RU2663901C1 - Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля - Google Patents

Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля Download PDF

Info

Publication number
RU2663901C1
RU2663901C1 RU2018101853A RU2018101853A RU2663901C1 RU 2663901 C1 RU2663901 C1 RU 2663901C1 RU 2018101853 A RU2018101853 A RU 2018101853A RU 2018101853 A RU2018101853 A RU 2018101853A RU 2663901 C1 RU2663901 C1 RU 2663901C1
Authority
RU
Russia
Prior art keywords
solution
vacuum gas
carrier
temperature
preparation
Prior art date
Application number
RU2018101853A
Other languages
English (en)
Inventor
Янина Владиславовна Морозова
Анна Николаевна Логинова
Ирина Александровна Архипова
Вадим Владимирович Фадеев
Original Assignee
Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") filed Critical Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть")
Priority to RU2018101853A priority Critical patent/RU2663901C1/ru
Application granted granted Critical
Publication of RU2663901C1 publication Critical patent/RU2663901C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

Изобретение относится к каталитической химии, в частности к приготовлению носителей катализаторов глубокого гидрообессеривания вакуумного газойля, и может быть использовано в нефтеперерабатывающей промышленности. Описан способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля, включающий приготовление смеси, содержащей оксид алюминия в виде гидроксида алюминия в виде бемита и оксид алюминия в виде мезопористого алюмосиликата, перемешивание и суспендирование полученной смеси, внесение раствора азотной кислоты, перемешивание до получения однородной массы, внесение порообразующего агента, перемешивание до однородного состояния, формование гранул экструзией, просушивание и прокаливание, отличается тем, что готовят смесь, последовательно смешивая оксид алюминия, полученный обработкой гидрооксида алюминия 1-5%-ным раствором азотной кислоты при температуре раствора 5-10°С и просушенный распылением в токе горячего воздуха при температуре 150-210°С, с оксидом алюминия в виде мезопористого алюмосиликата, и тщательно перемешивая, а оксид алюминия в виде бемита вносят в полученную смесь, обеспечивая массовое соотношение в носителе SiO:AlO= 0,09:0,19, при этом в качестве порообразующего агента используют триэтиленгликоль. Технический результат - повышение механической прочности и удельной поверхности носителя, достаточных для получения высокопроцентных катализаторов глубокого гидрообессеривания вакуумного газойля, повышение активности и стабильности работы катализатора, что приводит к повышению степени протекания гидрогенолиза сероорганических соединений, увеличению выхода и селективности по целевому продукту в последующем процессе каталитического крекинга вакуумного газойля. 1 з.п. ф-лы, 1 табл., 3 пр.

Description

Изобретение относится к каталитической химии, в частности к приготовлению носителей катализаторов глубокого гидрообессеривания вакуумного газойля, и может быть использовано в нефтеперерабатывающей промышленности.
Вакуумные газойли - основное сырье для установок каталитического крекинга и гидрокрекинга, на которых производится большое количество высокооктанового бензина и дистиллятов, являющихся компонентами товарных дизельных топлив. Проведение предварительного гидрооблагораживания вакуумного газойля приводит к увеличению выхода бензина каталитического крекинга и снижению содержания серы.
Поэтому создание катализаторов, имеющих высокую активность в реакциях удаления сернистых соединений из высокомолекулярного сырья - вакуумных газойлей, является важной задачей.
При разработке катализаторов гидрооблагораживания вакуумного газойля особое внимание уделяется выбору оптимальной пористой структуры носителя. Это связано с тем, что при переработке тяжелого высокомолекулярного сырья вопросы массообмена и доступности внутренней активной поверхности, а также коксообразования имеют большее значение, чем при переработке светлых нефтепродуктов.
Оксид алюминия находит широкое применение при производстве катализаторов гидропереработки, в том числе глубокого гидрообессеривания вакуумного газойля. Свойства оксида алюминия как носителя катализаторов с повышенной гидрообессеривающей способностью определяются его пористыми характеристиками: величиной удельной поверхности, объемом пор и распределением пор по диаметрам. Активность и селективность катализатора определяются, прежде всего, химическим и фазовым составом, пористой структурой носителя, которые в значительной степени зависят от способа его приготовления. Срок службы катализатора зависит от прочностных характеристик носителя, которые определяются его пористой структурой, а именно объемом и диаметром пор.
Известны катализатор, носитель катализатора для осуществления процесса гидроочистки углеводородного сырья и способы их приготовления, описанные в RU 2478428 С1, опубл. 10.04.2013. Носитель содержит в масс. %.: TiO2 - 1,0-10,0; B2O3 - 1,0-10,0; Al2O3 - остальное. Способ приготовления носителя включает смешение порошка гидрооксида алюминия AlOOH с порошком диоксида титана, соединением бора, водой и пептизирующей добавкой, формовку пасты при давлении до 10 МПа, с последующей сушкой и прокалкой при температуре до 600°С. Готовый носитель имеет удельную поверхность 150-300 м2/г, объем пор 0,5-0,95 см3/г и средний диаметр пор 7-22 нм. Приготовленный на его основе катализатор содержит молибден и кобальт или никель в форме комплексных соединений, например [M(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где М=Со2+ и/или Ni2+; L - частично депротонированная форма лимонной кислоты C6H6O7 или аммиак NH3, х=0 или 2; у=0; 1 или 2; и как минимум одного кислородсодержащего органического соединения.
Недостатком данного изобретения является недостаточно высокая активность катализатора, полученного на основе заявленного носителя, в реакциях гидрообессеривания как прямогонного бензина, так и дизельного топлива, и вакуумного газойля.
Известны катализатор и способ приготовления носителя катализатора для осуществления процесса гидроочистки углеводородного сырья. Способ приготовления носителя заключается в приготовлении пасты из порошка гидроксида алюминия AlOOH со структурой бемита или псевдобемита с размером кристаллов 45-100
Figure 00000001
и со средним размером частиц порошка 30-60 мкм с водой, азотной или уксусной кислотой как минимум одним соединением бора и как минимум одним кислородсодержащим органическим соединением, формовке полученной пасты через фильеру в форме трилистника при давлении до 10 МПа. Полученные гранулы сушат при температуре 100-150°C и прокаливают при температуре 500-600°C. При этом получают носитель, содержащий, масс. %: В - 0,7-3,0; Al2O3 - остальное, имеющий удельную поверхность 170-300 м2/г, объем пор 0,5-0,95 см3/г и средний диаметр пор 7-22 нм, представляющий собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, имеющие механическую прочность 2,0-2,5 кг/мм. Приготовление катализатора заключается в нанесении на борсодержащий носитель биметаллического комплексного соединения [M(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где М=Со2+ или Ni2+; L - частично депротонированная форма лимонной кислоты C6H6O7; х=0 или 2; y=0 или 1, и как минимум одного кислородсодержащего органического соединения из водного раствора методом пропитки по влагоемкости или пропиткой из избытка раствора с последующей сушкой и сульфидированием (RU 2472585 С1, опубл. 20.01.2013).
К недостатку данного изобретения можно отнести то, что способ приготовления носителя и катализатора на его основе не обеспечивают достаточной гидрообессеривающей активности.
Известен способ приготовления алюмомолибденового гранулированного носителя для получения алюмокобальтвольфрамового катализатора гидрооблагораживания вакуумного газойля. Носитель готовят смешением 30-50 масс. % оксида алюминия в виде бемита и 50-70 масс. % оксида алюминия, полученного предварительной обработкой гидроксида алюминия 4-7%-ным раствором азотной кислоты при температуре раствора 5-10°C и просушенного распылением в токе горячего воздуха при температуре 150-210°C. Полученную смесь увлажняют, вносят 7,5%-ный раствор азотной кислоты, перемешивают до получения однородной массы и вводят раствор аммония молибденовокислого. Добавляют триэтиленгликоль, перемешивают до получения однородной массы, формуют гранулы экструзией, просушивают и прокаливают (RU 2620267 С1, опубл. 24.05.2017).
Недостатком способа является то, что полученный на основе носителя катализатор имеет невысокий коэффициент механической прочности.
Наиболее близким к предлагаемому изобретению являются носитель катализатора для осуществления процесса гидрооблагораживания вакуумного газойля и способ его приготовления. Носитель катализатора содержит 27,3-49,6 масс. % оксида алюминия и 2,7-31,4 масс. % оксида кремния в виде мезопористого алюмосиликата с массовым соотношением SiO2:Al2O3 = 0,1:0,65, при этом носитель содержит, масс. %: оксид алюминия 69,6-97,3, оксид кремния 2,7-31,4, имеет объем пор 0,57-1,02 см3/г и коэффициент механической прочности 2,7-4,0 кг/мм. Способ приготовления носителя катализатора гидрооблагораживания вакуумного газойля заключается в смешивании гидроксида алюминия в виде бемита или псевдобемита и оксида алюминия и оксида кремния в виде мезопористого алюмосиликата с массовым соотношением SiO2:Al2O3 = 0,1:0,65, суспендировании полученной смеси, пептизации путем внесения 7-15%-ного раствора азотной кислоты, добавлении порообразующего агента - полиметилсилаксана в количестве 0,03-0,09 мл/г, формовке гранул экструзией с дальнейшим просушиванием и прокаливанием полученных экструдатов (RU 2605939 С2, опубл. 27.12.2016).
Недостатком заявленного способа приготовления носителя является то, что при получении носителя с высокими значениями объема пор коэффициент механической прочности снижается.
Техническая задача заключается в разработке способа приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля с высокой внутренней поверхностью и большим объемом пор, обеспечивающего высокую механическую прочность и пористую структуру, достаточную для приготовления высокопроцентного оксидного катализатора, который позволяет достигать в процессе глубокого гидрообессеривания вакуумного газойля содержание остаточной серы не более 244 ppm при степени обессеривания не менее 98,8 отн. %.
Технический результат от реализации изобретения заключается в повышении механической прочности и удельной поверхности носителя, достаточных для получения высокопроцентных катализаторов глубокого гидрообессеривания высокомолекулярного сырья - вакуумного газойля, повышении активности и стабильности работы катализатора, что приводит к повышению степени протекания гидрогенолиза сероорганических соединений, увеличению выхода и селективности по целевому продукту в последующем процессе каталитического крекинга вакуумного газойля.
Технический результат достигается тем, что в способе приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля, включающем приготовление смеси, содержащей оксид алюминия в виде гидроксида алюминия в виде бемита и оксид алюминия в виде мезопористого алюмосиликата, перемешивание и суспендирование полученной смеси, внесение раствора азотной кислоты, перемешивание до получения однородной массы, внесение порообразующего агента, перемешивание до однородного состояния, формование гранул экструзией, просушивание и прокаливание, согласно изобретению готовят смесь, последовательно смешивая оксид алюминия, полученный обработкой гидрооксида алюминия 1-5 масс. %-ным раствором азотной кислоты при температуре раствора 5-10°С и просушенный распылением в токе горячего воздуха при температуре 150-210°С, с оксидом алюминия в виде мезопористого алюмосиликата и тщательно перемешивая, а оксид алюминия в виде бемита вносят в полученную смесь, обеспечивая массовое соотношение в носителе SiO2:Al2O3 = 0,09:0,19, при этом в качестве порообразующего агента используют триэтиленгликоль. Причем оксид алюминия получают из смеси, содержащей, масс. %:
20-60 оксида алюминия в виде бемита
20-40 оксида алюминия, полученного обработкой
гидрооксида алюминия 1-5 масс. %-ным раствором
азотной кислоты при температуре раствора 5-10°С,
просушенный распылением в токе горячего воздуха
при температуре 150-210°С
20-40 оксида алюминия в виде мезопористого алюмосиликата.
Указанные отличительные признаки существенны.
Крайне важно отметить то, что использование 20-40 масс. % гидроксида алюминия, обработанного 1-5 масс. %-ным раствором азотной кислоты при температуре раствора 5-10°С и просушенного распылением в токе горячего воздуха при температуре 150-210°С, 20-60 масс. % бемита и 20-40 масс. % мезопористого алюмосиликата, обеспечивает массовое соотношение SiO2:Al2O3 в носителе = 0,09:0,19, оказывает существенное влияние на получение носителя, сочетающего высокие удельную поверхность и объем пор с высоким значением коэффициента механической прочности.
Полученный заявленным способом носитель имеет объем пор 0,60-0,75 см3/г, удельную поверхность 270-320 м2/г и коэффициент механической прочности 4,8-5,5 кг/мм.
Конкретная реализация изобретения раскрыта в следующих примерах.
Пример 1.
Пример иллюстрирует получение гранулированного носителя, для приготовления которого используют смесь бемита, гидроксида алюминия, обработанного 1 масс. %-ным раствором азотной кислоты, и мезопористого алюмосиликата, содержащую, масс. %: бемит - 60, гидроксид алюминия, обработанный 1 масс. %-ным раствором азотной кислоты при температуре раствора 5°С и просушенного распылением в токе горячего воздуха при температуре 150°С - 20, мезопористый алюмосиликат - 20, при массовом соотношении в носителе SiO2:Al2O3 = 0,09.
24,9 г гидроксида алюминия, обработанного 1 масс. %-ным раствором азотной кислоты при температуре раствора 5°С и просушенного распылением в токе горячего воздуха при температуре 150°С и 24,8 г мезопористого алюмосиликата помещают в фарфоровую чашу, тщательно перемешивают и добавляют 78,7 г бемита, перемешивают и суспендируют 103,0 мл дистиллированной воды. Затем приливают 5 масс. %-ный раствор HNO3, содержащий 2,5 мл HNO3 (65 масс. %) и 43,1 мл дистиллированной воды. Смесь тщательно перемешивают до получения однородной массы, добавляют 3,9 мл порообразующего агента - триэтиленгликоля и перемешивают в течение 5 мин до однородного состояния. Полученную массу экструдируют на поршневом экструдере через фильеру диаметром 1,5 мм. Экструдаты выдерживают на воздухе в течение 6 ч и помещают в муфельную печь. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Далее температуру повышают со скоростью 2°С/мин до температуры 550°С. При температуре 550°С выдерживают в течение 4 ч.
В результате получают носитель, содержащий, масс. %: Al2O3 - 92,0; SiO2 - 8,0, имеющий объем пор 0,62 см3/г, коэффициент механической прочности 5,5 кг/мм, насыпную плотность 0,55 г/м3 и удельную поверхность 277 м2/г.
Пример 2.
Пример иллюстрирует получение гранулированного носителя, для приготовления которого используют смесь бемита, гидроксида алюминия, обработанного 2,5 масс. %-ным раствором азотной кислоты при температуре раствора 10°С и просушенного распылением в токе горячего воздуха при температуре 210°С и мезопористого алюмосиликата, содержащую, масс. %: бемит - 40, гидроксид алюминия, обработанный 2,5 масс. %-ным раствором азотной кислоты - 30, мезопористый алюмосиликат - 30, при массовом соотношении в носителе SiO2:Al2O3 = 0,14.
37,4 г гидроксида алюминия, обработанного 2,5 масс. %-ным раствором азотной кислоты при температуре раствора 10°С и просушенного распылением в токе горячего воздуха при температуре 210°С и 37,2 г мезопористого алюмосиликата помещают в фарфоровую чашу, тщательно перемешивают, добавляют 52,5 г бемита и суспендируют 102,0 мл дистиллированной воды. Затем приливают 5 масс. %-ный раствор HNO3, содержащий 2,5 мл HNO3 (65 масс. %) и 43,1 мл дистиллированной воды. Смесь тщательно перемешивают до получения однородной массы, добавляют 3,8 мл порообразующего агента - триэтиленгликоля и перемешивают в течение 5 мин до однородного состояния. Полученную массу экструдируют на поршневом экструдере через фильеру диаметром 1,5 мм. Экструдаты выдерживают на воздухе в течение 6 ч и помещают в муфельную печь. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Далее температуру повышают со скоростью 2°С/мин до температуры 550°С. При температуре 550°С выдерживают в течение 4 ч.
В результате получают носитель, содержащий, масс. %: Al2O3 - 88,0; SiO2 - 12,0, имеющий объем пор 0,67 см3/г, коэффициент механической прочности 5,1 кг/мм, насыпную плотность 0,54 г/м3 и удельную поверхность 303 м2/г.
Пример 3.
Пример иллюстрирует получение гранулированного носителя, для приготовления которого используют смесь - бемита, гидроксида алюминия, обработанного 5 масс. %-ным раствором азотной кислоты при температуре раствора 8°С и просушенного распылением в токе горячего воздуха при температуре 180°С и мезопористого алюмосиликата, содержащую, масс. %: бемит - 20, гидроксид алюминия, обработанный 5 масс. %-ным раствором азотной кислоты - 40, мезопористый алюмосиликат - 40, при массовом соотношении в носителе SiO2:Al2O3 = 0,19.
49,9 г гидроксида алюминия, обработанного 5 масс. %-ным раствором азотной кислоты при температуре раствора 8°С и просушенного распылением в токе горячего воздуха при температуре 180°С и 49,6 г мезопористого алюмосиликата помещают в фарфоровую чашу, тщательно перемешивают, добавляют 26,3 г бемита и суспендируют 101,0 мл дистиллированной воды. Затем приливают 5 масс. %-ный раствор HNO3, содержащий 2,5 мл HNO3 (65 масс. %) и 43,1 мл дистиллированной воды. Смесь тщательно перемешивают до получения однородной массы, добавляют 3,8 мл порообразующего агента - триэтиленгликоля и перемешивают в течение 5 мин до однородного состояния. Полученную массу экструдируют на поршневом экструдере через фильеру диаметром 1,5 мм. Экструдаты выдерживают на воздухе в течение 6 ч и помещают в муфельную печь. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Далее температуру повышают со скоростью 2°С/мин до температуры 550°С. При температуре 550°С выдерживают в течение 4 ч.
В результате получают носитель, содержащий, масс. %: Al2O3 - 84,0; SiO2 - 16,0, имеющий объем пор 0,72 см3/г, коэффициент механической прочности 4,8 кг/мм, насыпную плотность 0,50 г/м3 и удельную поверхность 320 м2/г.
Некоторые физико-химические характеристики образцов носителя, соответствующих изобретению, представлены в таблице.
Figure 00000002
Приведенные в таблице результаты показывают, что предложенный способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля приводит к получению носителя, характеризующегося высокими значениями механической прочности, удельной поверхности и объема пор, достаточными для приготовления высокопроцентного оксидного катализатора, который обеспечивает в процессе глубокого гидрообессеривания вакуумного газойля содержание остаточной серы не более 244 ppm при степени обессеривания не менее 98,8 отн. %. Использование данного носителя для приготовления катализатора глубокого гидрообессеривания вакуумного газойля позволяет получить катализатор, характеризующийся высокой стабильностью работы и обеспечивающий скорость подъема температуры эксплуатации катализатора для поддержания требуемых параметров не более 1,6 градус в месяц.

Claims (9)

1. Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля, включающий приготовление смеси, содержащей оксид алюминия в виде гидроксида алюминия в виде бемита и оксид алюминия в виде мезопористого алюмосиликата, перемешивание и суспендирование полученной смеси, внесение раствора азотной кислоты, перемешивание до получения однородной массы, внесение порообразующего агента, перемешивание до однородного состояния, формование гранул экструзией, просушивание и прокаливание, отличающийся тем, что готовят смесь, последовательно смешивая оксид алюминия, полученный обработкой гидрооксида алюминия 1-5%-ным раствором азотной кислоты при температуре раствора 5-10°С и просушенный распылением в токе горячего воздуха при температуре 150-210°С, с оксидом алюминия в виде мезопористого алюмосиликата и тщательно перемешивая, а оксид алюминия в виде бемита вносят в полученную смесь, обеспечивая массовое соотношение в носителе SiO2:Al2O3 = 0,09:0,19, при этом в качестве порообразующего агента используют триэтиленгликоль.
2. Способ по п. 2, отличающийся тем, что оксид алюминия получают из смеси содержащей, масс. %:
20-60 оксида алюминия в виде бемита;
20-40 оксида алюминия, полученного обработкой
гидрооксида алюминия 1-5%-ным раствором
азотной кислоты при температуре раствора 5-10°С;
просушенный распылением в токе горячего воздуха
при температуре 150-210°С;
20-40 оксида алюминия в виде мезопористого алюмосиликата.
RU2018101853A 2018-01-18 2018-01-18 Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля RU2663901C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018101853A RU2663901C1 (ru) 2018-01-18 2018-01-18 Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018101853A RU2663901C1 (ru) 2018-01-18 2018-01-18 Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля

Publications (1)

Publication Number Publication Date
RU2663901C1 true RU2663901C1 (ru) 2018-08-13

Family

ID=63177231

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018101853A RU2663901C1 (ru) 2018-01-18 2018-01-18 Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля

Country Status (1)

Country Link
RU (1) RU2663901C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761822C1 (ru) * 2021-06-16 2021-12-13 федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» СПОСОБ ПОЛУЧЕНИЯ КАРКАСНЫХ СТРУКТУР НА ОСНОВЕ SiO2-Al2O3

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160145A2 (en) * 1984-04-27 1985-11-06 Exxon Research And Engineering Company Alkylation of aromatic molecules using wide pore, amorphous silica-alumina catalyst
RU2306979C2 (ru) * 2005-10-26 2007-09-27 ГОУ ВПО Иркутский государственный университет Катализатор изомеризации парафиновых углеводородов (варианты)
EP1101813B1 (en) * 1999-11-19 2014-03-19 ENI S.p.A. Process for the preparation of middle distillates starting from linear paraffins
RU2605939C2 (ru) * 2015-05-22 2016-12-27 Открытое акционерное общество "Нефтяная компания "Роснефть" Носитель катализатора гидрооблагораживания вакуумного газойля и способ его приготовления (варианты)
RU2616601C1 (ru) * 2016-03-10 2017-04-18 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160145A2 (en) * 1984-04-27 1985-11-06 Exxon Research And Engineering Company Alkylation of aromatic molecules using wide pore, amorphous silica-alumina catalyst
EP1101813B1 (en) * 1999-11-19 2014-03-19 ENI S.p.A. Process for the preparation of middle distillates starting from linear paraffins
RU2306979C2 (ru) * 2005-10-26 2007-09-27 ГОУ ВПО Иркутский государственный университет Катализатор изомеризации парафиновых углеводородов (варианты)
RU2605939C2 (ru) * 2015-05-22 2016-12-27 Открытое акционерное общество "Нефтяная компания "Роснефть" Носитель катализатора гидрооблагораживания вакуумного газойля и способ его приготовления (варианты)
RU2616601C1 (ru) * 2016-03-10 2017-04-18 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761822C1 (ru) * 2021-06-16 2021-12-13 федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» СПОСОБ ПОЛУЧЕНИЯ КАРКАСНЫХ СТРУКТУР НА ОСНОВЕ SiO2-Al2O3

Similar Documents

Publication Publication Date Title
JP4839311B2 (ja) 重質炭化水素油のための触媒組合せおよび二工程水素処理方法
JP5616937B2 (ja) モリブデンおよび第viii族金属を含む触媒ならびに水素化脱硫水素蒸留物のためのその使用
JP6506430B2 (ja) チタニアを含有する改良された残油水素化処理触媒
JP5544089B2 (ja) シリカ成形体の製造方法
RU2506997C1 (ru) Катализатор переработки тяжелых нефтяных фракций
MX2014007351A (es) Soportes de alumina que contienen silice, catalizadores elaborados a partir de estos y procesos que los utilizan.
WO2007084440A1 (en) Silica carriers
ES2705414T3 (es) Un proceso para la hidrogenación selectiva de las diolefinas contenidas en una corriente que contiene olefina y para la retirada de arsénico de la misma
JP2006035051A (ja) 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法
KR20170003593A (ko) 올레핀 함유 탄화수소 공급원료의 선택적 수소화탈황화를 위한 촉매 및 그의 용도
RU2609834C1 (ru) Катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов
RU2690843C2 (ru) Способ гидрообработки дистиллятных фракций с применением катализатора на основе аморфного мезопористого оксида алюминия, обладающего высокой связностью структуры
RU2607908C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
JP5841481B2 (ja) 重質残油の水素化精製方法
RU2689116C2 (ru) Способ гидрообработки газойлевых фракций с применением катализатора на основе аморфного мезопористого оксида алюминия, обладающего высокой связностью структуры
RU2663901C1 (ru) Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля
RU2527573C1 (ru) Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления
RU2616601C1 (ru) Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты)
RU2605939C2 (ru) Носитель катализатора гидрооблагораживания вакуумного газойля и способ его приготовления (варианты)
RU2753336C1 (ru) Материал-носитель из оксида алюминия и способ его получения, катализатор гидрирования и способ гидрирования остаточного масла
RU2634705C2 (ru) Селеносодержащий катализатор гидрообработки, его использование и способ приготовления
RU2385764C2 (ru) Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций
RU2698191C1 (ru) Катализатор защитного слоя для переработки тяжелого нефтяного сырья
JPH0295443A (ja) 残油の水素化処理触媒
RU2147255C1 (ru) Катализатор гидроочистки нефтяных фракций и способ его приготовления