WO2020130670A1 - 가공성 및 내식성이 우수한 이종도금강판 및 그 제조방법 - Google Patents

가공성 및 내식성이 우수한 이종도금강판 및 그 제조방법 Download PDF

Info

Publication number
WO2020130670A1
WO2020130670A1 PCT/KR2019/018099 KR2019018099W WO2020130670A1 WO 2020130670 A1 WO2020130670 A1 WO 2020130670A1 KR 2019018099 W KR2019018099 W KR 2019018099W WO 2020130670 A1 WO2020130670 A1 WO 2020130670A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
steel sheet
layer
magnesium alloy
corrosion resistance
Prior art date
Application number
PCT/KR2019/018099
Other languages
English (en)
French (fr)
Inventor
곽영진
정우성
한현섭
고경필
김태엽
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP19898227.4A priority Critical patent/EP3901322A4/en
Priority to JP2021534946A priority patent/JP7128359B2/ja
Priority to CN201980084797.9A priority patent/CN113227437B/zh
Priority to US17/414,235 priority patent/US20220025508A1/en
Publication of WO2020130670A1 publication Critical patent/WO2020130670A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/358Inductive energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Definitions

  • the present invention relates to a plated steel sheet that can be used in automobiles, home appliances, construction materials, and the like, and more particularly, to a dissimilar plated steel sheet in which a zinc plated layer is formed on one side of a steel plate and a zinc-magnesium plated layer is formed on the other side.
  • the surface treatment technology is a technique of plating the surface of a steel sheet to suppress corrosion of the steel sheet, and a zinc plated steel sheet using zinc is typical.
  • a method of manufacturing the galvanized steel sheet representatively, electric or hot dip galvanizing has been utilized.
  • the plated steel sheet made of the electric or hot-dip galvanizing has a zinc plated layer 110 plated on both sides of the steel sheet 100 with zinc, and has the same adhesion amount.
  • a galvanized steel sheet is subjected to post-treatment such as phosphate treatment, chromate, or non-chromate treatment on the plating layer to improve paintability and corrosion resistance.
  • the electro-galvanized steel sheet has excellent surface appearance and is used as an automotive exterior, but the post-plating work is not advantageous in terms of workability, manufacturing cost, and environment, and thus, the overall use of the galvanized steel sheet is decreasing.
  • Hot-dip galvanized steel sheet is cheaper than electro-galvanized in terms of manufacturing cost, but due to post-plating compared to electro-galvanized, the mechanical properties and formability of plating adhesion, and the weldability of the electrode life during continuous hitting are inferior.
  • the galvanized steel sheet is easily damaged due to external stress during coil transportation and transport because the hardness of the plated layer is low and soft, and workability is also caused by zinc adhesion to the die during processing (galling, galling). There is a problem of deterioration. In addition, since the surface friction coefficient is large, it is difficult to apply it to a steel sheet for automobiles that has severe processing and has many welding parts.
  • the alloyed hot-dip galvanized steel sheet is excellent in paintability of coating film adhesion and weldability of electrode life by forming an Fe-Zn intermetallic compound through an alloying reaction between the base iron and the plating layer zinc.
  • the Fe-Zn-based alloy phase gamma phase
  • processability due to powdering in which the plating layer falls during steel sheet processing.
  • a sealer used for waterproofing, corrosion protection, vibration absorption, and welding is used by bonding on a steel sheet, there is a problem that the Fe-Zn plating layer falls off after sealing the sealer due to the alloy phase generated between Fe-Zn.
  • the Fe-Zn plating layer is difficult to apply as a household steel sheet that is used as it is without coating or requiring a beautiful surface even after coating because the surface is not beautiful and the whiteness is not high.
  • One side of the present invention is to provide a plated zinc plated on one side of the steel plate, the other side is a zinc-magnesium alloy plated, a different-plated steel sheet having excellent workability and corrosion resistance and a method for manufacturing the same.
  • One aspect of the present invention is a steel sheet; A galvanized layer attached to one side of the steel sheet; And a zinc-magnesium alloy plating layer attached to the other side of the steel sheet,
  • the coating amount of the zinc plating layer is 5-60 g/m 2
  • the zinc-magnesium alloy plating layer has a plating adhesion of 10 to 40 g/m 2, and the zinc-magnesium alloy plating layer has a magnesium content of 8 to 30% by weight.
  • Another aspect of the present invention is a step of preparing a steel sheet
  • the zinc-magnesium alloy is contained in the vapor deposition vapor content of 8 to 30% by weight relates to a method of manufacturing a different-plated steel sheet excellent in workability and corrosion resistance.
  • one side of the steel plate is provided with a galvanized layer, and the other side is provided with a different-plated steel sheet provided with a zinc-magnesium alloy plating layer, and in particular, it is excellent by optimizing the plating amount of the galvanized layer and the composition of the zinc-magnesium alloy plating layer. It is possible to provide a dissimilar plated steel sheet capable of securing processability and corrosion resistance.
  • FIG. 1 is a schematic view showing a cross section of a galvanized steel sheet manufactured by a conventional hot dip plating method.
  • Figure 2 is a schematic view showing a cross-section of an example of a different plated steel sheet of the present invention.
  • Figure 3 is a schematic view showing a cross-section of an example of a different plated steel sheet of the present invention.
  • Figure 4 is a schematic view showing a cross-section of an example of a different plated steel sheet of the present invention.
  • FIG. 5 is a schematic view showing a cross-section of an example of a different plated steel sheet of the present invention.
  • FIG. 6 is a schematic diagram of an electromagnetic heating physical vapor deposition apparatus.
  • the present invention relates to a dissimilar plated steel sheet having excellent workability and corrosion resistance than a plated steel sheet coated on both sides of an existing steel sheet with zinc or a zinc alloy.
  • the different-plated steel sheet means that one side of the steel sheet and the other side are plated with different kinds of materials, and thus have different plating layers on each side of the steel sheet in one plated steel sheet.
  • the inventors of the present invention require a Zn-Mg plating layer for products requiring high corrosion resistance and workability (galling property) compared to a plated steel sheet plated with the same material on both sides of the existing surface.
  • a zinc-plated layer for temporary anti-corrosion purposes, while securing corrosion resistance and workability, it became difficult to consider ways to economically produce products.
  • one side of the steel plate was formed with a zinc plated layer, and the other side was derived with a different plated steel plate with a zinc-magnesium alloy plated layer.
  • an example of the present invention is a different-plated steel sheet, the steel sheet 200; A galvanized layer 210 attached to one side of the steel sheet; And a zinc-magnesium alloy plating layer 220 attached to the other side of the steel sheet.
  • the steel sheet 200 is not particularly limited in its use and type, such as hot rolled steel sheet, cold rolled steel sheet, annealed steel sheet, which can be used in home appliances, building materials, automobiles, and the like.
  • the galvanized layer 210 attached to one surface of the steel sheet 210 is preferably 500 to 800 nm, which has an average grain size of 1/3, compared to the grains of the existing electro galvanized steel sheet. Due to the fine grain size, the high angle pyramidal surface ((103) surface, (102) surface, (101) surface) and the prism (110) surface are relatively developed and have characteristics of being cultured first. have.
  • the coating amount of the zinc plating layer 210 is preferably 5 to 60 g/m 2, and more preferably 10 to 60 g/m 2. If the plating adhesion amount of the galvanized layer is less than 5 g/m 2, there is a problem that the corrosion resistance of the temporary corrosion resistance of the steel sheet cannot be guaranteed. , 5 ⁇ 60 g / m2 It is preferred.
  • the zinc-magnesium alloy plating layer 220 attached to the other side of the steel sheet 210 is preferably made by weight, and magnesium (Mg) contains 8-30%, and the rest is made of Zn and unavoidable impurities.
  • Mg content is less than 8% by weight, a defect in surface appearance may occur due to color unevenness on the surface of the steel sheet, and when it exceeds 30% by weight, there is no advantage in corrosion resistance, economy, and workability.
  • Corrosion potential of the zinc-magnesium alloy plating layer 220 is -1.07V ⁇ -1.13V (SCE, Saturated Calomel Electrode), existing zinc-iron alloy plated steel sheet (-0.89V SCE) and galvanized steel sheet (-1.03V Since it exhibits a large corrosion potential compared to SCE), excellent corrosion resistance can be secured.
  • SCE Saturated Calomel Electrode
  • existing zinc-iron alloy plated steel sheet -0.89V SCE
  • galvanized steel sheet -1.03V Since it exhibits a large corrosion potential compared to SCE), excellent corrosion resistance can be secured.
  • the amount of plating of the zinc-magnesium alloy plating layer 220 is preferably 10-40 g/m 2.
  • the zinc-magnesium alloy plating layer 220 is not limited to only one layer, and may be formed in a multi-layer structure of two or more layers.
  • Plating structure of the zinc-magnesium alloy plating layer 220 is Zn single phase, Mg single phase, Mg 2 Zn 11 alloy phase, MgZn 2 alloy phase, MgZn alloy phase, Mg 7 Zn 3 alloy phase, various alloy phases according to the composition of magnesium It may be formed, and the fraction of the alloy phase may also have a difference.
  • the plated layer of various structures is presented in consideration of various use modes and uses, and through this, surface appearance, corrosion resistance, workability (galling), and weldability Etc. can be secured.
  • the zinc-magnesium alloy plating layer may include a Zn layer on top and/or bottom, and may have a two- to three-layer structure or more.
  • 3 to 5 show an example of a cross-section of a different plated steel sheet of the present invention further comprising the zinc layer 221.
  • the'zinc layer' is distinguished from the'zinc plated layer' and refers to a layer formed on the zinc-magnesium alloy plated layer side.
  • FIG. 3 further includes a zinc layer 221 between the steel sheet 200 and the zinc-magnesium alloy plating layer 220
  • FIG. 4 shows the zinc layer 222 on the zinc-magnesium alloy plating layer 220
  • the zinc layer 221 existing between the zinc-magnesium alloy plating layer 220 and the steel plate 200 has plating adhesion of 2 g/m 2 or more and 10 g/m 2 or less in consideration of plating adhesion and fairness. It is preferably 3 g/m 2 or more and more preferably 10 g/m 2 or less, and most preferably 5 g/m 2 or more and 10 g/m 2 or less.
  • the following is preferable, more preferably 10 g/m 2 or more, and 20 g/m 2 or less, and most preferably 8 g/m 2 or more and 15 g/m 2 or less.
  • the zinc layer 222 having a relatively ductile characteristic is more than 20 g/m 2, the excellent galling property of Zn-Mg of the underlying plating layer is relatively inhibited, so the upper limit of the zinc layer 222 is 20 g/m 2 It is preferred.
  • the steel sheet may include a process of removing a foreign material, an oxide film, etc. on the surface. For example, after degreasing, rinsing and drying using a low-temperature composite degreasing agent or an alkali degreasing solution of 2% or more, a process of removing foreign substances and natural oxide films on the surface may be performed using plasma and an ion beam.
  • a zinc plating layer is formed on one side of the steel sheet to have a plating adhesion amount of 5 to 60 g/m2, and a zinc-magnesium alloy plating layer is formed on the other side to have a plating adhesion amount of 10 to 40 g/m2.
  • the order of forming the zinc plated layer and the zinc-magnesium alloy plated layer does not differ.
  • the zinc plating layer and the zinc-magnesium alloy plating layer are preferably formed by an electromagnetic heating physical vapor deposition method having an electromagnetic stirring effect.
  • PVD physical vapor deposition
  • the coating material (zinc, magnesium, etc.) is airborne in the space surrounded by the alternating electromagnetic field without external assistance.
  • the coating material thus supported is used to generate a large amount of metal vapors (zinc deposition vapors, zinc and magnesium deposition vapors).
  • a schematic diagram of the device is shown. Referring to FIG. 6, a large amount of metal vapor formed by the above method is sprayed at a high speed to the surface of the steel sheet through a plurality of nozzles of a vapor distribution box to form a plating layer.
  • the electromagnetic coil and the vapor distribution box can be separately installed on each side of the steel plate, it is a process and equipment having the advantage of plating only one side of the steel plate and simultaneously plating different materials on the other side.
  • the temperature of the steam distribution box is low, the metal vapor condenses on the inner wall of the box, so it is preferable to heat to a temperature of 800° C. or higher to form a plating layer.
  • the Mg content of the zinc-magnesium alloy vapor deposition is preferably 8 to 30% by weight.
  • a process of forming a zinc layer before and/or after forming the zinc-magnesium alloy plating layer may be further included.
  • the zinc layer is preferably formed by electromagnetic heating physical vapor deposition.
  • the heterogeneous plated steel sheet of the present invention obtained by the above method has a very fine grain size compared to the existing plated steel sheet, so the surface appearance is beautiful, the workability is improved due to the increase in hardness, and the corrosion resistance by the Zn-Mg alloy phase by Mg content is greatly improved. It has the advantage of being.
  • the conventional example is a galvanized steel sheet manufactured by a conventional electric or hot dip plating method.
  • the corrosion resistance was evaluated by cutting the plated steel sheet into a specimen having a size of 75 mm X 150 mm, and then evaluating the corrosion resistance after processing the flat plate and cup drawing.
  • a salt spray test was conducted in accordance with JIS Z 2371 to record the initial red rust occurrence time, Comparative evaluation was conducted with hot-dip galvanized steel sheet (GI) having a single-sided plating adhesion amount of 60 g/m 2. The criteria are as follows.
  • the powdering property is performed by attaching a cellophane tape to a bent part by attaching a cellophane tape to a bent part after mounting a specimen cut into a 40 mm wide and 80 mm long test machine and performing a 60° bending test. After peeling off, the tape was attached to a white paper and the peeling width was measured for comparative evaluation.
  • the criteria are as follows.
  • the galling property was measured by comparing the change of the friction coefficient by measuring a total of 40 times (120° rotation per revolution) of a specimen in which the plated steel sheet was cut to a size of 200 mm X 200 mm using a rotary friction tester.
  • the friction coefficient value was compared and compared with the initial (before the rotational friction test) when the rotation was continuously performed using the rotational friction tester, and the criteria are as follows.
  • Zn/Zn-Mg, Zn-Mg/Zn, and Zn/Zn-Mg/Zn refer to a plated layer having a multi-layer structure, and are formed from the surface of the steel sheet.
  • Zn/Zn-Mg means that a zinc (Zn) layer is formed from the surface of the steel sheet, and a zinc-magnesium alloy (Zn-Mg) layer is formed thereon.
  • Comparative Examples 1 to 6 correspond to dissimilar plated steel sheets of the zinc plated layer and the zinc-magnesium alloy plated layer, but may have satisfactory tendencies depending on the composition ratio of the plating layer adhesion, but it can be confirmed that all conditions cannot be satisfied evenly. .
  • the Mg content of the zinc-magnesium alloy plating layer does not meet the conditions presented in the present invention, it can be seen that the surface appearance characteristics are poor.
  • Comparative Example 4 all the properties were shown to be good, but due to excessive plating adhesion, workability was deteriorated and disadvantageous in terms of cost, and thus classified as Comparative Example.
  • Inventive Examples 1 to 11 are heterogeneous plated steel sheets having a zinc plated layer and a zinc-magnesium alloy plated layer, and it can be seen that the plating adhesion amount and Mg content are appropriately adjusted, so that the overall properties are evenly superior to those of the conventional and comparative examples.
  • Inventive Examples 9 to 11 show a case where the zinc-magnesium alloy plating layer and the zinc layer form a multilayer structure.
  • Inventive Examples 9-1 and 11-1 it can be seen that the adhesion amount of the zinc layer between the steel sheet and the zinc-magnesium alloy plating layer is small, and the powdering property is slightly lowered.
  • Inventive Examples 10-3 and 11-4 it was confirmed that the amount of adhesion of the zinc layer present on the zinc-magnesium alloy plated layer was somewhat excessive, and the goling property was slightly lowered.
  • Inventive Examples 10-1 and 11-3 are cases in which the adhesion amount of the zinc layer present on the zinc-magnesium alloy plating layer is small, and the blackening resistance may be inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

자동차, 가전, 건자재 등에 사용될 수 있는 도금강판에 관한 것으로서, 보다 상세하게는 강판의 한면에는 아연 도금층이 형성되고, 다른 한면에는 아연-마그네슘 도금층이 형성된 이종도금강판에 관한 것이다.

Description

가공성 및 내식성이 우수한 이종도금강판 및 그 제조방법
본 발명은 자동차, 가전, 건자재 등에 사용될 수 있는 도금강판에 관한 것으로서, 보다 상세하게는 강판의 한면에는 아연 도금층이 형성되고, 다른 한면에는 아연-마그네슘 도금층이 형성된 이종도금강판에 관한 것이다.
표면 처리 기술은 강판의 부식을 억제하기 위해서 강판 표면에 도금을 행하는 기술로서, 아연을 활용한 아연도금강판이 대표적이다. 상기 아연도금강판을 제조하는 방법으로는 대표적으로, 전기 또는 용융 아연도금을 하는 것이 활용되어 왔다.
상기 전기 또는 용융 아연도금으로 제조된 도금강판은 도 1에 도시된 바와 같이, 강판(100)의 양면이 아연으로 도금된 아연도금층(110)을 가지며, 동일한 부착량을 갖는 특징을 가지고 있다. 이와 같은 아연도금강판은 도장성이나 내식성을 향상시키기 위해서 도금층 위에 인산염 처리나 크로메이트, 또는 비 크로메이트 등의 후처리를 한다. 전기 아연도금강판은 표면외관이 우수하여 자동차용 외판으로 사용되고 있으나, 후도금 작업시 작업성, 제조원가 및 환경측면에서 유리하지 않아 전반적으로 전기 아연도금강판 사용량이 줄고 있다. 용융 아연도금강판은 제조원가 측면에서 전기 아연도금에 비해 저렴하나, 전기 아연도금 대비 후도금으로 인해, 기계적 성질 및 도금 밀착성의 성형성, 연속타점시의 전극 수명의 용접성 등이 열위하다.
상기 아연도금강판은 도금층 경도가 낮아 무르기 때문에 코일 운반 및 이송시 외부 응력에 의해 쉽게 손상을 입으며, 또한 가공시에는 다이(die)에 아연이 달라붙는 현상(galling, 골링)으로 인해 작업성이 저하되는 문제가 있다. 또한, 표면 마찰계수가 크기 때문에 가공이 심하고 용접 부위가 많은 자동차용 강판에는 적용이 어렵다.
이러한 문제를 해결하고자, 아연 합금도금강판이 등장하게 되었고, 대표적으로 합금화 용융 아연도금강판, 아연-알루미늄 합금도금강판 등이 있다.
상기 합금화 용융 아연도금강판은 소지철과 도금층 아연의 합금화 반응으로 Fe-Zn 금속간 화합물 형성으로 도막 밀착성의 도장성 및 전극 수명의 용접성이 우수하다. 그러나 합금화 반응으로 생기는 Fe-Zn계의 합금상(감마상)으로 인해 강판 가공시 도금층이 떨어지는 파우더링(powdering)에 의해 가공성에 문제가 있다. 또한, 방수, 부식 방지, 진동 흡수 및 용접용으로 사용되는 실러(sealer)를 강판상에 접착하여 사용할 경우 Fe-Zn간에 생성된 합금상으로 인해 실러 접착 후 Fe-Zn 도금층이 탈락되는 문제가 있다. 또한, 상기 Fe-Zn 도금층은 표면이 미려하지 못하고 백색도가 높지 않기 때문에 도장 후에도 미려한 표면이 요구되거나 도장하지 않고 그대로 사용되는 가전용 강판으로는 적용이 어렵다.
한편, 아연-알루미늄(Zn-Al) 합금도금의 경우에는 전기도금액을 제조하는 것이 곤란하기 때문에 전기도금법으로 상기 아연-알루미늄 합금도금강판을 제조하는 것은 어렵고, 용융도금법으로 제조하는 경우에는 강판의 양면에 서로 다른 도금층을 형성하는 것이 곤란하다.
본 발명의 일측면은 강판의 한면에 아연을 도금하고, 다른 한면은 아연-마그네슘 합금을 도금한 이종도금강판으로서, 우수한 가공성과 내식성을 갖는 이종도금강판과 이를 제조하는 방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 사항에 한정되지 않는다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일태양은 강판; 상기 강판의 한면에 부착된 아연도금층; 및 상기 강판의 다른 한면에 부착된 아연-마그네슘 합금도금층을 포함하고,
상기 아연도금층의 도금 부착량은 5~60 g/㎡이고,
상기 아연-마그네슘 합금도금층의 도금 부착량은 10~40 g/㎡이고, 상기 아연-마그네슘 합금도금층의 마그네슘 함량은 8~30 중량%인 가공성 및 내식성이 우수한 이종도금강판에 관한 것이다.
본 발명의 또다른 일태양은 강판을 준비하는 단계;
진공 챔버 내에서 전자기력에 의해 코팅 물질을 부양하여 아연 증착 증기를 생성하고, 상기 아연 증착 증기를 유도 분출하여 상기 강판의 한면에 5~60 g/㎡의 부착량을 갖는 아연도금층을 형성하는 단계; 및
진공 챔버 내에서 전자기력에 의해 코팅 물질을 부양하여 아연-마그네슘 합금 증착 증기를 생성하고, 상기 아연-마그네슘 합금 증착 증기를 유도 분출하여 상기 강판의 다른 한면에 10~40 g/㎡의 부착량을 갖는 아연-마그네슘 합금도금층을 형성하는 단계;를 포함하고,
상기 아연-마그네슘 합금 증착 증기에 포함된 Mg 함량은 8~30 중량%인 가공성 및 내식성이 우수한 이종도금강판의 제조방법에 관한 것이다.
본 발명에 의하면, 강판의 한면은 아연 도금층을 구비하고, 다른 한면은 아연-마그네슘 합금 도금층이 구비된 이종도금강판을 제공하고, 특히 상기 아연 도금층의 도금량과 아연-마그네슘 합금 도금층의 조성을 최적화하여 우수한 가공성과 내식성을 확보할 수 있는 이종도금강판을 제공할 수 있다.
도 1은 통상의 용융도금방법으로 제조된 아연도금강판의 단면을 나타낸 모식도이다.
도 2는 본 발명의 이종도금강판 일예의 단면을 나타낸 모식도이다.
도 3은 본 발명의 이종도금강판 일예의 단면을 나타낸 모식도이다.
도 4는 본 발명의 이종도금강판 일예의 단면을 나타낸 모식도이다.
도 5는 본 발명의 이종도금강판 일예의 단면을 나타낸 모식도이다.
도 6은 전자기 가열 물리 기상 증착 장치의 모식도이다.
본 발명은 기존 강판의 양면을 모두 아연으로 도금하거나, 아연합금으로 도금하는 도금강판보다 우수한 가공성과 내식성을 갖는 이종도금강판에 관한 것이다. 여기서 이종도금강판은 강판의 한면과 다른 한편을 서로 다른 종류의 물질로 도금하여, 하나의 도금강판에서 강판의 각 면에서 서로 다른 도금층을 갖는 것을 의미한다.
본 발명의 발명자들은 기존 양면에 동일한 물질을 도금한 도금강판에 비해, 고내식성과 작업성(galling성)이 요구되는 제품에는 Zn-Mg 도금층이 요구되며, 그 이면인 서비스 코팅에 해당하는 면에는 일시 방청용 목적의 아연도금층을 구성하여, 내식성 및 작업성을 확보하는 동시에, 경제적으로 제품으로 생산할 수 있는 방안을 고민하게 되었다. 위와 같은 효과를 얻기 위해, 강판의 한면은 아연도금층을 형성하고, 다른 한면에는 아연-마그네슘 합금도금층을 형성한 이종도금강판을 도출하게 되었다.
이하, 먼저 본 발명의 일측면인 이종도금강판에 대해서 첨부된 도면을 참고하여 상세히 설명한다. 첨부된 도면은 본 발명을 이해하기 위해 것일 뿐, 본 발명을 제한하고자 한 것이 아니다.
도 2에 도시된 바와 같이, 본 발명 이종도금강판의 일예는, 강판(200); 상기 강판의 한면에 부착된 아연도금층(210); 및 상기 강판의 다른 한면에 부착된 아연-마그네슘 합금도금층(220)을 포함한다.
본 발명에서 상기 강판(200)은 가전, 건축자재, 자동차 등에 사용될 수 있는 열연강판, 냉연강판, 소둔강판 등 그 용도와 종류를 특별히 한정하지 않는다.
상기 강판(210)의 한면에 부착된 아연도금층(210)은 기존 전기 아연도금강판의 결정립 대비해서 결정립 평균 크기가 1/3 수준인 500~800nm인 것이 바람직하다. 상기 미세한 결정립 크기를 가지므로 인해서, 고각(high angle) 피라미드면((103)면, (102)면, (101)면)과 프리즘(110)면이 상대적으로 발달되어 우선 배양되는 특징을 가질 수 있다. 상기 아연도금층(210)의 도금 부착량은 5~60 g/㎡인 것이 바람직하고, 10~60 g/㎡인 것이 보다 바람직하다. 상기 아연도금층의 도금 부착량이 5 g/㎡ 미만이면 강판의 일시 방청성의 내식성을 보장할 수 없다는 문제가 있고, 60 g/㎡을 초과하게 되면 아연도금층의 생산성 및 작업성 측면에서 불리하게 작용할 수 있으므로, 5~60 g/㎡인 것이 바람직하다.
상기 강판(210)의 다른 한면에 부착된 아연-마그네슘 합금도금층(220)은 중량%로, 마그네슘(Mg)이 8~30 %를 포함하고, 나머지는 Zn 및 불가피한 불순물로 이루어진 것이 바람직하다. 상기 Mg 함량이 8 중량% 미만인 경우에는 강판 표면에서의 색상 불균일로 인해 표면 외관의 불량이 발생할 수 있고, 30 중량%를 초과하게 되면 내식성, 경제성 및 작업성이 유리한 점이 없다.
상기 아연-마그네슘 합금도금층(220)의 부식 전위는 -1.07V ~ -1.13V (SCE, Saturated Calomel Electrode)으로, 기존 아연-철 합금 도금강판(-0.89V SCE) 및 아연 도금강판(-1.03V SCE)엥 비해서 큰 부식 전위를 나타내기 때문에 우수한 내식성을 확보할 수 있다.
한편, 상기 아연-마그네슘 합금도금층(220)의 도금 부착량은 10~40 g/㎡인 것이 바람직하다. 상기 아연-마그네슘 합금도금층의 도금 부착량이 10 g/㎡ 미만인 경우에는 우수한 내식성을 확보할 수 없고, 40 g/㎡을 초과하는 경우에는 도금층의 파우더링(powdering)성으로 인해 작업성이 저하되므로 바람직하지 않다. 상기 아연-마그네슘 합금도금층(220)은 하나의 층(layer)로만 제한되지 않고, 2층 이상의 다층 구조로 형성될 수 있다.
상기 아연-마그네슘 합금도금층(220)의 도금 조직은 Zn 단상, Mg 단상, Mg 2Zn 11 합금상, MgZn 2 합금상, MgZn 합금상, Mg 7Zn 3 합금상 등 마그네슘의 조성에 따라 다양한 합금상이 형성될 수 있고, 합금상의 분율도 차이를 가질 수 있다.
본 발명의 이종도금강판은 아연-마그네슘 합금도금층의 구성시, 다양한 사용 양태, 용도 등을 고려하여, 다양한 구조의 도금층을 제시하고, 이를 통해, 표면외관, 내식성, 작업성(galling성), 용접성 등을 확보할 수 있다. 예를 들어, 상기 아연-마그네슘 합금도금층의 상부 및/또는 하부에 Zn층을 포함하여, 2층 내지 3층 구조 또는 그 이상의 구조를 가질 수 있다. 도 3 내지 5는 상기 아연층(221)을 더 포함하는 본 발명의 이종도금강판에 대한 일예의 단면을 도시한 것이다. 본 발명에서 '아연층'은 '아연도금층'과 구별되는 것으로서, 상기 아연-마그네슘 합금도금층 쪽에 형성된 층을 의미한다.
즉, 도 3은 강판(200)과 아연-마그네슘 합금도금층(220) 사이에 아연층(221)을 더 포함하는 것이고, 도 4는 아연-마그네슘 합금도금층(220) 상에 아연층(222)을 더 포함하는 것이며, 도 5는 강판(200)과 아연-마그네슘 합금도금층(220) 사이 및 아연-마그네슘 합금도금층(220) 상에 아연층(221, 222)을 더 포함하는 것을 도시한 것이다.
상기 도 3 및 도 5에서 아연-마그네슘 합금도금층(220)과 강판(200) 사이에 존재하는 아연층(221)은 도금 밀착성 및 공정성을 고려하여, 도금 부착량이 2g/㎡ 이상, 10g/㎡ 이하인 것이 바람직하고, 3g/㎡ 이상, 10g/㎡ 이하인 것이 보다 바람직하고, 5g/㎡ 이상, 10g/㎡ 이하인 것이 가장 바람직하다.
한편, 도 4 및 도 5에서 아연-마그네슘 합금도금층(220) 상에 최상층에 존재하는 아연층(222)의 경우에는 내흑변성, 인산염 처리성 및 골링성을 고려하여 8g/㎡ 이상, 20g/㎡ 이하인 것이 바람직하고, 10g/㎡ 이상, 20g/㎡ 이하인 것이 보다 바람직하고, 8g/㎡ 이상, 15g/㎡ 이하인 것이 가장 바람직하다. 상대적으로 연성의 특징을 가지고 있는 아연층(222)이 20g/㎡ 초과인 경우에는 하지 도금층의 Zn-Mg의 우수한 골링성을 상대적으로 저해하므로, 상기 아연층(222)의 상항은 20g/㎡ 인 것이 바람직하다.
이하, 본 발명의 다른 측면인 이종도금강판의 제조방법에 대해서 상세히 설명한다.
먼저, 강판을 준비한다. 상기 강판은 표면의 이물질, 산화막 등이 존재할 수 있으므로, 이를 제거하는 공정을 포함할 수 있다. 일예로, 2 % 이상의 저온 복합 탈지제 또는 알칼리 탈지 용액을 이용하여 탈지, 린스 및 건조 후, 플라즈마 및 이온빔 등을 이용하여 표면의 이물 및 자연산화막을 제거하는 과정을 거칠 수 있다.
상기 강판의 한면에 5~60 g/㎡의 도금 부착량을 갖도록 아연도금층을 형성하고, 다른 한면에 10~40 g/㎡의 도금 부착량을 갖도록 아연-마그네슘 합금도금층을 형성한다. 상기 아연도금층과 아연-마그네슘 합금도금층의 형성 순서는 차이를 두지 않는다.
상기 아연도금층 및 아연-마그네슘 합금도금층은 전자기 교반(Electromagnetic Stirring) 효과를 가지는 전자기 가열 물리 기상 증착법에 의해 형성함이 바람직하다.
도금강판을 제조하기 위해서, 진공상에서 물리 기상 증착(PVD) 공정을 이용하는데, 기존 통상의 PVD 공정의 단점은 높은 처리 온도 때문에 기체화되야 할 코팅 물질이 항상 액체 상태로 존재하기 때문에 코팅 속도에 한계가 있다는 점이다. 예를 들어, 전자총을 이용한 전자빔 증발의 경우에, 코팅 물질은 세라믹 또는 구리로 만들어진 도가니 안에 있어야 한다. 구리 도가니의 경우에는 물을 사용한 집중적인 냉각으로 인해 구리가 녹거나, 동시에 기체화 되지 않도록 주의해야 한다. 구리 도가니를 냉각시키는데 따르는 한가지 단점은 상당량의 열이 냉각 작업으로 인해 손실된다는 것이다. 세라믹 도가니의 사용은 고온에서 도가니의 자재와 화학반응을 하지 않는 코팅재에 국한된다. 또한, 대부분의 세라믹 도가니는 열 전도율이 낮기 때문에 필요로 하는 열에너지를 공급하는데 애로 사항이 있다. 따라서, 본 발명은 전자기 가열 물리 기상 증착법으로 행하는 것이 바람직하다.
상기 전자기 가열 물리 기상 증착법이란, 진공 챔버 내에서 교류 자기장을 생성하는 전자기 코일에 고주파 전원을 인가하여 전자기력을 발생시키면, 코팅 물질(아연, 마그네슘 등)이 교류 전자기장에 둘러싸인 공간에서 외부의 도움 없이 공중에 부양(浮揚)하게 되며, 이와 같이 부양된 코팅 물질이 대량의 금속 증기(아연 증착 증기, 아연 및 마그네슘 증착 증기)를 발생하게 되는 현상을 이용한 것으로서, 도 6에 이러한 전자기 부양 물리 기상 증착을 위한 장치의 모식도가 도시되어 있다. 도 6을 참조하면, 상기와 같은 방법에 의해 형성된 대량의 금속 증기는 증기 분배 박스(vapor distribution box)의 다수의 노즐을 통해 강판의 표면으로 고속으로 분사되어 도금층을 형성하게 된다. 특히, 상기 전자기 코일 및 증기 분배 박스는 강판의 각 면에 구분되어 설치될 수 있으므로, 강판의 한면에만 도금하고 다른 한면에는 다른 물질을 동시에 도금할 수 있는 장점을 가진 공정 및 설비이다. 이때, 상기 증기 분배 박스의 온도가 낮으면, 금속 증기는 박스 내벽에 응축되므로, 800℃ 이상의 온도로 가열하여, 도금층을 형성하는 것이 바람직하다.
한편, 상기 아연-마그네슘 합금 증착 증기에 포함된 Mg 함량은 8~30 중량%인 것이 바람직하다.
상기 아연-마그네슘 합금도금층을 형성하기 전 및/또는 후에 아연층을 형성하는 공정을 더 포함할 수 있다. 상기 아연층은 전자기 가열 물리 기상 증착법에 의해 형성되는 것이 바람직하다.
상기 방법에 의해 얻어진 본 발명의 이종도금강판은 기존 도금강판 대비, 결정립 크기가 아주 미세하여 표면 외관이 미려하고 경도 증가로 인한 가공성 향상 및 Mg 함유에 의한 Zn-Mg 합금상에 의한 내식성이 크게 개선되는 장점이 있다.
이하, 본 발명의 실시예에 대해서 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명의 권리범위를 한정하고자 하는 것이 아니다.
(실시예)
중량%로, C: 0.125%, Si: 0.102, Ti: 0.019, Cu: 0.012%, 잔부 Fe 및 불가피한 불순물을 포함하는 두께 1.20㎜의 냉연강판을 준비하여, 도 6의 장치를 이용하여 하기 표 1과 같이, 도금부착량 및 Mg의 함량을 달리하여, 강판의 한면은 아연도금층을 형성하고, 다른 한면은 아연-마그네슘 합금도금층을 형성하였다. 이때 도금 조건은 다음과 같다.
- 진공도: 3.2Х10 -4 mbar
- 증기 분배 박스 온도: 1000℃
- 전자기 코일 전류: 1.6kA
- 공급되는 코팅 물질 무게: 아연(3kg), 아연-마그네슘 합금(3.3kg)
한편, 표 1에서 종래예는 통상의 전기 또는 용융도금방식으로 제조된 아연도금강판이다.
상기와 같이 제조된 도금강판에 대해서, 내식성, 파우더링(powdering)성, 골링(galling)성을 평가하고, 그 결과를 표 1에 함께 나타내었다.
내식성은 도금강판을 75mm X 150mm 크기의 시편으로 절단하여, 평판 및 컵 드로잉(cup drawing) 가공 후 내식성을 평가하였는데, JIS Z 2371에 의거하여 염수분무시험을 실시하여 초기 적청 발생 시점을 기록하여, 편면 도금부착량 기준 60 g/㎡인 용융아연도금강판(GI)와 상대 비교 평가하였다. 그 기준은 다음과 같다.
1: 우수
2: 보통 (GI 60 g/㎡) 수준)
3: 불량
파우더링(powdering)성은 도금강판을 폭 40mm, 길이 80mm로 절단한 시편을 프레스 시험기에 장착하고 60°굽힘 시험을 실시한 후, 시편을 시험기에서 탈착하여 구부러진 부분에 셀로판 테이프를 부착한 후 테이프를 펼쳐 떼어낸 후 테이프를 백지에 부착하고 박리 폭을 측정하여 비교 평가하였다. 그 기준은 다음과 같다.
1: 우수 (박리 폭 6.0 ㎜ 미만)
2. 보통 (박리 폭 6.0~8.0 ㎜)
3: 불량 (박리 폭 8.0 ㎜ 초과)
한편, 골링(Galling)성은 도금강판을 200mm X 200mm 크기로 절단한 시편을 회전형 마찰 시험기를 이용하여 총 40회(회당 120°회전)를 측정하여 마찰계수의 변화를 비교 평가하였다. 회전형 마찰 시험기를 이용하여 지속적으로 회전 진행시 초기(회전형 마찰 시험 전) 대비 마찰계수 값을 비교 평가하였으며, 그 기준은 다음과 같다.
1: 우수 (30회 회전 후 마찰계수 값이 초기 대비 20% 미만의 마찰계수 증가)
2: 보통 (30회 회전 후 마찰계수 값이 초기 대비 40% 미만의 마찰계수 증가)
3: 불량 (30회 회전 후 마찰계수 값이 초기 대비 50% 이상의 마찰계수 증가)
표면외관은 도금강판을 600mm X 1000mm 크기로 절단한 시편에 대해, 색차계를 이용하여 L(백색도), a(Red-Green), b(Yellow-Blue)을 측정 Delta ㄸ 값을 비교 평가한 것으로서, 그 기준은 다음과 같다.
1: 우수 (도금강판의 전폭/전장 내에서 측정부위 파트간에서 Delta E 3 이하)
2: 보통 (도금강판의 전폭/전장 내에서 측정부위 파트간에서 Delta E 5 이하)
3: 불량 (도금강판의 전폭/전장 내에서 측정부위 파트간에서 Delta E 5 초과)
구분 한면 도금층 다른 한면의 도금층 특성 평가
도금층 구성 부착량(g/㎡) 도금층 구성 부착량(g/㎡) Mg 함량(중량%) 표면외관 내식성 파우더링성 골링성
종래예 1 Zn 10 Zn 10 - 양호 3 1 3
종래예 2 Zn 20 Zn 20 - 양호 3 1 3
종래예 3 Zn 40 Zn 40 - 양호 2 1 3
종래예 4 Zn 60 Zn 60 - 양호 2 1 3
비교예 1 Zn 2 Zn-Mg 10 8 양호 3 1 1
비교예 2 Zn 4 Zn-Mg 50 20 양호 3 2 1
비교예 3 Zn 70 Zn-Mg 5 4 불균일 2 1 1
비교예 4 Zn 70 Zn-Mg 50 10 양호 1 1 1
비교예 5 Zn 60 Zn-Mg 40 6 불균일 2 1 1
비교예 6 Zn 60 Zn-Mg 40 40 양호 2 3 2
발명예 1 Zn 60 Zn-Mg 10 10 양호 2 1 1
발명예 2 Zn 60 Zn-Mg 40 8 양호 1 1 1
발명예 3 Zn 60 Zn-Mg 10 30 양호 2 2 1
발명예 4 Zn 50 Zn-Mg 20 25 양호 1 2 1
발명예 5 Zn 40 Zn-Mg 30 15 양호 1 2 1
발명예 6 Zn 10 Zn-Mg 40 12 양호 1 1 1
발명예 7 Zn 30 Zn-Mg 40 8 양호 1 1 1
발명예 8 Zn 20 Zn-Mg 40 15 양호 1 2 1
발명예 9-1 Zn 10 Zn/Zn-Mg 2/40 12 양호 1 2 1
발명예 9-2 Zn 10 Zn/Zn-Mg 5/40 12 양호 1 1 1
발명예 10-1 Zn 10 Zn-Mg/Zn 40/8 12 양호 1 1 1
발명예 10-2 Zn 10 Zn-Mg/Zn 40/15 12 양호 1 1 1
발명예 10-3 Zn 10 Zn-Mg/Zn 40/22 12 양호 1 1 2
발명예 11-1 Zn 10 Zn/Zn-Mg/Zn 2/40/14 15 양호 1 2 1
발명예 11-2 Zn 10 Zn/Zn-Mg/Zn 6/40/14 15 양호 1 1 1
발명예 11-3 Zn 10 Zn/Zn-Mg/Zn 6/40/9 15 양호 1 1 1
발명예 11-4 Zn 10 Zn/Zn-Mg/Zn 6/40/22 15 양호 1 1 2
상기 표 1의 '도금층 구성' 중에서, Zn/Zn-Mg, Zn-Mg/Zn, Zn/Zn-Mg/Zn은 다층구조의 도금층을 의미하는 것이고, 강판 표면에서부터 형성된 것을 나타낸 것이다. 예를 들어, Zn/Zn-Mg가 의미하는 것은 강판 표면에서부터 아연(Zn)층, 그 위에 아연-마그네슘 합금(Zn-Mg)층이 형성된 것을 의미한다.
상기 종래예의 경우에는 아연의 연성 특징에 의해, 연속 성형시 아연이 금형에 달라 붙어 마찰계수가 증가하여 골링성이 열위하고, 내식성도 우수하지 않은 것을 확인할 수 있다.
반면, 비교예 1 내지 6은 아연도금층 및 아연-마그네슘 합금도금층의 이종도금강판에 해당되나, 도금층 부착량 구성비에 따라서 만족스러운 경향을 가지는 경우도 있으나, 모든 조건을 고루 만족시킬 수 없음을 확인할 수 있다. 한편, 비교예 3 및 5의 경우에는 아연-마그네슘 합금도금층의 Mg 함량이 본 발명에서 제시한 조건에 부합되지 않아, 표면 외관 특성이 열위한 것을 확인할 수 있다. 비교예 4의 경우에는 모든 특성이 양호한 것으로 나타나지만, 과도한 도금 부착량으로 인해, 작업성이 저하되고 원가 측면에서 불리한 단점이 있어서, 비교예로 분류하였다.
발명예 1 내지 11은 아연도금층 및 아연-마그네슘 합금도금층을 갖는 이종도금강판으로서, 도금 부착량 및 Mg 함량이 적정하게 조절되어, 상기 종래예나 비교예에 비해 전반적인 특성이 고르게 우수한 것을 확인할 수 있다.
한편 발명예 9 내지 11은 아연-마그네슘 합금도금층과 아연층이 다층구조를 이루는 경우를 나타낸 것이다. 발명예 9-1 및 11-1의 경우에는 강판과 아연-마그네슘 합금도금층 사이의 아연층의 부착량이 적어, 파우더링성이 다소 저하되는 것을 알 수 있다. 발명예 10-3 및 11-4의 경우에는 아연-마그네슘 합금도금층 상에 존재하는 아연층의 부착량이 다소 과다하여, 골링성이 다소 저하되는 것을 확인할 수 있다. 발명예 10-1 및 11-3는 아연-마그네슘 합금도금층 상에 존재하는 아연층의 부착량이 적은 경우로서, 내흑변성이 열위할 수 있다.
[부호의 설명]
100, 200 : 강판
110 : 용융아연도금층
210 : 아연도금층
220 : 아연-마그네슘 합금도금층
221, 222 : 아연층

Claims (11)

  1. 강판; 상기 강판의 한면에 부착된 아연도금층; 및 상기 강판의 다른 한면에 부착된 아연-마그네슘 합금도금층을 포함하고,
    상기 아연도금층의 도금 부착량은 5~60 g/㎡이고,
    상기 아연-마그네슘 합금도금층의 도금 부착량은 10~40 g/㎡이고, 상기 아연-마그네슘 합금도금층의 마그네슘 함량은 8~30 중량%인 가공성 및 내식성이 우수한 이종도금강판.
  2. 청구항 1에 있어서,
    상기 아연-마그네슘 합금도금층은 2층 이상의 다층 구조를 갖는 가공성 및 내식성이 우수한 이종도금강판.
  3. 청구항 1에 있어서,
    상기 강판 및 아연-마그네슘 합금도금층 사이에 아연층을 더 포함하는 가공성 및 내식성이 우수한 이종도금강판.
  4. 청구항 3에 있어서,
    상기 아연층의 도금 부착량은 3g/㎡ 이상인 가공성 및 내식성이 우수한 이종도금강판.
  5. 청구항 1에 있어서,
    상기 아연-마그네슘 합금도금층 상에 아연층을 더 포함하는 가공성 및 내식성이 우수한 이종도금강판.
  6. 청구항 5에 있어서,
    상기 아연층의 도금 부착량은 10g/㎡ 이상, 20g/㎡ 이하인 가공성 및 내식성이 우수한 이종도금강판.
  7. 청구항 1에 있어서,
    상기 아연-마그네슘 합금도금층의 부식전위는 -1.07 ~ -1.13 V(SCE)인 가공성 및 내식성이 우수한 이종도금강판.
  8. 강판을 준비하는 단계;
    진공 챔버 내에서 전자기력에 의해 코팅 물질을 부양하여 아연 증착 증기를 생성하고, 상기 아연 증착 증기를 유도 분출하여 상기 강판의 한면에 5~60 g/㎡의 부착량을 갖는 아연도금층을 형성하는 단계; 및
    진공 챔버 내에서 전자기력에 의해 코팅 물질을 부양하여 아연-마그네슘 합금 증착 증기를 생성하고, 상기 아연-마그네슘 합금 증착 증기를 유도 분출하여 상기 강판의 다른 한면에 10~40 g/㎡의 부착량을 갖는 아연-마그네슘 합금도금층을 형성하는 단계;를 포함하고,
    상기 아연-마그네슘 합금 증착 증기에 포함된 Mg 함량은 8~30 중량%인 가공성 및 내식성이 우수한 이종도금강판의 제조방법.
  9. 청구항 8에 있어서,
    상기 아연도금층을 형성하는 단계 및 아연-마그네슘 합금도금층을 형성하는 단계는 순서에 상관없이 순차적으로 행해지거나, 동시에 행해지는 가공성 및 내식성이 우수한 이종도금강판의 제조방법.
  10. 청구항 8에 있어서,
    상기 아연-마그네슘 합금도금층을 형성하기 전 및/또는 후에, 아연층을 형성하는 단계를 더 포함하는 가공성 및 내식성이 우수한 이종도금강판의 제조방법.
  11. 청구항 10에 있어서,
    상기 아연층은 진공 챔버 내에서 전자기력에 의해 코팅 물질을 부양하여 아연 증착 증기를 생성하고, 상기 아연 증착 증기를 유도 분출하여 형성하는 가공성 및 내식성이 우수한 이종도금강판의 제조방법.
PCT/KR2019/018099 2018-12-19 2019-12-19 가공성 및 내식성이 우수한 이종도금강판 및 그 제조방법 WO2020130670A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19898227.4A EP3901322A4 (en) 2018-12-19 2019-12-19 Heterogeneous plated steel sheet having excellent workability and corrosion resistance, and method for manufacturing same
JP2021534946A JP7128359B2 (ja) 2018-12-19 2019-12-19 加工性及び耐食性に優れた異種メッキ鋼板及びその製造方法
CN201980084797.9A CN113227437B (zh) 2018-12-19 2019-12-19 加工性和耐蚀性优异的异种镀覆钢板及其制造方法
US17/414,235 US20220025508A1 (en) 2018-12-19 2019-12-19 Heterogeneous coated steel sheet having excellent workability and corrosion resistance, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0165283 2018-12-19
KR1020180165283A KR102175582B1 (ko) 2018-12-19 2018-12-19 가공성 및 내식성이 우수한 이종도금강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2020130670A1 true WO2020130670A1 (ko) 2020-06-25

Family

ID=71102587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018099 WO2020130670A1 (ko) 2018-12-19 2019-12-19 가공성 및 내식성이 우수한 이종도금강판 및 그 제조방법

Country Status (6)

Country Link
US (1) US20220025508A1 (ko)
EP (1) EP3901322A4 (ko)
JP (1) JP7128359B2 (ko)
KR (1) KR102175582B1 (ko)
CN (1) CN113227437B (ko)
WO (1) WO2020130670A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024529A (zh) * 2021-10-27 2023-04-28 宝山钢铁股份有限公司 一种镀锌板的生产方法及生产线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090072381A (ko) * 2007-12-28 2009-07-02 주식회사 포스코 실러 접착성 및 내식성이 우수한 아연계 합금도금강판과 그제조방법
KR20140081623A (ko) * 2012-12-21 2014-07-01 주식회사 포스코 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판 및 그의 제조방법
KR20160078912A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
KR20180074990A (ko) * 2016-12-26 2018-07-04 주식회사 포스코 점용접성 및 내식성이 우수한 아연합금도금강재
KR20180075429A (ko) * 2016-12-26 2018-07-04 주식회사 포스코 점용접성 및 내식성이 우수한 다층 아연합금도금강재

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180592A (ja) * 1990-11-15 1992-06-26 Kawasaki Steel Corp めっき密着性および耐食性に優れたZn―Mg合金めっき鋼板およびその製造方法
JPH08134632A (ja) * 1994-11-11 1996-05-28 Nisshin Steel Co Ltd Zn−Mg合金めっき鋼板の製造方法
TW359688B (en) * 1995-02-28 1999-06-01 Nisshin Steel Co Ltd High anticorrosion Zn-Mg series-plated steel sheet and method of manufacture it
JPH09143682A (ja) * 1995-11-22 1997-06-03 Nisshin Steel Co Ltd 多重ダクトを用いたZn−Mg蒸着法及び蒸着めっき設備
JPH09241828A (ja) * 1996-03-08 1997-09-16 Nisshin Steel Co Ltd 塗膜耐水密着性に優れたZn−Mg系めっき鋼板及びその製造方法
JP2000129456A (ja) * 1998-10-27 2000-05-09 Sumitomo Metal Ind Ltd 溶接性に優れた亜鉛系複合めっき鋼板およびその製造方法
JP4546884B2 (ja) * 2004-07-07 2010-09-22 新日本製鐵株式会社 加工部耐食性に優れる表面処理めっき鋼板
KR100833073B1 (ko) * 2006-12-28 2008-05-27 주식회사 포스코 수지도장밀착력과 내식성이 우수한 Zn-Mg합금도금강판과 그 제조방법
WO2013091889A1 (en) * 2011-12-23 2013-06-27 Tata Steel Nederland Technology Bv Substrate with a double layered coating
KR101898729B1 (ko) * 2011-12-28 2018-09-14 재단법인 포항산업과학연구원 아연도금강판 및 그 제조방법
KR101439694B1 (ko) * 2012-12-26 2014-09-12 주식회사 포스코 Zn-Mg 합금도금강판 및 그의 제조방법
TR201806865T4 (tr) * 2014-11-27 2018-06-21 Hydro Aluminium Rolled Prod Isi dönüştürücü, bi̇r alümi̇nyum alaşimin ve bi̇r alümi̇nyum şeri̇di̇n kullanimi yani sira bi̇r alümi̇nyum şeri̇di̇n üreti̇mi̇ i̇çi̇n yöntem
KR101696046B1 (ko) * 2014-12-23 2017-01-13 주식회사 포스코 밀착성이 우수한 도금 강판 및 그 제조 방법
WO2016163461A1 (ja) * 2015-04-07 2016-10-13 新日鐵住金株式会社 Zn-Mg合金めっき鋼板
JP2018076551A (ja) * 2016-11-08 2018-05-17 日新製鋼株式会社 黒色Zn−Mg系めっき鋼板およびその製造方法
CN108728746A (zh) * 2018-08-07 2018-11-02 重庆维富金属制品有限公司 一种新型镀锌钢板及其加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090072381A (ko) * 2007-12-28 2009-07-02 주식회사 포스코 실러 접착성 및 내식성이 우수한 아연계 합금도금강판과 그제조방법
KR20140081623A (ko) * 2012-12-21 2014-07-01 주식회사 포스코 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판 및 그의 제조방법
KR20160078912A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
KR20180074990A (ko) * 2016-12-26 2018-07-04 주식회사 포스코 점용접성 및 내식성이 우수한 아연합금도금강재
KR20180075429A (ko) * 2016-12-26 2018-07-04 주식회사 포스코 점용접성 및 내식성이 우수한 다층 아연합금도금강재

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3901322A4 *

Also Published As

Publication number Publication date
JP7128359B2 (ja) 2022-08-30
CN113227437A (zh) 2021-08-06
KR102175582B1 (ko) 2020-11-06
US20220025508A1 (en) 2022-01-27
EP3901322A1 (en) 2021-10-27
JP2022515076A (ja) 2022-02-17
CN113227437B (zh) 2023-06-30
EP3901322A4 (en) 2021-12-29
KR20200076309A (ko) 2020-06-29

Similar Documents

Publication Publication Date Title
EP2085492B2 (en) Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
WO2012091385A2 (en) High corrosion resistant hot dip zn alloy plated steel sheet and method of manufacturing the same
US5002837A (en) Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them
WO2018124649A1 (ko) 점용접성 및 내식성이 우수한 다층 아연합금도금강재
US5135817A (en) Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them
MX2008014074A (es) Chapa de acero provista de un sistema anticorrosivo y metodo para el recubrimiento de una chapa de acero con semejante sistema anticorrosivo.
WO2018124629A1 (ko) 점용접성 및 내식성이 우수한 아연합금도금강재
WO2016105082A1 (ko) 밀착성이 우수한 도금 강판 및 그 제조 방법
WO2018117714A1 (ko) 용접성 및 프레스 가공성이 우수한 용융 아연계 도금강재 및 그 제조방법
KR20120075196A (ko) 도금밀착성 및 내식성이 우수한 Al도금층/Al?Mg도금층의 다층구조 합금도금강판 및 그 제조방법
WO2019132339A1 (ko) 점용접성 및 내식성이 우수한 다층 아연합금도금강재
WO2020130670A1 (ko) 가공성 및 내식성이 우수한 이종도금강판 및 그 제조방법
WO2018117701A1 (ko) 다층구조의 도금강판 및 그 제조방법
WO2020130554A1 (ko) 도금 밀착성 및 내식성이 우수한 도금 강재 및 그 제조방법
WO2018117760A1 (ko) 내식성 및 도금 밀착성이 우수한 zn-mg 합금 도금 강재
WO2019132305A1 (ko) 내식성, 용접성 및 윤활성이 우수한 아연합금도금강판 및 그 제조방법
WO2018124630A1 (ko) 점용접성 및 내식성이 우수한 단층 아연합금도금강재 및 그 제조방법
WO2021125630A1 (ko) 가공부 내식성이 우수한 Zn-Al-Mg계 용융합금도금 강재 및 그 제조방법
WO2019132496A1 (ko) 절연 특성이 우수한 코팅 전기강판 및 이의 제조방법
WO2021125636A1 (ko) 내식성과 점 용접성이 우수한 아연계 도금강재
KR940000280B1 (ko) 알루미늄/아연-철 합금화 용융아연도금의 이층도금강판의 제조방법
KR960009192B1 (ko) 내식성 및 가공성이 우수한 진공증착 망간/알루미늄 이층도금강판
KR940000085B1 (ko) 내식성 및 밀착성이 우수한 티타늄/아연이층도금강판의 제조방법
JP2001355054A (ja) 加工性に優れた溶融亜鉛−アルミニウム合金めっき鋼板とその製造方法
KR950004783B1 (ko) 아연-알루미늄 합금도금강판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534946

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019898227

Country of ref document: EP

Effective date: 20210719