WO2020125769A1 - 车辆及其动力电池加热装置与方法 - Google Patents

车辆及其动力电池加热装置与方法 Download PDF

Info

Publication number
WO2020125769A1
WO2020125769A1 PCT/CN2019/127109 CN2019127109W WO2020125769A1 WO 2020125769 A1 WO2020125769 A1 WO 2020125769A1 CN 2019127109 W CN2019127109 W CN 2019127109W WO 2020125769 A1 WO2020125769 A1 WO 2020125769A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
phase
motor
heating
current
Prior art date
Application number
PCT/CN2019/127109
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
潘华
张宇昕
陈昊
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US17/416,884 priority Critical patent/US20220080858A1/en
Priority to EP19901114.9A priority patent/EP3895933A4/en
Priority to JP2021536218A priority patent/JP2022514706A/ja
Publication of WO2020125769A1 publication Critical patent/WO2020125769A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present application relates to the technical field of vehicles, in particular to a vehicle and its power battery heating device and method.
  • the prior art mainly obtains the temperature of the power battery in real time through a temperature sensor, and when the temperature of the power battery meets the preset conditions, the energy provided by the power battery is used to control the motor to run at zero torque to achieve heating of the power battery .
  • this method can achieve power battery heating, it needs to control the motor to output zero torque, that is, to control the torque current to zero.
  • the key to controlling the torque current to zero is that the zero position of the motor needs to be accurately obtained. Limited by the accuracy of the motor zero calibration method, the motor zero is difficult to obtain accurately, and the three-phase current sensor is difficult to ensure good sampling accuracy when the current amplitude is small, which will cause the torque current to not be constant at zero. It is the up and down fluctuation around zero, which in turn triggers vehicle shaking, resulting in a poor driving experience.
  • the existing power battery heating method has the problem of easily causing vehicle shake.
  • the present application is to provide a vehicle and its power battery heating device and method, to solve the problem that the power battery heating method easily causes vehicle vibration.
  • the present application is implemented in this way.
  • the first aspect of the present application provides a power battery heating method for heating a power battery of a vehicle.
  • the power battery heating method includes: obtaining the current temperature value of the power battery and determining The current temperature value of the power battery is lower than the preset temperature value, and it is determined that the heating condition of the power battery satisfies the preset condition, and the heating power of the power battery is obtained; the preset cross-axis current is obtained, and the power battery is heated according to The power obtains a corresponding preset straight-axis current; wherein, the obtained preset cross-axis current takes a value such that the torque value output by the three-phase AC motor is within a target range, and the target range is not Including zero; controlling the on-off state of the power device in the three-phase inverter, so that the three-phase AC motor generates heat according to the heating energy provided by the heating energy source to heat the cooling fluid flowing through the power battery, and during the heating process Controlling the three-phase invert
  • a second aspect of the present application provides a power battery heating device for heating a power battery of a vehicle.
  • the power battery heating device includes a three-phase inverter and a positive electrode of a heating energy source for providing heating energy. Negative pole connection; three-phase AC motor, the three-phase coil of the three-phase AC motor is connected to the three-phase bridge arm of the three-phase inverter; a control module, the control module is connected to the three-phase inverter and The three-phase AC motor is connected, and the control module is used to obtain the current temperature value of the power battery, and determine that the current temperature value of the power battery is lower than a preset temperature value, and determine that the heating condition of the power battery meets the preset Condition, obtaining the heating power of the power battery; the control module is further used to obtain a preset cross-axis current, and obtain a corresponding preset straight-axis current according to the heating power of the power battery; wherein, the obtained Let the value of the cross-axis current be the cross-axis current value
  • a third aspect of the present application provides a vehicle including the power battery heating device of the second aspect, the vehicle further includes a power battery, a coolant tank, a water pump, and a water line.
  • the water pump converts the power according to a control signal.
  • the cooling liquid in the cooling liquid tank is input to the water line, and the water line passes through the power battery and the power battery heating device.
  • the present application proposes a vehicle and its power battery heating device and method.
  • the power battery heating method determines that the current temperature value of the power battery is lower than the preset temperature value, and the heating condition of the power battery satisfies the preset condition to control the three-phase
  • the inverter enables the three-phase AC motor to generate heat according to the heating energy to heat the cooling fluid flowing through the power battery, and obtain a preset cross-axis current that makes the torque value output by the motor at an appropriate value, and obtain it according to the power of the power battery heating Corresponding preset straight shaft current, and then control the three-phase inverter to adjust the phase current of the three-phase AC motor according to the preset straight shaft current and the preset cross-axis current during the heating process, so that the motor shaft output cannot make the vehicle move 3.
  • Electromagnetic torque with a small torque value that does not damage the components of the vehicle transmission mechanism only makes the output shaft of the motor output a preload force to the transmission mechanism, eliminates the meshing gap, and effectively
  • FIG. 1 is a schematic flowchart of a power battery heating method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a power battery heating device provided by an embodiment of the present disclosure
  • FIG. 3 is a circuit diagram of a power battery heating device provided by an embodiment of the present disclosure.
  • FIG. 4 is another structural diagram of a power battery heating device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a preset cross-axis current waveform in a power battery heating method provided by an embodiment of the present disclosure
  • FIG. 6 is a structural diagram of a control module of a power battery heating device provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of coordinate transformation in a power battery heating device provided by an embodiment of the present disclosure.
  • FIG. 8 is a block schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a power battery heating method for heating a power battery of a vehicle, and during the heating process, the heat conduction path of the power battery is connected to the heat conduction circuit of the motor of the vehicle to form a heat conduction circuit, such as As shown in Figure 1, the power battery heating method includes:
  • Step S11 Obtain the current temperature value of the power battery, determine that the current temperature value of the power battery is lower than the preset temperature value, and determine that the heating condition of the power battery meets the preset condition.
  • the power battery needs to be heated. Before heating the power battery, the current temperature value of the power battery must be obtained, and the temperature value and the preset temperature value For comparison, if the current temperature value is lower than the preset temperature value, it is further determined whether the heating condition of the battery meets the preset condition.
  • determining whether the heating condition of the power battery satisfies the preset condition in step S11 is specifically as follows:
  • the current working state of the motor is the non-driving state, and the power battery fault state, the three-phase AC motor fault state, the motor controller fault state, and the heat conduction circuit fault state are all fault-free, it is recognized as the heating condition of the power battery Meet the preset conditions;
  • the current working state of the motor is the driving state, or if any of the fault states of the power battery fault state, the three-phase AC motor fault state, the motor controller fault state, and the heat conduction circuit fault state is a fault, it is recognized as a power battery.
  • the heating conditions do not meet the preset conditions.
  • the failure of the heat conduction circuit includes but is not limited to problems such as damage to the communication valve and insufficient medium in the heating circuit.
  • the power battery heating method further includes:
  • the current working state of the motor is obtained by acquiring the gear information and the motor speed information, and according to the gear information and the motor speed information, so that when the power battery meets the heating conditions according to the working state of the motor, it can be based on Judging gear information and motor speed information, if any one of the conditions is not met, the power battery cannot be heated, which prevents the vehicle from heating the power battery under normal driving conditions, thereby affecting vehicle performance.
  • Step S12 Obtain the heating power of the power battery.
  • the power battery when it is determined that the power battery meets the heating condition, the power battery can be heated. At this time, the heating power of the power battery needs to be obtained, and the heating power refers to the power that the power battery needs to heat.
  • Step S13 Obtain the preset cross-axis current, and obtain the corresponding preset straight-axis current according to the heating power of the power battery; wherein, the obtained preset cross-axis current takes a value such that the torque value output by the three-phase AC motor is at the target The cross-axis current value within the range, and the target range does not include zero.
  • the value of the obtained preset cross axis current iq can be used to make the torque value output by the three-phase AC motor is very small, that is, the torque It can't make the vehicle move or damage the parts of the vehicle transmission mechanism. It only needs to provide a small output torque to complete the pre-tightening force between the gears of the vehicle transmission mechanism.
  • the preset cross-axis current iq can go through many experiments get.
  • Step S14 Control the on-off state of the power device in the three-phase inverter, so that the three-phase AC motor generates heat according to the heating energy provided by the heating energy source to heat the cooling fluid flowing through the power battery, and according to the Straight axis current and preset cross axis current are set to control the three-phase inverter to adjust the phase current of the three-phase AC motor.
  • the heating energy source may be an external charging device, such as a charging pile, or a power battery, which is not specifically limited here.
  • the on-off state of the power device in the three-phase inverter can be controlled at this time, that is, the power device in the three-phase inverter can be controlled
  • the on-off time that is, the time when the power device is turned on and off, makes the three-phase AC motor generate heat according to the heating energy to heat the coolant flowing through the power battery, and according to the preset straight axis current id and pre Set the cross-axis current iq to control the three-phase inverter to adjust the phase current of the three-phase AC motor to achieve the adjustment of the heating power.
  • the three-phase inverter when controlling the three-phase inverter to adjust the phase current of the three-phase AC motor according to the preset straight-axis current id and the preset cross-axis current iq, it is necessary to heat the power battery before , Obtain the current three-phase current value of the three-phase AC motor and the motor rotor position and angle information, and convert the current three-phase current value into a straight axis current and a cross axis current according to the motor rotor position angle information, and then according to the straight axis during the heating process
  • the current, cross-axis current, preset straight-axis current, and preset cross-axis current control the three-phase inverter to adjust the phase current of the three-phase AC motor to achieve the function of heating the power battery and ensure that the motor shaft end outputs a Smaller torque value.
  • the three-phase current value of the three-phase AC motor before heating and the motor rotor position and angle information, and then obtaining the straight-axis current and the cross-axis current according to the acquired parameters, in order to facilitate the heating process according to
  • the straight-axis current, the cross-axis current, the preset straight-axis current, and the preset cross-axis current control the three-phase inverter to adjust the phase current of the three-phase AC motor, so as to achieve the adjustment of the heating power.
  • the specific process of obtaining straight-axis AC and cross-axis currents according to the motor rotor position angle information and the current three-phase current value is:
  • the current three-phase current value is converted from the natural coordinate system to the stationary coordinate system, and the current three-phase AC value in the stationary coordinate system is converted into a straight coordinate in the synchronous rotating coordinate system according to the motor rotor position and angle information
  • the shaft current and the cross-axis current make it possible to adjust the phase current of the three-phase AC motor by controlling the three-phase inverter according to the obtained straight-axis current and the cross-axis current, based on the standards in the same coordinate system, which improves the adjustment process Accuracy.
  • the straight axis current and the cross axis current are compared with the preset straight axis current id and the preset cross axis current iq, respectively, so that The straight-axis current and the cross-axis current are adjusted according to the preset straight-axis current id and the preset cross-axis current iq, so that the three-phase inverter is controlled according to the preset straight-axis current id and the preset cross-axis current iq.
  • the straight-axis voltage Ud and the cross-axis voltage can be obtained according to the decoupled data Uq.
  • coordinate transformation is performed on the straight-axis voltage Ud and the cross-axis voltage Uq to obtain the first voltage U ⁇ and the second voltage U ⁇ , and then according to the first voltage U ⁇ and The second voltage U ⁇ obtains a switching signal, thereby controlling the three-phase inverter to adjust the phase current of the three-phase AC motor according to the switching signal.
  • the obtained straight-axis current and cross-axis current are adjusted according to the preset straight-axis current and preset cross-axis current to obtain corresponding adjustment results, and the adjustment results are obtained after a series of changes.
  • the switching signal of the three-phase inverter that is, the on-off time of the power device in the three-phase inverter, controls the three-phase inverter to adjust the phase current of the three-phase AC motor according to the switching signal, thereby realizing the three-phase AC
  • the closed-loop control of the motor and the adjustment of the heating power enhance the effectiveness of the power battery during the heating process and reduce the loss of the motor and other components.
  • Step S15 During the heating process of the power battery, the temperature of the three-phase inverter and the three-phase AC motor is monitored in real time, and it is determined that the temperature of any one of the three-phase inverter and the three-phase AC motor exceeds the temperature limit, then Reduce the preset straight axis current, or set the preset straight axis current to zero.
  • the current amplitude of the preset straight-axis current id is reduced or the preset straight-axis current id is set to zero.
  • determining that the temperature of any one of the three-phase inverter and the three-phase AC motor exceeds the temperature limit further includes: setting the preset cross-axis current to zero.
  • Step S16 During the heating process of the power battery, the temperature of the power battery is monitored in real time. When the temperature of the power battery reaches the specified heating temperature, the preset straight-axis current is reduced.
  • the temperature of the power battery when the temperature of the power battery reaches the specified heating temperature, it indicates that the power battery does not need to be reheated. At this time, it is necessary to stop heating the power battery, that is, to reduce the preset straight axis current id, you can Let the straight-axis current id decrease to zero.
  • the preset straight-axis current id is reduced to effectively prevent the power battery from overheating and prevent the power battery Damage occurs, increasing the service life of the power battery.
  • the power battery heating method further includes:
  • the required heating power of the power battery is obtained in real time, and the preset straight shaft current is adjusted according to the required heating power.
  • adjusting the size of the preset straight-axis current according to the required heating power refers to adjusting the heating power according to the difference between the preset heating target temperature of the power battery and the current temperature, the greater the difference is for heating The greater the power, the greater the power, and the greater the magnitude of the preset straight-axis current.
  • the required power is relatively large, that is, the current battery temperature of the power battery is a relatively low temperature, for example, when the target temperature to be heated to exceeds 10°C
  • the heating with a larger power is used, and the straight-axis current id is preset at this time
  • the amplitude is adjusted down.
  • the required heating power of the power battery is acquired in real time during the heating process, and the preset straight-axis current id and the preset cross-axis current iq are adjusted according to the required heating power, thereby effectively preventing the power battery Overheating prevents damage to the power battery and improves the service life of the power battery.
  • the power battery heating method further includes:
  • the preset straight shaft current is set to zero.
  • the embodiment of the present disclosure when it is determined that any of the power battery fault state, the three-phase AC motor fault state, the motor controller fault state and the heat conduction circuit fault state is a fault, it indicates that the power battery cannot For heating, the heating to the power battery should be stopped, and the preset straight-axis current should be set to zero.
  • Determining whether any of the fault states of the power battery fault state, the three-phase AC motor fault state, the motor controller fault state, and the heat conduction circuit fault state is a fault also includes: setting the preset cross-axis current to zero.
  • any one of the power battery fault state, the three-phase AC motor fault state, the motor controller fault state and the heat conduction circuit fault state is a fault, and the heating to the power battery is stopped, which can effectively prevent the power battery from occurring Damaged to extend the service life of the power battery.
  • Embodiments of the present application provide a power battery heating device for a vehicle for heating a power battery of a vehicle. As shown in FIG. 2, the power battery heating device includes:
  • the three-phase inverter 11 is connected to the positive electrode and the negative electrode of a heating energy source 10 for providing heating energy;
  • the three-phase coil of the three-phase AC motor 12 is connected to the three-phase bridge arm of the three-phase inverter 11;
  • the control module 13 is connected to the three-phase inverter 11 and the three-phase AC motor 12 respectively.
  • the control module 13 is used to obtain the current temperature value of the power battery and determine that the current temperature value of the power battery is lower than the preset temperature value. And it is determined that the heating condition of the power battery satisfies the preset condition to obtain the heating power of the power battery;
  • the control module 13 is also used to obtain a preset cross-axis current iq, and obtain a corresponding preset straight-axis current id according to the heating power of the power battery;
  • the acquired preset cross-axis current iq is a cross-axis current value such that the torque value output by the three-phase AC motor is within the target range, and the target range does not include zero;
  • the control module 13 is also used to control the three-phase inverse
  • the on-off state of the power device in the converter 11 makes the three-phase AC motor 12 generate heat according to the heating energy provided by the heating energy source 10 to heat the cooling fluid
  • the heating energy source 10 can be implemented by an external power supply device such as a charging pile, or it can be the power battery itself, that is, the heating energy provided by the heating energy source 10 can be output from the power battery, or can be output from the DC charger, or
  • the output of the AC charger after rectification is not specifically limited here;
  • the three-phase inverter 11 has four working modes, which are determined by the control module 13, and when needed for vehicle driving, the three-phase inverter 11 works In the inverter mode, when used for boost charging, the three-phase inverter 11 works in the boost mode, when used to heat the battery, the three-phase inverter 11 works in the heating mode, when it is necessary to supply power to the outside world , The three-phase inverter 11 works in the transformer mode.
  • the three-phase inverter 11 works in the heating mode will be described in detail; wherein, the three-phase inverter 11 includes six power switching units, the power The switch can be a device type such as transistor, IGBT, MOS tube, etc.
  • Two power switch units form a one-phase bridge arm, forming a three-phase bridge arm in total, and the connection point of the two power switch units in each phase bridge arm is connected to a three-phase AC motor 12
  • One-phase coil in the three-phase AC motor 12 includes a three-phase coil, the three-phase coil is connected to a midpoint, the three-phase AC motor 12 may be a permanent magnet synchronous motor or an asynchronous motor, etc. No specific restrictions.
  • the three-phase inverter 11 includes a first power switching unit and a second A power switch unit, a third power switch unit, a fourth power switch unit, a fifth power switch unit, and a sixth power switch unit.
  • each power switch unit is connected to the control module 13 (not shown in the figure), the first ends of the first power switch unit, the third power switch unit and the fifth power switch unit are connected in common, and the second power switch The second end of the unit, the fourth power switch unit and the sixth power switch unit are connected together, the first phase coil of the three-phase AC motor 12 is connected to the second end of the first power switch unit and the first end of the second power switch unit , The second phase coil of the three-phase AC motor 12 is connected to the second end of the third power switch unit and the first end of the fourth power switch unit, and the third phase coil of the three-phase AC motor 12 is connected to the first end of the fifth power switch unit The two ends and the first end of the sixth power switching unit.
  • first power switch unit and the second power switch unit in the three-phase inverter 11 constitute a first phase bridge arm (U-phase bridge arm), and the third power switch unit and the fourth power switch unit constitute a second phase bridge
  • the arm (V-phase bridge arm), the input end of the fifth power switch unit and the sixth power switch unit constitute a third phase bridge arm (W-phase bridge arm).
  • the first power switch unit includes a first upper bridge arm VT1 and a first upper bridge diode VD1
  • the second power switch unit includes a second lower bridge arm VT2 and a second lower bridge diode VD2
  • the third power switch unit includes a third upper bridge Arm VT3 and third upper bridge diode VD3
  • the fourth power switch unit includes fourth lower bridge arm VT4 and fourth lower bridge diode VD4
  • the fifth power switch unit includes fifth upper bridge arm VT5 and fifth upper bridge diode VD5
  • the sixth power switching unit includes a sixth lower bridge arm VT6 and a sixth lower bridge diode VD6.
  • the three-phase AC motor 12 may be a permanent magnet synchronous motor or an asynchronous motor.
  • the three-phase coils of the motor and the U, V and W are connected between upper and lower bridge arms.
  • control module 13 may include a vehicle controller, a motor controller control circuit, and a BMS battery manager circuit.
  • the three are connected by a CAN line. Different modules in the control module 13 are based on The acquired information controls the turning on and off of the switching unit in the three-phase inverter 11 to realize the conduction of different current loops.
  • the heating energy source 10, the three-phase inverter 11 and the three-phase AC motor 12 are provided.
  • coolant tubes There are inter-connected coolant tubes, and the coolant flowing in the coolant tube can adjust the temperature of the power battery by adjusting the temperature of the coolant in the coolant tube.
  • the control module 13 includes a battery manager 131 and a motor controller 132.
  • the battery manager 131 is connected to the power battery 20, and the motor controller and 132 are connected to the power battery and the three-phase AC motor 12.
  • the battery manager 131 obtains the current temperature of the power battery, compares the current temperature of the power battery with a preset temperature value to determine whether the power battery is in a low temperature state, and when it is detected that the current temperature of the power battery is lower than the preset temperature value, The temperature of the power battery can be increased by raising the temperature of the coolant flowing through the power battery.
  • the motor controller 132 can control the three The phase inverter 11 and the three-phase AC motor 12 heat the cooling fluid flowing through the power battery until the temperature of the power battery reaches a preset temperature value and stops heating.
  • the motor controller 132 obtains the current working state of the motor of the vehicle, the power battery failure state, and the three-phase AC motor 12 failure State, the fault state of the motor controller 132 and the fault state of the heat conduction circuit, and determine whether the heating condition of the power battery is satisfied according to the above fault state and the current working state of the motor.
  • the current working state of the motor is determined to be a non-driving state, and the power battery fault state, three-phase AC motor fault state, motor controller fault state, and heat conduction circuit fault state are all fault-free, it is recognized as the power battery's
  • the heating conditions meet the preset conditions; if it is determined that the current working state of the motor is the driving state, or if any of the fault states of the power battery fault state, the three-phase AC motor fault state, the motor controller fault state, and the heat conduction circuit fault state are determined to be faulty When it is recognized that the heating condition of the power battery does not meet the preset condition.
  • the motor controller 132 is also used to determine when any of the fault states of the power battery fault state, the three-phase AC motor fault state, the motor controller fault state, and the thermal conduction circuit fault state is the presence of a fault ,
  • the preset straight axis current id is set to zero.
  • the motor controller 132 is also used to zero the preset cross-axis current iq.
  • the motor controller 132 may first acquire gear information and motor speed information, and obtain the current working state of the motor according to the gear information and motor speed information.
  • the motor controller 132 determines that the current gear is the P gear and the motor speed is 0, it indicates that the current working state of the motor is the non-driving state; when the motor controller 132 determines that the current gear is not the P gear or the motor When the rotation speed is not zero, it indicates that the current working state of the motor is the driving state; it should be noted that, in the embodiment of the present disclosure, the two judgment conditions of the working state of the motor and the temperature of the power battery are in no particular order.
  • the three-phase inverter 11 when the gear position information, the motor speed information and the temperature information of the power battery are detected in the parking state, the three-phase inverter 11 is controlled so that the three-phase AC motor 12 flows through the power battery according to the heating energy
  • the coolant is heated to realize the heating of the power battery in the parking state of the vehicle, which is convenient for the vehicle to start normally under low temperature conditions, and prevents the vehicle from heating the power battery under normal driving conditions, thereby affecting the performance of the vehicle.
  • the motor controller 132 controls the three-phase inverter 11 and the three-phase AC motor 12 to heat the coolant flowing through the power battery
  • the motor controller 132 mainly controls the three-phase
  • the turn-on and turn-off time and switching frequency of each power unit in the inverter 11 make the three-phase AC motor 12 generate heat according to the heating energy output by the heating energy source 10 (in this embodiment, the heating energy source uses a power battery as an example)
  • the coolant flowing through the power battery is heated, and during the heating process, the motor controller 132 controls the phase current of the three-phase inverter 11 to the three-phase AC motor 12 according to the preset straight-axis current id and the preset cross-axis current iq
  • the power battery is connected to the heat conduction circuit of the three-phase AC motor 12, and the cooling medium flows through the water pump (not shown) and the intercommunication valve (not shown). Pass the vehicle power battery (
  • the preset straight-axis current id is a straight-axis current preset according to the heating power, which can control the heating power Control
  • the preset cross-axis current iq is a cross-axis current with a constant amplitude (as shown in Figure 5)
  • the amplitude is obtained through a lot of experiments, which can make the output torque value of the motor shaft smaller Torque, and the electromagnetic torque cannot make the vehicle move, and will not cause damage to the vehicle transmission mechanism parts. It only provides a small output torque to complete the gear gap engagement or preload of the vehicle transmission mechanism.
  • the power battery heating device heats the coolant flowing through the power battery by controlling the three-phase inverter 11 and the three-phase AC motor 12, and controls the heating power according to the demand during the heating process Straight shaft current, and given a non-zero cross-axis current of appropriate amplitude, so that during the heating of the power battery, the motor shaft of the three-phase AC motor 12 outputs an electromagnetic torque with a small torque value. It can't make the vehicle move, nor will it cause damage to the components of the vehicle transmission mechanism. Only a small output torque is provided to complete the gear gap engagement or preload of the vehicle transmission mechanism, which effectively prevents the vehicle from shaking during the heating of the power battery.
  • the control module 13 controls the three-phase inverter 11 to adjust the phase current of the three-phase AC motor 12 according to the preset straight-axis current id and the preset cross-axis current iq, it is necessary to Before heating the power battery, the control module 13 obtains the current three-phase current value of the three-phase AC motor 12 and the motor rotor position and angle information, and converts the current three-phase current value into a straight-axis current and a cross-axis current according to the motor rotor position and angle information In the heating process, the three-phase inverter 11 is controlled according to the straight-axis current, the cross-axis current, the preset straight-axis current, and the preset cross-axis current to adjust the phase current of the three-phase AC motor 12.
  • the straight-axis current, the cross-axis current, the preset straight-axis current, and the preset cross-axis current control the three-phase inverter to adjust the phase current of the three-phase AC motor, so that the heating value of the three-phase AC motor winding is constant.
  • control module 13 further includes a feedforward decoupling unit 133, a coordinate transformation unit 134, a switch signal acquisition unit 135, a feedforward decoupling unit 133 and a coordinate transformation unit 134 is connected, the coordinate transformation unit 134 is connected to the switch signal acquisition unit 135 and the three-phase AC motor 12, the switch signal acquisition unit 135 is connected to the motor controller 132, and the motor controller 132 is connected to the three-phase AC motor 12.
  • the control module 13 compares the straight axis current and the cross axis current with the preset straight axis current id and the preset cross axis current iq, respectively, so that The current id and the preset cross axis current iq adjust the straight axis current and the cross axis current, so that the three-phase inverter is controlled according to the preset straight axis current id and the preset cross axis current iq.
  • the adjustment result is output to the feedforward decoupling unit 133, and the feedforward decoupling unit 133 decouples the comparison result After coupling, the straight-axis voltage Ud and the cross-axis voltage Uq are obtained.
  • the coordinate transformation unit 134 performs coordinate transformation on the straight-axis voltage Ud and the cross-axis voltage Uq to obtain the first voltage U ⁇ and the second voltage U ⁇ .
  • the first voltage U ⁇ and the second voltage U ⁇ obtain a switching signal, and the motor controller 132 controls the three-phase inverter 11 according to the switching signal to adjust the phase current of the three-phase AC motor 12.
  • the obtained straight-axis current and cross-axis current are adjusted according to the preset straight-axis current and preset cross-axis current to obtain corresponding adjustment results, and the adjustment results are obtained after a series of changes.
  • the switching signal of the three-phase inverter enables the motor controller to control the three-phase inverter to adjust the phase current of the three-phase AC motor according to the switching signal, and realizes the control of the closed-loop control of the three-phase AC motor and the adjustment of the heating power , Enhance the effectiveness of the power battery heating process, reduce the loss of motor and other components.
  • the specific process for the control module 13 to obtain the straight-axis current and the cross-axis current according to the motor rotor position angle information and the current three-phase current value of the feedforward decoupling unit is:
  • the control module 13 Before heating the power battery, the control module 13 obtains the current three-phase current value of the three-phase AC motor and the motor rotor position and angle information, and the coordinate transformation unit 134 transforms the current three-phase current value from the natural coordinate system to the stationary coordinate system. And according to the motor rotor position and angle information, the current three-phase AC value in the static coordinate system is converted into a straight-axis current and a cross-axis current in the synchronous rotating coordinate system (as shown in FIG. 7).
  • the current three-phase current value is converted from the natural coordinate system to the stationary coordinate system, and the current three-phase AC value in the stationary coordinate system is converted into a straight coordinate in the synchronous rotating coordinate system according to the motor rotor position and angle information
  • the shaft current and the cross-axis current make the control module adjust the phase current of the three-phase AC motor based on the obtained straight-axis current and the cross-axis current to adjust the phase current of the three-phase AC motor. Accuracy during adjustment.
  • the battery heating device is further provided with a temperature detection unit, which is connected to the motor controller 132 and the three-phase AC motor 12 in the control module.
  • the temperature detection unit is used to monitor the temperature of the three-phase inverter 11 and the three-phase AC motor 12 in real time during the heating process of the power battery, and feed back the monitoring result to the control module 13.
  • the control module 13 is in the three-phase inverter 11 When the temperature of any one of the three-phase AC motors 12 exceeds the temperature limit, the preset straight-axis current id is reduced, or the preset straight-axis current id is set to zero.
  • control module 13 is also used to set the preset cross-axis current iq to zero.
  • the temperature detection unit is implemented by a temperature sensor, which can be implemented by a thermistor with a negative temperature coefficient or a thermistor with a positive temperature coefficient, which is not specifically limited here.
  • the current amplitude of the preset straight-axis current id is reduced or the preset straight-axis current id and preset The cross-axis current iq is set to zero.
  • control module 13 is also used to monitor the temperature of the power battery in real time during the heating process of the power battery, and stop if the temperature of the power battery reaches the specified heating temperature Heat the power battery.
  • the temperature of the power battery when the temperature of the power battery reaches the specified heating temperature, it indicates that the power battery does not need to be reheated. At this time, the heating to the power battery needs to be stopped, and the straight-axis current and the cross-axis current need to be reduced.
  • the preset straight axis current and the preset cross axis current are reduced to effectively prevent power
  • the battery is overheated to prevent damage to the power battery and improve the service life of the power battery.
  • control module 13 is further used to obtain the required heating power of the power battery in real time during the heating process of the power battery, and preset the straight axis according to the required heating power. The size of the current id is adjusted.
  • the temperature of the power battery will continue to increase as the heating process progresses, and the temperature increase causes the heating power required by the power battery to continuously change, so during the heating process of the power battery, It is necessary to obtain the required heating power of the power battery in real time, and adjust the size of the preset straight-axis current id according to the required heating power.
  • the required heating power of the power battery is obtained in real time during the heating process, and the preset straight-axis current id is adjusted according to the required heating power, so as to effectively prevent the power battery from overheating and prevent the power battery from being damaged.
  • the service life of the power battery is improved.
  • the temperature of the vehicle power battery will approach the ambient temperature, and as the temperature decreases, the performance of the vehicle power battery further decreases, and the charge and discharge capabilities are limited, which affects The performance and use of new energy vehicles require heating the power battery.
  • the control module 13 It is necessary to judge the heating conditions, that is, whether the temperature of the power battery is too low, whether the motor speed is zero, and whether it is in P gear. If the judgment results of the heating conditions are true, you can enter the three-phase AC motor 12 to generate heat. The process of power battery heating.
  • the sensor will first sample the current variables of the motor and send the sampling results to the control module 13, where the sampled variables are mainly the current value of the three-phase current flowing through the winding of the three-phase AC motor 12 and the motor rotor Position angle information (current rotor position of the motor). As shown in FIG.
  • the coordinate transformation unit 134 transforms the variables in the natural coordinate system ABC to the variables in the static coordinate system ⁇ - ⁇ by clark transformation, and then Then the park transformation is used to transform the variables in the stationary coordinate system ⁇ - ⁇ to the variables in the synchronous rotation coordinate system dq, and the amplitude unchanged condition is followed in the entire coordinate transformation, and the transformation coefficient 2/3 is added before the transformation matrix.
  • the coordinate transformation unit 134 transforms the variable in the natural coordinate system ABC to the variable in the static coordinate system ⁇ - ⁇ , it is based on the transformation matrix Transform the variables in the natural coordinate system ABC, and the coordinate transformation unit 134 converts the variables in the stationary coordinate system ⁇ - ⁇ to the variables in the synchronous rotation coordinate system dq, according to the transformation matrix Transform the variables in the stationary coordinate system ⁇ - ⁇ , and then multiply the two transformations, you can get the transformation matrix of natural coordinate system ABC to synchronous rotating coordinate system dq
  • is the angle between the rotor straight shaft of the three-phase AC motor 12 and the A-phase winding of the three-phase AC motor 12 (motor rotor position and angle information)
  • the three-phase current in the natural coordinate system ABC can be transformed after the transformation matrix Is the AC-axis current, the AC-axis current is the excitation current, and the AC-axis current is the torque current, that is, under the premise of complete decoupling, only the AC-axis current is related to the
  • the control algorithm cannot control the cross-axis current to be constant at zero, which in turn causes the cross-axis current value to fluctuate around zero, which makes the vehicle shake, and the intensity of the shake is different.
  • the operating conditions will also be different. If there are occupants in the car at this time, it will produce a bad driving experience.
  • this application controls the preset straight axis current id amplitude in real time under the corresponding heating power demand
  • the size of the preset cross-axis current iq is controlled to be a constant suitable value.
  • T e represents the output torque of the motor shaft end
  • p represents the number of motor pole pairs
  • L d represents the inductance of the straight axis
  • L q represents the inductance of the intersecting axis
  • i d represents the current of the direct axis
  • i q represents the current of the intersecting axis.
  • the cross-axis current and the straight-axis current can be compared with the preset cross-axis current iq and the preset straight-axis current id, respectively, and The comparison result is fed back to the feedforward decoupling unit 133.
  • the feedforward decoupling unit 133 completely decouples the variables through feedforward compensation.
  • the straight axis voltage (Ud) and cross axis voltage (Uq) obtained after the decoupling is completed ) Is transferred to the coordinate transformation unit 134 again, through the inverse park transformation matrix
  • the voltage variables U ⁇ and U ⁇ in the static coordinate system are obtained, and then U ⁇ and U ⁇ are transmitted to the switching signal acquisition unit 134, and the switching signal acquisition unit 134 obtains the control of the three-phase inverter through the space vector pulse width modulation algorithm (SVPWM)
  • SVPWM space vector pulse width modulation algorithm
  • the six-way switching signal of 11, the motor controller 132 controls the power switching unit in the three-phase inverter 11 to perform a switching action through the six-way switching signal, thereby controlling the magnitude of the three-phase current flowing through the three-phase AC motor.
  • the temperature sensor continuously monitors the power switch temperature of the three-phase AC motor winding and the three-phase inverter during the entire heating process. If any of the items exceeds the temperature limit, or the current temperature of the power battery gradually approaches the predetermined target heating temperature , Or the current temperature of the power battery has reached or exceeded the predetermined target heating temperature, the motor controller will reduce the given id value or set the id and iq values to zero, thus, the phase current flowing through the three-phase winding of the three-phase AC motor The value will also decrease or be 0, and the heating power of the motor will also be reduced, which will also reduce the power switching temperature of the three-phase inverter and the winding temperature of the three-phase AC motor, so as to ensure the heating effect and not The parts of the vehicle are damaged until the temperature of the three-phase AC motor winding or the power switch of the three-phase inverter is not in an overtemperature state.
  • the heating is stopped, otherwise the heating is continued; If the temperature of the three-phase AC motor winding and the power switch device are not overheated during the entire heating process, the battery manager will issue a command to stop heating when the battery temperature has reached the predetermined heating temperature, and the three-phase AC motor generates heat The process of heating the vehicle's power battery is over.
  • the vehicle 1000 further includes the power battery heating device 100 provided in the above embodiment.
  • the vehicle 1000 further includes a power battery, a coolant tank, a water pump, and a water line.
  • the water pump inputs the coolant in the coolant tank to the water line according to the control signal, and the water line passes through the power battery and the power battery heating device 100.
  • the vehicle proposed in this application controls the three-phase inverter so that the three-phase AC motor generates heat according to the heating energy when the current temperature value of the power battery is lower than the preset temperature value and the heating condition of the power battery meets the preset condition Heat the cooling fluid flowing through the power battery, and obtain the preset cross-axis current so that the torque value of the motor output is appropriate, and obtain the corresponding preset straight-axis current according to the heating power of the power battery, and then according to the Straight-axis current and preset cross-axis current are set to control the three-phase inverter to adjust the phase current of the three-phase AC motor, so that the motor shaft output cannot make the vehicle move or damage the torque of the vehicle transmission mechanism parts.
  • the electromagnetic torque with a small value only makes the output shaft of the motor output a preload to the transmission mechanism, eliminates the meshing gap, and effectively prevents the vehicle from shaking.

Abstract

一种车辆及其动力电池加热装置与方法,该动力电池加热方法通过在动力电池的当前温度值低于预设温度值,且动力电池的加热条件满足预设条件时,控制三相逆变器使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热,并获取使得电机输出的转矩值在合适值的预设交轴电流,以及根据动力电池加热功率获取相应的预设直轴电流,进而在加热过程中根据预设直轴电流和预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,使得电机轴输出无法使得车辆移动、也不会对车辆传动机构零部件造成损伤的转矩值很小的电磁转矩,仅使得电机输出轴给传动机构输出一个预紧力,消除啮合间隙,有效防止车辆发生抖动。

Description

车辆及其动力电池加热装置与方法
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2018年12月21日提交的、发明名称为“一种车辆及其动力电池加热装置与方法”的、中国专利申请号“201811574151.2”的优先权。
技术领域
本申请涉及车辆技术领域,尤其涉及一种车辆及其动力电池加热装置与方法。
背景技术
近几年来,新能源汽车蓬勃发展使得基于锂离子的动力电池得到大量应用,而由于电池的固有特性,在低温时动力电池的充放电能力会大幅降低,这将影响车辆在寒冷地区的使用。
为解决这一问题,现有技术主要通过温度传感器实时获取动力电池的温度,并在动力电池的温度符合预设条件时,使用动力电池提供的能量控制电机零转矩运行,以实现动力电池加热。然而,该方法虽然可以实现动力电池加热,但是其需要控制电机输出零转矩,即控制转矩电流为零,控制转矩电流为零的关键在于电机的零位需要准确获取,而在实际情况中受限于电机零位标定方法准确性电机的零位很难准确获取,且三相电流传感器在电流幅值较小时难以保证良好的采样精度,如此将导致转矩电流不恒定为零,而是围绕零进行上下波动,进而引发车辆抖动,造成不佳的驾乘感受。
综上所述,现有的动力电池加热方法存在易造成车辆抖动的问题。
发明内容
本申请在于提供一种车辆及其动力电池加热装置与方法,以解决动力电池加热方法存在易造成车辆抖动的问题。
本申请是这样实现的,本申请第一方面提供一种动力电池加热方法,用于向车辆的动力电池进行加热,所述动力电池加热方法包括:获取所述动力电池的当前温度值,确定所述动力电池的当前温度值低于预设温度值,并确定动力电池的加热条件满足预设条件,获取所述动力电池的加热功率;获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零;控制三相逆变器中功率器件 的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节。
本申请第二方面提供一种动力电池加热装置,用于向车辆的动力电池进行加热,所述动力电池加热装置包括:三相逆变器,与用于提供加热能量的加热能量源的正极与负极连接;三相交流电机,所述三相交流电机的三相线圈与所述三相逆变器的三相桥臂连接;控制模块,所述控制模块分别与所述三相逆变器以及所述三相交流电机连接,所述控制模块用于获取动力电池的当前温度值,并在确定所述动力电池的当前温度值低于预设温度值,且确定动力电池的加热条件满足预设条件,获取所述动力电池的加热功率;所述控制模块还用于获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零;所述控制模块还用于控制三相逆变器中功率器件的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节。
本申请第三方面提供一种车辆,所述车辆包括第二方面所述动力电池加热装置,所述车辆还包括动力电池、冷却液箱、水泵以及水管线,所述水泵根据控制信号将所述冷却液箱中的冷却液输入至所述水管线,所述水管线穿过所述动力电池和所述动力电池加热装置。
本申请提出了一种车辆及其动力电池加热装置与方法,该动力电池加热方法通过确定动力电池的当前温度值低于预设温度值,且动力电池的加热条件满足预设条件,控制三相逆变器使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热,并获取使得电机输出的转矩值在合适值的预设交轴电流,以及根据动力电池加热功率获取相应的预设直轴电流,进而在加热过程中根据预设直轴电流和预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,使得电机轴输出无法使得车辆移动、也不会对车辆传动机构零部件造成损伤的转矩值很小的电磁转矩,仅使得电机输出轴给传动机构输出一个预紧力,消除啮合间隙,有效防止车辆发生抖动。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一种实施例提供的一种动力电池加热方法的流程示意图;
图2是本公开一种实施例提供的一种动力电池加热装置的结构示意图;
图3是本公开一种实施例提供的一种动力电池加热装置的电路图;
图4是本公开一种实施例提供的一种动力电池加热装置的另一结构图;
图5是本公开一种实施例提供的一种动力电池加热方法中预设交轴电流的波形示意图;
图6是本公开一种实施例提供的一种动力电池加热装置的控制模块的结构图;
图7是本公开一种实施例提供的一种动力电池加热装置中的坐标变换示意图;
图8是本公开一种实施例提供的车辆的方框示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
为了说明本申请的技术方案,下面通过具体实施例来进行说明。
本公开实施例提供一种动力电池加热方法,该动力电池加热方法用于向车辆的动力电池进行加热,并且在加热过程中动力电池的导热通路与车辆的电机导热回路连接互通形成导热回路,如图1所示,动力电池加热方法包括:
步骤S11:获取动力电池的当前温度值,确定动力电池的当前温度值低于预设温度值,并确定动力电池的加热条件满足预设条件。
其中,在本申请实施例中,由于在寒冷环境下,当车辆长时间未被使用时,动力电池的温度将会趋近环境温度,而随着温度的降低,动力电池性能会进一步下降,使得充放电能力均受限,进而影响车辆的性能与使用,因此需要对动力电池进行加热,而在对动力电池加热之前,必须获取动力电池的当前温度值,且将该温度值与预设温度值进行比较,若该当前温度值低于预设温度值,则进一步确定电池的加热条件是否满足预设条件。
具体的,作为本申请一种实施方式,步骤S11中的确定动力电池的加热条件是否满足预设条件具体为:
若确定电机的当前工作状态为非驱动状态,以及确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态均为无故障时,则识别为动力电池的加热条件满足预设条件;
若确定电机的当前工作状态为驱动状态,或者确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,则 识别为动力电池的加热条件不满足预设条件。
其中,在本申请实施例中,当确认是否满足动力电池加热条件,具体需要确认车辆的电机的当前工作状态、动力电池是否发生故障、三相交流电机是否发生故障、电机控制器是否发生故障以及导热回路是否发生故障,若电机的当前工作状态为非驱动状态,且动力电池、三相交流电机、电机控制器以及导热回路均没发生故障,则表明此时可以对动力电池进行加热;若电机的当前工作状态为驱动状态,或者动力电池、三相交流电机、电机控制器以及导热回路任意一个发生故障,则表明此时可以不对动力电池进行加热;需要说明的是,在本公开实施例中,导热回路发生故障包括但不限于互通阀损坏、加热回路中介质不足等问题。
进一步地,作为本申请一种实施方式,该动力电池加热方法还包括:
获取档位信息和电机转速信息,并根据档位信息和电机转速信息获取电机的当前工作状态。
具体的,当判定当前档位为P档且电机转速为0时,则表明电机的当前工作状态为非驱动状态;当判定当前档位不为P档或者是电机转速不为零时,则表明电机的当前工作状态为驱动状态。
本实施方式中,通过获取档位信息和电机转速信息,并根据档位信息和电机转速信息获取电机的当前工作状态,使得在之后根据电机的工作状态判断动力电池是否满足加热条件时,可根据档位信息和电机转速信息进行判断,在任意一个条件不满足时便无法对动力电池加热,防止车辆在正常行驶状态下对动力电池加热,进而影响车辆性能。
步骤S12:获取动力电池的加热功率。
其中,在本申请实施例中,当确定动力电池满足加热条件,即可以对动力电池进行加热,此时需要获取动力电池的加热功率,该加热功率指的是动力电池所需要加热的功率。
步骤S13:获取预设交轴电流,并根据动力电池的加热功率获取相应的预设直轴电流;其中,获取的预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且目标范围不包括零。
其中,在本申请实施例中,当获取了动力电池所需要加热的功率后,此时还需要获取预设直轴电流id以及预设交轴电流iq,而在获取预设直轴电流id时,可根据之前获取的动力电池的加热功率进行查找,即动力电池的加热功率与预设直轴电流id呈映射关系,当获取了动力电池的加热功率后,便可根据该加热功率查找到对应的预设直轴电流id;此外,在获取预设交轴电流iq时,可根据获取的预设交轴电流iq取值为使得三相交流电机输出的转矩值很小,即该转矩无法使得车辆移动、也不会对车辆传动机构零部件造成损伤,仅提供一个较小的输出力矩完成车辆传动机构的齿轮间预紧力即可,该预设交轴电流iq可经过 多次实验得到。
步骤S14:控制三相逆变器中功率器件的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经动力电池的冷却液进行加热,并在加热过程中根据预设直轴电流和预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节。
其中,在本公开实施例中,加热能量源可是为外部充电设备,例如充电桩,也可以是动力电池,此处不做具体限制。
进一步地,当获取到预设直轴电流id和预设交轴电流iq后,此时便可控制三相逆变器中功率器件的通断状态,即控制三相逆变器中功率器件的通断时间,即功率器件导通与关断的时间,使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热,并在加热过程中根据预设直轴电流id和预设交轴电流iq控制三相逆变器对三相交流电机的相电流进行调节,以实现加热功率的调节。
具体的,在本公开实施例中,在根据预设直轴电流id以及预设交轴电流iq控制三相逆变器对三相交流电机的相电流进行调节时,需要在对动力电池加热前,获取三相交流电机的当前三相电流值与电机转子位置角度信息,并根据电机转子位置角度信息将当前三相电流值变换为直轴电流与交轴电流,进而在加热过程中根据直轴电流、交轴电流、预设直轴电流以及预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,以实现对动力电池加热的功能,且保证电机轴端输出一个较小的转矩值。
在本实施方式中,通过获取三相交流电机在加热前的三相电流值与电机转子位置角度信息等参数,进而根据获取的参数得到直轴电流与交轴电流,以便于在加热过程中根据该直轴电流、交轴电流、预设直轴电流以及预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,以此实现加热功率的调节。
进一步地,作为本公开一种实施方式,根据电机转子位置角度信息和当前三相电流值获取直轴交流与交轴电流的具体过程为:
在对动力电池加热前,获取到三相交流电机的当前三相电流值与电机转子位置角度信息后,将当前三相电流值由自然坐标系变换到静止坐标系,并根据电机转子位置角度信息将静止坐标系下的当前三相交流值变换为同步旋转坐标系下的直轴电流与交轴电流。
在本实施方式中,通过将当前三相电流值由自然坐标系变换到静止坐标系,并根据电机转子位置角度信息将静止坐标系下的当前三相交流值变换为同步旋转坐标系下的直轴电流与交轴电流,使得在根据获取的直轴电流与交轴电流控制三相逆变器对三相交流电机的相电流进行调节时,可基于同一坐标系下的标准,提高了调节过程中的准确性。
进一步地,作为本公开一种实施方式,在获取到直轴电流与交轴电流后,将直轴电流和交轴电流分别与预设直轴电流id和预设交轴电流iq进行比较,使得根据预设直轴电流id 和预设交轴电流iq对直轴电流和交轴电流进行调整,进而使得根据预设直轴电流id和预设交轴电流iq控制三相逆变器。当根据预设直轴电流id和预设交轴电流iq对直轴电流和交轴电流进行调整后,该调整结果进行解耦后可根据解耦后的数据获取直轴电压Ud与交轴电压Uq。在获取到直轴电压Ud与交轴电压Uq后,便对直轴电压Ud与交轴电压Uq进行坐标变换以获取第一电压U α和第二电压U β,进而根据第一电压U α与第二电压U β获取开关信号,从而根据开关信号控制三相逆变器对三相交流电机的相电流进行调节。
在本实施方式中,通过根据预设直轴电流和预设交轴电流对获取的直轴电流和交轴电流进行调整,以获取相应的调整结果,并将该调整结果进行一系列变化后得到三相逆变器的开关信号,即三相逆变器中功率器件的通断时间,使得根据该开关信号控制三相逆变器对三相交流电机的相电流进行调节,实现了三相交流电机闭环控制的控制,以及加热功率的调节,增强了动力电池加热过程中的有效性,减小对电机等零部件的损耗。
步骤S15:在动力电池的加热过程中,实时监测三相逆变器和所述三相交流电机的温度,确定三相逆变器和三相交流电机中任意一个的温度超过温度限值,则减小预设直轴电流,或者将预设直轴电流置零。
其中,在本申请实施例中,在动力电池的加热过程中,由于任何一个器件在温度过高的情况下均会发生损坏,因此需要实时监测三相交流电机和三相逆变器中功率器件的温度,若检测到三相逆变器或者三相交流电机中任何一个的温度超过温度阈值,则将预设直轴电流id的电流幅值减小或者将预设直轴电流id置零。
在本申请实施例中,在确定三相逆变器和三相交流电机中任意一个的温度超过温度限值,还包括:将预设交轴电流置零。
在本实施方式中,通过在动力电池加热过程中,实时监测三相逆变器和三相交流电机的温度,使得三相逆变器和三相交流电机中任一个的温度超过温度阈值时,将预设直轴电流id减小,或者是将预设直轴电流id和预设交轴电流iq置零,进而使得流经三相交流电机三相绕组的相电流值也会减小或为0,如此使得电机的发热功率降低,进而使得三相逆变器中的功率单元温度与三相交流电机三相绕组温度降低,从而在保证加热效果的同时也不会对整车零部件造成损坏。步骤S16:动力电池的加热过程中,实时监测动力电池的温度,动力电池的温度达到指定加热温度,则减小预设直轴电流。
其中,在本公开实施例中,当动力电池的温度达到指定加热温度时,则表明动力电池无需再加热,此时需要停止向动力电池加热,即减小预设直轴电流id,可以将预设直轴电流id减小至零为止。
在本实施方式中,通过在加热过程中实时监测动力电池的温度,并且在动力电池的温度达到指定加热温度时,减小预设直轴电流id,以此有效防止动力电池过热,防止动力电 池发生损坏,提高了动力电池的使用寿命。
进一步地,作为本申请一种实施方式,该动力电池加热方法还包括:
动力电池的加热过程中,实时获取动力电池的需求加热功率,并根据需求加热功率对预设直轴电流的大小进行调节。
其中,在本申请实施例中,根据需求加热功率对预设直轴电流的大小进行调节指的是根据动力电池预设加热目标温度与当前温度的差值来调节加热功率,差值越大加热功率越大,功率越大预设直轴电流的幅值越大。具体的,当需求功率比较大,即动力电池的当前电池温度为较低温度时,例如距离需要加热到的目标温度超过10℃,则使用较大功率加热,此时将预设直轴电流id的幅值调大,当需求功率比较小,即动力电池的当前电池温度比较大,例如距离需要加热到的目标温度小于10℃,则使用较小功率加热,此时将预设直轴电流id的幅值调小。在本实施方式中,通过在加热过程中实时获取动力电池的需求加热功率,并根据该需求加热功率对预设直轴电流id和预设的交轴电流iq进行调节,以此有效防止动力电池过热,防止动力电池发生损坏,提高了动力电池的使用寿命。
进一步地,作为本公开一种实施方式,该动力电池加热方法还包括:
确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,则将预设直轴电流置零。
其中,在本公开实施例中,当确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,则表明此时动力电池不能进行加热,应停止向动力电池加热,即将预设直轴电流置零。
确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,还包括:将预设的交轴电流置零。
在本实施方式中,确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障,停止向动力电池加热,可有效防止动力电池发生损坏,延长动力电池的使用寿命。
本申请实施例提供一种车辆的动力电池加热装置,用于向车辆的动力电池进行加热,如图2所示,动力电池加热装置包括:
三相逆变器11,与用于提供加热能量的加热能量源10的正极与负极连接;
三相交流电机12,三相交流电机12的三相线圈与三相逆变器11的三相桥臂连接;
控制模块13,控制模块13分别与三相逆变器11以及三相交流电机12连接,控制模块13用于获取动力电池的当前温度值,确定动力电池的当前温度值低于预设温度值,并确定动力电池的加热条件满足预设条件,获取动力电池的加热功率;控制模块13还用于获取预设交轴电流iq,并根据动力电池的加热功率获取相应的预设直轴电流id;其中,获取的预 设交轴电流iq取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且目标范围不包括零;控制模块13还用于控制三相逆变器11中功率器件的通断状态,使得三相交流电机12根据加热能量源10提供的加热能量产生热量以对流经动力电池的冷却液进行加热,并在加热过程中根据预设直轴电流id和预设交轴电流iq控制三相逆变器11对三相交流电机12的相电流进行调节。
其中,加热能量源10可以采用外部供电设备例如充电桩实现,也可以是动力电池本身,即加热能量源10提供的加热能量可以是动力电池输出的,也可以是直流充电器输出的,或者是交流充电器经过整流后输出的,此处不做具体限制;三相逆变器11具有四种工作模式,由控制模块13来决定,当需要用于车辆驱动时,三相逆变器11工作于逆变器模式,当用于升压充电时,三相逆变器11工作于升压模式,当用于加热电池时,三相逆变器11工作于加热模式,当需要给外界供电时,三相逆变器11工作于变压模式,本申请实施例中仅对三相逆变器11工作于加热模式进行详细说明;其中,三相逆变器11包括六个功率开关单元,功率开关可以是晶体管、IGBT、MOS管等器件类型,两个功率开关单元构成一相桥臂,共形成三相桥臂,每相桥臂中两个功率开关单元的连接点连接三相交流电机12中的一相线圈,三相交流电机12包括三相线圈,三相线圈连接于一个中点,三相交流电机12可以是永磁同步电机或异步电机等,本申请对三相交流电机的类型不做具体限制。
具体的,作为本申请一种实施方式,如图3所示(为了便于理解电路工作原理,图3中省略了控制模块13部分),三相逆变器11包括第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元、第五功率开关单元以及第六功率开关单元。其中,每个功率开关单元的控制端连接控制模块13(图中未示出),第一功率开关单元、第三功率开关单元以及第五功率开关单元的第一端共接,第二功率开关单元、第四功率开关单元以及第六功率开关单元的第二端共接,三相交流电机12的第一相线圈连接第一功率开关单元的第二端和第二功率开关单元的第一端,三相交流电机12的第二相线圈连接第三功率开关单元的第二端和第四功率开关单元的第一端,三相交流电机12的第三相线圈连接第五功率开关单元的第二端和第六功率开关单元的第一端。
进一步地,三相逆变器11中第一功率开关单元和第二功率开关单元构成第一相桥臂(U相桥臂),第三功率开关单元和第四功率开关单元构成第二相桥臂(V相桥臂),第五功率开关单元的输入端和第六功率开关单元构成第三相桥臂(W相桥臂)。第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥 二极管VD6,三相交流电机12可以是永磁同步电机或异步电机,电机三相线圈分别和三相逆变器中的U、V、W上下桥臂之间连接。
进一步地,作为本申请一种实施方式,控制模块13可以包括整车控制器、电机控制器的控制电路和BMS电池管理器电路,三者通过CAN线连接,控制模块13中的不同模块根据所获取的信息控制三相逆变器11中开关单元的导通和关断以实现不同电流回路的导通,此外,在加热能量源10、三相逆变器11以及三相交流电机12上设有互通的冷却液管,该冷却液管内流动冷却液,可以通过对冷却液管内的冷却液进行温度调节,以调节动力电池的温度。
具体实施时,如图4所示,控制模块13包括电池管理器131与电机控制器132。其中,电池管理器131与动力电池20连接,电机控制器与132与动力电池以及三相交流电机12连接。电池管理器131来获取动力电池的当前温度,将动力电池的当前温度与预设温度值进行比较来判断动力电池是否处于低温状态,当检测到动力电池的当前温度低于预设温度值时,可以通过提升流经动力电池的冷却液的温度方式提高动力电池的温度,由于三相逆变器11和三相交流电机12在工作的过程中均产生热量,因此,电机控制器132可以控制三相逆变器11和三相交流电机12对流经动力电池的冷却液进行加热,直至检测到动力电池的温度达到预设温度值时停止加热。
具体的,由于三相逆变器11和三相交流电机12在工作的过程中均产生热量,因此电机控制器132获取车辆的电机的当前工作状态、动力电池故障状态、三相交流电机12故障状态、电机控制器132故障状态以及导热回路故障状态,并根据上述故障状态和电机的当前工作状态确定动力电池的加热条件是否满足。
其中,若确定电机的当前工作状态为非驱动状态,以及确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态均为无故障时,则识别为动力电池的加热条件满足预设条件;若确定电机的当前工作状态为驱动状态,或者确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,则识别为动力电池的加热条件不满足预设条件。
进一步地,作为本公开一种实施方式,电机控制器132还用于确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,则将预设直轴电流id置零。
确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,电机控制器132还用于将预设交轴电流iq置零。
进一步地,在获取电机的当前工作状态时,电机控制器132可先获取档位信息和电机转速信息,并根据档位信息和电机转速信息获取电机的当前工作状态。
具体的,当电机控制器132判定当前档位为P档且电机转速为0时,则表明电机的当前工作状态为非驱动状态;当电机控制器132判定当前档位不为P档或者是电机转速不为零时,则表明电机的当前工作状态为驱动状态;需要说明的是,在本公开实施例中,电机的工作状态与动力电池的温度两个判断条件不分先后顺序。
本实施方式中,在停车状态下检测档位信息、电机转速信息以及动力电池的温度信息满足预设条件时,控制三相逆变器11,使得三相交流电机12根据加热能量对流经动力电池的冷却液进行加热,实现了车辆在停车状态下对动力电池进行加热,便于车辆可以在低温条件下正常启动,防止车辆在正常行驶状态下对动力电池加热,进而影响车辆性能。
具体的,请同时参考图3和图4,当电机控制器132控制三相逆变器11和三相交流电机12对流经动力电池的冷却液进行加热时,电机控制器132主要通过控制三相逆变器11中各个功率单元的开通关断时间与开关频率,使得三相交流电机12根据加热能量源10(本实施例中,加热能量源以动力电池为例)输出的加热能量产生热量,进而对流经动力电池的冷却液进行加热,并且在加热过程中电机控制器132根据预设直轴电流id和预设交轴电流iq控制三相逆变器11对三相交流电机12的相电流进行调节;需要说明的是,在本实施方式中,动力电池与三相交流电机12的导热回路连接互通,冷却介质通过水泵(图中未示出)与互通阀(图中未示出)流经车用动力电池(动力电池)与车用动力电机(三相交流电机12)。
其中,在电机控制器132控制三相逆变器11对三相交流电机12的相电流调节过程中,预设直轴电流id是根据加热功率预先设定的直轴电流,其可对加热功率进行控制,而预设交轴电流iq为一个幅值恒定的交轴电流(如图5所示),且该幅值是经过大量实验得到的、可使得电机轴输出转矩值较小的电磁转矩,并且该电磁转矩无法使得车辆移动,也不会对车辆传动机构零部件造成损伤,其仅提供一个较小的输出力矩以完成车辆传动机构的齿轮间隙啮合或预紧力即可。
在本实施方式中,本申请实施例提供的动力电池加热装置通过控制三相逆变器11和三相交流电机12对流经动力电池的冷却液进行加热,并在加热过程中根据需求加热功率控制直轴电流,并给定幅值合适且不为零的交轴电流,使得在动力电池加热的过程中,三相交流电机12的电机轴输出转矩值较小的电磁转矩,该转矩无法使得车辆移动,也不会对车辆传动机构零部件造成损伤,仅提供一个较小的输出力矩完成车辆传动机构的齿轮间隙啮合或预紧力,有效防止车辆在动力电池加热过程中发生抖动。
进一步地,作为本申请一实施方式,控制模块13在根据预设直轴电流id以及预设交轴电流iq控制三相逆变器11对三相交流电机12的相电流进行调节时,需要在对动力电池加热前,控制模块13获取三相交流电机12的当前三相电流值与电机转子位置角度信息,并 根据电机转子位置角度信息将当前三相电流值变换为直轴电流与交轴电流,进而在加热过程中根据直轴电流、交轴电流、预设直轴电流以及预设交轴电流控制三相逆变器11对三相交流电机12的相电流进行调节。
在本实施方式中,通过获取三相交流电机在加热前的三相电流值与电机转子位置角度信息等参数,进而根据获取的参数得到直轴电流与交轴电流,以便于在加热过程中根据该直轴电流、交轴电流、预设直轴电流以及预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,使得三相交流电机绕组发热量恒定。
进一步地,作为本申请一种实施方式,如图6所示,控制模块13还包括前馈解耦单元133、坐标变换单元134、开关信号获取单元135,前馈解耦单元133与坐标变换单元134连接,坐标变换单元134与开关信号获取单元135以及三相交流电机12连接,开关信号获取单元135与电机控制器132连接,电机控制器132与三相交流电机12连接。
具体的,控制模块13在获取到直轴电流与交轴电流后,将直轴电流和交轴电流分别与预设直轴电流id和预设交轴电流iq进行比较,使得根据预设直轴电流id和预设交轴电流iq对直轴电流和交轴电流进行调整,进而使得根据预设直轴电流id和预设交轴电流iq控制三相逆变器。当根据预设直轴电流id和预设交轴电流iq对直轴电流和交轴电流进行调整后,该调整结果输出至前馈解耦单元133,前馈解耦单元133对比较结果进行解耦后获取直轴电压Ud与交轴电压Uq,坐标变换单元134对直轴电压Ud与交轴电压Uq进行坐标变换以获取第一电压U α和第二电压U β,开关信号获取单元135根据第一电压U α与第二电压U β获取开关信号,电机控制器132根据开关信号控制三相逆变器11对三相交流电机12的相电流进行调节。
在本实施方式中,通过根据预设直轴电流和预设交轴电流对获取的直轴电流和交轴电流进行调整,以获取相应的调整结果,并将该调整结果进行一系列变化后得到三相逆变器的开关信号,使得电机控制器根据该开关信号控制三相逆变器对三相交流电机的相电流进行调节,实现了三相交流电机闭环控制的控制,以及加热功率的调节,增强了动力电池加热过程中的有效性,减小对电机等零部件的损耗。
进一步地,作为本申请一种实施方式,控制模块13根据电机转子位置角度信息和前馈解耦单元当前三相电流值获取直轴电流与交轴电流的具体过程为:
在对动力电池加热前,控制模块13获取到三相交流电机的当前三相电流值与电机转子位置角度信息后,坐标变换单元134将当前三相电流值由自然坐标系变换到静止坐标系,并根据电机转子位置角度信息将静止坐标系下的当前三相交流值变换为同步旋转坐标系下的直轴电流与交轴电流(如图7所示)。
在本实施方式中,通过将当前三相电流值由自然坐标系变换到静止坐标系,并根据电 机转子位置角度信息将静止坐标系下的当前三相交流值变换为同步旋转坐标系下的直轴电流与交轴电流,使得控制模块在根据获取的直轴电流与交轴电流控制三相逆变器对三相交流电机的相电流进行调节时,可基于同一坐标系下的标准,提高了调节过程中的准确性。
进一步地,作为本申请一种实施方式,如图4所示,电池加热装置中还设置有温度检测单元,该温度检测单元与控制模块中的电机控制器132以及三相交流电机12连接,该温度检测单元用于在动力电池的加热过程中,实时监测三相逆变器11和三相交流电机12的温度,并将监测结果反馈给控制模块13,控制模块13在三相逆变器11和三相交流电机12中任意一个的温度超过温度限值时,则减小预设直轴电流id,或者将预设直轴电流id置零。
在三相逆变器11和三相交流电机12中任意一个的温度超过温度限值时,控制模块13还用于将预设交轴电流iq置零。
具体实施时,温度检测单元采用温度传感器实现,该温度传感器可以为负温度系数的热敏电阻实现,也可以采用正温度系数的热敏电阻实现,此处不做具体限制。
其中,在本公开实施例中,在动力电池的加热过程中,由于任何一个器件在温度过高的情况下均会发生损坏,因此需要实时监测三相交流电机和三相逆变器中功率器件的温度,若检测到三相逆变器或者三相交流电机中任何一个的温度超过温度阈值,则将预设直轴电流id的电流幅值减小或者将预设直轴电流id和预设交轴电流iq置零。
在本实施方式中,通过在动力电池加热过程中,实时监测三相逆变器和三相交流电机的温度,使得三相逆变器和三相交流电机中任一个的温度超过温度阈值时,将预设直轴电流id减小,或者是将预设直轴电流id和预设交轴电流iq置零,进而使得流经三相交流电机三相绕组的相电流值也会减小或为0,如此使得电机的发热功率降低,进而使得三相逆变器中的功率单元温度与三相交流电机三相绕组温度降低,从而在保证加热效果的同时也不会对整车零部件造成损坏。
进一步地,作为本公开一种实施方式,如图4所示,控制模块13还用于在动力电池的加热过程中,实时监测动力电池的温度,若动力电池的温度达到指定加热温度,则停止向动力电池加热。
其中,在本公开实施例中,当动力电池的温度达到指定加热温度时,则表明动力电池无需再加热,此时需要停止向动力电池加热,需减小直轴电流和交轴电流。
在本实施方式中,通过在加热过程中实时监测动力电池的温度,并且在动力电池的温度达到指定加热温度时,减小预设直轴电流和预设的交轴电流,以此有效防止动力电池过热,防止动力电池发生损坏,提高了动力电池的使用寿命。
进一步地,作为本公开一种实施方式,如图4所示,控制模块13还用于在动力电池的加热过程中,实时获取动力电池的需求加热功率,并根据需求加热功率对预设直轴电流id 的大小进行调节。
其中,在本公开实施例中,由于动力电池随着加热过程的进行其自身温度会不断升高,而温度升高使得动力电池所需求的加热功率不断变化,因此在动力电池的加热过程中,需要实时获取动力电池的需求加热功率,并根据需求加热功率对预设直轴电流id的大小进行调节。
在本实施方式中,通过在加热过程中实时获取动力电池的需求加热功率,并根据该需求加热功率对预设直轴电流id进行调节,以此有效防止动力电池过热,防止动力电池发生损坏,提高了动力电池的使用寿命。
下面通过具体的电路结构对本申请技术方案进行说明:
由于在寒冷环境下,当车辆长时间未被使用,车用动力电池温度将会趋近环境温度,而随着温度的降低,车用动力电池性能进一步下降,充放电能力均受限,进而影响新能源车的性能与使用,因此需要对动力电池进行加热。
请同时参考图3和图4,在对动力电池加热时,当电池管理器131监测到动力电池的温度过低时,将会进入三相交流电机12加热动力电池的预备状态,此时控制模块13需要对加热条件进行判断,即判断动力电池温度是否过低、电机转速是否为零以及是否处于P挡,若加热条件的判断结果均为真,则可进入使用三相交流电机12生热给动力电池加热的过程。
在加热时,首先传感器会对电机当前的各个变量进行信号采样,并将采样结果发送给控制模块13,其中采样的变量主要为当前流经三相交流电机12绕组的三相电流值和电机转子位置角度信息(电机当前转子位置)。如图6所示,在获取到该三相电流值和电机转子位置角度信息后,坐标变换单元134通过clark变换将自然坐标系ABC下的变量变换到静止坐标系α-β下的变量,之后再通过park变换将静止坐标系α-β下的变量变换到同步旋转坐标系d-q下的变量,并且在整个坐标变换中遵循幅值不变条件,变换矩阵前加入变换系数2/3。
具体的,在坐标变换单元134将自然坐标系ABC下的变量变换到静止坐标系α-β下的变量时,其根据变换矩阵
Figure PCTCN2019127109-appb-000001
对自然坐标系ABC下的变量进行变换,而坐标变换单元134在将静止坐标系α-β下的变量变换到同步旋转坐标系d-q下的变 量时,其根据变换矩阵
Figure PCTCN2019127109-appb-000002
对静止坐标系α-β下的变量进行变换,然后将两个变换相乘,便可得到自然坐标系ABC到同步旋转坐标系d-q的变换矩阵
Figure PCTCN2019127109-appb-000003
式中θ为三相交流电机12的转子直轴与三相交流电机12的A相绕组间夹角(电机转子位置角度信息),经过变换矩阵后可以将自然坐标系ABC下的三相电流变换为交直轴电流,直轴电流为励磁电流,交轴电流为转矩电流,即在完全解耦的前提下,仅交轴电流和电机轴端输出转矩相关,因此在利用三相交流电机12给动力电池加热过程中,控制交轴电流即可控制电机轴端输出转矩。
根据三相交流电机12的电机轴端输出转矩计算公式
Figure PCTCN2019127109-appb-000004
可以看出,交轴电流等于零时电机轴端无转矩输出,然而由于在实际使用中若要控制交轴电流为零,即不产生电机的电磁转矩,则必须准确获取电机的零位并且保证三相电流传感器的采样精度,而受限于电机零位标定方法准确性与三相电流传感器在电流幅值较小时难以保证良好的采样精度等因素,若电机的零位不准确,或三相电流传感器在电流幅值较小时难以保证良好的采样精度则控制算法无法控制交轴电流恒为零,进而导致交轴电流值会在零附近波动,使得整车产生抖动,抖动的强度在不同工况下也会不同,若此时车上有驾乘人员,则会产生不良的驾乘感受,为了消除该弊端,本申请实时控制预设直轴电流id的幅值为对应需求加热功率下的大小,控制预设交轴电流iq的幅值为一恒定的合适值,该值无法使得车辆有移动或振动的趋势与感受,也不会对车辆传动机构造成潜在损伤,仅仅使得电机轴输出一个较小幅值的转矩,处于传动机构机械强度可接受的范围内,如此将产生一个类似预紧力的效果,消除传动机构间的啮合间隙,可确保驾乘人员的良好感受,也可确保车辆正常完成动力电池加热;其中,T e表示电机轴端输出转矩,p表示电机极对数,
Figure PCTCN2019127109-appb-000005
表示电机永磁体磁链,L d表示直轴电感,L q表示交轴电感,i d表示直轴电流,i q表示交轴电流。
在对采集的变量进行坐标变以获取到交轴电流和直轴电流后,便可将该交轴电流和直轴电流分别与预设交轴电流iq和预设直轴电流id进行比较,并将比较结果反馈给前馈解耦单元133,前馈解耦单元133通过前馈补偿的方式对变量进行完全解耦,解耦完成后获取 到的直轴电压(Ud)和交轴电压(Uq)被再次传输至坐标变换单元134,通过反park变换矩阵
Figure PCTCN2019127109-appb-000006
得到静止坐标系中电压变量U α与U β,随后U α与U β被传输至开关信号获取单元134,开关信号获取单元134通过空间矢量脉宽调制算法(SVPWM)得到控制三相逆变器11的六路开关信号,电机控制器132通过该六路开关信号控制三相逆变器11中的功率开关单元进行开关动作,以此控制流经三相交流电机的三相电流值大小。
进一步地,整个加热过程中温度传感器会不断监测三相交流电机绕组与三相逆变器的功率开关温度,若有任一一项超过温度限值,或动力电池当前温度逐渐接近预定目标加热温度,或动力电池当前温度已经达到或超过预定目标加热温度,则电机控制器会减小给定id值或将id和iq值置零,由此,流经三相交流电机三相绕组的相电流值也会减小或为0,电机的发热功率也会降低,进而使得三相逆变器的功率开关温度与三相交流电机绕组温度也会降低,从而在保证加热效果的同时也不会对整车零部件造成损坏,直到三相交流电机绕组或三相逆变器的功率开关温度不处于过温状态,此时若动力电池温度已经达到预定加热温度,则停止加热,否则继续进行加热;若整个加热过程中三相交流电机绕组与功率开关器件温度均未过温,则电池管理器在监测到电池温度已经达到预定加热温度时会发出停止加热的指令,至此,三相交流电机生热给车用动力电池加热的过程结束。
如图8所示,本申请另一种实施例提供一种车辆1000,车辆1000还包括上述实施例提供的动力电池加热装置100,车辆1000还包括动力电池、冷却液箱、水泵以及水管线,水泵根据控制信号将冷却液箱中的冷却液输入至水管线,水管线穿过动力电池和动力电池加热装置100。
本申请提出的车辆,通过在动力电池的当前温度值低于预设温度值,且动力电池的加热条件满足预设条件时,控制三相逆变器使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热,并获取使得电机输出的转矩值在合适值得预设交轴电流,以及根据动力电池加热功率获取相应的预设直轴电流,进而在加热过程中根据预设直轴电流和预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,使得电机轴输出无法使得车辆移动、也不会对车辆传动机构零部件造成损伤的转矩值很小的电磁转矩,仅使得电机输出轴给传动机构输出一个预紧力,消除啮合间隙,有效防止车辆发生抖动。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种动力电池加热方法,用于向车辆的动力电池进行加热,其特征在于,所述动力电池加热方法包括:
    获取所述动力电池的当前温度值,确定所述动力电池的当前温度值低于预设温度值,;
    获取所述动力电池的加热功率;
    获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零;
    控制三相逆变器中功率器件的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节。
  2. 如权利要求1所述的动力电池加热方法,其特征在于,在获取所述动力电池的加热功率前,还包括:确定动力电池的加热条件满足预设条件;
    所述确定动力电池的加热条件是否满足预设条件包括:
    确定所述电机的当前工作状态为非驱动状态,以及确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态均为无故障,则识别为所述动力电池的加热条件满足预设条件;
    确定所述电机的当前工作状态为驱动状态,或者确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障,则识别为所述动力电池的加热条件不满足预设条件。
  3. 如权利要求2所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
    获取档位信息和电机转速信息,并根据所述档位信息和所述电机转速信息获取所述电机的当前工作状态。
  4. 如权利要求2所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
    确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障,将所述预设直轴电流置零。
  5. 如权利要求4所述的动力电池加热方法,其特征在于,确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障,所述动力电池加热方法还包括:
    将所述预设交轴电流置零。
  6. 如权利要求1至5任一项所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
    在所述动力电池的加热过程中,实时监测所述三相逆变器和所述三相交流电机的温度,确定所述三相逆变器和所述三相交流电机中任意一个的温度超过温度限值,则减小所述预设直轴电流,或者将所述预设直轴电流置零。
  7. 如权利要求6所述的动力电池加热方法,其特征在于,确定所述三相逆变器和所述三相交流电机中任意一个的温度超过温度限值,所述动力电池加热方法还包括:
    将所述预设交轴电流置零。
  8. 如权利要求1至5任一项所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
    所述动力电池的加热过程中,实时监测所述动力电池的温度,所述动力电池的温度达到指定加热温度,则减小所述预设直轴电流。
  9. 如权利要求1至5任一项所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
    对所述动力电池加热前,获取所述三相交流电机的当前三相电流值和电机转子位置角度信息,并根据所述电机转子位置角度信息将所述当前三相电流值变换为直轴电流与交轴电流,以在加热过程中根据所述直轴电流和所述预设直轴电流间的差值以及所述交轴电流与所述预设交轴电流间的差值控制所述三相逆变器对所述三相交流电机的相电流进行调节。
  10. 如权利要求1所述的动力电池加热方法,其特征在于,所述加热能量源为外部充电设备和动力电池中的至少一个。
  11. 一种动力电池加热装置,用于向车辆的动力电池进行加热,其特征在于,所述动力电池加热装置包括:
    三相逆变器,与用于提供加热能量的加热能量源的正极与负极连接;
    三相交流电机,所述三相交流电机的三相线圈与所述三相逆变器的三相桥臂连接;
    控制模块,所述控制模块分别与所述三相逆变器以及所述三相交流电机连接,所述控制模块用于获取动力电池的当前温度值,确定所述动力电池的当前温度值低于预设温度值,获取所述动力电池的加热功率;所述控制模块还用于获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零;
    所述控制模块还用于控制三相逆变器中功率器件的通断状态,使得三相交流电机根据 加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节。
  12. 如权利要求11所述的动力电池加热装置,其特征在于,所述控制模块还用于:确定动力电池的加热条件满足预设条件;其中,
    确定所述电机的当前工作状态为非驱动状态,以及确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态均为无故障,识别为所述动力电池的加热条件满足预设条件;
    确定所述电机的当前工作状态为驱动状态,或者确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障,识别为所述动力电池的加热条件不满足预设条件。
  13. 如权利要求12所述的动力电池加热装置,其特征在于,所述控制模块还用于:
    获取档位信息和电机转速信息,并根据所述档位信息和所述电机转速信息获取所述电机的当前工作状态。
  14. 如权利要求12所述的动力电池加热装置,其特征在于,所述控制模块还用于:
    确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障,则将所述预设直轴电流置零。
  15. 如权利要求12所述的动力电池加热装置,其特征在于,确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障,所述控制模块还用于:将所述预设交轴电流置零。
  16. 如权利要求11至15任一项所述的动力电池加热装置,其特征在于,所述动力电池还包括:
    温度检测单元,所述温度检测单元与所述控制模块以及所述三相交流电机连接,所述温度检测单元用于在所述动力电池的加热过程中,实时监测所述三相逆变器和所述三相交流电机的温度,并将监测结果反馈给所述控制模块,所述控制模块在所述三相逆变器和所述三相交流电机中任意一个的温度超过温度限值,则减小所述预设直轴电流,或者将所述预设直轴电流置零。
  17. 如权利要求16所述的动力电池加热装置,其特征在于,确定所述三相逆变器和所述三相交流电机中任意一个的温度超过温度限值,所述控制模块还用于:将所述预设交轴电流置零。
  18. 如权利要求11至15任一项所述的动力电池加热装置,其特征在于,所述控制模块还用于:
    在所述动力电池的加热过程中,实时监测所述动力电池的温度,所述动力电池的温度达到指定加热温度,则减小所述预设直轴电流。
  19. 如权利要求11至15任一项所述的动力电池加热装置,其特征在于,所述控制模块还用于:
    在对所述动力电池加热前,获取所述三相交流电机的当前三相电流值和电机转子位置角度信息,并根据所述电机转子位置角度信息将所述当前三相电流值变换为直轴电流与交轴电流,以在加热过程中根据所述直轴电流和所述预设直轴电流间的差值以及所述交轴电流与所述预设交轴电流间的差值控制所述三相逆变器对所述三相交流电机的相电流进行调节。
  20. 一种车辆,其特征在于,所述车辆包括权利要求11至19任一项所述动力电池加热装置,所述车辆还包括动力电池、冷却液箱、水泵以及水管线,所述水泵根据控制信号将所述冷却液箱中的冷却液输入至所述水管线,所述水管线穿过所述动力电池和所述动力电池加热装置。
PCT/CN2019/127109 2018-12-21 2019-12-20 车辆及其动力电池加热装置与方法 WO2020125769A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/416,884 US20220080858A1 (en) 2018-12-21 2019-12-20 Vehicle and power battery heating apparatus and method therefor
EP19901114.9A EP3895933A4 (en) 2018-12-21 2019-12-20 VEHICLE AND POWER BATTERY HEATER AND METHOD THEREOF
JP2021536218A JP2022514706A (ja) 2018-12-21 2019-12-20 車両及びその動力電池の加熱装置と方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811574151.2A CN111347935B (zh) 2018-12-21 2018-12-21 一种车辆及其动力电池加热装置与方法
CN201811574151.2 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020125769A1 true WO2020125769A1 (zh) 2020-06-25

Family

ID=71100656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127109 WO2020125769A1 (zh) 2018-12-21 2019-12-20 车辆及其动力电池加热装置与方法

Country Status (5)

Country Link
US (1) US20220080858A1 (zh)
EP (1) EP3895933A4 (zh)
JP (1) JP2022514706A (zh)
CN (1) CN111347935B (zh)
WO (1) WO2020125769A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539959A (ja) * 2020-07-10 2022-09-14 寧徳時代新能源科技股▲分▼有限公司 駆動用バッテリーの自己加熱制御方法及び装置
EP4084575A1 (en) * 2021-04-29 2022-11-02 Huawei Digital Power Technologies Co., Ltd. Heating apparatus and control method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354999B (zh) * 2018-12-21 2021-07-09 比亚迪股份有限公司 一种车辆及其动力电池加热装置与方法
JP2022019201A (ja) * 2020-07-17 2022-01-27 本田技研工業株式会社 昇温装置
CN111923784B (zh) * 2020-08-11 2021-12-28 一汽解放青岛汽车有限公司 车辆冷却系统的温度控制方法、装置、设备及存储介质
CN113474973A (zh) * 2020-10-23 2021-10-01 华为技术有限公司 电机、电机控制器、热交换系统和控制方法
CN113036264B (zh) * 2020-11-30 2022-03-08 江苏时代新能源科技有限公司 电池加热系统的控制方法、参数确定模块及电流调制模块
EP4033587B1 (en) 2020-11-30 2023-10-11 Jiangsu Contemporary Amperex Technology Limited Current modulation module, parameter determination module, battery heating system, as well as control method and control device therefor
EP4046862A1 (en) 2020-12-24 2022-08-24 Contemporary Amperex Technology Co., Limited Control method and apparatus, power system and electric vehicle
CN114670656A (zh) * 2020-12-24 2022-06-28 宁德时代新能源科技股份有限公司 控制方法、装置、动力系统及电动汽车
CN112751467B (zh) * 2020-12-29 2022-04-15 精进电动科技股份有限公司 一种驱动电机自加热方法和进水维修方法
CN113022326B (zh) * 2021-03-31 2022-03-18 比亚迪股份有限公司 车辆电驱动系统控制方法、电驱动系统和车辆
CN112977173B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN114337475A (zh) * 2021-04-30 2022-04-12 华为数字能源技术有限公司 电机加热控制方法及装置、动力电池辅助加热方法及装置
CN113948797B (zh) * 2021-08-30 2024-01-09 岚图汽车科技有限公司 一种利用电机加热电池包的控制方法及系统
CN113794416A (zh) * 2021-09-17 2021-12-14 蔚来动力科技(合肥)有限公司 电机控制方法、设备、动力系统、车辆以及存储介质
WO2023114873A1 (en) * 2021-12-16 2023-06-22 Zero Nox, Inc. Electric vehicle battery conditioning
CN114285352B (zh) * 2021-12-29 2024-04-26 苏州汇川联合动力系统股份有限公司 异步电机发热控制方法、装置、设备及存储介质
CN114604103B (zh) * 2022-03-17 2024-02-02 威睿电动汽车技术(宁波)有限公司 电机的主动加热方法、装置、设备、存储介质及程序产品
CN114789679B (zh) * 2022-06-23 2022-09-02 长安新能源南京研究院有限公司 一种动力电池的脉冲加热电流控制方法、系统及电动汽车
CN115416495A (zh) * 2022-08-12 2022-12-02 华为数字能源技术有限公司 一种用于驱动电机的控制器及其相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140012447A1 (en) * 2012-07-03 2014-01-09 Magna E-Car Systems Of America, Inc. Thermal management of vehicle battery pack during charging
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN104249629A (zh) * 2013-06-28 2014-12-31 比亚迪股份有限公司 电动汽车、电动汽车的动力系统和动力电池的充电方法
CN106347067A (zh) * 2016-07-29 2017-01-25 北京新能源汽车股份有限公司 电动汽车及用于电动汽车的ptc电加热器的控制方法、系统
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力系统有限公司 动力电池加热系统及方法
CN108736108A (zh) * 2018-05-22 2018-11-02 宁德时代新能源科技股份有限公司 加热控制方法和加热控制装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337084A (ja) * 1997-05-30 1998-12-18 Aisin Seiki Co Ltd スイッチングモジュ−ルの過熱保護装置
JP4665911B2 (ja) * 2007-02-07 2011-04-06 トヨタ自動車株式会社 冷却システム
RU2447572C2 (ru) * 2007-12-04 2012-04-10 Мицубиси Электрик Корпорейшн Устройство управления электродвигателя переменного тока
JP2010200515A (ja) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd 電動機の磁石温度推定装置
JP5259752B2 (ja) * 2011-02-04 2013-08-07 株式会社日立製作所 車両走行用モータの制御装置及びそれを搭載した車両
CN102431465B (zh) * 2011-11-07 2014-04-09 湖南南车时代电动汽车股份有限公司 一种纯电动车电池系统的保护控制方法
JP2013133061A (ja) * 2011-12-27 2013-07-08 Toyota Motor Corp ハイブリッド車
JP5598499B2 (ja) * 2012-06-15 2014-10-01 株式会社デンソー 電池監視装置
KR101551068B1 (ko) * 2014-03-14 2015-09-07 현대자동차주식회사 차량용 고전압 배터리 시스템의 전원 공급 안정화 장치
KR101857676B1 (ko) * 2014-06-30 2018-05-14 비와이디 컴퍼니 리미티드 배터리 가열 시스템, 배터리 조립체 및 전기 자동차
JP6323221B2 (ja) * 2014-07-08 2018-05-16 株式会社豊田自動織機 モータ制御装置
CN104767447A (zh) * 2015-03-31 2015-07-08 江苏大学 一种无刷直流电机五段式矢量控制系统
KR101798144B1 (ko) * 2015-06-09 2017-11-15 엘지전자 주식회사 전기자동차의 배터리 팩 열관리 장치 및 열교환 모듈
CN105539423B (zh) * 2015-12-25 2018-02-27 江苏大学 结合环境温度保护电池的混合动力车转矩分配控制方法及系统
KR20230035505A (ko) * 2021-08-31 2023-03-14 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리 팩 가열 방법, 배터리 가열 시스템 및 전기 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140012447A1 (en) * 2012-07-03 2014-01-09 Magna E-Car Systems Of America, Inc. Thermal management of vehicle battery pack during charging
CN104249629A (zh) * 2013-06-28 2014-12-31 比亚迪股份有限公司 电动汽车、电动汽车的动力系统和动力电池的充电方法
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN106347067A (zh) * 2016-07-29 2017-01-25 北京新能源汽车股份有限公司 电动汽车及用于电动汽车的ptc电加热器的控制方法、系统
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力系统有限公司 动力电池加热系统及方法
CN108736108A (zh) * 2018-05-22 2018-11-02 宁德时代新能源科技股份有限公司 加热控制方法和加热控制装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539959A (ja) * 2020-07-10 2022-09-14 寧徳時代新能源科技股▲分▼有限公司 駆動用バッテリーの自己加熱制御方法及び装置
EP4009420A4 (en) * 2020-07-10 2022-11-30 Contemporary Amperex Technology Co., Limited SELF-HEATING CONTROL METHOD AND APPARATUS FOR A POWER BATTERY
US11605848B2 (en) 2020-07-10 2023-03-14 Contemporary Amperex Technology Co., Limited Traction battery self-heating control method and device
JP7259089B2 (ja) 2020-07-10 2023-04-17 寧徳時代新能源科技股▲分▼有限公司 駆動用バッテリーの自己加熱制御方法及び装置
EP4084575A1 (en) * 2021-04-29 2022-11-02 Huawei Digital Power Technologies Co., Ltd. Heating apparatus and control method

Also Published As

Publication number Publication date
CN111347935B (zh) 2021-10-22
CN111347935A (zh) 2020-06-30
US20220080858A1 (en) 2022-03-17
JP2022514706A (ja) 2022-02-14
EP3895933A1 (en) 2021-10-20
EP3895933A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2020125769A1 (zh) 车辆及其动力电池加热装置与方法
WO2020125770A1 (zh) 车辆及其动力电池加热装置与方法
CN111347938A (zh) 一种车辆及其动力电池加热装置与方法
CN111355001B (zh) 一种动力电池加热装置与方法、车辆及终端设备
WO2020125626A1 (zh) 电机驱动装置、控制方法、车辆及可读存储介质
JP4784478B2 (ja) 多相回転電機の制御装置
CN112977173B (zh) 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN111347936B (zh) 一种车辆及其动力电池加热方法与装置
CN111355000B (zh) 一种车辆及其动力电池加热装置与方法
CN111347939B (zh) 车辆及其动力电池温度控制装置
CN111347928B (zh) 车辆及其动力电池温度控制装置
CN112152535A (zh) 电动汽车电池故障时抑制电机控制器母线电压上升的方法
JP2017108599A (ja) レゾルバオフセット測定方法
CN109591615B (zh) 一种电动汽车控制器主动热控制方法及其应用系统
US20240056013A1 (en) Controller for drive motor and related device thereof
US8736235B2 (en) Power generation motor control system
JP6870577B2 (ja) 回転電機の制御装置
WO2022075022A1 (ja) モータ制御装置
KR101183065B1 (ko) 3상모터의 토크를 제어하기 위한 약계자 제어 방법 및 장치
CN116707360A (zh) 一种具有逆变器故障容错功能的多模式绕组电机驱动系统
CN110816513A (zh) 混合动力零力矩控制方法、装置及混合动力设备
JP5488924B2 (ja) 車両のモータ制御装置
CN117294203A (zh) 一种混合结构的双绕组电机电流均衡控制方法
CN116207833A (zh) 一种永磁同步发电机系统功率跟随系统及其控制方法
CN116208048A (zh) 电机发热方法和装置、电机控制器、电动汽车及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019901114

Country of ref document: EP

Effective date: 20210715