RU2699354C1 - Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления - Google Patents

Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления Download PDF

Info

Publication number
RU2699354C1
RU2699354C1 RU2018141581A RU2018141581A RU2699354C1 RU 2699354 C1 RU2699354 C1 RU 2699354C1 RU 2018141581 A RU2018141581 A RU 2018141581A RU 2018141581 A RU2018141581 A RU 2018141581A RU 2699354 C1 RU2699354 C1 RU 2699354C1
Authority
RU
Russia
Prior art keywords
catalyst
macropores
less
calcium
magnesium
Prior art date
Application number
RU2018141581A
Other languages
English (en)
Inventor
Екатерина Васильевна Пархомчук
Антон Игоревич Лысиков
Виктория Сергеевна Семейкина
Александр Валерьевич Полухин
Ксения Александровна Сашкина
Константин Владимирович Федотов
Андрей Владимирович Клейменов
Original Assignee
Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН)
Priority to RU2018141581A priority Critical patent/RU2699354C1/ru
Application granted granted Critical
Publication of RU2699354C1 publication Critical patent/RU2699354C1/ru
Priority to PCT/RU2019/000854 priority patent/WO2020130875A2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к катализаторам, используемым в процессах гидропереработки тяжелого нефтяного сырья и остатков. Катализатор защитного слоя для переработки тяжелого нефтяного сырья, содержащий активный компонент и носитель, в качестве носителя содержит оксид алюминия, а в качестве активного компонента соединения кальция и/или магния, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г. Способ приготовления катализатора для переработки тяжелого нефтяного сырья включает стадию приготовления носителя и последующее нанесение активного компонента, выбираемого из соединений кальция, магния или любой их комбинации, носитель содержит макропоры, образующие пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, а для внесения щелочных добавок макропористый носитель пропитывают раствором солей кальция, магния, как в виде индивидуальных веществ, так и их смесей, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г. Технический результат – получение катализатора защитного слоя, который в процессе переработки тяжелого нефтяного сырья является прочным и износостойким структурированным катализатором, обладающим высокой емкостью по металлам, коксу и кремнию, высокой стабильностью, сниженной активностью в реакции коксообразования и сниженными требованиями к вязкости сырья и содержанию в нем макромолекул. 2 н. и 1 з.п. ф-лы, 3 пр.

Description

Изобретение относится к области приготовления катализаторов, используемых в гидропроцессах на защитном слое катализатора, применяемом для каталитической очистки сырья от механических примесей, снижения содержания примесей оксида кремния, металлов, агрегированных макромолекул, кокса. Переработка сырья с повышенным содержанием нежелательных примесей на установках гидропереработки нефтей приводит к снижению срока службы катализаторов и ухудшению технико-экономических показателей. Для увеличения срока службы основных катализаторов и предотвращения снижения их активности используют каталитическую систему, включающую несколько слоев катализаторов, в том числе катализатор защитного слоя, расположенный впереди катализаторов основного слоя.
Компания Хальдор Топсе предлагает в качестве катализаторов защитного слоя NiMo катализаторы с высокой емкостью по поглощению металлов (Ni, V, Fe) и кремния, например, с наименованием ТК-453, а компания KNT-групп - ряд катализаторов, как не имеющих в своем составе активных компонентов (КНТ-300, КНТ-310, КНТ-326), так и содержащие 8-13 масс. % МоO3 и 0,5-4 масс. % NiO (КНТ-330, КНТ-351). Катализаторы защитного слоя позволяют снизить влияние отложений на перепад давления в реакторе, улучшить распределение газо-сырьевого потока в реакторе, обеспечивают удаление содержащихся в сырье механических примесей, непредельных соединений и каталитических ядов до поступления газо-сырьевой смеси на катализатор основного слоя, что способствует повышению длительности межрегенерационного цикла и общего срока службы каталитической системы.
В патенте RU 2140964 описан катализатор защитного слоя для гидроочистки нефтяных фракций на основе оксида алюминия, имеющего в своем составе 2-5 мас. %
- α-оксида алюминия, 73-85 мас. % β-оксида алюминия и 25-10 мас. % γ-оксида алюминия. В состав каталитического пакета из нескольких слоев входит 2-10 мас. % катализатора защитного слоя, полученного путем пропитки носителя - оксида алюминия водными растворами солей активных компонентов с последующей сушкой и прокалкой.
Патент RU 0002653494 описывает катализатор защитного слоя на основе γ-Аl2О3, содержащий биметаллическое комплексное соединение [Ni(HO)] [МоО(СНО)] с концентрацией 5,3-7,9 мас. %, при этом сульфидированный катализатор содержит 75-85% никеля в составе NiMoS фазы. Катализатор имеет удельную поверхность 265-285 м2/г, объем пор 0,70-0,72 см3/г, средний диаметр пор 10-10,5 нм, представляет собой гранулы с сечением в виде круга диаметром 3±0,1 мм и длиной до 20 мм.
Описан катализатор защитного слоя для гидроочистки нефтяных фракций (RU 2319543 С1), содержащий оксид молибдена (3,0-9,0 масс. %), оксид никеля и/или кобальта (0,5-4,0), оксид кремния (0,8-3,0 масс. %), оксид алюминия (до 100%), сформованный в виде полых цилиндрических гранул.
Общим недостатком описанных катализаторов защитного слоя является низкая доля крупных пор, что затрудняет подвод реагентов к внутренней поверхности катализатора, не обеспечивает достаточно высокой емкости по металлам, оксиду кремния, асфальтенам и коксу. Сложность каталитической переработки тяжелого нефтяного сырья заключается в малой подвижности и низкой реакционной способности содержащихся в нем макромолекул, а также дезактивации катализаторов вследствие отравления побочными продуктами реакций крекинга и гидрокрекинга, включающих в себя углеродистые отложения, металлические примеси и металлорганические соединения. Известно, что каталитическая активность и стабильность работы катализаторов существенно зависят от текстурных характеристик носителя: распределения пор по размерам, их объема, а также от величины удельной поверхности. В случае малого размера пор внутренняя поверхность катализатора становится недоступной для макромолекул. Задача усложняется тем, что при переработке тяжелого нефтяного сырья побочный процесс образования коксовых отложений протекает с высокой скоростью, в результате узкие поры блокируются, поверхность падает и катализатор дезактивируется. Для решения указанных проблем предлагается использовать катализаторы с существенной долей крупных пор размером более 50 нм, которые по существующей классификации относятся к макропорам, а избыточную активность катализатора в реакции коксообразования снижать путем внесения в состав носителя и/или катализатора щелочные добавки в виде соединений кальция и/или магния. Развитая сеть транспортных макропор облегчает подвод реагентов к внутренней поверхности катализатора, уменьшают негативное влияние отложений побочных продуктов реакции (US №№4328127, 4572778, 5416054, 5968348), а щелочные добавки увеличивают время функционирования катализатора (Ancheyta J. Deactivation of heavy oil hydroprocessing catalysts: fundamentals and modeling. Hoboken, New Jersey: John Wiley&Sons,-2016).
Существующие методы создания макропор в катализаторах гидропереработки основаны на различных методах физических или химических воздействий на готовый немакропористый материал носителя. Например, в патенте US 4547485 описан способ приготовления носителя на основе оксида алюминия с бимодальным распределением пор по размерам в диапазонах 9-20 нм и 100-500 нм. Метод приготовления заключается в нагревании оксида алюминия до 1400°F, смешении его с не нагретым оксидом алюминия и нагревании смеси до 1400°F. Данный способ энерго- и трудоемок, а также характеризуется стохастическим распределением пор по размеру, благодаря чему не удается получить катализаторы с воспроизводимой каталитической активностью. В патенте US 4465789 катализаторы гидропереработки получены на носителях, имеющих ядро из оксида алюминия с преимущественной микропористостью, окруженное оболочкой другого оксида алюминия, имеющего по крайней мере 25% макропор. Недостатком этого подхода является усложнение и многостадийность синтеза материала с требуемой пористой структурой. При этом количество и связность макропор в ходе синтеза не контролируются, что не позволяет обеспечить равномерную доступность внутренней поверхности катализатора.
Таким образом, в литературе не известны способы получения катализаторов защитного слоя, имеющих сниженную активность в реакции коксообразования, с контролируемым и заданным объемом транспортных макропор для процесса переработки, в том числе гидроочистки, тяжелого нефтяного сырья.
Изобретение решает эти проблемы, раскрывая способ получения носителя и катализатора защитного слоя с щелочными примесями и со строго заданной структурой макропор, включая их размер, взаимное пространственное расположения, связность и другие характеристики.
Предлагаемый катализатор защитного слоя в процессе переработки тяжелого нефтяного сырья является прочным и износостойким структурированным катализатором, обладающим высокой емкостью по металлам, коксу и кремнию, высокой стабильностью, сниженной активностью в реакции коксообразования и сниженными требованиями к вязкости сырья и содержанию в нем макромолекул.
Задача решается с помощью использования материалов с регулярной пространственной структурой макропор и внесения соединений кальция и/или магния в состав катализатора. В качестве катализатора защитного слоя для переработки тяжелого нефтяного сырья используют оксид алюминия, который содержит макропоры, образующие пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор с удельной поверхностью не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г, и в состав катализатора входит не более 10 мас. % щелочной добавки в виде соединений кальция или магния.
Для получения пространственной структуры макропор используют синтетические темплаты - полимерные микросферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата, как в виде индивидуальных веществ, так и их смесей.
Для получения пространственной структуры макропор используют темплаты природного происхождения - крахмала, целлюлозы, как в виде индивидуальных веществ, так и их смесей.
Для внесения щелочных добавок в катализатор макропористый носитель, полученный с использованием органических темплатов, пропитывают раствором солей кальция и/или магния.
Под пространственной структурой макропор подразумевается пространственное расположение транспортных макропор, обеспечивающих связность макропор между собой. Специфика предлагаемой методики заключается во введении структурообразующей добавки - темплата - на стадии смешения предшественников носителя и катализатора, например, гидроксида алюминия, глинозема, псевдобемита, бемита и т.д. Темплат затем удаляется выжиганием или экстракцией, при этом размер частиц и содержание темплата в исходной смеси определяют свойства микро-/мезо-/макропористой структуры получаемого продукта - носителя, например, оксида алюминия. Для дальнейшего приготовления катализатора можно использовать известные в данной области техники способы, включая пропитку ранее приготовленного носителя с пространственной структурой макропор соединениями-предшественниками активного компонента, либо приготовление смесей из соединений предшественников активного компонента, носителя и темплатов, а также гидротермальную обработку указанных смесей.
Авторами было обнаружено, что получаемые катализаторы на основе пористого носителя, состоящие из оксида алюминия и содержащие щелочные добавки, имеют значительно более высокую величину удельной поверхности, доступной для высокомолекулярных реагентов, и увеличенный удельный объем макропор по сравнению с образцами аналогичного состава, полученными в отсутствие полимерных темплатов, а также показывают сниженную скорость коксообразования на поверхности катализатора в условиях гидропереработки тяжелых нефтей.
Как следует из предыдущего описания, пористая структура материала с наличием существенной доли макропор особенно важна при разработке катализаторов для переработки тяжелых нефтяных фракций. В соответствии с настоящим изобретением, носители и катализаторы защитного слоя на их основе, отличающиеся тем, что указанный катализатор содержит макропоры, образующие регулярную пространственную структуру, причем доля макропор размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор указанного катализатора, могут быть особенно эффективны при гидропереработке тяжелых фракций нефти. Материал носителя соответствует по составу оксиду алюминия с не более 10 мас. %) кальция и/или магния.
Указанные катализаторы с пространственной структурой макропор получают с использованием темплатов как синтетического происхождения - полимерных микросфер диаметром от 50 до 2000 нм, которые могут быть изготовлены из стирола, метилметакрилата, этилметакрилата, бутилметакрилата, в виде индивидуальных веществ, или их смесей, так и из природных материалов - крахмала, целлюлозы, микрокристаллической целлюлозы и других. Содержание щелочного компонента в указанных катализаторах не должно превышать 10 мас. % кальция и/или магния, т.к. при высоком содержании соединений щелочной природы происходит значительное снижение каталитической активности, сравнимой с обычным термическим гидрокрекингом.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
В качестве структурообразующего темплата используют полистирольные (ПС) микросферы в виде коммерческого продукта или полученные путем эмульсионной полимеризации стирола по описанной ранее методике [RU 2527573 С1]. В качестве предшественника оксида алюминия использовали гидроокись алюминия АlOOН марки ЗАО «Промышленные катализаторы», представленную кристаллической фазой бемита (93%) с примесью байерита (7%).
Образцы носителей из оксида алюминия получают добавлением к порошку мелкодисперсного АlOОН разбавленного раствора азотной кислоты (10-4 М) в отсутствие и в присутствии сухого порошка ПС темплата, соответственно. Для темплатного образца массовое содержание ПС темплата в пасте составляет 20%. Полученные композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч. Фазовый состав макропористых носителей, полученных после прокаливания, представлен смесью Y- и δ-модификаций Аl2O3.
Затем гранулы пропитывают растворами Mg(NO3)2, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 чи прокаливают при 350°С в течение 4 ч. Полученные темплатные образцы оксида алюминия обладают регулярной пространственной структурой макропор со средним размером 160 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии. Текстурные свойства темплатных образцов Al2O3, а также полученных на их основе катализаторов защитного слоя гидропереработки тяжелого нефтяного остатка 1Mg/Al2O3 (1 мас. % Mg) и 5Mg/Al2O3 (5 мас. % Mg) являются практически идентичными: площадь удельной поверхности по БЭТ лежит в диапазоне 108-117 м /г, объем мезопор по данным N2/77K - 0,49-0,55 см3/г, площадь удельной поверхности по данным ртутной порометрии - 140-173 м2/г, общий объем пор - 0,79-0,81 см3/г. В бестемплатном образце сравнения макропоры не упорядочены и составляют незначительную долю в общем объеме пор.
В условиях гидропереработки тяжелого нефтяного остатка для макропористых катализаторов с различным содержанием магния - 1Mg/Al2O3 и 5Mg/Al2O3 - наблюдается различное изменение текстурных свойств. Образец с меньшим числом кислотных центров (5Mg/Al2O3) в меньшей степени показывает изменение удельной поверхности и объема мезопор по сравнению с образцом 1Mg/Al2O3, имеющим большую концентрацию кислотных центров. После испытаний катализатора 5Mg/Al2O3 в качестве защитного слоя гидропереработки остатка в течение 1225 ч его текстурные свойства меняются незначительно, уменьшаются значения удельной поверхности и объема пор, причем наибольшие изменения произошли в мезопорах - уменьшение объема мезо- и макропор достигло 35 и 20%, соответственно. При испытаниях менее кислого образца 1Mg/Al2O3 в течение 194 ч изменение объема мезопор превышает 50%. Таким образом, макропористый катализатор с меньшей кислотностью показывает меньшую скорость дезактивации даже несмотря на более длительные каталитические эксперименты на этом образце. Отработанные катализаторы после испытаний в качестве защитного слоя исследованы методом термогравиметрии для определения количества коксовых отложений. Согласно полученным данным, потери массы при термообработке для 1Mg/Al2O3 и 5Mg/Al2O3 составили 20 и 12%, соответственно. Это указывает на менее интенсивное протекание процессов образования кокса для катализатора с меньшим числом кислотных центров - 5Mg/Al2O3.
Полученный катализатор может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.
Пример 2
В качестве структурообразующего темплата используют полиметилметакрилатные (ПММА) микросферы в виде коммерческого продукта или полученные путем эмульсионной полимеризации метилметакрилата. В качестве предшественника оксида алюминия использовали гидроокись алюминия АlOOН от компании Disperal, представленную кристаллической фазой бемита.
Образцы носителей из оксида алюминия получают добавлением к водному раствору ПММА микросфер мелкодисперсного псевдобемита, при этом происходит совместное осаждение гидкроксида алюминия и темплата. Объем раствора ПММА микросфер подбирают таким образом, чтобы массовое содержание ПММА темплата в расчете на сухой композит составляло 20%. Осадок отделяют декантацией, высушивают, размалывают, добавляют водный раствор азотной кислоты (10-4 М), в количестве достаточном для формирования пасты. Полученные композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч. Фазовый состав макропористых носителей, полученных после прокаливания, представлен смесью γ-модификацией Al2O3.
Затем гранулы пропитывают растворами Са(NO)3)2, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 ч и прокаливают при 350°С в течение 4 ч.
Полученные темплатные образцы оксида алюминия обладают регулярной пространственной структурой макропор со средним размером 160 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии. Полученный образец оксида алюминия с использованием темплата обладает пространственной структурой макропор со средним размером 150 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии, общий объем пор, измеренный с помощью ртутной порометрии, составляет 0,75 см3/г при удельной поверхности 157 м2/г.Относительно бестемплатного катализатора на основе оксида алюминия при испытаниях образца с кальциевой добавкой в качестве защитного слоя в гидропереработке тяжелой нефти скорость дезактивации катализатора ниже в 1,5 раза. Полученный оксид алюминия с щелочными добавками может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.
Пример 3
В качестве структурообразующего темплата используют крахмал в виде нагретой водной суспензии. В качестве предшественника оксида алюминия использовали гидроокись алюминия АlOOН от компании ЗАО «Промышленные катализаторы», представленную кристаллической фазой бемита (93%) с примесью байерита (7%).
Образцы носителей из оксида алюминия получают добавлением водной суспензии 10 мас. % крахмала, нагретого до 90°С в состоянии прозрачного геля, и водного раствора азотной кислоты (10-4 М) к порошку мелкодисперсного псевдобемита с формированием композитной пасты из гидкроксида алюминия и темплата. Композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч.
Затем гранулы пропитывают раствором Mg(NO3)2 и Са(NO)3)2 равной концентрации, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 часа и прокаливают при 350°С в течение 4 ч. Полученные темплатные образцы оксида алюминия обладают пространственной структурой макропор со средним размером 500 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии, общий объем пор, измеренный с помощью ртутной порометрии, составляет 0,70 см3/г при удельной поверхности 150 м2/г. Относительно бестемплатного катализатора на основе оксида алюминия при испытаниях образца с магний-кальциевой добавкой в качестве защитного слоя в гидропереработке тяжелой нефти скорость дезактивации катализатора ниже в 1,3 раза. Полученный оксид алюминия с щелочными добавками может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.

Claims (3)

1. Катализатор защитного слоя для переработки тяжелого нефтяного сырья, содержащий активный компонент и носитель, отличающийся тем, что в качестве носителя он содержит оксид алюминия, а в качестве активного компонента - соединения кальция и/или магния, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г.
2. Способ приготовления катализатора по п. 1 для переработки тяжелого нефтяного сырья, включающий стадию приготовления носителя и последующее нанесение активного компонента, выбираемого из соединений кальция, магния или любой их комбинации, носитель содержит макропоры, образующие пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, а для внесения щелочных добавок макропористый носитель пропитывают раствором солей кальция, магния, как в виде индивидуальных веществ, так и их смесей, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г.
3. Способ по п. 2, отличающийся тем, что для получения регулярной пространственной структуры макропор оксида алюминия используют темплаты - полимерные микросферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата, как в виде индивидуальных веществ, так и их смесей, или для получения пространственной структуры макропор используют темплаты природного происхождения - крахмала, целлюлозы, как в виде индивидуальных веществ, так и их смесей.
RU2018141581A 2018-11-27 2018-11-27 Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления RU2699354C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2018141581A RU2699354C1 (ru) 2018-11-27 2018-11-27 Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
PCT/RU2019/000854 WO2020130875A2 (ru) 2018-11-27 2019-11-26 Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018141581A RU2699354C1 (ru) 2018-11-27 2018-11-27 Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Publications (1)

Publication Number Publication Date
RU2699354C1 true RU2699354C1 (ru) 2019-09-05

Family

ID=67851849

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018141581A RU2699354C1 (ru) 2018-11-27 2018-11-27 Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Country Status (2)

Country Link
RU (1) RU2699354C1 (ru)
WO (1) WO2020130875A2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
US4547485A (en) * 1983-04-29 1985-10-15 Mobil Oil Corporation Demetalation catalyst and a method for its preparation
RU2527573C1 (ru) * 2013-06-05 2014-09-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления
RU2530000C1 (ru) * 2013-07-01 2014-10-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ переработки тяжелого нефтяного сырья
RU2610525C1 (ru) * 2015-12-09 2017-02-13 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья
RU2671583C1 (ru) * 2018-07-26 2018-11-02 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Поглотитель диоксида углерода, способ его приготовления и способ очистки газовых смесей

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417135B1 (en) * 1999-08-27 2002-07-09 Huntsman Petrochemical Corporation Advances in dehydrogenation catalysis
RU2506997C1 (ru) * 2012-08-27 2014-02-20 Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук Катализатор переработки тяжелых нефтяных фракций
US10532961B2 (en) * 2015-07-02 2020-01-14 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Catalyst and method of preparing light olefin directly from synthesis gas by one-step process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
US4547485A (en) * 1983-04-29 1985-10-15 Mobil Oil Corporation Demetalation catalyst and a method for its preparation
RU2527573C1 (ru) * 2013-06-05 2014-09-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления
RU2530000C1 (ru) * 2013-07-01 2014-10-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ переработки тяжелого нефтяного сырья
RU2610525C1 (ru) * 2015-12-09 2017-02-13 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья
RU2671583C1 (ru) * 2018-07-26 2018-11-02 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Поглотитель диоксида углерода, способ его приготовления и способ очистки газовых смесей

Also Published As

Publication number Publication date
WO2020130875A2 (ru) 2020-06-25
WO2020130875A3 (ru) 2020-09-10

Similar Documents

Publication Publication Date Title
RU2683777C2 (ru) МАКРО- И МЕЗОПОРИСТЫЙ КАТАЛИЗАТОР С ОДНОРОДНО РАСПРЕДЕЛЕННОЙ АКТИВНОЙ НИКЕЛЕВОЙ ФАЗОЙ И СРЕДНИМ ДИАМЕТРОМ МАКРОПОР ОТ 50 ДО 300 нм И ЕГО ПРИМЕНЕНИЕ В ГИДРИРОВАНИИ УГЛЕВОДОРОДОВ
RU2683776C2 (ru) Мезопористый и макропористый катализатор на основе никеля, полученный совместным пластицированием и имеющий медианный диаметр макропор, превышающий 300 нм, и его применение при гидрировании углеводородов
CN106660905B (zh) 基于镍的中孔催化剂和其在氢化中的用途
RU2506997C1 (ru) Катализатор переработки тяжелых нефтяных фракций
CA2645028A1 (en) Catalyst and hydrotreating process
EP1473082B1 (en) Method for preparing a hydroraffination catalyst
WO2001094012A1 (fr) Catalyseur et procede d'hydrodesulfuration
WO2007084440A1 (en) Silica carriers
US11084021B2 (en) Acid-resistant catalyst supports and catalysts
US6551500B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
RU2691069C1 (ru) Способ получения катализатора деметаллизации нефтяных фракций
RU2623432C1 (ru) Способ приготовления носителя для катализатора гидроочистки нефтяных фракций
RU2698265C1 (ru) Бифункциональный катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
US4717705A (en) Hydrotreating catalysts prepared from hydrogels
RU2698191C1 (ru) Катализатор защитного слоя для переработки тяжелого нефтяного сырья
RU2527573C1 (ru) Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления
RU2699354C1 (ru) Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
RU2733973C1 (ru) Несульфидированный катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья
RU2717095C1 (ru) Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья
RU2734235C1 (ru) Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья
US4786403A (en) Process for hydrotreating hydro carbon feeds
US20240010931A1 (en) Method for conducting finishing hydrodesulphurisation in the presence of a catalyst on a meso-macroporous support
RU2704122C1 (ru) Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя
RU2708643C1 (ru) Катализатор гидроочистки бензина каталитического крекинга и способ его получения
RU2663901C1 (ru) Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210204