CN116207833A - 一种永磁同步发电机系统功率跟随系统及其控制方法 - Google Patents

一种永磁同步发电机系统功率跟随系统及其控制方法 Download PDF

Info

Publication number
CN116207833A
CN116207833A CN202211122243.3A CN202211122243A CN116207833A CN 116207833 A CN116207833 A CN 116207833A CN 202211122243 A CN202211122243 A CN 202211122243A CN 116207833 A CN116207833 A CN 116207833A
Authority
CN
China
Prior art keywords
power
current
permanent magnet
magnet synchronous
synchronous generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211122243.3A
Other languages
English (en)
Inventor
黄健
王晨
葛愿
王力超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Chilian Automation Equipment Co ltd
Anhui Polytechnic University
Original Assignee
Wuhu Chilian Automation Equipment Co ltd
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Chilian Automation Equipment Co ltd, Anhui Polytechnic University filed Critical Wuhu Chilian Automation Equipment Co ltd
Priority to CN202211122243.3A priority Critical patent/CN116207833A/zh
Publication of CN116207833A publication Critical patent/CN116207833A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices
    • H02J7/2434Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices with pulse modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种永磁同步发电机系统功率跟随系统及其控制方法,涉及发电控制技术领域,包括步骤1、分别获取当前动力电池充电电流最大值、负载系统的用电功率,根据当前采样得到的直流侧电压计算出动力电池的放电电流,该放电电流加上当前动力电池充电电流最大值得到实际的充电电流指令;步骤2、采样动力电池实际的充电电流,即负载电流。本发明提供的功率跟随控制方法能够根据动力电池的温度和荷电状态、负载系统实际用电需求动态调整动力电池的充电功率和充电电流,在保证安全性的前提下提升了动力电池的充电速度,且无需整车控制器的介入,简化了整车控制的复杂性。

Description

一种永磁同步发电机系统功率跟随系统及其控制方法
技术领域
本发明涉及发电控制技术领域,特别是涉及一种永磁同步发电机系统功率跟随系统及其控制方法。
背景技术
增程式电动汽车是在纯电动汽车的基础上加入增程器而成,以解决现有纯电动汽车续驶里程短的问题。当动力电池荷电状态(SOC)低时,通过增程器给动力电池充电,增程器由发动机、永磁同步发电机以及PWM整流器构成。
对动力电池充电需要确保充电过程的快速性和安全性,避免充电过程出现电池过热以及过充等现象。
现有充电控制策略一般采用功率跟随模式,功率跟随模式依据动力电池允许的最大充电电流作为发电功率闭环控制的基准,通过CAN总线获取动力电池的实际充放电电流大小并进行闭环控制,优点是可以根据动力电池的温度动态限制充电电流大小,提高动力电池的使用寿命,缺点是未考虑负载系统用电需求,导致动力电池充电慢,以及充电充不满的问题。
发明内容
本发明的主要目的是为了提供一种永磁同步发电机系统功率跟随系统及其控制方法,以克服现有技术在动力电池充电过程中未考虑负载系统用电需求,导致动力电池充电慢的问题,进一步的解决现有技术在动力电池充电过程中需要整车控制器的介入,由整车控制器根据动力电池的状态发出发电功率指令,使得整车控制器控制变得复杂的问题。
本发明的目的可以通过采用如下技术方案达到:
一种永磁同步发电机系统功率跟随控制方法,包括以下步骤
步骤1、分别获取当前动力电池充电电流最大值、负载系统的用电功率,根据当前采样得到的直流侧电压计算出动力电池的放电电流,该放电电流加上当前动力电池充电电流最大值得到实际的充电电流指令;
步骤2、采样动力电池实际的充电电流,即负载电流,计算得到动力电池充电电流指令与该负载电流的差值,该差值经过PI调节器和限幅模块输出发电功率指令;
步骤3、根据发电功率指令、功率-发动机转速曲线得到发动机的转速指令,通过CAN总线控制发动机的转速;
根据发电功率指令、功率-电机转矩曲线得到永磁同步发电机的转矩指令,通过电流闭环实现永磁同步发电机的转矩控制;
步骤3中的电流闭环具体为,
根据转矩指令以及电机的转矩-电流曲线查表得到永磁同步电机的交、直轴电流指令;
交、直轴电流指令与对应的反馈值做差,差值经过PI调节器得到交、直轴电压指令;
交、直轴电压指令经过空间电压矢量调制模块,得到开关管的控制信号,以实现动力电池充电功率的动态控制。
优选的,所述步骤1中,通过CAN总线得到动力电池的温度以及荷电状态,然后根据动力电池厂家提供的充放电特性曲线得到当前动力电池充电电流最大值。
优选的,所述步骤2中,
若限幅模块的输入小于零,则限幅模块输出为零,即发电功率指令为零;
若限幅模块的输入大于零且不大于永磁同步发电机的最大发电功率,则限幅模块的输入直接输出,即发电功率指令直接为PI调节器的输出;
若限幅模块的输入大于零且大于永磁同步发电机的最大发电功率,则限幅模块输出为最大发电功率,即发电功率指令为永磁同步发电机的最大发电功率。
一种永磁同步发电机系统功率跟随系统,包括有发动机、永磁同步发电机、采集电机转子位置信号的旋转变压器、三相全桥主功率电路、动力电池、负载系统、采集电机三相电枢绕组电流和负载电流的电流传感器和用于根据检测的变量实现对发动机转速以及永磁同步发电机转矩的控制的发电控制单元。
本发明的有益技术效果:
本发明提供的功率跟随控制方法能够根据动力电池的温度和荷电状态、负载系统实际用电需求动态调整动力电池的充电功率和充电电流,在保证安全性的前提下提升了动力电池的充电速度,且无需整车控制器的介入,简化了整车控制的复杂性。
附图说明
图1为本发明的永磁同步发电机系统框图;
图2为发电控制单元原理图;
图3为电流环控制原理图;
图中标号说明:T1、T2、T3、T4、T5、T6为带有反并联二极管的开关管,C1为直流侧滤波电容,Ha、Hb、Hc、HL为霍尔电流传感器;
ia、ib、ic为三相电枢电流,θ为转子位置角,ωe为转子电角速度,Udcfdb为测量的直流侧电压;
Temp为动力电池温度,SOC为动力电池荷电状态,icha为动力电池充电电流最大值,iL为负载电流,iL1为动力电池放电电流,iLcmd为动力电池充电电流指令,ΔiL为动力电池充电电流指令和负载电流的差值,
Ppre为限幅前的发电功率请求,Pcmd为实际的发电功率指令,Pmax为永磁同步发电机最大发电功率,EngSpd为发动机转速指令,Tcmd为永磁同步发电机转矩指令;
iqfdb、idfdb为三相绕组中的交、直轴电流反馈值,iqref、idref为交、直轴电流指令值;
Δiq、Δid为交直轴电流指令值和反馈值的差值;Uq、Ud分别为交、直轴电压指令值。
具体实施方式
为使本领域技术人员更加清楚和明确本发明的技术方案,下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1-图3所示,本实施例提供的永磁同步发电机系统功率跟随控制方法,包括以下步骤
发动机带动永磁同步发电机转动,三相全桥主功率电路将三相交流电转化为直流电能,为动力电池充电;
通过CAN总线得到动力电池的温度Temp和荷电状态SOC,根据厂家提供的动力电池充放电特性曲线查表得到当前动力电池充电电流最大值icha
通过CAN总线得到负载系统的用电功率,根据当前采样的直流侧电压计算得到动力电池的放电电流iL1,icha加上iL1即为实际的动力电池充电电流指令iLcmd
iLcmd与采样得到的实际充电电流iL做差,差值经过PI调节器和限幅模块输出实际的发电功率指令Pcmd
其中,若Ppre小于零,则Pcmd等于零;
若Ppre大于零且大于Pmax,则Pcmd等于Pmax
若Ppre大于零且小于Pmax,则Pcmd等于Ppre
根据实际的发电功率指令Pcmd以及功率-发动机转速曲线和功率-电机转矩曲线分别查表得到发动机的转速指令EngSpd和永磁同步发电机的转矩指令Tcmd
最后,通过CAN总线控制发动机的转矩,通过电流闭环控制永磁同步发电机的转矩。
电流闭环控制具体为:
首先,根据转矩指令Tcmd以及电机的转矩-电流曲线查表得到永磁同步电机的交直轴电流指令iqref、idref
然后,交直轴电流指令分别与反馈值iqfdb、idfdb做差并经过PI调节器得到交直轴电压指令Uq、Ud
最后,交直轴电压指令经过空间电压矢量调制模块(SVPWM)得到开关管的控制信号,实现动力电池充电功率的动态控制。
一种永磁同步发电机系统功率跟随系统,包括有发动机、永磁同步发电机、采集电机转子位置信号的旋转变压器、三相全桥主功率电路、动力电池、负载系统、采集电机三相电枢绕组电流和负载电流的电流传感器和用于根据检测的变量实现对发动机转速以及永磁同步发电机转矩的控制的发电控制单元,发明控制单元包括有PI调节器、坐标变换模块、空间电压矢量调制模块、限幅模块、电流环控制单元,如图2~图3所示。
综上所述,在本实施例中,本实施例提供的功率跟随控制方法能够根据动力电池的温度和荷电状态、负载系统实际用电需求动态调整动力电池的充电功率和充电电流,在保证安全性的前提下提升了动力电池的充电速度,且无需整车控制器的介入,简化了整车控制的复杂性。
以上所述,仅为本发明进一步的实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明所公开的范围内,根据本发明的技术方案及其构思加以等同替换或改变,都属于本发明的保护范围。

Claims (4)

1.一种永磁同步发电机系统功率跟随控制方法,其特征在于:包括以下步骤
步骤1、分别获取当前动力电池充电电流最大值、负载系统的用电功率,根据当前采样得到的直流侧电压计算出动力电池的放电电流,该放电电流加上当前动力电池充电电流最大值得到实际的充电电流指令;
步骤2、采样动力电池实际的充电电流,即负载电流,计算得到动力电池充电电流指令与该负载电流的差值,该差值经过PI调节器和限幅模块输出发电功率指令;
步骤3、根据发电功率指令、功率-发动机转速曲线得到发动机的转速指令,通过CAN总线控制发动机的转速;
根据发电功率指令、功率-电机转矩曲线得到永磁同步发电机的转矩指令,通过电流闭环实现永磁同步发电机的转矩控制;
步骤3中的电流闭环具体为,
根据转矩指令以及电机的转矩-电流曲线查表得到永磁同步电机的交、直轴电流指令;
交、直轴电流指令与对应的反馈值做差,差值经过PI调节器得到交、直轴电压指令;
交、直轴电压指令经过空间电压矢量调制模块,得到开关管的控制信号,以实现动力电池充电功率的动态控制。
2.根据权利要求1所述的永磁同步发电机系统功率跟随控制方法,其特征在于:所述步骤1中,通过CAN总线得到动力电池的温度以及荷电状态,然后根据动力电池厂家提供的充放电特性曲线得到当前动力电池充电电流最大值。
3.根据权利要求1所述的永磁同步发电机系统功率跟随控制方法,其特征在于:所述步骤2中,
若限幅模块的输入小于零,则限幅模块输出为零,即发电功率指令为零;
若限幅模块的输入大于零且不大于永磁同步发电机的最大发电功率,则限幅模块的输入直接输出,即发电功率指令直接为PI调节器的输出;
若限幅模块的输入大于零且大于永磁同步发电机的最大发电功率,则限幅模块输出为最大发电功率,即发电功率指令为永磁同步发电机的最大发电功率。
4.一种永磁同步发电机系统功率跟随系统,其特征在于:包括有发动机、永磁同步发电机、采集电机转子位置信号的旋转变压器、三相全桥主功率电路、动力电池、负载系统、采集电机三相电枢绕组电流和负载电流的电流传感器和用于根据检测的变量实现对发动机转速以及永磁同步发电机转矩的控制的发电控制单元,所述永磁同步发电机系统功率跟随系统用于实施如权利要求1~3任意一项所述的永磁同步发电机系统功率跟随控制方法。
CN202211122243.3A 2022-09-15 2022-09-15 一种永磁同步发电机系统功率跟随系统及其控制方法 Pending CN116207833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211122243.3A CN116207833A (zh) 2022-09-15 2022-09-15 一种永磁同步发电机系统功率跟随系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211122243.3A CN116207833A (zh) 2022-09-15 2022-09-15 一种永磁同步发电机系统功率跟随系统及其控制方法

Publications (1)

Publication Number Publication Date
CN116207833A true CN116207833A (zh) 2023-06-02

Family

ID=86515243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211122243.3A Pending CN116207833A (zh) 2022-09-15 2022-09-15 一种永磁同步发电机系统功率跟随系统及其控制方法

Country Status (1)

Country Link
CN (1) CN116207833A (zh)

Similar Documents

Publication Publication Date Title
JP5104723B2 (ja) 電動機制御装置,駆動装置およびハイブリッド駆動装置
US7928686B2 (en) Electric motor control device, electric vehicle, and hybrid electric vehicle
US9950627B2 (en) Power conversion device
CN107453671B (zh) 基于电流的六步控制
CN102282758B (zh) 交流电动机的控制装置及电动车辆
CN103563237B (zh) 旋转电机控制装置
JP5246508B2 (ja) 電動機駆動装置の制御装置
US7859201B2 (en) Charge control apparatus, electrically powered vehicle and electric storage charge control method
US7362597B2 (en) AC voltage generating apparatus and motive power outputting apparatus
US9236736B2 (en) Power supply system and method for controlling the same
US20120249024A1 (en) Electric motor control device
Raherimihaja et al. Integration of battery charging process for EVs into segmented three-phase motor drive with V2G-mode capability
WO2023024917A1 (zh) 一种电动汽车动力电池加热方法和电动汽车
US11984821B2 (en) Inverter control device
CN109474011B (zh) 一种三相并网集成充电器的电流控制方法及控制系统
CN113726251B (zh) 一种抑制电池加热噪声的电机控制方法和电动汽车
CN103141022B (zh) 逆变器控制装置和逆变器控制方法
CN111231702B (zh) 基于双源电机的燃料电池汽车动力系统
Wang et al. PMSM driving system design for electric vehicle applications based on bi-directional quasi-Z-source inverter
WO2020037840A1 (zh) 混合动力车辆传动系统
CN116207833A (zh) 一种永磁同步发电机系统功率跟随系统及其控制方法
Cheng et al. Research on switched reluctance machine drive topology and control strategies for electric vehicles
JP2015173549A (ja) インバータ制御装置
JP2004104936A (ja) ハイブリッド車両の駆動制御装置
CN115117991A (zh) 一种永磁同步发电机系统动力电池充电系统及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination