CN111354999B - 一种车辆及其动力电池加热装置与方法 - Google Patents

一种车辆及其动力电池加热装置与方法 Download PDF

Info

Publication number
CN111354999B
CN111354999B CN201811574198.9A CN201811574198A CN111354999B CN 111354999 B CN111354999 B CN 111354999B CN 201811574198 A CN201811574198 A CN 201811574198A CN 111354999 B CN111354999 B CN 111354999B
Authority
CN
China
Prior art keywords
heating
preset
power battery
current
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811574198.9A
Other languages
English (en)
Other versions
CN111354999A (zh
Inventor
凌和平
潘华
张宇昕
田果
谢朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201811574198.9A priority Critical patent/CN111354999B/zh
Priority to US17/416,781 priority patent/US11876197B2/en
Priority to EP19899570.6A priority patent/EP3900977A4/en
Priority to JP2021536216A priority patent/JP7232913B2/ja
Priority to PCT/CN2019/127111 priority patent/WO2020125770A1/zh
Publication of CN111354999A publication Critical patent/CN111354999A/zh
Application granted granted Critical
Publication of CN111354999B publication Critical patent/CN111354999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/20Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays for pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/44Current source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

本申请提出了一种车辆及其动力电池加热装置与方法,该动力电池加热方法通过在动力电池的当前温度值低于预设温度值,且动力电池的加热条件满足预设条件时,控制三相逆变器使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热,并获取使得电机输出的转矩值在合适值得预设交轴电流,以及根据动力电池加热功率获取相应的预设直轴电流,进而在加热过程中根据预设直轴电流和预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,并且预设直轴电流的方向在加热过程中呈周期性变化,进而使得同一相的功率开关器件上下桥臂开关次数均匀,器件寿命均衡。

Description

一种车辆及其动力电池加热装置与方法
技术领域
本申请涉及车辆技术领域,尤其涉及一种车辆及其动力电池加热装置与方法。
背景技术
近几年来,新能源汽车蓬勃发展使得基于锂离子的动力电池得到大量应用,而由于电池的固有特性,在低温时动力电池的充放电能力会大幅降低,这将影响车辆在寒冷地区的使用。
为解决这一问题,现有技术主要通过温度传感器实时获取动力电池的温度,并在动力电池的温度符合预设条件时,使用动力电池提供的能量控制电机零转矩运行,以实现动力电池加热。然而,该方法虽然可以实现动力电池加热,但是其需要控制电机输出零转矩,即控制转矩电流为零,给定直轴电流幅值变化方向不变,如此将使得同一相功率开关器件上下桥臂因直轴电流的方向不变而产生只有上桥臂(下桥臂)进行开关动作,而下桥臂(上桥臂)保持关断,从而容易导致同一相上下桥臂寿命不同,不利于功率开关器件的寿命评估。
综上所述,现有的动力电池加热方法存在易导致同一相上下桥臂中功率开关器件寿命不均的问题。
发明内容
本申请的目的在于提供一种车辆及其动力电池加热装置与方法,以解决现有的动力电池加热方法存在易导致同一相上下桥臂中功率开关器件寿命不均的问题。
本申请是这样实现的,本申请第一方面提供一种动力电池加热方法,所述动力电池加热方法包括:
获取所述动力电池的当前温度值,并在所述动力电池的当前温度值低于预设温度值时,确定动力电池的加热条件是否满足预设条件;
若所述动力电池的加热条件满足预设条件,则获取所述动力电池的加热功率;
获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零;
控制三相逆变器中功率器件的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节,并且所述预设直轴电流的方向在加热过程中呈周期性变化。
本申请第二方面提供一种动力电池加热装置,用于向车辆的动力电池进行加热,所述动力电池加热装置包括:
三相逆变器,与用于提供加热能量的加热能量源的正极与负极连接;
三相交流电机,所述三相交流电机的三相线圈与所述三相逆变器的三相桥臂连接;
控制模块,所述控制模块分别与所述三相逆变器以及所述三相交流电机连接,所述控制模块用于获取所述动力电池的当前温度值,并在所述动力电池的当前温度值低于预设温度值时,确定动力电池的加热条件是否满足预设条件,并在所述动力电池的加热条件满足预设条件时,获取所述动力电池的加热功率;所述控制模块还用于获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零;
所述控制模块还用于控制三相逆变器中功率器件的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节,并且所述预设直轴电流的方向在加热过程中呈周期性变化。
本申请第三方面提供一种车辆,所述车辆包括第二方面所述动力电池加热装置,所述车辆还包括动力电池、冷却液箱、水泵以及水管线,所述水泵根据控制信号将所述冷却液箱中的冷却液输入至所述水管线,所述水管线穿过所述动力电池和所述动力电池加热装置。
本申请提出了一种车辆及其动力电池加热装置与方法,该动力电池加热方法通过在动力电池的当前温度值低于预设温度值,且动力电池的加热条件满足预设条件时,控制三相逆变器使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热,并获取使得电机输出的转矩值在合适值得预设交轴电流,以及根据动力电池加热功率获取相应的预设直轴电流,进而在加热过程中根据预设直轴电流和预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,并且预设直轴电流的方向在加热过程中呈周期性变化,进而使得同一相的功率开关器件上下桥臂开关次数均匀,器件寿命均衡。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一种实施例提供的一种动力电池加热方法的流程示意图;
图2是本公开一种实施例提供的一种动力电池加热装置的结构示意图;
图3是本公开一种实施例提供的一种动力电池加热装置的电路图;
图4是本公开一种实施例提供的一种动力电池加热装置的另一结构图;
图5是本公开一种实施例提供的一种动力电池加热方法中的预设直轴电流的波形示意图;
图6是本公开一种实施例提供的一种动力电池加热装置的控制模块的结构图;
图7是本公开一种实施例提供的一种动力电池加热装置中的坐标变换示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
为了说明本申请的技术方案,下面通过具体实施例来进行说明。
本公开实施例提供一种动力电池加热方法,该动力电池加热方法用于向车辆的动力电池进行加热,并且在加热过程中动力电池的导热通路与车辆的电机导热回路连接互通形成导热回路,如图1所示,动力电池加热方法包括:
步骤S11:获取所述动力电池的当前温度值,并在所述动力电池的当前温度值低于预设温度值时,确定动力电池的加热条件是否满足预设条件。
其中,在本申请实施例中,由于在寒冷环境下,当车辆长时间未被使用时,动力电池的温度将会趋近环境温度,而随着温度的降低,动力电池性能会进一步下降,使得充放电能力均受限,进而影响车辆的性能与使用,因此需要对动力电池进行加热,而在对动力电池加热之前,必须获取动力电池的当前温度值,且将该温度值与预设温度值进行比较,若该当前温度值低于预设温度值,则进一步确定电池的加热条件是否满足预设条件。
具体的,作为本申请一种实施方式,步骤S11中的确定所述动力电池的加热条件是否满足预设条件具体为:
若确定所述电机的当前工作状态为非驱动状态,以及确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态均为无故障时,则识别为所述动力电池的加热条件满足预设条件;
若确定所述电机的当前工作状态为驱动状态,或者确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障时,则识别为所述动力电池的加热条件不满足预设条件。
其中,在本申请实施例中,当确认是否满足动力电池加热条件,具体需要确认车辆的电机的当前工作状态、动力电池是否发生故障、三相交流电机是否发生故障、电机控制器是否发生故障以及导热回路是否发生故障,若电机的当前工作状态为非驱动状态,且动力电池、三相交流电机、电机控制器以及导热回路均没发生故障,则表明此时可以对动力电池进行加热;若电机的当前工作状态为驱动状态,或者动力电池、三相交流电机、电机控制器以及导热回路任意一个发生故障,则表明此时可以不对动力电池进行加热;需要说明的是,在本公开实施例中,导热回路发生故障包括但不限于互通阀损坏、加热回路中介质不足等问题。
进一步地,作为本申请一种实施方式,该动力电池加热方法还包括:
获取档位信息和电机转速信息,并根据所述档位信息和所述电机转速信息获取所述电机的当前工作状态。
具体的,当判定当前档位为P档且车速为0时,则表明电机的当前工作状态为非驱动状态;当判定当前档位不为P档或者是车速不为零时,则表明电机的当前工作状态为驱动状态。
本实施方式中,通过获取档位信息和电机转速信息,并根据档位信息和电机转速信息获取电机的当前工作状态,使得在之后根据电机的工作状态判断动力电池是否满足加热条件时,可根据档位信息和电机转速信息进行判断,在任意一个条件不满足时便无法对动力电池加热,防止车辆在正常行驶状态下对动力电池加热,进而影响车辆性能。
步骤S12:若所述动力电池的加热条件满足预设条件,则获取所述动力电池的加热功率。
其中,在本申请实施例中,当确定动力电池满足加热条件,即可以对动力电池进行加热,此时需要获取动力电池的加热功率,该加热功率指的是动力电池所需要加热的功率。
步骤S13:获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零。
其中,在本申请实施例中,当获取了动力电池所需要加热的功率后,此时还需要获取预设直轴电流id以及预设交轴电流iq,而在获取预设直轴电流id时,可根据之前获取的动力电池的加热功率进行查找,即动力电池的加热功率与预设直轴电流id呈映射关系,当获取了动力电池的加热功率后,便可根据该加热功率查找到对应的预设直轴电流id;此外,在获取预设交轴电流iq时,可根据获取的预设交轴电流iq取值为使得三相交流电机输出的转矩值很小,即该转矩无法使得车辆移动、也不会对车辆传动机构零部件造成损伤,仅提供一个较小的输出力矩完成车辆传动机构的齿轮间预紧力即可,该预设交轴电流iq可经过多次实验得到。
步骤S14:控制三相逆变器中功率器件的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节,并且所述预设直轴电流的方向在加热过程中呈周期性变化。
其中,在本公开实施例中,加热能量源可是为外部充电设备,例如充电桩,也可以是动力电池,此处不做具体限制。
进一步地,当获取到预设直轴电流id和预设交轴电流iq后,此时便可控制三相逆变器中功率器件的通断状态,即控制三相逆变器中功率器件的通断时间,即功率器件导通与关断的时间,使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热,并在加热过程中根据预设直轴电流id和预设交轴电流iq控制三相逆变器对三相交流电机的相电流进行调节,以实现加热功率的调节。
具体的,如图5所示,加热过程包括多个加热周期,每个加热周期包括两个预设加热时长t1、t2与两个预设切换时长t3、t4,预设直轴电流id在第一个预设加热时长t1内方向为正且幅值不变,预设直轴电流id在第二个预设加热时长t2内方向为负且幅值不变,预设直轴电流id在第一个预设切换时长t3内方向由正变化为负,且幅值变化,预设直轴电流id在第二个预设切换时长t4内方向由负变化为正,且幅值变化;其中,第一预设加热时长t1与第二预设加热时长t2相等,第一预设切换时长t3与第二预设切换时长t4相等,且预设加热时长大于预设切换时长,优选的在本发明实施例中,预设加热时长远远大于预设切换时长,并且预设切换时长最小需保证车辆无明显抖动。
进一步地,在本公开实施例中,在根据预设直轴电流id以及预设交轴电流iq控制三相逆变器对三相交流电机的相电流进行调节时,需要在对动力电池加热前,获取三相交流电机的当前三相电流值与电机转子位置角度信息,并根据电机转子位置角度信息将当前三相电流值变换为直轴电流与交轴电流,进而在加热过程中根据直轴电流、交轴电流、预设直轴电流以及预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,以实现对动力电池加热的功能,且保证电机处于零扭矩。
在本实施方式中,通过获取三相交流电机在加热前的三相电流值与电机转子位置角度信息等参数,进而根据获取的参数得到直轴电流与交轴电流,以便于在加热过程中根据该直轴电流、交轴电流、预设直轴电流以及预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,以此实现加热功率的调节。
进一步地,作为本公开一种实施方式,根据电机转子位置角度信息和当前三相电流值获取直轴交流与交轴电流的具体过程为:
在对动力电池加热前,获取到三相交流电机的当前三相电流值与电机转子位置角度信息后,将当前三相电流值由自然坐标系变换到静止坐标系,并根据电机转子位置角度信息将静止坐标系下的当前三相交流值变换为同步旋转坐标系下的直轴电流与交轴电流。
在本实施方式中,通过将当前三相电流值由自然坐标系变换到静止坐标系,并根据电机转子位置角度信息将静止坐标系下的当前三相交流值变换为同步旋转坐标系下的直轴电流与交轴电流,使得在根据获取的直轴电流与交轴电流控制三相逆变器对三相交流电机的相电流进行调节时,可基于同一坐标系下的标准,提高了调节过程中的准确性。
进一步地,作为本公开一种实施方式,在获取到直轴电流与交轴电流后,将直轴电流和交轴电流分别与预设直轴电流id和预设交轴电流iq进行比较,使得根据预设直轴电流id和预设交轴电流iq对直轴电流和交轴电流进行调整,进而使得根据预设直轴电流id和预设交轴电流iq控制三相逆变器。当根据预设直轴电流id和预设交轴电流iq对直轴电流和交轴电流进行调整后,该调整结果进行解耦后可根据解耦后的数据获取直轴电压Ud与交轴电压Uq。在获取到直轴电压Ud与交轴电压Uq后,便对直轴电压Ud与交轴电压Uq进行坐标变换以获取第一电压Uα和第二电压Uβ,进而根据第一电压Uα与第二电压Uβ获取开关信号,从而根据开关信号控制三相逆变器对三相交流电机的相电流进行调节。
在本实施方式中,通过根据预设直轴电流和预设交轴电流对获取的直轴电流和交轴电流进行调整,以获取相应的调整结果,并将该调整结果进行一系列变化后得到三相逆变器的开关信号,即三相逆变器中功率器件的通断时间,使得根据该开关信号控制三相逆变器对三相交流电机的相电流进行调节,实现了三相交流电机闭环控制的控制,以及加热功率的调节,增强了动力电池加热过程中的有效性,减小对电机等零部件的损耗。
步骤S15:在所述动力电池的加热过程中,监测所述三相逆变器和所述三相交流电机的温度,若所述三相逆变器和所述三相交流电机中任意一个的温度超过温度限值,则减小所述预设直轴电流,或者将所述预设直轴电流置零。
其中,在本申请实施例中,在动力电池的加热过程中,由于任何一个器件在温度过高的情况下均会发生损坏,因此需要实时监测三相交流电机和三相逆变器中功率器件的温度,若检测到三相逆变器或者三相交流电机中任何一个的温度超过温度阈值,则将预设直轴电流id的电流幅值减小或者将预设直轴电流id置零。
在本实施方式中,通过在动力电池加热过程中,实时监测三相逆变器和三相交流电机的温度,使得三相逆变器和三相交流电机中任一个的温度超过温度阈值时,将预设直轴电流id减小,或者是将预设直轴电流id置零,进而使得流经三相交流电机三相绕组的相电流值也会减小或为0,如此使得电机的发热功率降低,进而使得三相逆变器中的功率单元温度与三相交流电机三相绕组温度降低,从而在保证加热效果的同时也不会对整车零部件造成损坏。
步骤S16:在所述动力电池的加热过程中,监测所述动力电池的温度,若所述动力电池的温度达到指定加热温度,则减小所述预设直轴电流。
其中,在本公开实施例中,当动力电池的温度达到指定加热温度时,则表明动力电池无需再加热,此时需要停止向动力电池加热,即减小预设直轴电流id。
在本实施方式中,通过在加热过程中实时监测动力电池的温度,并且在动力电池的温度达到指定加热温度时,减小预设直轴电流id,以此有效防止动力电池过热,防止动力电池发生损坏,提高了动力电池的使用寿命。
进一步地,作为本申请一种实施方式,该动力电池加热方法还包括:
在所述动力电池的加热过程中,实时获取所述动力电池的需求加热功率,并根据所述需求加热功率对所述预设直轴电流的大小进行调节。
其中,在本申请实施例中,根据需求加热功率对预设直轴电流的大小进行调节指的是根据动力电池预设加热目标温度与当前温度的差值来调节加热功率,差值越大加热功率越大,功率越大预设直轴电流越大。具体的,当需求功率比较大,即动力电池的当前电池温度为较低温度时,例如距离需要加热到的目标温度超过10℃,则使用较大功率加热,此时将预设直轴电流id的幅值调大,当需求功率比较小,即动力电池的当前电池温度比较大,例如距离需要加热到的目标温度小于10℃,则使用较小功率加热,此时将预设直轴电流id的幅值调小。
在本实施方式中,通过在加热过程中实时获取动力电池的需求加热功率,并根据该需求加热功率对预设直轴电流id进行调节,以此有效防止动力电池过热,防止动力电池发生损坏,提高了动力电池的使用寿命。
进一步地,作为本公开一种实施方式,该动力电池加热方法还包括:
若确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障时,则将所述预设直轴电流置零。
其中,在本公开实施例中,当确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,则表明此时动力电池不能进行加热,应停止向动力电池加热,即将预设直轴电流置零。
在本实施方式中,在确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,停止向动力电池加热,可有效防止动力电池发生损坏,延长动力电池的使用寿命。
本申请实施例提供一种动力电池加热装置,用于向车辆的动力电池进行加热,如图2所示,动力电池加热装置包括:
三相逆变器11,与用于提供加热能量的加热能量源10的正极与负极连接;
三相交流电机12,三相交流电机12的三相线圈与三相逆变器11的三相桥臂连接;
控制模块13,控制模块13分别与三相逆变器11以及三相交流电机12,控制模块13用于获取动力电池的当前温度值,并在动力电池的当前温度值低于预设温度值时,确定动力电池的加热条件是否满足预设条件,并在动力电池的加热条件满足预设条件时,获取动力电池的加热功率;控制模块13还用于获取预设交轴电流iq,并根据动力电池的加热功率获取相应的预设直轴电流id;其中,获取的预设交轴电流iq取值为使得三相交流电机12输出的转矩值在目标范围内的交轴电流值,并且目标范围不包括零;
控制模块13还用于控制三相逆变器11中功率器件的通断状态,使得三相交流电机12根据加热能量源提供的加热能量产生热量以对流经动力电池的冷却液进行加热,并在加热过程中根据预设直轴电流id和预设交轴电流iq控制三相逆变器对三相交流电机12的相电流进行调节,并且预设直轴电流id的方向在加热过程中呈周期性变化。
其中,加热能量源10可以采用外部供电设备例如充电桩实现,也可以是动力电池本身,即加热能量源10提供的加热能量可以是动力电池输出的,也可以是直流充电器输出的,或者是交流充电器经过整流后输出的,此处不做具体限制;三相逆变器11具有四种工作模式,由控制模块13来决定,当需要用于车辆驱动时,三相逆变器11工作于逆变器模式,当用于升压充电时,三相逆变器11工作于升压模式,当用于加热电池时,三相逆变器11工作于加热模式,当需要给外界供电时,三相逆变器11工作于降压模式,本申请实施例中仅对三相逆变器11工作于加热模式进行详细说明;其中,三相逆变器11包括六个功率开关单元,功率开关可以是晶体管、IGBT、MOS管等器件类型,两个功率开关单元构成一相桥臂,共形成三相桥臂,每相桥臂中两个功率开关单元的连接点连接三相交流电机12中的一相线圈,三相交流电机12包括三相线圈,三相线圈连接于一个中点,三相交流电机12可以是永磁同步电机或异步电机。
具体的,作为本申请一种实施方式,如图3所示(为了便于理解电路工作原理,图3中省略了控制模块13部分),三相逆变器11包括第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元、第五功率开关以及第六功率开关单元。其中,每个功率开关单元的控制端连接控制模块13(图中未示出),第一功率开关单元、第三功率开关单元以及第五功率开关单元的第一端共接,第二功率开关单元、第四功率开关单元以及第六功率开关单元的第二端共接,三相交流电机12的第一相线圈连接第一功率开关单元的第二端和第二功率开关单元的第一端,三相交流电机12的第二相线圈连接第三功率开关单元的第二端和第四功率开关单元的第一端,三相交流电机12的第三相线圈连接第五功率开关单元的第二端和第六功率开关单元的第一端。
进一步地,三相逆变器11中第一功率开关单元和第二功率开关单元构成第一相桥臂(U相桥臂),第三功率开关单元和第四功率开关单元构成第二相桥臂(V相桥臂),第五功率开关单元的输入端和第六功率开关单元构成第三相桥臂(W相桥臂)。第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,三相交流电机12可以是永磁同步电机或异步电机,电机三相线圈分别和三相逆变器中的U、V、W上下桥臂之间连接。
进一步地,作为本申请一种实施方式,控制模块13可以包括整车控制器、电机控制器的控制电路和BMS电池管理器电路,三者通过CAN线连接,控制模块13中的不同模块根据所获取的信息控制三相逆变器11中开关的导通和关断以实现不同电流回路的导通,此外,在动力电池、三相逆变器11以及三相交流电机12上设有冷却液管,该冷却液管内流动冷却液,可以通过对冷却液管内的冷却液进行温度调节,以调节动力电池的温度。
具体实施时,如图4所示,控制模块13包括电池管理器131与电机控制器132。其中,电池管理器131与动力电池连接,电机控制器与132与动力电池以及三相交流电机12连接。电池管理器131来获取动力电池的温度,将动力电池的温度与预设温度值进行比较来判断动力电池是否处于低温状态,当检测到动力电池的温度低于预设温度值时,可以通过提升流经动力电池的冷却液的温度方式提高动力电池的温度,由于三相逆变器11和三相交流电机12在工作的过程中均产生热量,因此,电机控制器132可以控制三相逆变器11和三相交流电机12对流经动力电池的冷却液进行加热,直至检测到动力电池的温度达到预设温度值时停止加热。
具体的,由于三相逆变器11和三相交流电机12在工作的过程中均产生热量,因此电机控制器132获取车辆的电机的当前工作状态、动力电池故障状态、三相交流电机12故障状态、电机控制器132故障状态以及导热回路故障状态,并根据上述故障状态和电机的当前工作状态确定动力电池的加热条件是否满足。
其中,若确定电机的当前工作状态为非驱动状态,以及确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态均为无故障时,则识别为动力电池的加热条件满足预设条件;若确定电机的当前工作状态为驱动状态,或者确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,则识别为动力电池的加热条件不满足预设条件。
进一步地,作为本公开一种实施方式,电机控制器132还用于确定动力电池故障状态、三相交流电机故障状态、电机控制器故障状态和导热回路故障状态中任一个故障状态为存在故障时,则将预设直轴电流id置零。
进一步地,在获取电机的当前工作状态时,电机控制器132可先获取档位信息和电机转速信息,并根据档位信息和电机转速信息获取电机的当前工作状态。
具体的,当电机控制器132判定当前档位为P档且电机转速为0时,则表明电机的当前工作状态为非驱动状态;当电机控制器132判定当前档位不为P档或者是电机转速不为零时,则表明电机的当前工作状态为驱动状态;需要说明的是,在本公开实施例中,电机的工作状态与动力电池的温度两个判断条件不分先后顺序。
本实施方式中,在停车状态下检测档位信息、电机转速信息以及动力电池的温度信息满足预设条件时,控制三相逆变器11,使得三相交流电机12根据加热能量对流经动力电池的冷却液进行加热,实现了车辆在停车状态下对动力电池进行加热,便于车辆可以在低温条件下正常启动,防止车辆在正常行驶状态下对动力电池加热,进而影响车辆性能。
具体的,请同时参考图3和图4,当电机控制器132控制三相逆变器11和三相交流电机12对流经动力电池的冷却液进行加热时,电机控制器132主要通过控制三相逆变器11中各个功率单元的开通关断时间与开关频率,使得三相交流电机12根据加热能量源10(本实施例中,加热能量源以动力电池为例)输出的加热能量产生热量,进而对流经动力电池的冷却液进行加热,并且在加热过程中电机控制器132根据预设直轴电流id和预设交轴电流iq控制三相逆变器11对三相交流电机12的相电流进行调节;需要说明的是,在本实施方式中,动力电池与三相交流电机12的导热回路连接互通,冷却介质通过水泵(图中未示出)与互通阀(图中未示出)流经车用动力电池(动力电池)与车用动力电机(三相交流电机12)。
其中,在电机控制器132控制三相逆变器11对三相交流电机12的相电流调节过程中,预设直轴电流id是根据加热功率预先设定的直轴电流,其可对加热功率进行控制,并且在对加热功率控制的过程中方向呈周期性变化。具体的,如图5所示,加热过程包括多个加热周期,每个加热周期包括两个预设加热时长t1、t2与两个预设切换时长t3、t4,预设直轴电流id在第一个预设加热时长t1内方向为正且幅值不变,预设直轴电流id在第二个预设加热时长t2内方向为负且幅值不变,预设直轴电流id在第一个预设切换时长t3内方向由正变化为负,且幅值线性变化,预设直轴电流id在第二个预设切换时长t4内方向由负变化为正,且幅值线性变化;其中,第一预设加热时长t1与第二预设加热时长t2相等,第一预设切换时长t3与第二预设切换时长t4相等,且预设加热时长大于预设切换时长,优选的在本申请实施例中,预设加热时长远远大于预设切换时长,使得预设直轴电流id的方向在变化时变化过程迅速,从而防止预设直轴电流id的幅值发生过大的变化,并且预设切换时长最小需保证车辆无明显抖动;需要说明的是,预设加热时长是根据电池需要加热的功率提前进行预先设定的,而预设切换时长是根据电池在加热过程中保证车辆无明显抖动进行预先设定的,此处对两者不做具体限制。
在本申请实施例中,在电机控制器132控制三相逆变器11对三相交流电机12的相电流调节过程中,控制预设直轴电流呈在预设加热时长内,电流幅值不变,而方向呈正向与反向交替变化,如此将使得三相逆变器11中同一相的功率开关器件上下桥臂开关次数均匀,器件寿命均衡,并且设定预设加热时长远远大于预设切换时长,可有效缩减电流方向变化时的切换时间,保证加热效果的同时可有效防止车辆抖动。
此外,在电机控制器132控制三相逆变器11对三相交流电机12的相电流调节过程中,预设交轴电流iq为一个幅值恒定的交轴电流,且该幅值是经过大量实验得到的、可使得电机轴输出转矩值较小的电磁转矩,并且该电磁转矩无法使得车辆移动,也不会对车辆传动机构零部件造成损伤,其仅提供一个较小的输出力矩以完成车辆传动机构的齿轮间隙啮合或预紧力即可。
在本实施方式中,本申请实施例提供的动力电池加热装置通过控制三相逆变器11和三相交流电机12对流经动力电池的冷却液进行加热,并在加热过程中根据需求加热功率控制预设直轴电流,使得预设直轴电流在三相交流电机的相电流调节过程中呈周期性变化,进而使得同一相的功率开关器件上下桥臂开关次数均匀,器件寿命均衡。
进一步地,作为本申请一实施方式,控制模块13在根据预设直轴电流id以及预设交轴电流iq控制三相逆变器11对三相交流电机12的相电流进行调节时,需要在对动力电池加热前,控制模块13获取三相交流电机12的当前三相电流值与电机转子位置角度信息,并根据电机转子位置角度信息将当前三相电流值变换为直轴电流与交轴电流,进而在加热过程中根据直轴电流、交轴电流、预设直轴电流以及预设交轴电流控制三相逆变器11对三相交流电机12的相电流进行调节。
在本实施方式中,通过获取三相交流电机在加热前的三相电流值与电机转子位置角度信息等参数,进而根据获取的参数得到直轴电流与交轴电流,以便于在加热过程中根据该直轴电流、交轴电流、预设直轴电流以及预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,使得三相交流电机绕组发热量恒定。
进一步地,作为本申请一种实施方式,如图6所示,控制模块13还包括前馈解耦单元133、坐标变换单元134、开关信号获取单元135,前馈解耦单元133与坐标变换单元134连接,坐标变换单元134与开关信号获取单元135以及三相交流电机12连接,开关信号获取单元135与电机控制器132连接,电机控制器132与三相交流电机12连接。
具体的,控制模块13在获取到直轴电流与交轴电流后,将直轴电流和交轴电流分别与预设直轴电流id和预设交轴电流iq进行比较,使得根据预设直轴电流id和预设交轴电流iq对直轴电流和交轴电流进行调整,进而使得根据预设直轴电流id和预设交轴电流iq控制三相逆变器。当根据预设直轴电流id和预设交轴电流iq对直轴电流和交轴电流进行调整后,该调整结果输出至前馈解耦单元133,前馈解耦单元133对比较结果进行解耦后获取直轴电压Ud与交轴电压Uq,坐标变换单元134对直轴电压Ud与交轴电压Uq进行坐标变换以获取第一电压Uα和第二电压Uβ,开关信号获取单元135根据第一电压Uα与第二电压Uβ获取开关信号,电机控制器132根据开关信号控制三相逆变器11对三相交流电机12的相电流进行调节。
在本实施方式中,通过根据预设直轴电流和预设交轴电流对获取的直轴电流和交轴电流进行调整,以获取相应的调整结果,并将该调整结果进行一系列变化后得到三相逆变器的开关信号,使得电机控制器根据该开关信号控制三相逆变器对三相交流电机的相电流进行调节,实现了三相交流电机闭环控制的控制,以及加热功率的调节,增强了动力电池加热过程中的有效性,减小对电机等零部件的损耗。
进一步地,作为本申请一种实施方式,控制模块13根据电机转子位置角度信息和前馈解耦单元当前三相电流值获取直轴交流与交轴电流的具体过程为:
在对动力电池加热前,控制模块13获取到三相交流电机的当前三相电流值与电机转子位置角度信息后,坐标变换单元134将当前三相电流值由自然坐标系变换到静止坐标系,并根据电机转子位置角度信息将静止坐标系下的当前三相交流值变换为同步旋转坐标系下的直轴电流与交轴电流(如图7所示)。
在本实施方式中,通过将当前三相电流值由自然坐标系变换到静止坐标系,并根据电机转子位置角度信息将静止坐标系下的当前三相交流值变换为同步旋转坐标系下的直轴电流与交轴电流,使得控制模块在根据获取的直轴电流与交轴电流控制三相逆变器对三相交流电机的相电流进行调节时,可基于同一坐标系下的标准,提高了调节过程中的准确性。
进一步地,作为本申请一种实施方式,如图4所示,电池加热装置中还设置有温度检测单元,该温度检测单元与控制模块中的电机控制器132以及三相交流电机12连接,该温度检测单元用于在动力电池的加热过程中,实时监测三相逆变器11和三相交流电机12的温度,并将监测结果反馈给控制模块13,控制模块13在三相逆变器11和三相交流电机12中任意一个的温度超过温度限值时,则减小预设直轴电流id,或者将预设直轴电流id置零。
具体实施时,温度检测单元采用温度传感器实现,该温度传感器可以为负温度系数的热敏电阻实现,也可以采用正温度系数的热敏电阻实现,此处不做具体限制。
其中,在本公开实施例中,在动力电池的加热过程中,由于任何一个器件在温度过高的情况下均会发生损坏,因此需要实时监测三相交流电机和三相逆变器中功率器件的温度,若检测到三相逆变器或者三相交流电机中任何一个的温度超过温度阈值,则将预设直轴电流id的电流幅值减小或者将预设直轴电流id置零。
在本实施方式中,通过在动力电池加热过程中,实时监测三相逆变器和三相交流电机的温度,使得三相逆变器和三相交流电机中任一个的温度超过温度阈值时,将预设直轴电流id减小,或者是将预设直轴电流id置零,进而使得流经三相交流电机三相绕组的相电流值也会减小或为0,如此使得电机的发热功率降低,进而使得三相逆变器中的功率单元温度与三相交流电机三相绕组温度降低,从而在保证加热效果的同时也不会对整车零部件造成损坏。
进一步地,作为本公开一种实施方式,控制模块还用于在动力电池的加热过程中,实时监测动力电池的温度,若动力电池的温度达到指定加热温度,则停止向动力电池加热。
其中,在本公开实施例中,当动力电池的温度达到指定加热温度时,则表明动力电池无需再加热,此时需要停止向动力电池加热,需减小所述直轴电流。
在本实施方式中,通过在加热过程中实时监测动力电池的温度,并且在动力电池的温度达到指定加热温度时,减小预设直轴电流,以此有效防止动力电池过热,防止动力电池发生损坏,提高了动力电池的使用寿命。
进一步地,作为本公开一种实施方式,控制模块13还用于在动力电池的加热过程中,实时获取动力电池的需求加热功率,并根据需求加热功率对预设直轴电流id的大小进行调节。
其中,在本公开实施例中,由于动力电池随着加热过程的进行其自身温度会不断升高,而温度升高使得动力电池所需求的加热功率不断变化,因此在动力电池的加热过程中,需要实时获取动力电池的需求加热功率,并根据需求加热功率对预设直轴电流id的大小进行调节。
在本实施方式中,通过在加热过程中实时获取动力电池的需求加热功率,并根据该需求加热功率对预设直轴电流id进行调节,以此有效防止动力电池过热,防止动力电池发生损坏,提高了动力电池的使用寿命。
下面通过具体的电路结构对本申请技术方案进行说明:
由于在寒冷环境下,当车辆长时间未被使用,车用动力电池温度将会趋近环境温度,而随着温度的降低,车用动力电池性能进一步下降,充放电能力均受限,进而影响新能源车的性能与使用,因此需要对动力电池进行加热。
请同时参考图3和图4,在对动力电池加热时,当电池管理器131监测到动力电池的温度过低时,将会进入三相交流电机12加热动力电池的预备状态,此时控制模块13需要对加热条件进行判断,即判断动力电池温度是否过低、车辆是否静止以及是否处于P挡,若加热条件的判断结果均为真,则可进入使用三相交流电机12生热给动力电池加热的过程。
在加热时,首先传感器会对电机当前的各个变量进行信号采样,并将采样结果发送给控制模块13,其中采样的变量主要为当前流经三相交流电机12绕组的三相电流值和电机转子位置角度信息(电机当前转子位置)。如图6所示,在获取到该三相电流值和电机转子位置角度信息后,坐标变换单元134通过clark变换将自然坐标系ABC下的变量变换到静止坐标系α-β下的变量,之后再通过park变换将静止坐标系α-β下的变量变换到同步旋转坐标系d-q下的变量,并且在整个坐标变换中遵循幅值不变条件,变换矩阵前加入变换系数2/3。
具体的,在坐标变换单元134将自然坐标系ABC下的变量变换到静止坐标系α-β下的变量时,其根据变换矩阵
Figure BDA0001916279640000191
对自然坐标系ABC下的变量进行变换,而坐标变换单元134在将静止坐标系α-β下的变量变换到同步旋转坐标系d-q下的变量时,其根据变换矩阵
Figure BDA0001916279640000192
对静止坐标系α-β下的变量进行变换,然后将两个变换相乘,便可得到自然坐标系ABC到同步旋转坐标系d-q的变换矩阵
Figure BDA0001916279640000201
式中θ为三相交流电机12的转子直轴与三相交流电机12的A相绕组间夹角(电机转子位置角度信息),经过变换矩阵T3s/2r后可以将自然坐标系ABC下的三相电流变换为交直轴电流,直轴电流为励磁电流,交轴电流为转矩电流,即仅交轴电流和电机轴端输出转矩相关,因此在利用三相交流电机12给动力电池加热过程中,控制交轴电流便可控制电机轴端转矩的输出。
根据三相交流电机12的电机轴端输出转矩计算公式
Figure BDA0001916279640000202
可以看出,交轴电流iq等于零时电机轴端无转矩输出,然而由于在实际使用中若要控制交轴电流为零,即不产生电机的电磁转矩,则必须准确获取电机的零位,而受限于电机零位标定方法准确性与信号采集精度等因素,若电机的零位不准确,则控制算法无法控制交轴电流恒为零,进而导致交轴电流值会在零附近波动,使得整车产生抖动,抖动的强度在不同工况下也会不同,若此时车上有驾乘人员,则会产生不良的驾乘感受,为了消除该弊端,本申请实时控制预设直轴电流id的幅值为对应需求加热功率下的大小并周期性改变电流方向,同时控制预设交轴电流iq的幅值为一恒定的合适值,该值无法使得车辆有移动或振动的趋势与感受,也不会对车辆传动机构造成潜在损伤,仅仅使得电机轴输出一个较小幅值的转矩,处于传动机构机械强度可接受的范围内,如此将产生一个类似预紧力的效果,消除传动机构间的啮合间隙,可确保驾乘人员的良好感受,也可确保车辆正常完成动力电池加热;其中,Te表示电机轴端输出转矩,p表示电机极对数,
Figure BDA0001916279640000203
表示电机永磁体磁链,Ld表示直轴电感,Lq表示交轴电感,id表示直轴电流,iq表示交轴电流。
此外,为了防止三相逆变器11的同一相桥臂功率开关的开关次数不均从而引起器件寿命不均的问题,本申请实施例提供的动力电池加热装置在对三相交流电机12的相电流进行调节时,提供一个方向周期性变化的预设直轴电流,该预设直轴电流在一个周期内,前半个周期电流方向为正,而后半个周期内电流方向为负(需要说明的是,前后半个周期内电流方向切换时间此处不计),从而使得三相逆变器11中同一相的功率开关器件上下桥臂开关次数均匀,器件寿命均衡。
进一步地,在对采集的变量进行坐标变换以获取到直轴电流和交轴电流后,便可将该直轴电流和交轴电流分别与预设直轴电流iq和预设交轴电流id进行比较,并将比较结果反馈给前馈解耦单元133,前馈解耦单元133通过前馈补偿的方式对变量进行完全解耦,解耦完成后获取到的直轴电压(Ud)和交轴电压(Uq)被再次传输至坐标变换单元134,通过反park变换矩阵
Figure BDA0001916279640000211
得到静止坐标系中电压变量Uα与Uβ,随后Uα与Uβ被传输至开关信号获取单元134,开关信号获取单元134通过空间矢量脉宽调制算法(SVPWM)得到控制三相逆变器11的六路开关信号,电机控制器132通过该六路开关信号控制三相逆变器11中的功率开关器件进行开关动作,以此控制流经三相交流电机的三相电流值大小。
进一步地,整个加热过程中温度传感器会不断监测三相交流电机绕组与三相逆变器的功率开关温度,若有任一一项超过温度限值,或动力电池当前温度逐渐接近预定目标加热温度,或动力电池当前温度已经达到或超过预定目标加热温度,则电机控制器会减小给定id值或将id值置零,由此,流经三相交流电机三相绕组的相电流值也会减小或为0,电机的发热功率也会降低,进而使得三相逆变器的功率开关温度与三相交流电机绕组温度也会降低,从而在保证加热效果的同时也不会对整车零部件造成损坏,直到三相交流电机绕组或三相逆变器的功率开关温度不处于过温状态,此时若动力电池温度已经达到预定加热温度,则停止加热,否则继续进行加热;若整个加热过程中三相交流电机绕组与IGBT温度均未过温,则电池管理器在监测到电池温度已经达到预定加热温度时会发出停止加热的指令,至此,三相交流电机生热给车用动力电池加热的过程结束。
本申请另一种实施例提供一种车辆,车辆还包括上述实施例一提供的动力电池加热装置,车辆还包括动力电池、冷却液箱、水泵以及水管线,水泵根据控制信号将冷却液箱中的冷却液输入至水管线,水管线穿过动力电池和动力电池加热装置。
本申请提出的车辆,在动力电池的当前温度值低于预设温度值,且动力电池的加热条件满足预设条件时,控制三相逆变器使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热,并获取使得电机输出的转矩值在合适值得预设交轴电流,以及根据动力电池加热功率获取相应的预设直轴电流,进而在加热过程中根据预设直轴电流和预设交轴电流控制三相逆变器对三相交流电机的相电流进行调节,并且预设直轴电流的方向在加热过程中呈周期性变化,进而使得同一相的功率开关器件上下桥臂开关次数均匀,器件寿命均衡。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (17)

1.一种动力电池加热方法,用于向车辆的动力电池进行加热,其特征在于,所述动力电池加热方法包括:
获取所述动力电池的当前温度值,并在所述动力电池的当前温度值低于预设温度值时,确定动力电池的加热条件是否满足预设条件;
若所述动力电池的加热条件满足预设条件,则获取所述动力电池的加热功率;
获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零;
控制三相逆变器中功率器件的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节,并且所述预设直轴电流的方向在加热过程中呈周期性变化。
2.如权利要求1所述的动力电池加热方法,其特征在于,所述加热过程包括多个加热周期,每个加热周期包括两个预设加热时长与两个预设切换时长,所述预设直轴电流在第一个预设加热时长内方向为正且幅值不变,所述预设直轴电流在第二个预设加热时长内方向为负且幅值不变,所述预设直轴电流在第一个预设切换时长内方向由正变化为负,且幅值不断变化,所述预设直轴电流在第二个预设切换时长内方向由负变化为正,且幅值不断变化;预设加热时长大于预设切换时长。
3.如权利要求1所述的动力电池加热方法,其特征在于,在加热过程中所述动力电池的导热通路与所述车辆的电机导热回路连接互通形成导热回路,所述确定所述动力电池的加热条件是否满足预设条件包括:
若确定所述三相交流电机的当前工作状态为非驱动状态,以及确定所述动力电池故障状态、所述三相交流电机故障状态、电机控制器故障状态和所述导热回路故障状态均为无故障时,则识别为所述动力电池的加热条件满足预设条件;
若确定所述三相交流电机的当前工作状态为驱动状态,或者确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障时,则识别为所述动力电池的加热条件不满足预设条件。
4.如权利要求3所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
获取档位信息和电机转速信息,并根据所述档位信息和所述电机转速信息获取所述电机的当前工作状态。
5.如权利要求3所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
若确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障时,则将所述预设直轴电流置零。
6.如权利要求1至5任一项所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
在所述动力电池的加热过程中,监测所述三相逆变器和所述三相交流电机的温度,若所述三相逆变器和所述三相交流电机中任意一个的温度超过温度限值,则减小所述预设直轴电流,或者将所述预设直轴电流置零。
7.如权利要求1至5任一项所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
在所述动力电池的加热过程中,监测所述动力电池的温度,若所述动力电池的温度达到指定加热温度,则减小所述预设直轴电流。
8.如权利要求1至5任一项所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
在对所述动力电池加热前,获取所述三相交流电机的当前三相电流值和电机转子位置角度信息,并根据所述电机转子位置角度信息将所述当前三相电流值变换为直轴电流与交轴电流,以在加热过程中根据所述直轴电流和所述预设直轴电流的差值以及所述交轴电流与所述预设交轴电流的差值控制所述三相逆变器对所述三相交流电机的相电流进行调节。
9.一种动力电池加热装置,用于向车辆的动力电池进行加热,其特征在于,所述动力电池加热装置包括:
三相逆变器,与用于提供加热能量的加热能量源的正极与负极连接;
三相交流电机,所述三相交流电机的三相线圈与所述三相逆变器的三相桥臂连接;
控制模块,所述控制模块分别与所述三相逆变器以及所述三相交流电机连接,所述控制模块用于获取所述动力电池的当前温度值,并在所述动力电池的当前温度值低于预设温度值时,确定动力电池的加热条件是否满足预设条件,并在所述动力电池的加热条件满足预设条件时,获取所述动力电池的加热功率;所述控制模块还用于获取预设交轴电流,并根据所述动力电池的加热功率获取相应的预设直轴电流;其中,获取的所述预设交轴电流取值为使得三相交流电机输出的转矩值在目标范围内的交轴电流值,并且所述目标范围不包括零;
所述控制模块还用于控制三相逆变器中功率器件的通断状态,使得三相交流电机根据加热能量源提供的加热能量产生热量以对流经所述动力电池的冷却液进行加热,并在加热过程中根据所述预设直轴电流和预设交轴电流控制所述三相逆变器对所述三相交流电机的相电流进行调节,并且所述预设直轴电流的方向在加热过程中呈周期性变化。
10.如权利要求9所述的动力电池加热装置,其特征在于,所述加热过程包括多个加热周期,每个加热周期包括两个预设加热时长与两个预设切换时长,所述预设直轴电流在第一个预设加热时长内方向为正且幅值不变,所述预设直轴电流在第二个预设加热时长内方向为负且幅值不变,所述预设直轴电流在第一个预设切换时长内方向由正变化为负,且幅值不断变化,所述预设直轴电流在第二个预设切换时长内方向由负变化为正,且幅值不断变化;其中,预设加热时长大于预设切换时长。
11.如权利要求9所述的动力电池加热装置,其特征在于,在加热过程中所述动力电池的导热通路与所述车辆的电机导热回路连接互通形成导热回路,所述控制模块具体用于:
若确定所述三相交流电机的当前工作状态为非驱动状态,以及确定所述动力电池故障状态、所述三相交流电机故障状态、电机控制器故障状态和所述导热回路故障状态均为无故障时,则识别为所述动力电池的加热条件满足预设条件;
若确定所述三相交流电机的当前工作状态为驱动状态,或者确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障时,则识别为所述动力电池的加热条件不满足预设条件。
12.如权利要求11所述的动力电池加热装置,其特征在于,所述控制模块具体用于:
获取档位信息和电机转速信息,并根据所述档位信息和所述电机转速信息获取所述电机的当前工作状态。
13.如权利要求11所述的动力电池加热装置,其特征在于,所述控制模块具体用于:
若确定所述动力电池故障状态、所述三相交流电机故障状态、所述电机控制器故障状态和所述导热回路故障状态中任一个故障状态为存在故障时,则将所述预设直轴电流置零。
14.如权利要求9至13任一项所述的动力电池加热装置,其特征在于,所述动力电池还包括:
温度检测单元,所述温度检测单元与所述控制模块以及所述三相交流电机连接,所述温度检测单元用于在所述动力电池的加热过程中,监测所述三相逆变器和所述三相交流电机的温度,并将监测结果反馈给所述控制模块,所述控制模块在所述三相逆变器和所述三相交流电机中任意一个的温度超过温度限值,则减小所述预设直轴电流,或者将所述预设直轴电流置零。
15.如权利要求9至13任一项所述的动力电池加热装置,其特征在于,所述控制模块具体用于:
在所述动力电池的加热过程中,监测所述动力电池的温度,若所述动力电池的温度达到指定加热温度,则减小所述预设直轴电流。
16.如权利要求9至13任一项所述的动力电池加热装置,其特征在于,所述控制模块还用于:
在对所述动力电池加热前,获取所述三相交流电机的当前三相电流值和电机转子位置角度信息,并根据所述电机转子位置角度信息将所述当前三相电流值变换为直轴电流与交轴电流,以在加热过程中根据所述直轴电流和所述预设直轴电流的差值以及所述交轴电流与所述预设交轴电流的差值控制所述三相逆变器对所述三相交流电机的相电流进行调节。
17.一种车辆,其特征在于,所述车辆包括权利要求9至16任一项所述动力电池加热装置,所述车辆还包括动力电池、冷却液箱、水泵以及水管线,所述水泵根据控制信号将所述冷却液箱中的冷却液输入至所述水管线,所述水管线穿过所述动力电池和所述动力电池加热装置。
CN201811574198.9A 2018-12-21 2018-12-21 一种车辆及其动力电池加热装置与方法 Active CN111354999B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201811574198.9A CN111354999B (zh) 2018-12-21 2018-12-21 一种车辆及其动力电池加热装置与方法
US17/416,781 US11876197B2 (en) 2018-12-21 2019-12-20 Vehicle and power battery heating apparatus and method thereof
EP19899570.6A EP3900977A4 (en) 2018-12-21 2019-12-20 VEHICLE AND POWER BATTERY HEATER AND METHOD THEREOF
JP2021536216A JP7232913B2 (ja) 2018-12-21 2019-12-20 車両及びその動力電池加熱装置及び加熱方法
PCT/CN2019/127111 WO2020125770A1 (zh) 2018-12-21 2019-12-20 车辆及其动力电池加热装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811574198.9A CN111354999B (zh) 2018-12-21 2018-12-21 一种车辆及其动力电池加热装置与方法

Publications (2)

Publication Number Publication Date
CN111354999A CN111354999A (zh) 2020-06-30
CN111354999B true CN111354999B (zh) 2021-07-09

Family

ID=71102530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811574198.9A Active CN111354999B (zh) 2018-12-21 2018-12-21 一种车辆及其动力电池加热装置与方法

Country Status (5)

Country Link
US (1) US11876197B2 (zh)
EP (1) EP3900977A4 (zh)
JP (1) JP7232913B2 (zh)
CN (1) CN111354999B (zh)
WO (1) WO2020125770A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989539B2 (ja) * 2019-01-21 2022-01-05 本田技研工業株式会社 車両
JP2022019201A (ja) * 2020-07-17 2022-01-27 本田技研工業株式会社 昇温装置
WO2022082788A1 (zh) * 2020-10-23 2022-04-28 华为数字能源技术有限公司 电机、电机控制器、热交换系统和控制方法
CN112467829B (zh) * 2020-11-16 2023-05-30 Oppo广东移动通信有限公司 充电方法、电子设备及适配器
CN114514694B (zh) * 2021-01-29 2024-04-09 华为数字能源技术有限公司 一种电机控制器、动力总成、控制方法及电动车辆
CN113022326B (zh) * 2021-03-31 2022-03-18 比亚迪股份有限公司 车辆电驱动系统控制方法、电驱动系统和车辆
CN112977173B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN113002366B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池加热系统和加热方法
DE102021205863A1 (de) * 2021-06-10 2022-12-15 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Leistungsstrangs
KR102607669B1 (ko) * 2021-08-05 2023-11-29 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 전원 배터리 가열 시스템 및 그 제어 방법 및 제어 회로
CN113948797B (zh) * 2021-08-30 2024-01-09 岚图汽车科技有限公司 一种利用电机加热电池包的控制方法及系统
CN113794416A (zh) * 2021-09-17 2021-12-14 蔚来动力科技(合肥)有限公司 电机控制方法、设备、动力系统、车辆以及存储介质
CN114114036B (zh) * 2021-11-30 2023-08-15 深蓝汽车科技有限公司 验证动力系统的脉冲加热参数工作范围是否正确的方法
CN114094901B (zh) * 2021-11-30 2023-05-02 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热过程中的电机转子位置控制方法
CN114290961A (zh) * 2021-12-29 2022-04-08 臻驱科技(上海)有限公司 一种用于电机的动力电池的加热控制方法、系统及电动车
CN114274844B (zh) * 2021-12-29 2023-10-24 臻驱科技(上海)有限公司 一种用于电机的动力电池的加热控制方法、系统及电动车
CN114537164B (zh) * 2022-02-17 2023-02-03 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN114834260A (zh) * 2022-03-17 2022-08-02 极氪汽车(宁波杭州湾新区)有限公司 电驱主动发热控制方法及设备
CN114604103B (zh) * 2022-03-17 2024-02-02 威睿电动汽车技术(宁波)有限公司 电机的主动加热方法、装置、设备、存储介质及程序产品
CN114523854A (zh) * 2022-03-17 2022-05-24 上海小至科技有限公司 用于电池低温加热的车用电机系统、电动汽车、存储介质
CN114789679B (zh) * 2022-06-23 2022-09-02 长安新能源南京研究院有限公司 一种动力电池的脉冲加热电流控制方法、系统及电动汽车
CN115939595B (zh) * 2022-12-01 2024-05-07 广东力科新能源有限公司 一种电池加热的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627073A (zh) * 2011-02-04 2012-08-08 株式会社日立制作所 车辆行驶用电动机的控制装置以及搭载该控制装置的车辆
CN103392258A (zh) * 2011-02-24 2013-11-13 Zf腓德烈斯哈芬股份公司 用于加热交通工具的牵引用电池的方法和设备
CN103427137A (zh) * 2013-08-20 2013-12-04 重庆长安汽车股份有限公司 纯电动汽车动力电池的低温充电加热系统及加热方法
CN103538487A (zh) * 2012-07-11 2014-01-29 福特全球技术公司 用于加热电动车辆的牵引电池的方法和系统
CN104249629A (zh) * 2013-06-28 2014-12-31 比亚迪股份有限公司 电动汽车、电动汽车的动力系统和动力电池的充电方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028702A (ja) 2005-07-12 2007-02-01 Toyota Motor Corp 二次電池の制御装置
JP4665911B2 (ja) 2007-02-07 2011-04-06 トヨタ自動車株式会社 冷却システム
JP2010272395A (ja) 2009-05-22 2010-12-02 Nissan Motor Co Ltd 電動車両のモータ制御装置
JP2012007521A (ja) 2010-06-23 2012-01-12 Toyota Motor Corp 車両の制御装置
JP2012166722A (ja) 2011-02-15 2012-09-06 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2013095409A (ja) * 2011-11-07 2013-05-20 Aisin Seiki Co Ltd バッテリ暖機装置およびバッテリ暖機方法
CN202455130U (zh) * 2011-12-31 2012-09-26 比亚迪股份有限公司 电动车辆的充放电控制系统及电动车
CN103419665B (zh) * 2012-05-22 2016-02-03 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
US20140012447A1 (en) * 2012-07-03 2014-01-09 Magna E-Car Systems Of America, Inc. Thermal management of vehicle battery pack during charging
JP6131715B2 (ja) 2013-05-24 2017-05-24 日産自動車株式会社 モータ制御装置
JP2015080308A (ja) 2013-10-16 2015-04-23 株式会社神戸製鋼所 動力制御装置及びこれを備えた建設機械
CN103560304B (zh) * 2013-11-19 2016-05-04 东风汽车公司 一种电动汽车动力电池组加热控制方法
DE102014011828A1 (de) * 2014-08-08 2016-02-11 Daimler Ag Verfahren und Vorrichtung zur Erwärmung einer Traktionsbatterie in einem Kraftfahrzeug
DE102014217959A1 (de) 2014-09-09 2016-03-10 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Klimatisierungseinrichtung zum Klimatisieren eines Innenraums eines elektrisch angetriebenen Fahrzeugs
US9455659B2 (en) * 2014-09-29 2016-09-27 Hamilton Sundstrand Space Systems International, Inc. Systems and methods for controlling high speed motor
EP4358392A2 (en) * 2015-04-03 2024-04-24 ConMed Corporation Autoclave tolerant battery powered motorized surgical hand piece tool and motor control method
CN105762434B (zh) * 2016-05-16 2018-12-07 北京理工大学 一种具有自加热功能的电源系统和车辆
CN106347067B (zh) * 2016-07-29 2018-09-11 北京新能源汽车股份有限公司 电动汽车及用于电动汽车的ptc电加热器的控制方法、系统
CN106160615A (zh) 2016-08-03 2016-11-23 珠海格力节能环保制冷技术研究中心有限公司 电机控制系统、压缩机及电机加热启动方法
CN207021363U (zh) 2017-07-31 2018-02-16 厦门金龙旅行车有限公司 一种应用于混合动力汽车的动力电池加热系统
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力系统有限公司 动力电池加热系统及方法
CN108736108B (zh) * 2018-05-22 2020-03-10 宁德时代新能源科技股份有限公司 加热控制方法和加热控制装置
CN111347935B (zh) * 2018-12-21 2021-10-22 比亚迪股份有限公司 一种车辆及其动力电池加热装置与方法
CN112133987A (zh) * 2019-06-25 2020-12-25 北京新能源汽车股份有限公司 一种动力电池的加热控制方法及装置
CN112644339B (zh) * 2019-09-25 2022-01-07 比亚迪股份有限公司 能量转换装置的协同控制方法、装置、存储介质及车辆
US11290045B2 (en) * 2020-05-05 2022-03-29 Nio Usa, Inc. Devices, systems, and methods for self-heating batteries
US11757147B2 (en) * 2021-01-12 2023-09-12 Ford Global Technologies, Llc System and method for resonant heating battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627073A (zh) * 2011-02-04 2012-08-08 株式会社日立制作所 车辆行驶用电动机的控制装置以及搭载该控制装置的车辆
CN103392258A (zh) * 2011-02-24 2013-11-13 Zf腓德烈斯哈芬股份公司 用于加热交通工具的牵引用电池的方法和设备
CN103538487A (zh) * 2012-07-11 2014-01-29 福特全球技术公司 用于加热电动车辆的牵引电池的方法和系统
CN104249629A (zh) * 2013-06-28 2014-12-31 比亚迪股份有限公司 电动汽车、电动汽车的动力系统和动力电池的充电方法
CN103427137A (zh) * 2013-08-20 2013-12-04 重庆长安汽车股份有限公司 纯电动汽车动力电池的低温充电加热系统及加热方法

Also Published As

Publication number Publication date
JP7232913B2 (ja) 2023-03-03
JP2022515408A (ja) 2022-02-18
US20220077518A1 (en) 2022-03-10
US11876197B2 (en) 2024-01-16
EP3900977A1 (en) 2021-10-27
CN111354999A (zh) 2020-06-30
WO2020125770A1 (zh) 2020-06-25
EP3900977A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
CN111354999B (zh) 一种车辆及其动力电池加热装置与方法
CN111347935B (zh) 一种车辆及其动力电池加热装置与方法
CN111355001B (zh) 一种动力电池加热装置与方法、车辆及终端设备
CN111347938A (zh) 一种车辆及其动力电池加热装置与方法
CN112977173B (zh) 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN111347939B (zh) 车辆及其动力电池温度控制装置
CN113002366B (zh) 一种电动汽车及其动力电池加热系统和加热方法
CN113022326B (zh) 车辆电驱动系统控制方法、电驱动系统和车辆
WO2020125626A1 (zh) 电机驱动装置、控制方法、车辆及可读存储介质
CN111347936B (zh) 一种车辆及其动力电池加热方法与装置
CN111347928B (zh) 车辆及其动力电池温度控制装置
CN115868065B (zh) 加热电池的方法、电池加热系统及用电装置
CN112693327B (zh) 一种降低非工作损耗的新能源永磁整车控制子系统、方法及车辆
US20230093620A1 (en) Power battery heating method and device for electric vehicle and vehicle
CN117728736A (zh) 电机驱动装置、控制方法、车辆及可读存储介质
CN105720881A (zh) 马达控制装置以及控制方法
CN114834260A (zh) 电驱主动发热控制方法及设备
TWI688501B (zh) 混合動力汽車及其動力系統
CN111347886A (zh) 电机驱动装置、控制方法、车辆及可读存储介质
CN110089022A (zh) 马达控制装置以及电动车辆
CN116620045A (zh) 电机扭矩控制方法、装置及车辆
Elahi et al. Battery Energy Consumption Optimization for the EV Traction System
US11418143B2 (en) Control method and apparatus, power system, and electric vehicle
CN113472246B (zh) 一种行车自发电控制方法、控制装置及系统
CN117429319A (zh) 一种电动汽车动力电池脉冲加热控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant