потери массы при термообработке для lMg/АЬОз и 5Mg/Ab03 составили 20 и 12%, соответственно. Это указывает на менее интенсивное протекание процессов образования кокса для катализатора с меньшим числом кислотных центров - 5Mg/Ab03. Полученный катализатор может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.
Пример 2
В качестве структурообразующего темплата используют полиметилметакрилатные (ПММА) микросферы в виде коммерческого продукта или полученные путем эмульсионной полимеризации метилметакрилата. В качестве предшественника оксида алюминия используют гидроокись алюминия АЮОН от компании Disperal, представленную кристаллической фазой бемита.
Образцы носителей из оксида алюминия получают добавлением к водному раствору ПММА микросфер мелкодисперсного псевдобемита, при этом происходит совместное осаждение гидкроксида алюминия и темплата. Объем раствора ПММА микросфер подбирают таким образом, чтобы массовое содержание ПММА темплата в расчете на сухой композит составляло 20%. Осадок отделяют декантацией, высушивают, размалывают, добавляют водный раствор азотной кислоты (Ю-4 М) в количестве, достаточном для формирования пасты. Полученные композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч. Фазовый состав макропористых носителей, полученных после прокаливания, представлен g- и d-мо дификаций АЬОз.
Затем гранулы пропитывают раствором Са( Оз)г, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 ч и прокаливают при 350°С в течение 4 ч.
Полученный образец оксида алюминия с использованием темплата обладает пространственной структурой макропор со средним размером 150 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии, общий объем пор, измеренный с помощью ртутной порометрии, составляет 0,75 см3/г при удельной поверхности 157 м2/г. Относительно бестемплатного катализатора на основе оксида алюминия при испытаниях образца с кальциевой добавкой в качестве защитного слоя в гидропереработке тяжелой нефти скорость дезактивации катализатора ниже в 1,5 раза. Полученный оксид алюминия с щелочными добавками может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.
Пример 3
В качестве структурообразующего темплата используют крахмал в виде нагретой водной суспензии. В качестве предшественника оксида алюминия используют гидроокись алюминия АЮОН от компании ЗАО «Промышленные катализаторы», представленную кристаллической фазой бемита (93%) с примесью байерита (7%).
Образцы носителей из оксида алюминия получают добавлением водной суспензии 10 мас.% крахмала, нагретого до 90°С в состоянии прозрачного геля, и водного раствора азотной кислоты (10-4 М) к порошку мелкодисперсного псевдобемита с формированием композитной пасты из гидкроксида алюминия и темплата. Композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч.
Затем гранулы пропитывают раствором Mg(NCb)2 и Са( Оз)2 равной концентрации, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 ч и прокаливают при 350°С в течение 4 ч. Полученные темплатные образцы оксида алюминия обладают пространственной структурой макропор со средним размером 500 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии, общий объем пор, измеренный с помощью ртутной порометрии, составляет 0,70 см3/г при удельной поверхности 150 м2/г. Относительно бестемплатного катализатора на основе оксида алюминия при испытаниях образца с магний- кальциевой добавкой в качестве защитного слоя в гидропереработке тяжелой нефти скорость дезактивации катализатора ниже в 1,3 раза. Полученный оксид алюминия с щелочными добавками может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.

Claims

Формула изобретения
1. Катализатор защитного слоя для переработки тяжелого нефтяного сырья, содержащий активный компонент и носитель, отличающийся тем, что в качестве носителя он содержит оксид алюминия, а в качестве активного компонента - соединения кальция и/или магния, катализатор имеет макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор.
2. Катализатор по п.1, отличающийся тем, что содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%.
3. Катализатор по п.1, отличающийся тем, что он имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г.
4. Способ приготовления катализатора по п.п. 1-3 для переработки тяжелого нефтяного сырья, включающий стадию приготовления носителя и последующее нанесение активного компонента, выбираемого из соединений кальция, магния или любой их комбинации, носитель содержит макропоры, образующие пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, а для внесения щелочных добавок макропористый носитель пропитывают раствором солей кальция, магния, как в виде индивидуальных веществ, так и их смесей, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г.
5. Способ по п. 4, отличающийся тем, что для получения регулярной пространственной структуры макропор оксида алюминия используют темплаты - полимерные микросферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата, как в виде индивидуальных веществ, так и их смесей, или для получения пространственной структуры макропор используют темплаты природного происхождения - крахмала, целлюлозы, как в виде индивидуальных веществ, так и их смесей.
PCT/RU2019/000854 2018-11-27 2019-11-26 Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления WO2020130875A2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018141581A RU2699354C1 (ru) 2018-11-27 2018-11-27 Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
RU2018141581 2018-11-27

Publications (2)

Publication Number Publication Date
WO2020130875A2 true WO2020130875A2 (ru) 2020-06-25
WO2020130875A3 WO2020130875A3 (ru) 2020-09-10

Family

ID=67851849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2019/000854 WO2020130875A2 (ru) 2018-11-27 2019-11-26 Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Country Status (2)

Country Link
RU (1) RU2699354C1 (ru)
WO (1) WO2020130875A2 (ru)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
US4547485A (en) * 1983-04-29 1985-10-15 Mobil Oil Corporation Demetalation catalyst and a method for its preparation
US6417135B1 (en) * 1999-08-27 2002-07-09 Huntsman Petrochemical Corporation Advances in dehydrogenation catalysis
RU2506997C1 (ru) * 2012-08-27 2014-02-20 Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук Катализатор переработки тяжелых нефтяных фракций
RU2527573C1 (ru) * 2013-06-05 2014-09-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления
RU2530000C1 (ru) * 2013-07-01 2014-10-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ переработки тяжелого нефтяного сырья
US10532961B2 (en) * 2015-07-02 2020-01-14 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Catalyst and method of preparing light olefin directly from synthesis gas by one-step process
RU2610525C1 (ru) * 2015-12-09 2017-02-13 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья
RU2671583C1 (ru) * 2018-07-26 2018-11-02 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Поглотитель диоксида углерода, способ его приготовления и способ очистки газовых смесей

Also Published As

Publication number Publication date
WO2020130875A3 (ru) 2020-09-10
RU2699354C1 (ru) 2019-09-05

Similar Documents

Publication Publication Date Title
RU2683777C2 (ru) МАКРО- И МЕЗОПОРИСТЫЙ КАТАЛИЗАТОР С ОДНОРОДНО РАСПРЕДЕЛЕННОЙ АКТИВНОЙ НИКЕЛЕВОЙ ФАЗОЙ И СРЕДНИМ ДИАМЕТРОМ МАКРОПОР ОТ 50 ДО 300 нм И ЕГО ПРИМЕНЕНИЕ В ГИДРИРОВАНИИ УГЛЕВОДОРОДОВ
TWI537373B (zh) A hydrogenation method for heavy feedstock oil
JP6134334B2 (ja) シリカ含有アルミナ担体、それから生じさせた触媒およびそれの使用方法
RU2506997C1 (ru) Катализатор переработки тяжелых нефтяных фракций
EP1473082B1 (en) Method for preparing a hydroraffination catalyst
US11691124B2 (en) Acid-resistant catalyst supports and catalysts
WO2001094012A1 (fr) Catalyseur et procede d'hydrodesulfuration
RU2654205C1 (ru) Подложка для способа селективного синтеза высококачественной керосиновой фракции из синтез-газа, катализатор этого способа и способ их изготовления
WO2007084440A1 (en) Silica carriers
US6551500B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
RU2691069C1 (ru) Способ получения катализатора деметаллизации нефтяных фракций
RU2623432C1 (ru) Способ приготовления носителя для катализатора гидроочистки нефтяных фракций
US4717705A (en) Hydrotreating catalysts prepared from hydrogels
RU2527573C1 (ru) Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления
RU2698191C1 (ru) Катализатор защитного слоя для переработки тяжелого нефтяного сырья
RU2698265C1 (ru) Бифункциональный катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
RU2699354C1 (ru) Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
RU2733973C1 (ru) Несульфидированный катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья
RU2717095C1 (ru) Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья
RU2663901C1 (ru) Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля
RU2704122C1 (ru) Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя
RU2704123C1 (ru) Способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора
CN113546671B (zh) 含有超大孔硅胶的轻汽油裂解增产丙烯催化剂及其制备方法和应用
RU2763927C1 (ru) Способ приготовления носителя для катализатора гидроочистки
RU2811917C1 (ru) Носитель для катализатора гидроочистки дизельных фракций и способ его получения

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900047

Country of ref document: EP

Kind code of ref document: A2