RU2691069C1 - Способ получения катализатора деметаллизации нефтяных фракций - Google Patents

Способ получения катализатора деметаллизации нефтяных фракций Download PDF

Info

Publication number
RU2691069C1
RU2691069C1 RU2018146842A RU2018146842A RU2691069C1 RU 2691069 C1 RU2691069 C1 RU 2691069C1 RU 2018146842 A RU2018146842 A RU 2018146842A RU 2018146842 A RU2018146842 A RU 2018146842A RU 2691069 C1 RU2691069 C1 RU 2691069C1
Authority
RU
Russia
Prior art keywords
catalyst
zeolite
carrier
nickel
oil
Prior art date
Application number
RU2018146842A
Other languages
English (en)
Inventor
Роман Эдуардович Болдушевский
Наталья Яковлевна Виноградова
Алёна Игоревна Гусева
Павел Анатольевич Никульшин
Виктор Сергеевич Дорохов
Алексей Вячеславович Юсовский
Original Assignee
Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") filed Critical Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП")
Priority to RU2018146842A priority Critical patent/RU2691069C1/ru
Application granted granted Critical
Publication of RU2691069C1 publication Critical patent/RU2691069C1/ru

Links

Classifications

    • B01J35/615
    • B01J35/635
    • B01J35/651
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves

Abstract

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций. Предлагается способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс. на сухой носитель катализатора, добавлением к полученной массе порошка цеолита в количестве 5-30% масс. на сухой носитель катализатора, формованием, сушкой и прокаливанием, и последующее нанесение на приготовленный носитель активных компонентов пропиткой раствором прекурсоров никеля, кобальта и молибдена. В качестве темплата макропор используют парафиновую эмульсию или дисперсию стирол-акрилового сополимера. В качестве цеолита используют ультрастабильный цеолит Y и/или высококремнеземный цеолит ZSM-5. Содержание активных компонентов в пересчете на оксиды в прокаленном катализаторе составляет 5,0-7,0% масс. MoO; 0,5-0,7 масс. % СоО; 0,7-1,1% масс. NiO. Полученный катализатор имеет удельную поверхность не менее 180 м/г с удельным объемом пор не менее 0,25 см/г. Предлагаемый способ получения катализатора деметаллизации, обладающий функциями адсорбции и катализа, обеспечивает в условиях гидрогенизационного облагораживания нефтяных фракций глубину удаления как никеля, так и ванадия 85% и более. 4 з.п. ф-лы, 1 табл., 4 пр.

Description

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций.
Основная масса тяжелых металлов (никеля и ванадия), сконцентрированная в высококипящей части нефти, содержится в асфальтосмолистых веществах в форме металлорганических соединений и комплексов (порфиринов).
В условиях гидрогенизационного облагораживания металлсодержащих нефтяных фракций происходит накопление металлов в пористой структуре катализаторов, что приводит к их необратимой дезактивации и сокращению длительности эксплуатации. В этой связи особое значение приобретают текстурные свойства носителя (размер, объем и распределение пор, удельная поверхность). В случае малого размера пор углеродистые отложения и примеси накапливаются в порах катализатора, блокируя доступ реагентов к каталитическим центрам, что приводит к быстрой дезактивации катализатора.
Известен способ получения катализатора гидрооблагораживания углеводородного сырья, содержащего асфальтены и тяжелые металлы, на основе носителя, представляющего собой прокаленные экструдаты из смеси глины, состоящей из силиката магния, с псевдобемитом, активных компонентов из числа ванадия, хрома, молибдена, вольфрама, кобальта, никеля и меди, а также вспомогательных компонентов, используемых при синтезе носителя из числа бора, фосфора, фтора и их соединений
При этом катализаторы, содержащие MoO3 - до 14,2% масс., СоО - до 3,7% масс., NiO - до 1,5% масс., имеют удельную поверхность от 40 до 188 м2/г, объем пор от 0,1 до 0,79 см3/г. Катализаторы использовали для переработки сырья, содержащего до 6,83% масс. асфальтенов, до 4,5% масс. серы, до 505 ppm ванадия, до 106 ppm, никеля, при температуре 405°С, давлении водорода 140-168 ати, объемной скорости 0,3-1,0 час-1. Качество полученных продуктов (содержание асфальтенов до 0,3% масс., серы до 0,28% масс., азота до 0,17% масс., ванадия до 2 ppm, никеля до 2,5 ppm), что позволяет в дальнейшем получать из них посредством каталитического крекинга и гидрокрекинга товарные моторные топлива.
(Патент US №4439312, 1984).
Недостатками способа являются жесткие требования, предъявляемые к кристаллическому строению псевдобемита, и реализуемые сложными фиксированными способами, труднореализуемыми на практике. При этом, нерегулярная пористая структура носителя способствует образованию узких мест, при блокировке которых внутренняя часть катализатора становится недоступной для макромолекул, содержащихся в перерабатываемом сырье.
Известен способ приготовления катализаторов деметаллизации на носителях на основе природного магнийсиликата - сепиолита с добавлением бемита в соотношении 80:20; 50:50; 20:80. Носители имеют объем пор до 0,8 см3/г и удельную поверхность до 210 м2/г. В носители вводили оксиды кобальта, никеля, молибдена, ванадия, меди цинка, церия из водных растворов солей этих элементов.
Катализаторы использовали для деметаллизации тяжелых нефтяных фракций, содержащих 2,87% масс. серы, 150 ppm ванадия, 41 ppm никеля, 3 ppm железа, при температуре 415°С, давлении водорода 140 ати, объемной скорости 1,0 час-1. При переработке сырья с содержанием металлов в несколько сотен ppm были получены продукты с низким содержанием металлов и серы.
(Патент US №4196102, 1980).
Недостаток способа - слабая деметаллизирующая активность катализаторов в условиях гидрооблагораживания среднедистиллятных фракций.
Для решения проблемы ускоренной дезактивации в условиях гидрооблагораживания тяжелых нефтяных фракций, как правило, используются катализаторы с существенной долей макропор с размером более 50 нм. Развитая сеть транспортных макропор облегчает подвод реагентов к внутренней поверхности катализатора и уменьшает негативное влияние отложений побочных продуктов реакции, асфальтенов, металлоорганических соединений, содержащихся в сырье.
Одним из методов создания макропор в катализаторах гидропереработки является использование на стадии синтеза носителей материалов с регулярной пространственной структурой макропор.
Известен способ приготовления катализатора для переработки тяжелых фракций нефти, в соответствии с которым активный компонент, выбранный из соединений никеля, или кобальта, или молибдена, или вольфрама или любой их комбинации, нанесен на неорганический пористый носитель, состоящий из оксида алюминия, диоксидов кремния, титана или циркония, алюмосиликатов или железосиликатов, или любой их комбинации.
Содержание кобальта, никеля, модибдена и вольфрама составляет для каждого компонента не более 20% масс.
Указанный катализатор содержит макропоры, образующие регулярную пространственную структуру макропор, причем доля макропор размером более 50 нм составляет не менее 30% в общем удельном объеме пор указанного катализатора.
Для получения пространственной структуры макропор используют темплаты - полимерные наносферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата, как в виде индивидуальных веществ, так и их смесей. Технический результат - высокая гидродеметаллизирующая активность при переработке остаточных нефтяных фракций.
(Патент РФ 2506997, 2014 г.).
Недостатки:
- сложность приготовления полимерного темплата;
- низкая эффективность катализатора деметаллизации в условиях гидрооблагораживания среднедистиллятных фракций в связи с существенной долей в структуре катализатора макропор размером более 50 нм и отсутствием специфических центров адсорбции.
Известен способ приготовления катализатора для переработки тяжелого нефтяного сырья, содержащий активный компонент, выбираемый из соединений никеля, кобальта, молибдена, вольфрама или любой их комбинации, который нанесен на неорганический пористый носитель. Содержание кобальта, никеля, модибдена и вольфрама составляет для каждого компонента не более 20% масс. Катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г.
(Патент РФ №2527573, 2014 г.).
Катализатор содержит макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор указанного катализатора, а в качестве носителя он содержит сепиолит - силикат магния.
Для получения регулярной пространственной структуры макропор используют темплаты - полимерные наносферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата как в виде индивидуальных веществ, так и их смесей. Технический результат - улучшенная каталитическая активность в условиях гидропереработки тяжелых нефтяных фракций.
Недостатки:
- сложность приготовления полимерного темплата для носителя;
- высокое содержание активных компонентов увеличивает стоимость катализатора;
- низкая эффективность катализатора в процессе деметаллизации среднедистиллятных фракций в условиях их облагораживания.
Наиболее близким к предлагаемому является способ получения катализаторов деметаллизации нефтяных фракций, выполняющих роль защиты основного катализатора в широком диапазоне условий гидрооблагораживания: от преобладания адсорбционного взаимодействия металлсодержащих компонентов сырья с поверхностью катализатора до стадии глубокого их превращения.
(Патент РФ №2563252, 2015 г.).
Способ состоит в смешении порошков оксида алюминия, природных алюмосиликатных материалов, отработанных никельмолибденсодержащих катализаторов, введении водных растворов соединений молибдена и никеля, введении гидросиликазоля в количестве 2-12% масс., введении в качестве выгорающей добавки муки древесной или муки пищевой в количестве 10-20% масс., а также активатора формования (солидола жирового) в количестве 4-7% масс., формования, сушки и прокаливания.
На основе способа получен набор катализаторов с закономерным снижением насыпной плотности и прочности и возрастанием объема пор в интервале содержания гидросиликазоля 2-12% масс., что позволяет использовать катализаторы по предлагаемому способу в качестве защитного слоя в виде одного, двух и более слоев в процессе гидрооблагораживания среднедистиллятной фракции.
Недостатки:
- сложность приготовления формовочной смеси;
- использование в качестве выгорающих добавок древесной и/или пищевой муки предъявляет жесткие требования к атмосфере прокаливания экструдатов;
невысокая деметаллизирующая активность, обусловленная применяемым способом приготовления катализатора - методом механического смешения исходных компонентов, при котором активные компоненты (металлы) находятся не на активной поверхности катализатора, а в объеме инертного носителя.
Характерной особенностью процессов гидрооблагораживания нефтяных фракций с относительно невысоким содержанием никеля и ванадия является эксплуатация катализаторов в неоптимальных для превращения металлоорганических соединений температурных условиях. В этих условиях возрастает роль физической адсорбции металлических примесей на внутренней поверхности пористых гранул катализаторов, соответственно возрастают требования к объему пор и адсорбционным свойствам поверхности защитных катализаторов. Предпочтительны катализаторы, имеющие макро- и микропоры; имеющие на внутренней поверхности пор активные центры предпочтительно адсорбционного типа и одновременно активные центры целевого процесса катализа.
Задачей изобретения является разработка способа получения катализатора деметаллизации, обладающего функциями адсорбции и катализа, и обеспечивающего в условиях гидрогенизационного облагораживания нефтяных фракций глубину удаления тяжелых металлов 85% и более.
Поставленная задача решается способом получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс. на сухой носитель катализатора, добавлением к полученной массе порошка цеолита в количестве 5-30% масс. на сухой носитель катализатора, формованием, сушкой и прокаливанием, и последующее нанесение на приготовленный носитель активных компонентов пропиткой раствором прекурсоров никеля, кобальта и молибдена.
Полученный носитель формуют экструзией с получением гранул, имеющих форму полого цилиндра или цилиндра или трилистника или квадролоба.
В качестве темплата макропор используют парафиновую эмульсию или дисперсию стирол-акрилового сополимера.
В качестве цеолита используют ультрастабильный цеолит Y и/или высококремнеземный цеолит ZSM-5.
Содержание активных компонентов в пересчете на оксиды в прокаленном катализаторе составляет 5,0-7,0% масс. MoO3; 0,5-0,7 масс. % СоО; 0,7-1,1% масс. NiO.
Полученный катализатор имеет удельную поверхность не менее 180 м2/г с удельным объемом пор не менее 0,25 см3/г.
Основными преимуществами предлагаемого способа являются:
- простота и безотходность метода приготовления носителя, обеспечивающего получение носителя с оптимальными для катализаторов деметаллизации нефтяных фракций структурными характеристиками и формой гранул. Совокупность свойств носителя позволяет получать катализатор деметаллизации, обеспечивающий не менее, чем 85%-ную глубину удаления тяжелых металлов, содержащихся в сырье.
- использование широко доступных и дешевых темплатов - парафиновых эмульсий, применяющихся в лесоперерабатывающей промышленности при производстве древесных плитных материалов, или дисперсий стирол-акрилового сополимера, применяющихся для производстве лакокрасочных материалов, обеспечивает получение мезо-макропористого алюмооксидного носителя с размером макропор 0,2-2,0 мкм;
- использование гетерополисоединений и хелатирующего агента обеспечивает высокую деметаллизирующую активность катализатора.
- получение катализатора, характеризующегося высокой адсорбционной емкостью и каталитической активностью в условиях гидрооблагораживания нефтяных фракций с относительно небольшим содержанием примесей никеля и ванадия, асфальтенов.
- одностадийное введение активных металлов в состав катализатора и возможность длительного хранения и повторного использования пропиточных растворов.
Реализация способа иллюстрируется следующими примерами.
1. Сырье и реагенты
Раствор азотнокислого алюминия
Алкоксид алюминия
Ультрастабильный цеолит Y
Высококремнеземный цеолит ZSM-5
Парафиновая эмульсия с диаметром частиц 0,1-2,0 мкм
Дисперсия стирол-акрилового сополимера с диаметром частиц 0,1-2,0 мкм
Карбонат никеля
Декамолибдодикобальтат аммония
Лимонная кислота
Дистиллированная вода
Вода химически очищенная (ХОВ).
2. Приготовление носителя
Носитель готовят осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс. на сухой носитель катализатора. Далее к полученной массе добавляют порошок цеолита в количестве 5-30% масс. на сухой носитель катализатора.
Полученный носитель формуют экструзией с получением гранул, имеющих форму полого цилиндра, или цилиндра, или трилистника, или квадролоба.
Полученные гранулы провяливают на воздухе при температуре 20-30°С, затем сушат и прокаливают на воздухе при температурах 60°С в течение 2 часов, 80°С в течение 2 часов, 110°С в течение 2 часов, 250°С в течение 2-5 часов, 550°С в течение 2-5 часов, но в любом случае до полного удаления темплата макропор.
Полученный носитель охлаждают до 20-30°С и определяют его влагоемкость (водопоглощение).
3. Нанесение на носитель активных компонентов
Готовят раствор прекурсоров активных компонентов.
К объему химически очищенной или дистиллированной воды, равному пятой части от влагоемкости пропитываемого носителя, добавляют смесь карбоната никеля, в количестве, обеспечивающем выбранное содержание NiO в готовом катализаторе (в перечете на прокаленный) и лимонной кислоты, в таком количестве, чтобы на 1 моль никеля приходилось 1-1,5 моля лимонной кислоты.
Полученную суспензию перемешивают в закрытой емкости при температуре 90-95°С до получения истинного раствора. Объем полученного раствора доводят химически очищенной или дистиллированной водой до влагоемкости пропитываемого носителя, добавляют декамолибдодикобальтат аммония в количестве, обеспечивающем выбранное содержание МоО3 и СоО в готовом катализаторе (в пересчете на прокаленный). Полученный раствор охлаждают до температуры 20-30°С.
Раствор прекурсоров активных компонентов наносят на носитель при постоянном перемешивании. Возможно использование предварительной дегазации носителя. Пропитанный носитель выдерживают в закрытой емкости в течение 1 часа, тщательно перемешивая через каждые 30 минут.
Полученный влажный катализатор просушивают на воздухе при 20-30°С в течение 2 часов, при 60°С в течение 2 часов, при 110°С в течение 2-5 часов, но в любом случае до полного прекращения выделения паров воды.
В результате получают катализатор деметаллизации на носителе, содержащем 70-95% массовых макро-мезопористого оксида алюминия и 5-30% массовых ультрастабильного цеолита Y или цеолита ZSM-5 или смеси указанных цеолитов, с удельной поверхностью не менее 180 м2/г с удельным объемом пор не менее 0,25 см3/г., на который нанесены активные компоненты (соединения молибдена, никеля и кобальта), в пересчете на оксиды в полученном катализаторе: 5-7,0% масс. МоО3, 0,5-0,7% масс. СоО, 0,7-1,1% масс. NiO.
4. Условия испытания
Образцы катализаторов испытывали на проточной лабораторной гидрогенизационной установке.
В реактор загружали фракцию катализатора 0,25-0,5 мм в объеме 10 см3, разбавленную карбидом кремния в соотношении 1:1. Для активации загруженный катализатор сульфидировали смесью, приготовленной из прямогонной дизельной фракции с добавлением диметилдисульфида так, чтобы добавленное количество серы составляло 1% масс. Сульфидирование проводили при температурах 240°С (10 часов) и при 340°С (6 часов) с объемной скоростью 2 ч-1 при давлении 4,0 МПа.
В качестве сырья использовали вакуумный газойль с пределами выкипания 350-500°С, плотностью при 20°С, равной 914 кг/м3, коксуемостью 0,3% масс. и содержанием серы 16200 мг/кг, в который была введена смесь нафтенатов никеля и ванадия таким образом, чтобы содержание никеля и ванадия в сырье составляло 200 мг/кг и 144 мг/кг, соответственно.
Гидродеметаллизацию вакуумного газойля проводили в среде водорода под давлением 5 МПа, температуре 360°С, соотношении водород: сырье 500 нл/л, объемной скорости подачи сырья (ОСПС) 5,10 и 15 ч-1.
Эффективность катализаторов оценивали по остаточному содержанию в гидрогенизатах никеля и ванадия.
Ниже в таблице 1 приведены показатели синтезированных катализаторов и их эффективность в процессе деметаллизации.
Из данных, представленных в таблице 1 видна взаимосвязь между объемом пор и глубиной удаления металлов при изменении объемной скорости подачи сырья от 5 до 15 ч-1. Глубина удаления металлов изменяется от 98 до 87% для никеля и от 95 до 85% для ванадия при изменении объема пор катализатора от 0,45 до 0,75 см3/г.
Глубина удаления никеля и ванадия (85÷98%) на катализаторе по предлагаемому способу значительно превышает таковую (73%) для катализаторов с аналогичными структурными характеристиками (удельная поверхность и объем пор), что свидетельствует о высокой металлоемкости катализатора по предлагаемому способу.
Таким образом, приведенные примеры показывают, что разработанный способ получения катализатора деметаллизации, обладающий функциями адсорбции и катализа, обеспечивает в условиях гидрогенизационного облагораживания нефтяных фракций глубину удаления как никеля, так и ванадия 85% и более.
Figure 00000001

Claims (5)

1. Способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс. на сухой носитель катализатора, добавлением к полученной массе порошка цеолита в количестве 5-30% масс. на сухой носитель катализатора, формованием, сушкой и прокаливанием и последующим нанесением на приготовленный носитель активных компонентов пропиткой раствором прекурсоров никеля, кобальта и молибдена.
2. Способ по п. 1, отличающийся тем, что в качестве темплата макропор используют парафиновую эмульсию или дисперсию стирол-акрилового сополимера.
3. Способ по п. 1, отличающийся тем, что в качестве цеолита используют ультрастабильный цеолит Y и/или высококремнеземный цеолит ZSM-5.
4. Способ по п. 1, отличающийся тем, что содержание активных компонентов в пересчете на оксиды в полученном катализаторе составляет 5,0-7,0% масс. МоО3; 0,5-0,7 масс. % СоО; 0,7-1,1% масс. NiO.
5. Способ по п. 1, отличающийся тем, что полученный катализатор имеет удельную поверхность не менее 180 м2/г с удельным объемом пор не менее 0,25 см3/г.
RU2018146842A 2018-12-27 2018-12-27 Способ получения катализатора деметаллизации нефтяных фракций RU2691069C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018146842A RU2691069C1 (ru) 2018-12-27 2018-12-27 Способ получения катализатора деметаллизации нефтяных фракций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018146842A RU2691069C1 (ru) 2018-12-27 2018-12-27 Способ получения катализатора деметаллизации нефтяных фракций

Publications (1)

Publication Number Publication Date
RU2691069C1 true RU2691069C1 (ru) 2019-06-10

Family

ID=67037489

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018146842A RU2691069C1 (ru) 2018-12-27 2018-12-27 Способ получения катализатора деметаллизации нефтяных фракций

Country Status (1)

Country Link
RU (1) RU2691069C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2723625C1 (ru) * 2020-02-03 2020-06-17 Рустам Иманбаевич Нигметов Способ каталитического гидрооблагораживания остатка газового конденсата
RU2738084C1 (ru) * 2019-10-03 2020-12-07 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Состав и способ приготовления катализатора гидродеметаллизации
CN114682266A (zh) * 2022-04-14 2022-07-01 厦门大学 一种介孔二氧化硅包覆纳米氧化铝负载的镍钼催化剂及其制备方法与应用
RU2776952C1 (ru) * 2021-10-14 2022-07-29 Алексей Юрьевич Кочетков Каталитическая система для низкотемпературного риформинга бензиновой фракции, не прошедшей сероочистку

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
US4547485A (en) * 1983-04-29 1985-10-15 Mobil Oil Corporation Demetalation catalyst and a method for its preparation
US4572778A (en) * 1984-01-19 1986-02-25 Union Oil Company Of California Hydroprocessing with a large pore catalyst
RU2142337C1 (ru) * 1998-12-10 1999-12-10 ООО "Новокуйбышевский завод катализаторов" Катализатор гидрооблагораживания нефтяных фракций и способ его приготовления
US9861972B1 (en) * 2017-04-04 2018-01-09 Kuwait Institute For Scientific Research Hydrodemetallization catalysts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
US4547485A (en) * 1983-04-29 1985-10-15 Mobil Oil Corporation Demetalation catalyst and a method for its preparation
US4572778A (en) * 1984-01-19 1986-02-25 Union Oil Company Of California Hydroprocessing with a large pore catalyst
RU2142337C1 (ru) * 1998-12-10 1999-12-10 ООО "Новокуйбышевский завод катализаторов" Катализатор гидрооблагораживания нефтяных фракций и способ его приготовления
US9861972B1 (en) * 2017-04-04 2018-01-09 Kuwait Institute For Scientific Research Hydrodemetallization catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Левин Олег Владимирович, Усовершенствование катализаторов гидроочистки бензиновых и дизельных фракций путем оптимизации текстуры носителя. Диссертация на соискание ученой степени кандидата химических наук, Казань, 2002. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738084C1 (ru) * 2019-10-03 2020-12-07 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Состав и способ приготовления катализатора гидродеметаллизации
RU2723625C1 (ru) * 2020-02-03 2020-06-17 Рустам Иманбаевич Нигметов Способ каталитического гидрооблагораживания остатка газового конденсата
RU2776952C1 (ru) * 2021-10-14 2022-07-29 Алексей Юрьевич Кочетков Каталитическая система для низкотемпературного риформинга бензиновой фракции, не прошедшей сероочистку
CN114682266A (zh) * 2022-04-14 2022-07-01 厦门大学 一种介孔二氧化硅包覆纳米氧化铝负载的镍钼催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
US10569254B2 (en) Catalyst support and catalysts prepared therefrom
CA2419050C (en) Catalyst for hydrotreating gas oil, process for producing the same, and method for hydrotreating gas oil
CA2560925C (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
JP6134334B2 (ja) シリカ含有アルミナ担体、それから生じさせた触媒およびそれの使用方法
US4435278A (en) Hydroprocessing with a catalyst having bimodal pore distribution
JP5830383B2 (ja) 2つの異なる水素化機能を含むゼオライト触媒を使用する水素化分解方法
RU2691069C1 (ru) Способ получения катализатора деметаллизации нефтяных фракций
RU2626397C1 (ru) Способ гидрокрекинга углеводородного сырья
RU2609834C1 (ru) Катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов
US6551500B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
PL202787B1 (pl) Silnie makroporowaty katalizator do obróbki wodorem i jego zastosowanie
RU2607908C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
RU2689116C2 (ru) Способ гидрообработки газойлевых фракций с применением катализатора на основе аморфного мезопористого оксида алюминия, обладающего высокой связностью структуры
RU2633965C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
RU2649384C1 (ru) Способ гидроочистки сырья гидрокрекинга
US4456701A (en) Hydroprocessing catalyst having bimodal pore distribution and process for preparing the catalyst
KR20210079360A (ko) 인-함유 고-실리콘 분자체, 이의 제조 방법 및 이의 용도
RU2626396C1 (ru) Катализатор гидрокрекинга углеводородного сырья
WO2019059808A1 (ru) Катализатор гидроочистки сырья гидрокрекинга
RU2603776C1 (ru) Способ гидрокрекинга углеводородного сырья
RU2607905C1 (ru) Катализатор гидрокрекинга углеводородного сырья
RU2698265C1 (ru) Бифункциональный катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
RU2245737C1 (ru) Катализатор и способ гидрокрекинга нефтяного сырья с его использованием
RU2626401C1 (ru) Способ гидроочистки сырья гидрокрекинга
JP2556343B2 (ja) ヒドロゲルからの水添処理触媒の製造方法