WO2020125626A1 - 电机驱动装置、控制方法、车辆及可读存储介质 - Google Patents

电机驱动装置、控制方法、车辆及可读存储介质 Download PDF

Info

Publication number
WO2020125626A1
WO2020125626A1 PCT/CN2019/125979 CN2019125979W WO2020125626A1 WO 2020125626 A1 WO2020125626 A1 WO 2020125626A1 CN 2019125979 W CN2019125979 W CN 2019125979W WO 2020125626 A1 WO2020125626 A1 WO 2020125626A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
target
motor
current
power
Prior art date
Application number
PCT/CN2019/125979
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
潘华
谢飞跃
张利军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to FIEP19898038.5T priority Critical patent/FI3902092T3/fi
Priority to JP2021536283A priority patent/JP7201824B2/ja
Priority to EP19898038.5A priority patent/EP3902092B1/en
Priority to DK19898038.5T priority patent/DK3902092T3/da
Priority to US17/416,853 priority patent/US11990853B2/en
Priority to EP24156699.1A priority patent/EP4344051A2/en
Publication of WO2020125626A1 publication Critical patent/WO2020125626A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/008Arrangement or mounting of electrical propulsion units with means for heating the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to the field of motor drive technology, and in particular, to a motor drive device, control method, vehicle, and readable storage medium.
  • the purpose of the present disclosure is to provide a motor drive device, a control method, a vehicle, and a readable storage medium, which can simultaneously control the charging process of the power battery, the torque output process of the three-phase motor, and the heating process of the vehicle's internal equipment.
  • a first aspect of the present disclosure provides a motor drive device including: a three-phase inverter, a three-phase motor, and a buck capacitor connected in sequence, the buck capacitor Connected to the positive and negative poles of the power supply module, the first end of the three-phase inverter is connected to the positive pole of the power battery, the second end of the three-phase inverter is connected to the negative pole of the power battery, and the step-down side
  • the first end of the capacitor is connected to the connection point of the three-phase coil of the three-phase motor, the second end of the step-down side capacitor is connected to the second end of the three-phase inverter, and the three-phase of the three-phase motor
  • the coils are respectively connected to the midpoints of the three-phase bridge arms of the three-phase inverter.
  • a second aspect of the present disclosure provides a control method based on the motor drive device provided in the first aspect, the control method of the motor drive device includes:
  • the required heating power, the required charging power and the motor zero torque output, the current magnitude and direction of each phase of the three-phase motor are adjusted to simultaneously control the charging process of the power battery by the power supply module, the The zero output torque of the three-phase motor and the three-phase inverter and the three-phase motor heat the heat exchange medium flowing through at least one of the three-phase inverter or the three-phase motor.
  • a third aspect of the present disclosure provides a control method of a motor drive device based on the first aspect, the control method of the motor drive device includes:
  • a fourth aspect of the present disclosure provides a motor drive device. Based on the motor drive device of the first aspect, the motor drive device further includes:
  • the data acquisition module is used to acquire the required heating power and the required charging power
  • the control module is used to adjust the current size and direction of each phase of the three-phase motor according to the required heating power, the required charging power and the motor zero torque output to simultaneously control the power supply module to the power battery
  • a fifth aspect of the present disclosure provides a motor drive device. Based on the motor drive device of the first aspect, the motor drive device further includes:
  • the data acquisition module is used to acquire the required heating power and the required charging power
  • the target duty cycle acquisition module is used to obtain the target input current of the three-phase motor and the first target duty cycle of the control pulse of each phase arm according to the required heating power, the required charging power and the motor zero torque output ;
  • the PWM control module is used for receiving the input current of the power supply module according to the target input current, and controlling each phase arm according to the first target duty ratio to simultaneously control the power supply module to the power Battery charging process, zero output torque of the three-phase motor, and heat exchange for convection of the three-phase inverter and the three-phase motor through at least one of the three-phase inverter or the three-phase motor The medium is heated.
  • a sixth aspect of the present disclosure provides a vehicle including a memory and a processor; wherein the processor runs a program corresponding to the executable program code by reading the executable program code stored in the memory to use For implementing the control method described in the second aspect or the third aspect.
  • a seventh aspect of the present disclosure is a non-transitory computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the control method described in the second or third aspect.
  • the technical solution of the present disclosure provides a motor drive device, a control method, a vehicle, and a readable storage medium.
  • the control method of the motor drive device includes: obtaining the required heating power and the required charging power; according to the required heating power, the required charging power, and the motor zero torque Output, obtain the target input current of the three-phase motor and the first target duty cycle of the control pulse of each phase bridge arm; receive the input current of the power supply module according to the target input current, and compare each phase according to the first target duty cycle
  • the bridge arm controls to simultaneously control the charging process of the power supply module to the power battery, the zero output torque of the three-phase motor, and to convect the three-phase inverter and the three-phase motor through at least one of the three-phase inverter or the three-phase motor
  • the heat exchange medium is heated.
  • the technical solution of the present disclosure realizes a cooperative control method of zero-torque output, power battery charging and power battery heating without adding additional boost charging modules and heating modules, and effectively solves the vehicle-to-site situation of non-full-length DC power supply lines.
  • the required zero torque output, battery charging and heating function work together, and the heating function can not only heat the power battery, but also the passenger compartment, which has the advantages of simple circuit structure, low cost and low risk of failure.
  • FIG. 1 is a circuit diagram of a motor driving device provided in Embodiment 1 of the present disclosure
  • FIG. 2 is another circuit diagram of a motor driving device provided in Embodiment 1 of the present disclosure.
  • Embodiment 3 is a flowchart of a method for controlling a motor drive device provided in Embodiment 2 of the present disclosure
  • FIG. 4 is a flowchart of a method for controlling a motor drive device provided in Embodiment 3 of the present disclosure
  • step S21 is a flowchart of step S21 in a method for controlling a motor drive device provided in Embodiment 3 of the present disclosure
  • step S21 is another flowchart of step S21 in a method for controlling a motor drive device provided in Embodiment 3 of the present disclosure
  • step S22 is a flowchart after step S22 in a method for controlling a motor drive device provided in Embodiment 3 of the present disclosure
  • step S23 is a flowchart of step S23 in a method for controlling a motor drive device according to Embodiment 3 of the present disclosure
  • step S22 is another flowchart after step S22 in a method for controlling a motor drive device according to Embodiment 3 of the present disclosure.
  • step S26 is a flowchart of step S26 in a method for controlling a motor drive device according to Embodiment 3 of the present disclosure
  • FIG. 11 is a block diagram of a control structure of a method for controlling a motor drive device provided in Embodiment 3 of the present disclosure
  • FIG. 12 is a schematic diagram of three-phase control pulses in a control method of a motor drive device provided in Embodiment 3 of the present disclosure
  • FIG. 13 is a schematic diagram of current distribution in a method for controlling a motor drive device provided in Embodiment 3 of the present disclosure
  • FIG. 14 is a schematic structural diagram of a motor drive device provided by Embodiment 4 of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a motor drive device according to Embodiment 5 of the present disclosure.
  • Embodiment 1 of the present disclosure provides a motor drive device.
  • the motor drive device includes: a three-phase inverter 101, a three-phase motor 102, and a buck capacitor C2 connected in sequence, and the buck capacitor C2 is connected To the positive and negative poles of the power supply module 103, the first end of the three-phase inverter 101 is connected to the positive pole of the power battery 104, the second end of the three-phase inverter 101 is connected to the negative pole of the power battery 104, and the voltage drop side capacitor C2 The first end is connected to the connection point of the three-phase coil of the three-phase motor 102, the second end of the step-down side capacitor C2 is connected to the second end of the three-phase inverter 101, and the three-phase coils of the three-phase motor 102 are connected to the three-phase inverter The midpoint of the three-phase bridge arm of the transformer 101.
  • the three-phase inverter 101 includes a first power switching unit, a second power switching unit, a third power switching unit, a fourth power switching unit, a fifth power switching unit, and a sixth
  • the input terminals of the power switch unit, the first power switch unit, the third power switch unit and the fifth power switch unit are connected together and form the first end of the three-phase inverter 101, the second power switch unit and the fourth power switch unit
  • the output end of the sixth power switch unit is connected together and forms the second end of the three-phase inverter 101
  • the first phase coil of the three-phase motor 102 is connected to the output end of the first power switch unit and the input of the fourth power switch unit End
  • the second phase coil of the three-phase motor 102 is connected to the output of the third power switch unit and the input of the sixth power switch unit
  • the third phase coil of the three-phase motor 102 is connected to the output of the fifth power switch unit and the first Two power switch unit input.
  • the first power switching unit includes a first upper arm VT1 and a first upper bridge diode VD1
  • the second power switching unit includes a second lower arm VT2 and a second lower bridge diode VD2
  • the switch unit includes a third upper bridge arm VT3 and a third upper bridge diode VD3
  • the fourth power switch unit includes a fourth lower bridge arm VT4 and a fourth lower bridge diode VD4
  • the fifth power switch unit includes a fifth upper bridge arm VT5 and
  • the sixth power switch unit includes a sixth lower bridge arm VT6 and a sixth lower bridge diode VD6.
  • the three-phase motor 102 is a three-phase four-wire system, which may be a permanent magnet synchronous motor or an asynchronous motor.
  • the neutral point of the phase coil is connected to the neutral point, and the neutral line is connected to the power supply module 103, and the three-phase coil of the motor is connected to the midpoint between the upper and lower arms of the A, B, and C phases of the three-phase inverter 101, respectively.
  • the power supply module 103 can be the DC power provided by the DC charging pile, or the DC power output after the rectification of the single-phase and three-phase AC charging pile, or the electrical energy generated by the fuel cell, or the range extender such as the rotation of the engine to drive the power generation Power generation by machine, DC power rectified by generator controller.
  • the embodiment of the present disclosure connects the power supply module through the connection point of the three-phase coil of the three-phase motor by setting the connection structure of the power battery, the three-phase inverter, the three-phase motor and the power supply module, and receives the current input by the power supply module when the motor is driven
  • the required heating power, the required charging power and the motor zero torque output are obtained, and the three-phase bridge arms of the three-phase inverter are controlled according to the required heating power, the required charging power and the motor zero torque output to Make the heating process, charging process and motor zero torque output process at the same time.
  • the motor driving device further includes an inductor L, a switch K1 and a switch K2, the first end of the switch K1 is connected to the connection point of the three-phase coil of the three-phase motor 102, and the second end of the switch K1 is connected to the inductor
  • the first end of L, the second end of the inductor L is connected to the first end of the buck capacitor C2, the second end of the buck capacitor C2 is connected to the first end of the switch K2, and the second end of the switch K2 is connected to the three-phase inverse The second end of the transformer 101.
  • the inductance L is used for filtering and energy storage
  • the switch K1 and the switch K2 are used to control the access and disconnection of the power supply module 103.
  • Embodiment 2 of the present disclosure provides a control method based on the motor driving device provided in Embodiment 1, as shown in FIG. 3, the control method of the motor driving device includes:
  • Step S10 Obtain the required heating power and the required charging power.
  • the required heating power may be the heating power obtained by detecting the temperature of the component to be heated by the vehicle controller, the component to be heated may be a rechargeable battery, and the required charging power is the current power state of the vehicle controller according to the power battery The obtained charging power, at this time, the vehicle is in a non-driving state, and the motor torque output value is zero.
  • Step S11 According to the required heating power, the required charging power and the motor zero torque output, adjust the current magnitude and direction of each phase of the three-phase motor to simultaneously control the charging process of the power supply module to the power battery and the zero output torque of the three-phase motor And causing the three-phase inverter and the three-phase motor to heat the heat exchange medium flowing through at least one of the three-phase inverter or the three-phase motor.
  • the current direction of each phase of electricity refers to the direction of flowing into or out of the three-phase coil
  • the magnitude of the current of each phase of electricity refers to the magnitude of current flowing into or out of the three-phase coil
  • the input current can be used to adjust the charging power.
  • the charging process of the power supply module to the power battery, the zero output torque of the three-phase motor, and the three-phase inverter can be simultaneously controlled.
  • the three-phase motor heats the heat exchange medium flowing through at least one of the three-phase inverter or the three-phase motor.
  • the present disclosure achieves zero torque by adjusting the current size and direction of each phase of the three-phase motor without adding additional boost charging module and heating module
  • the cooperative control method of output, power battery charging and power battery heating effectively solves the problem that the vehicles that erroneously set up DC power supply lines work together for the required torque output, battery charging and heating functions, and the heating function can not only heat the power battery It can also heat the passenger cabin, which has the advantages of simple circuit structure, low cost and low risk of failure.
  • Embodiment 3 of the present disclosure provides a control method based on the motor drive device provided in Embodiment 1, as shown in FIG. 4, the control method of the motor drive device includes:
  • Step S20 Obtain the required heating power and the required charging power.
  • Step S21 According to the required heating power, the required charging power and the motor zero torque output, the target input current of the three-phase motor and the first target duty cycle of the control pulse of each phase arm are obtained.
  • Step S22 Receive the input current of the power supply module according to the target input current, and control each phase arm according to the first target duty cycle to simultaneously control the charging process of the power supply module to the power battery, the zero output torque of the three-phase motor, and The three-phase inverter and the three-phase motor heat the heat exchange medium flowing through at least one of the three-phase inverter or the three-phase motor.
  • step S20 since step S20 is the same as step S10, it will not be repeated here.
  • the target input current of the three-phase motor refers to the current output by the power supply module to the three-phase motor
  • the first target duty cycle of the control pulse of each phase bridge arm is to control the output of each phase bridge arm
  • the duty cycle of the PWM signal on and off the power switch unit is calculated, and the target input current of the three-phase motor is calculated according to the required heating power, the required charging power and the motor zero torque output, and then the control pulse of each phase arm is calculated according to the target input current The first target duty cycle.
  • step S21 includes:
  • Step S211 Acquire the target voltage of the step-down side capacitor.
  • step S211 obtain the current voltage of the power battery, and communicate with the power supply module to obtain the highest output voltage of the power supply module, determine the target voltage of the step-down side capacitor according to the current voltage of the power battery and the highest output voltage of the power supply module, and step down
  • the target voltage of the side capacitor meets the following three points: 1.
  • the target voltage of the buck side capacitor is less than the maximum output voltage of the power supply module; 2.
  • the target voltage of the buck side capacitor is less than the current voltage of the power battery; 3.
  • the voltage of the buck side capacitor choose a larger value for the target voltage as much as possible, but to meet the requirements of 1 and 2 above, and leave a certain voltage margin; therefore, the target voltage of the buck side capacitor can be the current voltage of the power battery and the maximum output voltage of the charging pile. The smallest of the two.
  • the interaction process of the vehicle's control module and power supply module is:
  • Step 1 The BMS (BATTERY MANAGEMENT SYSTEM, power management system) in the control module obtains the maximum output voltage of the power supply module through the message.
  • Step 2 Based on the maximum output voltage of the power supply module and the current voltage of the power battery, the BMS obtains the target value of the capacitor voltage on the step-down side with a certain margin, and sends it to the control module.
  • Step 3 The motor controller in the control module controls the average duty ratio of the three phases according to the target voltage of the step-down side capacitor so that the step-down side capacitor voltage reaches the target voltage value.
  • Step 4 The BMS notifies the external power supply module of the vehicle terminal voltage value (that is, the voltage value on the buck side) through a message.
  • Step 5 The external power supply module detects the voltage value on the buck side and compares it with the voltage value received by the message. After the difference between the two meets the preset standard, charging begins.
  • Step S212 Calculate the target input current of the three-phase motor according to the required heating power, the required charging power, the motor zero torque output and the target voltage.
  • step S212 according to the formula Calculate the target input current, P is the required heating power, P 2 is the required charging power, and U 2 is the target voltage of the buck capacitor.
  • step S21 further includes:
  • Step S213. Obtain the target current of each phase of the three-phase motor according to the motor rotor position, the required heating power, the target input current, and the motor zero torque output.
  • step S213 includes:
  • is the rotor lag angle
  • IA, IB, IC are the target current of each phase of the three-phase motor
  • I is the target input current
  • Te is the motor zero torque output
  • ⁇ , ⁇ , L d , L q are the motor parameters
  • P is the required heating power
  • R is the equivalent impedance of the three-phase motor.
  • Step S214 Acquire the first target duty ratio of the control pulse of each phase bridge arm according to the target current of each phase electricity, the target input current, the target voltage of the buck side capacitor, and the voltage of the power battery.
  • step S214 includes:
  • Step S2141. Obtain the average duty ratio of the three-phase electric control pulse according to the target voltage of the step-down side capacitor, the target input current, and the voltage of the power battery.
  • step S2141 includes:
  • the average duty ratio of the three-phase electrical control pulse is obtained by the following formula:
  • U 2 U 1 ⁇ D 0 -I ⁇ R, where U 2 is the target voltage of the step-down capacitor, U 1 is the voltage of the power battery, and D 0 is the average duty ratio of the three-phase electrical control pulse , I is the target input current, R is the equivalent impedance of the three-phase motor.
  • U 1 ⁇ D 0 is the voltage across the three-phase inverter
  • I ⁇ R is the voltage drop on the three-phase motor
  • the sum of the target voltages of the side capacitors gives the above formula.
  • Step S2142. Obtain the first target duty ratio of the control pulse of each phase arm according to the average duty ratio, the target input current, the target current of each phase of electricity, the target voltage of the buck side capacitor, and the voltage of the power battery.
  • step S2142 includes:
  • the first target duty ratio of the control pulse of each phase arm is obtained according to the following formula:
  • I 1 is the target current of each phase electricity
  • R 1 is the equivalent impedance of each phase coil
  • D 1 is the first target duty ratio of the control pulse of each phase bridge arm.
  • the motor driving device further includes an inductor
  • step S2141 the average duty ratio of the three-phase electric control pulse is obtained according to the target voltage of the step-down side capacitor, the target input current, and the voltage of the power battery, including:
  • the average duty ratio of the three-phase electrical control pulse is obtained by the following formula:
  • U 2 U 1 ⁇ D 0 -I ⁇ RI ⁇ R L , where U 2 is the target voltage of the buck capacitor, U 1 is the voltage of the power battery, and D 0 is the average duty ratio of the three-phase electrical control pulse , I is the target input current, R is the equivalent impedance of the three-phase motor, and R L is the inductance impedance.
  • the formula also includes the voltage drop across the inductance.
  • step S2142. The first target duty cycle of the control pulse of each phase arm is obtained according to the average duty cycle, the target input current, the target current of each phase and the voltage of the power battery:
  • I 1 is the target current of each phase electricity
  • R 1 is the equivalent impedance of each phase coil
  • D 1 is the first target duty ratio of the control pulse of each phase bridge arm.
  • This embodiment calculates the target input current of the three-phase motor according to the required heating power, the required charging power, and the motor zero torque output, and then obtains each phase of the three-phase motor according to the motor rotor position, the required heating power, the target input current, and the motor zero torque output.
  • the target current of the electric current and then calculate the first target duty ratio of the control pulse of each phase arm according to the target input current and the target current of each phase of the three-phase motor, and perform the three-phase arm according to the first target duty ratio Control, on the basis of not adding additional booster charging module and heating module, to achieve a coordinated control method of zero torque output, power battery charging and power battery heating, effectively solving the demand for vehicles that do not fully install DC power supply lines.
  • the torque output, battery charging and heating functions work together, and the heating function can not only heat the power battery, but also the passenger compartment. It has the advantages of simple circuit structure, low cost and low risk of failure.
  • step S22 the bridge arm of each phase is controlled according to the first target duty cycle, and then includes:
  • Step S23 Obtain the actual input current of the three-phase motor, and perform PID control calculation through the PID regulator according to the actual input current of the three-phase motor and the target input current to obtain the average duty ratio change of the three-phase electrical control pulse.
  • Step S24 Obtain the second target duty ratio according to the first target duty ratio and the average duty ratio change amount
  • Step S25 Control the bridge arm of each phase according to the second target duty cycle to simultaneously control the heating process of the power battery by the power supply module and the output torque of the three-phase motor.
  • the PID regulator that performs PID control is a feedback loop component commonly used in industrial control applications, and is composed of a proportional unit P, an integral unit I, and a differential unit D.
  • the current deviation of the proportional reaction system can be adjusted to reduce the error through the proportional coefficient.
  • the cumulative deviation of the integral reaction system allows the system to eliminate the steady-state error and improve the difference. Because there is an error, the integral adjustment is carried out until there is no error, differential reaction
  • the rate of change of the system deviation signal is predictable. It can predict the trend of deviation change and produce a leading control effect. Before the deviation has been formed, it has been eliminated by the differential adjustment function, so the dynamic performance of the system can be improved.
  • step S23 includes:
  • Step S231. Obtain the current difference between the actual input current of the three-phase motor and the target input current.
  • Step S232 When the actual input current of the three-phase motor is greater than the target input current, the average duty ratio change increment of the three-phase electrical control pulse is calculated according to the current difference and the proportional coefficient of the PID regulator.
  • Step S233 When the actual input current of the three-phase motor is less than the target input current, the average duty ratio change decrement of the three-phase electrical control pulse is calculated according to the current difference and the proportional coefficient of the PID regulator.
  • the average duty ratio of the output three-phase electrical control pulse is gradually increased to reduce the actual input current of the three-phase motor.
  • the average duty ratio of the output three-phase electrical control pulse is gradually reduced to increase the actual input current of the three-phase motor.
  • the actual input current of the three-phase motor is realized by the motor controller by adjusting the average duty ratio of the three-phase electrical control pulse.
  • the target input current of the three-phase motor is I *
  • the current difference (I * -I) is input to the PID regulator
  • the average duty ratio of the three-phase pulse output by the PID regulator is K (I * -I), where K is The proportional coefficient set in the PID regulator.
  • the average duty ratio of the three-phase electrical control pulse output by the PID regulator will decrease , So that the actual input current of the three-phase motor increases; on the contrary, when the actual input current I of the three-phase motor is greater than the target input current I * of the three-phase motor, the average duty ratio of the three-phase electrical control pulse output by the PID regulator will increase , So that the actual input current of the three-phase motor is reduced.
  • step S22 the bridge arm of each phase is controlled according to the first target duty ratio, and then includes:
  • Step S26 Obtain the actual current of each phase of electricity, and perform PID control calculation through the PID regulator according to the actual current of each phase of electricity and the target current to obtain the amount of change in the duty ratio of the control pulse of each phase of the bridge arm.
  • Step S27 Obtain the third target duty cycle according to the first target duty cycle and the duty cycle change amount.
  • Step S28 Control the bridge arm of each phase according to the third target duty cycle to simultaneously control the heating process of the power battery by the power supply module and the output torque of the three-phase motor.
  • step S26 includes:
  • Step S261. Obtain the current difference between the actual current of each phase and the target current.
  • Step S262 When the target current of each phase power is greater than the actual current, the duty cycle change increment of the phase bridge arm is calculated according to the current difference and the proportional coefficient of the PID regulator.
  • the duty cycle change reduction of the phase bridge arm is calculated according to the current difference and the proportional coefficient of the PID regulator.
  • the output duty cycle change increment is gradually increased to increase the actual current of each phase bridge arm; when the target current of each phase bridge arm is less than In actual current, the output duty cycle change decrement is gradually reduced to reduce the actual current of each phase bridge arm.
  • the control of the three-phase bridge arm current it is mainly realized by superimposing the increment on the basis of the average duty ratio of the three-phase electric control pulse. Assuming that the actual current output from the A-phase is Is and the target value is Is*, the current difference (Is-Is*) is input to the PID controller, and the incremental value of the A-phase pulse duty ratio is output after the PID calculation.
  • the PID output A-phase duty cycle will increase, making the A-phase output current increase; conversely, when the A-phase actual current Is is greater than the target value Is*, the PID output A The duty cycle of the phase will be reduced, so that the output current of the A phase is reduced.
  • the voltage control of the B phase and the C phase is the same as that of the A phase, and is not described in detail.
  • an addition amount is added on the basis of the average duty ratio to complete the control of the three-phase current, so that the actual value of the three-phase current reaches the target value of the three-phase current.
  • the actual charging current of a phase is less than the target value, increase the superimposed amount of the duty ratio of the phase.
  • the actual charging current is greater than the target value, reduce the superimposed amount of the duty ratio of this phase, or it can be automatically controlled by PID, so that The actual current of the three phases is always near the target.
  • FIG. 2 The structure of a motor driving device provided by an embodiment of the present disclosure is shown in FIG. 2 and includes a power battery, a bus capacitor C1, a motor controller, a three-phase motor, an inductor, and a switch, wherein the battery passes through the DC bus capacitor C1 and the motor controller Connection, the motor controller is connected to the three-phase motor 102 through a three-phase line, and the three-phase motor 102 is connected to the switch K1 through the neutral line drawn from the connection point of the three-wire coil.
  • the negative pole of the power battery is connected to the switch K2, and the other end of the switch K2 is connected to the power supply module.
  • the operating system through the switches K1 and K2 is divided into the driving mode and the parking charging mode.
  • the electric drive system and the cooling circuit of the battery system are connected Through the flow of cooling liquid, the heat is transferred from the electric drive system to the battery system.
  • the control switches K1 and K2 are turned off to ensure that the inductance is not charged.
  • the motor controller performs the torque control of the motor according to the torque control related algorithm to complete the driving function.
  • the control switches K1 and K2 are closed to turn on the charging circuit composed of the vehicle and the power supply module.
  • the power supply module includes two modes of constant voltage charging and constant current charging. Make specific instructions:
  • the target value of torque output, the required heating power and the required battery charging power are obtained.
  • the motor drive device interacts with the power supply module, and the battery manager issues a step-down command to the motor controller.
  • the motor controller controls the voltage on the step-down side capacitor C2 to the voltage U through the three-phase duty cycle control, and the charging pile detects U After that, charging starts.
  • the battery manager obtains the voltage of the step-down side capacitor and the output current of the power supply module according to its own charging ability, and sends the target output current to the charging pile.
  • the charging pile outputs according to the target charging current.
  • is the rotor lag angle
  • IA, IB, IC are the current of each phase of the three-phase coil
  • I is the input current of the three-phase motor, to meet the power requirements of driving, battery charging and heating
  • Te is the motor Zero torque output
  • ⁇ , ⁇ , L d , L q are motor parameters
  • P is heating power.
  • the PID control loop by controlling the respective step-down-side capacitor voltage and the actual heating power, the three-phase motor target current I * of the input
  • the battery system is sent to the motor controller.
  • the motor controller After comparing the actual input current and the target input current, the motor controller outputs the average target value of the three-phase duty cycle through the control of the PID regulator to realize the control of the actual input current.
  • the average duty ratio of the three phases will be increased after PID control, which reduces the actual input current; on the contrary, if the actual input current is less than the target input current, the average duty ratio of the three phases will be reduced after PID control, so that The actual input current increases, and the actual three-phase currents IA, IB and IC are compared with the target currents IA*, IB* and IC*, and the three-phase duty cycle is adjusted through their respective PID controls. The larger the current flowing into the motor, the smaller the adjustment duty cycle.
  • a PID control loop is used for heating power to achieve current control between the three phases; charging current or charging
  • the voltage uses another PID control loop to realize the charging current or voltage control.
  • Simultaneous, independent and continuous control of the charging voltage and heating power through the two PID controls realizes closed-loop control and realizes charging under zero torque output conditions
  • the cooperative control of power and heating power can meet the dual requirements of the battery for charging power and heating power in low temperature environment.
  • the first is the heating-based charging stage.
  • the heating power is controlled at the maximum, and the high-power heating under the small current charging condition of the power battery is realized as soon as possible Increase the battery temperature.
  • heating is mainly used.
  • the current distribution is shown in the middle diagram of FIG. 13. After the output current I of the charging pile reaches the bus capacitor C1, the power on the capacitor is consumed by heating control. After the two cancel out, the charging current of the power battery is very small. . Therefore, the current on the inductor is very small, but the three-phase motor and the motor controller have a large current, which requires real-time temperature detection and protection to ensure that the heating power of the battery is maximized without burning the device.
  • the charging capacity of the power battery continues to increase, and the charging current continues to increase. At the same time, it also guarantees a larger heating power, and the temperature of the power battery is also rising. Due to the larger charging current, the power There will also be a certain amount of heat inside the battery.
  • the current distribution is shown in the right diagram of FIG. 13, the current from the charging pile output current I to the bus capacitor C1 is larger, and the current on the capacitor consumed by the heating control is smaller, and the battery charging current is larger after the two cancel out. Therefore, the current flowing through the inductor, the three-phase motor and the motor controller is very large, and real-time temperature detection and protection are needed to ensure that the battery charging and heating power are optimally coordinated without burning the device.
  • the motor rotor During each charging process, the motor rotor remains at a certain position, and the three-phase current calculated according to the torque control algorithm and heating power remains unchanged, and the three-phase imbalance, but the life cycle of the vehicle is usually several years.
  • the appearance of the motor rotor at a certain position is random, the magnitude of the three-phase current is also random, and the chance of the magnitude of each phase current is equal, so in the entire life cycle, the three phases are balanced, and there is no excessive aging of one phase. Exacerbated the problem.
  • the charging current is shared by the three phases, which can give full play to the power capacity of the motor and the motor controller. After the optimization of the inductance alone, it can achieve greater power charging.
  • the cooperative control method of torque output, power battery charging and power battery heating in the embodiment of the present disclosure is mainly achieved by adjusting the duty cycle of the control pulses of the six power switch tubes in the motor controller, first of all by controlling the three-phase duty cycle
  • the average value of is used to control the charging current or charging voltage, and the difference between the three-phase duty ratio is used to control the current between the three phases.
  • the current flows between the three phases. For example, the current flows from the A phase to the motor, and then from the motor BC Phase out, the three-phase current is used to control the torque and heating power of the motor.
  • FIG. 12 from left to right are examples of three-phase duty ratio allocation under the control of charging, heating, charging, and heating simultaneously.
  • the technical solution of the present disclosure implements the torque output of the motor through a coordinated control method of torque output, power battery charging and power battery heating, to ensure the safety of the vehicle’s torque during charging and to meet the low temperature environment Under the power battery charging and heating needs.
  • Embodiment 4 of the present disclosure provides a motor driving device 50. As shown in FIG. 14, based on the motor driving device provided in Embodiment 1, the motor driving device further includes:
  • the data obtaining module 501 is used to obtain the required heating power and the required charging power
  • the control module 502 is used to adjust the current size and direction of each phase of the three-phase motor according to the required heating power, the required charging power and the motor zero torque output, to simultaneously control the power supply module to the power battery Charging process, zero output torque of the three-phase motor, and the heat exchange medium that convects the three-phase inverter and the three-phase motor through at least one of the three-phase inverter or the three-phase motor Perform heating.
  • Embodiment 5 of the present disclosure provides a motor driving device 60. As shown in FIG. 15, based on the motor driving device provided in Embodiment 1, the motor driving device further includes:
  • the data obtaining module 601 is used to obtain the required heating power and the required charging power
  • the target duty cycle obtaining module 602 is used to obtain the target input current of the three-phase motor and the first target duty of the control pulse of each phase arm according to the required heating power, the required charging power and the motor zero torque output ratio;
  • the PWM control module 603 is configured to receive the input current of the power supply module according to the target input current, and control each phase arm according to the first target duty ratio, so as to control the power supply module to The charging process of the power battery, the zero output torque of the three-phase motor and the exchange of at least one of the three-phase inverter and the three-phase motor through the three-phase inverter or the three-phase motor Heating medium heating.
  • Another embodiment of the present disclosure provides a vehicle, including a memory and a processor
  • the processor runs the program corresponding to the executable program code by reading the executable program code stored in the memory, so as to implement the control methods provided in Embodiments 2 and 3.
  • Another embodiment of the present disclosure provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the control methods provided in Embodiments 2 and 3 are implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电机驱动装置、控制方法、车辆及可读存储介质,所述控制方法包括:获取需求加热功率和需求充电功率;根据需求加热功率、需求充电功率以及电机零扭矩输出,调节三相电机的每相电的电流大小及方向,以同时控制供电模块对动力电池的充电过程、三相电机的零扭矩输出以及使三相逆变器以及三相电机对流经三相逆变器或者三相电机中至少一个的换热介质进行加热。

Description

电机驱动装置、控制方法、车辆及可读存储介质
相关公开的交叉引用
本公开要求比亚迪股份有限公司于2018年12月21日提交的、发明名称为“电机驱动装置、控制方法、车辆及可读存储介质”的、中国专利申请号“201811574157.X”的优先权。
技术领域
本公开涉及电机驱动技术领域,尤其涉及一种电机驱动装置、控制方法、车辆及可读存储介质。
背景技术
目前能源危机和环境污染问题日趋严重,电动汽车做为新型的交通工具,可以实现“零排放”,并且电动汽车具有结构简单,能量利用率高,噪声小等优点,在今后的汽车发展中将占据主导地位。对于架设直流线路的新能源汽车,可以通过直流供电线路获得电能用来驱动三相电机输出扭矩。考虑到低温环境下车辆的行驶,所以车辆还需具备加热功能,即对车辆内部的低温设备进行加热,此外,当动力电池的电量较低时,还需要对动力电池进行充电,目前,对三相电机的扭矩输出过程、对车辆内部设备进行加热的过程以及对动力电池的充电过程均是分别控制的,导致车辆内部的整体控制策略比较复杂。
发明内容
本公开的目的在于提供一种电机驱动装置、控制方法、车辆及可读存储介质,可以实现同时控制动力电池的充电过程、三相电机的扭矩输出过程以及对车辆内部设备的加热过程。
本公开是这样实现的,本公开第一方面提供一种电机驱动装置,所述电机驱动装置包括:依次连接的三相逆变器、三相电机以及降压侧电容,所述降压侧电容连接至供电模块的正极和负极,所述三相逆变器的第一端连接至动力电池的正极,所述三相逆变器的第二端连接至动力电池的负极,所述降压侧电容的第一端连接所述三相电机的三相线圈的连接点,所述降压侧电容的第二端连接所述三相逆变器的第二端,所述三相电机的三相线圈分别连接所述三相逆变器的三相桥臂的中点。
本公开第二方面提供一种基于第一方面提供的电机驱动装置的控制方法,所述电机驱 动装置的控制方法包括:
获取需求加热功率和需求充电功率;
根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,调节三相电机的每相电的电流大小及方向,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
本公开第三方面提供一种基于第一方面提供的一种电机驱动装置的控制方法,所述电机驱动装置的控制方法包括:
获取需求加热功率和需求充电功率;
根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比;
根据所述目标输入电流接收所述供电模块的输入电流,并根据所述第一目标占空比对每相桥臂进行控制,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
本公开第四方面提供一种电机驱动装置,基于第一方面所述的电机驱动装置,所述电机驱动装置还包括:
数据获取模块,用于获取需求加热功率和需求充电功率;
控制模块,用于根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,调节三相电机的每相电的电流大小及方向,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
本公开第五方面提供一种电机驱动装置,基于第一方面所述的电机驱动装置,所述电机驱动装置还包括:
数据获取模块,用于获取需求加热功率和需求充电功率;
目标占空比获取模块,用于根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比;
PWM控制模块,用于根据所述目标输入电流接收所述供电模块的输入电流,并根据所述第一目标占空比对每相桥臂进行控制,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
本公开第六方面提供一种车辆,包括存储器、处理器;其中,所述处理器通过读取所 述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现如第二方面或者第三方面所述的控制方法。
本公开第七方面一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现第二方面或者第三方面所述的控制方法。
本公开技术方案提供一种电机驱动装置、控制方法、车辆及可读存储介质,电机驱动装置的控制方法包括:获取需求加热功率和需求充电功率;根据需求加热功率、需求充电功率以及电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比;根据目标输入电流接收供电模块的输入电流,并根据所述第一目标占空比对每相桥臂进行控制,以同时控制供电模块对动力电池的充电过程、三相电机的零输出扭矩以及使三相逆变器以及三相电机对流经三相逆变器或者三相电机中至少一个的换热介质进行加热。本公开技术方案在不增加额外升压充电模块和加热模块的基础上,实现了零扭矩输出、动力电池充电和动力电池加热的协同控制方法,有效解决了非全程架设直流供电线路的车辆对所需求的零扭矩输出、电池充电和加热功能协同工作的问题,且加热功能不仅可以加热动力电池,还可以加热乘客舱,具有电路结构简单、成本低以及失效风险小等优点。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例一提供的一种电机驱动装置的电路图;
图2是本公开实施例一提供的一种电机驱动装置的另一电路图;
图3是本公开实施例二提供的一种电机驱动装置的控制方法的流程图;
图4是本公开实施例三提供的一种电机驱动装置的控制方法的流程图;
图5是本公开实施例三提供的一种电机驱动装置的控制方法中的步骤S21的流程图;
图6是本公开实施例三提供的一种电机驱动装置的控制方法中的步骤S21的另一流程图;
图7是本公开实施例三提供的一种电机驱动装置的控制方法中的步骤S22之后的流程图;
图8是本公开实施例三提供的一种电机驱动装置的控制方法中的步骤S23的流程图;
图9是本公开实施例三提供的一种电机驱动装置的控制方法中的步骤S22之后的另一流程图;
图10是本公开实施例三提供的一种电机驱动装置的控制方法中的步骤S26的流程图;
图11是本公开实施例三提供的一种电机驱动装置的控制方法的控制结构框图;
图12是本公开实施例三提供的一种电机驱动装置的控制方法中的三相控制脉冲示意图;
图13是本公开实施例三提供的一种电机驱动装置的控制方法中的电流分配示意图;
图14是本公开实施例四提供的一种电机驱动装置的结构示意图;
图15是本公开实施例五提供的一种电机驱动装置的结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
为了说明本公开的技术方案,下面通过具体实施例来进行说明。
本公开实施例一提供一种电机驱动装置,如图1所示,电机驱动装置包括:依次连接的三相逆变器101、三相电机102以及降压侧电容C2,降压侧电容C2连接至供电模块103的正极和负极,三相逆变器101的第一端连接至动力电池104的正极,三相逆变器101的第二端连接至动力电池104负极,降压侧电容C2的第一端连接三相电机102的三相线圈的连接点,降压侧电容C2的第二端连接三相逆变器101的第二端,三相电机102的三相线圈分别连接三相逆变器101的三相桥臂的中点。
对于三相逆变器101,具体的,三相逆变器101包括第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元、第五功率开关单元以及第六功率开关单元,第一功率开关单元、第三功率开关单元以及第五功率开关单元的输入端共接并构成三相逆变器101的第一端,第二功率开关单元、第四功率开关单元以及第六功率开关单元的输出端共接并构成三相逆变器101的第二端,三相电机102的第一相线圈连接第一功率开关单元的输出端和第四功率开关单元的输入端,三相电机102的第二相线圈连接第三功率开关单元的输出端和第六功率开关单元的输入端,三相电机102的第三相线圈连接第五功率开关单元的输出端和第二功率开关单元的输入端。
三相逆变器101中第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,三相电机102是三相四线制,可以 是永磁同步电机或异步电机,在三相线圈连结中点引出中性线,且中性线和供电模块103连接,电机三相线圈分别与三相逆变器101中的A、B、C相上下桥臂之间的中点连接。
供电模块103可以是直流充电桩提供的直流电,也可以是单相、三相交流充电桩经过整流后输出的直流电,也可以是燃料电池发出的电能,也可以是增程器如发动机转动带动发电机发电,经发电机控制器整流后的直流电等电源形式。
本公开实施例通过设置动力电池、三相逆变器、三相电机以及供电模块的连接结构,通过三相电机的三相线圈的连接点连接供电模块,接收供电模块输入的电流,当电机驱动装置需要进行加热和充电时,获取需求加热功率、需求充电功率以及电机零扭矩输出,根据需求加热功率、需求充电功率以及电机零扭矩输出对三相逆变器的三相桥臂进行控制,以使加热过程、充电过程以及电机零扭矩输出过程同时进行。
进一步的,如图2所示,电机驱动装置还包括电感L、开关K1和开关K2,开关K1的第一端连接三相电机102的三相线圈的连接点,开关K1的第二端连接电感L的第一端,电感L的第二端连接降压侧电容C2的第一端,降压侧电容C2的第二端连接开关K2的第一端,开关K2的第二端连接三相逆变器101的第二端。
其中,电感L用于进行滤波和储能,开关K1和开关K2用于控制供电模块103的接入和断开。
本公开实施例二提供一种基于实施例一提供的电机驱动装置的控制方法,如图3所示,电机驱动装置的控制方法包括:
步骤S10.获取需求加热功率和需求充电功率。
在步骤S10中,需求加热功率可以为通过整车控制器检测待加热部件的温度所获取的加热功率,待加热部件可以为充电电池,需求充电功率为整车控制器根据动力电池当前的电量状态获取的充电功率,此时,车辆处于非驱动状态,电机扭矩输出值为零。
步骤S11.根据需求加热功率、需求充电功率以及电机零扭矩输出,调节三相电机的每相电的电流大小及方向,以同时控制供电模块对动力电池的充电过程、三相电机的零输出扭矩以及使三相逆变器以及三相电机对流经三相逆变器或者三相电机中至少一个的换热介质进行加热。
在步骤S11中,每相电的电流方向是指流入三相线圈的方向或者从三相线圈流出的方向,每相电的电流大小是指流入三相线圈或者从三相线圈流出的电流的大小,例如,从与三相逆变器中的A相桥臂连接的线圈流入三相电机,从与三相逆变器中的B相和C相桥臂连接的线圈流出三相电机,由于通过调节三相电机的每相电的电流大小可以调节需求加热功率和零扭矩输出,并且三相电机的每相电的电流大小的和等于三相电机的三相线圈的连接点的输入电流,该输入电流可以用于调节充电功率,通过调节三相电机的每相电的电流 大小及方向,可以同时控制供电模块对动力电池的充电过程、三相电机的零输出扭矩以及使三相逆变器以及三相电机对流经三相逆变器或者三相电机中至少一个的换热介质进行加热。
本公开根据需求加热功率、需求充电功率以及电机零扭矩输出,通过调节三相电机的每相电的电流大小及方向,在不增加额外升压充电模块和加热模块的基础上,实现了零扭矩输出、动力电池充电和动力电池加热的协同控制方法,有效解决了非全程架设直流供电线路的车辆对所需求的扭矩输出、电池充电和加热功能协同工作的问题,且加热功能不仅可以加热动力电池,还可以加热乘客舱,具有电路结构简单、成本低以及失效风险小等优点。
本公开实施例三提供一种基于实施例一提供的电机驱动装置的控制方法,如图4所示,电机驱动装置的控制方法包括:
步骤S20.获取需求加热功率和需求充电功率。
步骤S21.根据需求加热功率、需求充电功率以及电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比。
步骤S22.根据目标输入电流接收供电模块的输入电流,并根据第一目标占空比对每相桥臂进行控制,以同时控制供电模块对动力电池的充电过程、三相电机的零输出扭矩以及使三相逆变器以及三相电机对流经三相逆变器或者三相电机中至少一个的换热介质进行加热。
对于步骤S20,由于步骤S20与步骤S10相同,在此不再赘述。
对于步骤S21,三相电机的目标输入电流是指供电模块向三相电机输出的电流,每相桥臂的控制脉冲的第一目标占空比是指向每相桥臂输出的控制每相桥臂上的功率开关单元通断的PWM信号占空比,根据需求加热功率、需求充电功率以及电机零扭矩输出计算获取三相电机的目标输入电流,再根据目标输入电流计算每相桥臂的控制脉冲的第一目标占空比。
作为一种实施方式,如图5所示,步骤S21包括:
步骤S211.获取降压侧电容的目标电压。
在步骤S211中,获取动力电池的当前电压,并与供电模块进行通信获取供电模块的最高输出电压,根据动力电池的当前电压和供电模块的最高输出电压确定降压侧电容的目标电压,降压侧电容的目标电压满足如下三点:1、降压侧电容的目标电压小于供电模块的最高输出电压;2、降压侧电容的目标电压小于动力电池的当前电压;3、降压侧电容的目标电压尽量选择较大值,但是要满足上述1和2的要求,并留有一定电压余量;因此,可以使降压侧电容的目标电压为动力电池当前电压和充电桩最高输出电压的两者中的最小值。
其中,车辆的控制模块与供电模块的交互过程为:
步骤1、控制模块中的BMS(BATTERY MANAGEMENT SYSTEM,电源管理系统)通过报文获取供电模块的最高输出电压。
步骤2、BMS根据供电模块的最高输出电压和动力电池当前电压,在留有一定余量的情况下,得到降压侧电容电压的目标值,并发送给控制模块。
步骤3、控制模块中的电机控制器根据降压侧电容的目标电压,控制三相的平均占空比,使得降压侧电容电压达到目标电压值。
步骤4、BMS通过报文通知外部供电模块车辆端的电压值(也就是降压侧的电压值)。
步骤5、外部供电模块检测降压侧电压值,并和报文收到的电压值比较,二者差值满足预设标准后,再开始进行充电。
步骤S212.根据需求加热功率、需求充电功率、电机零扭矩输出以及目标电压计算三相电机的目标输入电流。
在步骤S212中,根据公式
Figure PCTCN2019125979-appb-000001
计算目标输入电流,P为需求加热功率,P 2为需求充电功率,U 2为降压侧电容的目标电压。
进一步的,如图6所示,步骤S21还包括:
步骤S213.根据电机转子位置、需求加热功率、目标输入电流以及电机零扭矩输出获取三相电机的每相电的目标电流。
其中,步骤S213,包括:
根据电机转子位置、需求加热功率、目标输入电流以及电机零扭矩输出按照以下公式1、公式2以及公式3计算三相电机的每相电的目标电流:
公式1:
Figure PCTCN2019125979-appb-000002
公式2:IA+IB+IC=I
公式3:P=(IA×IA+IB×IB+IC×IC)×R
其中,α为转子滞后角度,IA,IB,IC为三相电机的每相电的目标电流,I为目标输入电流,Te为电机零扭矩输出,λ,ρ,L d,L q为电机参数,P为需求加热功率,R为三相电机的等效阻抗。
步骤S214.根据每相电的目标电流、目标输入电流、降压侧电容的目标电压以及动力电池的电压,获取每相桥臂的控制脉冲的第一目标占空比。
其中,步骤S214包括:
步骤S2141.根据降压侧电容的目标电压、目标输入电流和动力电池的电压获取三相电控制脉冲的平均占空比。
其中,步骤S2141包括:
根据降压侧电容的目标电压、目标输入电流和动力电池的电压通过以下公式获取三相电控制脉冲的平均占空比:
公式4:U 2=U 1×D 0-I×R,其中,U 2为降压侧电容的目标电压,U 1为动力电池的电压,D 0为三相电控制脉冲的平均占空比,I为目标输入电流,R为三相电机的等效阻抗。
其中,U 1×D 0为三相逆变器两端的电压,I×R为三相电机上的压降,可以根据三相逆变器两端的电压等于三相电机上的压降与降压侧电容的目标电压的和得到上述公式。
步骤S2142.根据平均占空比、目标输入电流、每相电的目标电流、降压侧电容的目标电压以及动力电池的电压获取每相桥臂的控制脉冲的第一目标占空比。
其中,步骤S2142包括:
根据平均占空比、目标输入电流、每相电的目标电流以及动力电池的电压按照以下公式获取每相桥臂的控制脉冲的第一目标占空比:
公式5:
Figure PCTCN2019125979-appb-000003
其中,I 1为每相电的目标电流,R 1为每相线圈的等效阻抗,D 1为每相桥臂的控制脉冲的第一目标占空比。
其中,由于每相桥臂与每相线圈的连接点的电压等于该相线圈上的压降与降压侧电容的目标电压之和,即U 1×D 1=R 1×I 1+U 2,在结合上述公式4即可得到公式5,即可以得到每相桥臂的控制脉冲的第一目标占空比。
在图2所示的电路图中,电机驱动装置还包括电感;
步骤S2141中根据降压侧电容的目标电压、目标输入电流和动力电池的电压获取三相电控制脉冲的平均占空比,包括:
根据降压侧电容的目标电压、目标输入电流和动力电池的电压通过以下公式获取三相电控制脉冲的平均占空比:
U 2=U 1×D 0-I×R-I×R L,其中,U 2为降压侧电容的目标电压,U 1为动力电池的电 压,D 0为三相电控制脉冲的平均占空比,I为目标输入电流,R为三相电机的等效阻抗,R L为电感阻抗。
其中,由于设置了电感,电感上有电感阻抗,因此,该公式中还包含电感上的压降。
步骤S2142.中根据平均占空比、目标输入电流、每相电的目标电流以及动力电池的电压获取每相桥臂的控制脉冲的第一目标占空比:
Figure PCTCN2019125979-appb-000004
其中,I 1为每相电的目标电流,R 1为每相线圈的等效阻抗,D 1为每相桥臂的控制脉冲的第一目标占空比。
本实施例根据需求加热功率、需求充电功率、电机零扭矩输出计算三相电机的目标输入电流,再根据电机转子位置、需求加热功率、目标输入电流以及电机零扭矩输出获取三相电机的每相电的目标电流,再根据目标输入电流和三相电机的每相电的目标电流计算每相桥臂的控制脉冲的第一目标占空比,根据第一目标占空比对三相桥臂进行控制,在不增加额外升压充电模块和加热模块的基础上,实现了零扭矩输出、动力电池充电和动力电池加热的协同控制方法,有效解决了非全程架设直流供电线路的车辆对所需求的扭矩输出、电池充电和加热功能协同工作的问题,且加热功能不仅可以加热动力电池,还可以加热乘客舱,具有电路结构简单、成本低以及失效风险小等优点。
进一步的,如图7所示,步骤S22中,根据第一目标占空比对每相桥臂进行控制,之后还包括:
步骤S23.获取三相电机的实际输入电流,根据三相电机的实际输入电流与目标输入电流通过PID调节器进行PID控制运算得到三相电控制脉冲的平均占空比变化量。
步骤S24.根据第一目标占空比和平均占空比变化量得到第二目标占空比;
步骤S25.根据第二目标占空比对每相桥臂进行控制,以同时控制供电模块对动力电池的加热过程以及三相电机的输出扭矩。
在步骤S23中,进行PID控制(比例-积分-微分控制)的PID调节器是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。比例反应系统的当前偏差,通过比例系数可以调节以减小误差,积分反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行直至无误差,微分反应系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。
作为一种实施方式,如图8所示,步骤S23包括:
步骤S231.获取三相电机的实际输入电流与目标输入电流的电流差值。
步骤S232.当三相电机的实际输入电流大于目标输入电流时,根据电流差值和PID调节器的比例系数计算三相电控制脉冲的平均占空比变化增量。
步骤S233.当三相电机的实际输入电流小于目标输入电流时,根据电流差值和PID调节器的比例系数计算三相电控制脉冲的平均占空比变化减量。
在上述步骤中,当三相电机的实际输入电流大于目标输入电流时,使输出的三相电控制脉冲的平均占空比逐渐增大,以减少三相电机的实际输入电流,当三相电机的实际输入电流小于目标输入电流时,使输出的三相电控制脉冲的平均占空比逐渐减小,以增大三相电机的实际输入电流。
在上述步骤中,三相电机的实际输入电流是由电机控制器通过对三相电控制脉冲的平均占空比的调节实现,假设三相电机的目标输入电流为I *,获取三相电机的实际输入电流为I,则把电流差值(I *-I)输入到PID调节器,经PID调节器计算后输出三相脉冲的平均占空比K(I *-I),其中,K为PID调节器中所设置的比例系数,如果三相电机的实际输入电流I小于三相电机的目标输入电流I *时,PID调节器输出的三相电控制脉冲的平均占空比将会减小,使得三相电机的实际输入电流增加;相反三相电机的实际输入电流I大于三相电机的目标输入电流I *时,PID调节器输出的三相电控制脉冲的平均占空比将会增加,使得三相电机的实际输入电流减小。
进一步的,如图9所示,步骤S22中,根据第一目标占空比对每相桥臂进行控制,之后还包括:
步骤S26.获取每相电的实际电流,根据每相电的实际电流与目标电流通过PID调节器进行PID控制运算得到每相桥臂的控制脉冲的占空比变化量。
步骤S27.根据第一目标占空比和占空比变化量得到第三目标占空比。
步骤S28.根据第三目标占空比对每相桥臂进行控制,以同时控制供电模块对动力电池的加热过程以及三相电机的输出扭矩。
其中,如图10所示,步骤S26包括:
步骤S261.获取每相电的实际电流与目标电流之间的电流差值。
步骤S262.当每相电的目标电流大于实际电流时,根据电流差值和PID调节器的比例系数计算该相桥臂的占空比变化增量。
步骤S263.当每相电的目标电流小于实际电流时,根据电流差值和PID调节器的比例系数计算该相桥臂的占空比变化减量。
在上述步骤中,当每相桥臂的目标电流大于实际电流时,使输出的占空比变化增量逐渐增大,以增加每相桥臂的实际电流;当每相桥臂的目标电流小于实际电流时,使输出的占空比变化减量逐渐减小,以降低每相桥臂的实际电流。
对于三相桥臂电流的控制,主要是在三相电控制脉冲的平均占空比的基础上叠加增量来实现的。假设A相输出的实际电流为Is,目标值为Is*,则把电流差(Is-Is*)输入到PID控制器,经PID计算之后输出A相脉冲占空比增量值。如果A相实际电流Is小于目标值Is*时,PID输出的A相占空比将会增加,使得A相的输出电流增加;相反A相实际电流Is大于目标值Is*时,PID输出的A相占空比将会减小,使得A相的输出电流降低,B相和C相的电压控制和A相一样,不在赘述。
本实施方式中,在平均占空比的基础上,增加一个叠加量,用来完成对三相电流的控制,使三相电流的实际值达到三相电流的目标值。当某相实际充电电流小于目标值时,增加该相占空比的叠加量,相反当实际充电电流大于目标值时,减小该项占空比的叠加量,也可以通过PID自动控制,使得三相的实际电流一直在目标是附近,通过对三相电流的控制,实现了零扭矩输出、充电和加热的同时控制。
下面通过具体举例进一步说明本公开实施例:
本公开实施例提供的一种电机驱动装置的结构如图2所示,包括动力电池、母线电容C1、电机控制器、三相电机、电感和开关,其中电池通过直流母线电容C1和电机控制器连接,电机控制器通过三相线和三相电机102连接,三相电机102通过三线线圈的连接点引出的中线和开关K1连接,开关K1接电感L,电感L通过降压侧电容C2接充电桩,动力电池的负极接开关K2,开关K2另一端和供电模块连接,通过开关K1和K2的操作系统分为行车驱动模式和驻车充电模式,另外电驱系统和电池系统的冷却回路相连接,通过冷却液的流动,实现热量从电驱系统到电池系统的传输。
首先获取车辆的行车模式,当车辆处于行车驱动模式时,控制开关K1和K2断开,以确保电感不带电,电机控制器根据扭矩控制相关算法进行电机的扭矩控制,完成行车驱动的功能。
当车辆处于驻车充电模式时,控制开关K1和K2闭合,来接通整车和供电模块组成的充电回路,供电模块包括恒压充电和恒流充电两种模式,现以恒流充电模式来做具体说明:
首先根据低温环境下的加热需求和动力电池的充电需求,获得扭矩输出目标值,需求加热功率和需求电池充电功率。
电机驱动装置与供电模块之间进行交互,电池管理器给电机控制器发出降压指令,电机控制器通过三相占空比控制,给降压侧电容C2充电到电压U,充电桩检测到U之后开始充电,同时电池管理器根据自身的充电能力,获取降压侧电容电压和供电模块的输出电 流,给充电桩发送目标输出电流,充电桩按照目标充电电流进行输出。
再然后根据零扭矩输出、加热功率和充电功率需求,计算出三相电流目标值,计算公式如下所示。
Figure PCTCN2019125979-appb-000005
IA+IB+IC=I
P=(IA×IA+IB×IB+IC×IC)×R1
其中,α为转子滞后角度,IA,IB,IC为三相线圈的每相电流,I为所述三相电机的输入电流,满足驱动、电池充电和和加热三方面的功率需求,Te为电机零扭矩输出,λ,ρ,L d,L q为电机参数,P为加热功率。
采样三相电流IA,IB,IC和三相电机的实际输入电流I,然后分别通过各自PID控制环实现降压侧电容的实际电压和加热功率的控制,三相电机的目标输入电流I *由电池系统发给电机控制器,电机控制器比较实际输入电流和目标输入电流后,经过PID调节器的控制输出三相占空比的平均目标值,实现对实际输入电流的控制,如果实际输入电流大于目标输入电流,经PID控制之后会增加三相的平均占空比,使实际输入电流降低;相反实际输入电流小于目标输入电流,经PID控制之后会减小三相的平均占空比,使实际输入电流升高,同时对实际三相电流IA,IB和IC和目标电流IA*,IB*和IC*进行比较,通过各自的PID控制调整三相占空比,调节占空比越大该相流入电机的电流越大,调节占空比越小流出电机的电流越小,如图11和图12所示,加热功率用一个PID控制环路,实现三相间的电流控制;充电电流或者充电电压用另一个PID控制环,实现充电电流或者电压的控制,同时通过两个PID的控制实现充电电压和加热功率的同时、独立和连续控制,实现闭环控制,在零扭矩输出条件下,实现充电功率和加热功率的协同控制,满足低温环境下电池对充电功率和加热功率的双重需求。
在低温环境下充电时,电机驱动装置中对动力电池的充电、升温以及扭矩输出控制通常会经历三个阶段:
首先是以加热为主的充电阶段,该阶段由于动力电池温度较低,充电能力较弱,充电电流较小,此时控制加热功率最大,实现动力电池小电流充电条件下的大功率加热,尽快提升电池温度。该阶段以加热为主,电流分配如图13的中间图所示,充电桩输出电流I至母线电容C1后,通过加热控制来消耗电容上的电量,二者抵消后动力电池的充电电流很小。所以电感上电流很小,但是三相电机和电机控制器流过电流较大,需要进行实时的温度检 测和保护,确保在不烧坏器件的前提下,使得电池的加热功率最大。
然后是随着动力电池温度的上升,动力电池的充电能力不断增强,充电电流不断增加,同时也保障较大的加热功率,动力电池的温度也在不断上升,而且由于较大的充电电流,动力电池内部也会有一定发热量。电流分配如图13的右图所示,充电桩输出电流I至母线电容C1的电流较大,加热控制来消耗电容上的电流较小,二者抵消后电池的充电电流较大。所以电感上、三相电机和电机控制器流过电流都很大,需要进行实时的温度检测和保护,确保在不烧坏器件的前提下,使得电池的充电和加热功率协同最优。
最后是电池温度较高之后,可以进行大功率的直流充电,电池内部会较大的发热,有利于电池温度的保持,所以对加热功率的需求会降低,该阶段主要进行充电。电流分配如图13的左图所示,充电桩输出电流至母线电容C1的电流较大,加热控制来消耗电容上的电流很小,二者抵消后充电电流很大。所以电感上流过电流很大,需要进行实时的温度检测和保护,确保在不烧坏器件的前提小,使得电池的充电功率最大。
每次充电过程中电机转子处于某个位置保持不变,根据扭矩控制算法和加热功率计算出三相电流也保持不变,且三相不平衡,但是从整车的使用周期通常为几年,电机转子出现在某个位置是随机的,三相电流的大小也是随机,每一相电流大小的机会均等,所以在整个生命周期来看,三相是平衡的,不存在某一相使用过度老化加剧的问题。
另外充电电流由三相共同承担,可以充分发挥电机和电机控制器的功率容量,在单独优化电感之后,可实现更大功率的充电。
本公开实施例中扭矩输出、动力电池充电和动力电池加热协同控制的方法主要通过调节电机控制器中六个功率开关管的控制脉冲的占空比来实现,首先是通过控制三相占空比的平均值用来控制充电电流或充电电压,通过三相占空比的差值用来控制三相间的电流,该电流在三相之间流动,例如电流由A相流入电机,然后从电机BC相流出,该三相电流用来实现电机的扭矩和加热功率控制。如图12所示,从左到右依次为充电,加热,充电和加热同时控制下的三相占空比分配的示例。通过实现闭环控制,在零扭矩输出条件下,实现充电功率和加热功率的协同控制,满足低温环境下电池对充电功率和加热功率的双重需求。
本公开技术方案在原有电驱系统的基础上,通过扭矩输出、动力电池充电和动力电池加热的协同控制方法,实现了电机扭矩输出,以确保充电时整车的扭矩安全,并且满足在低温环境下的动力电池的充电和加热需求。
本公开实施例四提供一种电机驱动装置50,如图14所示,基于实施例一提供的电机驱动装置,电机驱动装置还包括:
数据获取模块501,用于获取需求加热功率和需求充电功率;
控制模块502,用于根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,调节三相电机的每相电的电流大小及方向,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
本公开实施例五提供一种电机驱动装置60,如图15所示,基于实施例一提供的电机驱动装置,电机驱动装置还包括:
数据获取模块601,用于获取需求加热功率以及需求充电功率;
目标占空比获取模块602,用于根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比;
PWM控制模块603,用于根据所述目标输入电流接收所述供电模块的输入电流,并根据所述第一目标占空比对每相桥臂进行控制,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
本公开另一种实施例提供一种车辆,包括存储器、处理器;
其中,处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于实现实施例二和三提供的控制方法。
本公开另一种实施例提供一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现实施例二和三提供的控制方法。
以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种电机驱动装置,其特征在于,所述电机驱动装置包括:依次连接的三相逆变器、三相电机以及降压侧电容,所述降压侧电容连接至供电模块的正极和负极,所述三相逆变器的第一端连接至动力电池的正极,所述三相逆变器的第二端连接至动力电池的负极,所述降压侧电容的第一端连接所述三相电机的三相线圈的连接点,所述降压侧电容的第二端连接所述三相逆变器的第二端,所述三相电机的三相线圈分别连接所述三相逆变器的三相桥臂的中点。
  2. 如权利要求1所述的电机驱动装置,其特征在于,所述电机驱动装置还包括电感,所述电感连接于所述三相电机的三相线圈的连接点和所述降压侧电容的第一端之间。
  3. 一种基于权利要求1或者2所述的电机驱动装置的控制方法,其特征在于,所述电机驱动装置的控制方法包括:
    获取需求加热功率和需求充电功率;
    根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,调节三相电机的每相电的电流大小及方向,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
  4. 一种基于权利要求1或者2所述的电机驱动装置的控制方法,其特征在于,所述电机驱动装置的控制方法包括:
    获取需求加热功率和需求充电功率;
    根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比;
    根据所述目标输入电流接收所述供电模块的输入电流,并根据所述第一目标占空比对每相桥臂进行控制,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
  5. 如权利要求4所述的控制方法,其特征在于,根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比,包括:
    获取降压侧电容的目标电压;
    根据所述需求加热功率、所述需求充电功率、电机零扭矩输出以及所述目标电压计算所述三相电机的目标输入电流。
  6. 如权利要求5所述的控制方法,其特征在于,根据所述需求加热功率、所述需求充 电功率以及所述电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比,还包括:
    根据电机转子位置、所述需求加热功率、所述目标输入电流以及电机零扭矩输出获取三相电机的每相电的目标电流;
    根据所述每相电的目标电流、所述目标输入电流、降压侧电容的目标电压以及所述动力电池的电压,获取每相桥臂的控制脉冲的第一目标占空比。
  7. 如权利要求6所述的控制方法,其特征在于,所述根据电机转子位置、所述需求加热功率、所述目标输入电流以及电机零扭矩输出获取每相电的目标电流,包括:
    根据所述需求加热功率、电机转子位置以及电机零扭矩输出按照以下公式1、公式2以及公式3计算三相电机的每相电的目标电流:
    公式1:
    Figure PCTCN2019125979-appb-100001
    公式2:IA+IB+IC=I
    公式3:P=(IA×IA+IB×IB+IC×IC)×R
    其中,α为转子滞后角度,IA,IB,IC为三相线圈的每相电流,I为所述目标输入电流,Te为电机零扭矩输出,λ,ρ,L d,L q为电机参数,P为加热功率,R为三相电机的等效阻抗。
  8. 如权利要求6或7所述的控制方法,其特征在于,根据所述每相电的目标电流、所述目标输入电流、所述降压侧电容的目标电压以及所述动力电池的电压,获取每相桥臂的控制脉冲的第一目标占空比,包括:
    根据所述降压侧电容的目标电压、所述目标输入电流和所述动力电池的电压获取三相电控制脉冲的平均占空比;
    根据所述平均占空比、所述目标输入电流、所述每相电的目标电流、所述降压侧电容的目标电压以及所述动力电池的电压获取每相桥臂的控制脉冲的第一目标占空比。
  9. 如权利要求8所述的控制方法,其特征在于,根据所述降压侧电容的目标电压、所述目标输入电流和所述动力电池的电压获取三相电控制脉冲的平均占空比,包括:
    根据所述降压侧电容的目标电压、所述目标输入电流和所述动力电池的电压通过以下公式获取三相电控制脉冲的平均占空比:
    U 2=U 1×D 0-I×R,其中,U 2为降压侧电容的目标电压,U 1为动力电池的电压, D 0为三相电控制脉冲的平均占空比,I为所述目标输入电流,R为三相电机的等效阻抗;
    根据所述平均占空比、所述目标输入电流、所述每相电的目标电流以及所述动力电池的电压获取每相桥臂的控制脉冲的第一目标占空比:
    Figure PCTCN2019125979-appb-100002
    其中,I 1为每相电的目标电流,R 1为每相线圈的等效阻抗,D 1为每相桥臂的控制脉冲的第一目标占空比。
  10. 如权利要求8所述的控制方法,其特征在于,所述电机驱动装置还包括电感;
    所述根据所述降压侧电容的目标电压、所述目标输入电流和所述动力电池的电压获取三相电控制脉冲的平均占空比,包括:
    根据所述降压侧电容的目标电压、所述目标输入电流和所述动力电池的电压通过以下公式获取三相电控制脉冲的平均占空比:
    U 2=U 1×D 0-I×R-I×R L,其中,U 2为降压侧电容的目标电压,U 1为动力电池的电压,D 0为三相电控制脉冲的平均占空比,I为所述目标输入电流,R为三相电机的等效阻抗,R L为电感阻抗;
    根据所述平均占空比、所述目标输入电流、所述每相电的目标电流以及所述动力电池的电压获取每相桥臂的控制脉冲的第一目标占空比:
    Figure PCTCN2019125979-appb-100003
    其中,I 1为每相电的目标电流,R 1为每相线圈的等效阻抗,D 1为每相桥臂的控制脉冲的第一目标占空比。
  11. 如权利要求4-10中任一项所述的控制方法,其特征在于,所述根据所述第一目标占空比对每相桥臂进行控制,之后还包括:
    获取所述三相电机的实际输入电流,根据所述三相电机的实际输入电流与目标输入电流通过PID调节器进行PID控制运算得到三相电控制脉冲的平均占空比变化量;
    根据所述第一目标占空比和所述平均占空比变化量得到第二目标占空比;
    根据所述第二目标占空比对每相桥臂进行控制,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
  12. 如权利要求11所述的控制方法,其特征在于,根据所述三相电机的实际输入电流 与目标输入电流通过PID调节器进行PID控制运算得到三相电控制脉冲的平均占空比变化量,包括:
    获取三相电机的实际输入电流与目标输入电流的电流差值;
    当所述三相电机的实际输入电流大于所述目标输入电流时,根据所述电流差值和PID调节器的比例系数计算所述三相电控制脉冲的的平均占空比变化增量;
    当所述三相电机的实际输入电流小于所述目标输入电流时,根据所述电压差值和PID调节器的比例系数计算所述三相电控制脉冲的的平均占空比变化减量。
  13. 如权利要求4-10中任一项所述的控制方法,其特征在于,所述根据所述第一目标占空比对每相桥臂进行控制,之后还包括:
    获取所述每相电的实际电流,根据所述每相电的实际电流与目标电流通过PID调节器进行PID控制运算得到每相桥臂的控制脉冲的占空比变化量;
    根据所述第一目标占空比和所述占空比变化量得到第三目标占空比;
    根据所述第三目标占空比对每相桥臂进行控制,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
  14. 如权利要求13所述的控制方法,其特征在于,根据所述每相电的实际电流与目标电流通过PID调节器进行PID控制运算得到每相桥臂的控制脉冲的占空比变化量,包括:
    获取每相电的实际电流与目标电流之间的电流差值;
    当所述每相电的目标电流大于所述实际电流时,根据所述电流差值和PID调节器的比例系数计算该相桥臂的占空比变化增量;
    当所述每相电的目标电流小于所述实际电流时,根据所述电流差值和PID调节器的比例系数计算该相桥臂的占空比变化减量。
  15. 一种电机驱动装置,基于权利要求1或2任一项所述的电机驱动装置,其特征在于,所述电机驱动装置还包括:
    数据获取模块,用于获取需求加热功率和需求充电功率;
    控制模块,用于根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,调节三相电机的每相电的电流大小及方向,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
  16. 一种电机驱动装置,基于权利要求1或2任一项所述的电机驱动装置,其特征在于,所述电机驱动装置还包括:
    数据获取模块,用于获取需求加热功率以及需求充电功率;
    目标占空比获取模块,用于根据所述需求加热功率、所述需求充电功率以及电机零扭矩输出,获取三相电机的目标输入电流及每相桥臂的控制脉冲的第一目标占空比;
    PWM控制模块,用于根据所述目标输入电流接收所述供电模块的输入电流,并根据所述第一目标占空比对每相桥臂进行控制,以同时控制所述供电模块对所述动力电池的充电过程、所述三相电机的零输出扭矩以及使所述三相逆变器以及所述三相电机对流经所述三相逆变器或者所述三相电机中至少一个的换热介质进行加热。
  17. 一种车辆,其特征在于,包括存储器、处理器;
    其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现如权利要求3-14中任一所述的控制方法。
  18. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求3-14中任一所述的控制方法。
PCT/CN2019/125979 2018-12-21 2019-12-17 电机驱动装置、控制方法、车辆及可读存储介质 WO2020125626A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FIEP19898038.5T FI3902092T3 (fi) 2018-12-21 2019-12-17 Moottorin käyttölaite, menetelmä sen ohjaamiseksi, ajoneuvo ja luettava tallennusväline
JP2021536283A JP7201824B2 (ja) 2018-12-21 2019-12-17 モータ駆動装置、制御方法、車両及び可読記憶媒体
EP19898038.5A EP3902092B1 (en) 2018-12-21 2019-12-17 Electric motor driving apparatus, control method, vehicle, and readable storage medium
DK19898038.5T DK3902092T3 (da) 2018-12-21 2019-12-17 Elektrisk motordrevapparat, fremgangsmåde til styring, køretøj, og læsbart lagringsmedie
US17/416,853 US11990853B2 (en) 2018-12-21 2019-12-17 Motor drive apparatus, method for controlling the same, vehicle, and readable storage medium
EP24156699.1A EP4344051A2 (en) 2018-12-21 2019-12-17 Motor drive apparatus, method for controlling the same, vehicle, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811574157.XA CN111347887B (zh) 2018-12-21 2018-12-21 电机驱动装置、控制方法、车辆及可读存储介质
CN201811574157.X 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020125626A1 true WO2020125626A1 (zh) 2020-06-25

Family

ID=71100667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125979 WO2020125626A1 (zh) 2018-12-21 2019-12-17 电机驱动装置、控制方法、车辆及可读存储介质

Country Status (7)

Country Link
US (1) US11990853B2 (zh)
EP (2) EP4344051A2 (zh)
JP (1) JP7201824B2 (zh)
CN (1) CN111347887B (zh)
DK (1) DK3902092T3 (zh)
FI (1) FI3902092T3 (zh)
WO (1) WO2020125626A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787390A (zh) * 2021-01-27 2021-05-11 华南理工大学 电动汽车驱动与充电一体化电路及其转矩消除控制方法
US20220158574A1 (en) * 2020-11-17 2022-05-19 GM Global Technology Operations LLC System and method for generating heating ac current
CN116067401A (zh) * 2023-03-31 2023-05-05 清华大学 转子加热方法、装置、电子设备、存储介质和程序产品

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112644340B (zh) * 2019-09-25 2022-10-18 比亚迪股份有限公司 能量转换装置及车辆
CN112060938A (zh) * 2020-08-28 2020-12-11 宝能(广州)汽车研究院有限公司 电动汽车的充电控制方法以及充电装置和车辆
CN112436740A (zh) * 2020-10-20 2021-03-02 华帝股份有限公司 一种维持电源载波的控制方法、控制系统及厨房电器
JP2022112505A (ja) 2021-01-21 2022-08-02 ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド モータ制御ユニット、電気駆動システム、パワートレイン及び電気自動車
CN112937337A (zh) 2021-01-21 2021-06-11 华为技术有限公司 一种充电系统及电动汽车
CN113890343A (zh) * 2021-09-14 2022-01-04 宁波吉利罗佑发动机零部件有限公司 一种升压转换器的控制方法、装置、系统及可读存储介质
CN114211981B (zh) * 2021-11-01 2023-12-15 华为数字能源技术有限公司 一种电机驱动系统、车辆、充电方法、控制装置及介质
CN114337432A (zh) * 2021-12-30 2022-04-12 联合汽车电子有限公司 零扭矩控制方法、装置、系统、电子设备及存储介质
CN114559858A (zh) * 2022-03-17 2022-05-31 威睿电动汽车技术(宁波)有限公司 电池加热方法、系统及存储介质
CN114834260A (zh) * 2022-03-17 2022-08-02 极氪汽车(宁波杭州湾新区)有限公司 电驱主动发热控制方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224256A (ja) * 2008-03-18 2009-10-01 Denso Corp バッテリ暖機システム
JP2017011993A (ja) * 2016-08-08 2017-01-12 日立オートモティブシステムズ株式会社 充電器
US20170354088A1 (en) * 2016-06-13 2017-12-14 Honda Motor Co., Ltd. Electric lawn mower control apparatus
CN108475937A (zh) * 2015-09-11 2018-08-31 转新动力有限公司 一种用于包含一个或多个感应线圈的感应负载的控制器
CN108539833A (zh) * 2018-05-04 2018-09-14 南通大学 一种电动汽车用开绕组永磁电驱重构型车载充电系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834977A3 (de) * 1996-08-08 1999-04-14 Schmidhauser AG Einrichtung zum Laden mindestens eines Akkumulators, insbesondere eines Akkumulators für ein elektrisch angetriebenes Fahrzeug sowie ein Verfahren zum Betrieb dieser Einrichtung
FR2937803A3 (fr) 2008-10-23 2010-04-30 Renault Sas Dispositif pour la mise en forme d'un courant de charge d'une source de tension continue rechargeable d'un vehicule automobile electrique ou hybride
DE102009014704A1 (de) * 2009-03-27 2010-10-07 Sew-Eurodrive Gmbh & Co. Kg Antriebssystem, Verfahren zum Betreiben eines Antriebssystems und Verwendung
DE102011118823A1 (de) * 2011-11-18 2013-05-23 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zum Laden einer Traktionsbatterie eines Elektro- oder Hybridfahrzeuges
CN103419656B (zh) * 2012-05-22 2016-03-30 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
JP6131715B2 (ja) * 2013-05-24 2017-05-24 日産自動車株式会社 モータ制御装置
FR3014611B1 (fr) * 2013-12-10 2016-02-05 Renault Sas Dispositif de charge pour vehicule electrique avec une chaine de traction a machine a reluctance commutee
JP6439282B2 (ja) * 2014-06-09 2018-12-19 日産自動車株式会社 充電システム、給電車両、充電車両、及び充電方法
DE102015208747A1 (de) * 2015-05-12 2016-11-17 Continental Automotive Gmbh Fahrzeugseitige Ladeschaltung für ein Fahrzeug mit elektrischem Antrieb und Verfahren zum Betreiben eines fahrzeugseitigen Stromrichters sowie Verwenden zumindest einer Wicklung einer fahrzeugseitigen elektrischen Maschine zum Zwischenspeichern
CN107276415A (zh) * 2017-07-17 2017-10-20 南京南瑞集团公司 一种电动汽车驱动与充电集成功率变换器
DE102017123348A1 (de) 2017-10-09 2019-04-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wechselrichter für ein Elektroauto

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224256A (ja) * 2008-03-18 2009-10-01 Denso Corp バッテリ暖機システム
CN108475937A (zh) * 2015-09-11 2018-08-31 转新动力有限公司 一种用于包含一个或多个感应线圈的感应负载的控制器
US20170354088A1 (en) * 2016-06-13 2017-12-14 Honda Motor Co., Ltd. Electric lawn mower control apparatus
JP2017011993A (ja) * 2016-08-08 2017-01-12 日立オートモティブシステムズ株式会社 充電器
CN108539833A (zh) * 2018-05-04 2018-09-14 南通大学 一种电动汽车用开绕组永磁电驱重构型车载充电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902092A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220158574A1 (en) * 2020-11-17 2022-05-19 GM Global Technology Operations LLC System and method for generating heating ac current
US11482954B2 (en) * 2020-11-17 2022-10-25 GM Global Technology Operations LLC System and method for generating heating AC current
CN112787390A (zh) * 2021-01-27 2021-05-11 华南理工大学 电动汽车驱动与充电一体化电路及其转矩消除控制方法
CN112787390B (zh) * 2021-01-27 2022-04-22 华南理工大学 电动汽车驱动与充电一体化电路及其转矩消除控制方法
CN116067401A (zh) * 2023-03-31 2023-05-05 清华大学 转子加热方法、装置、电子设备、存储介质和程序产品
CN116067401B (zh) * 2023-03-31 2023-06-27 清华大学 转子加热方法、装置、电子设备、存储介质

Also Published As

Publication number Publication date
CN111347887A (zh) 2020-06-30
DK3902092T3 (da) 2024-04-22
EP3902092A4 (en) 2022-01-26
US11990853B2 (en) 2024-05-21
EP4344051A2 (en) 2024-03-27
EP3902092A1 (en) 2021-10-27
EP3902092B1 (en) 2024-02-28
CN111347887B (zh) 2021-06-18
FI3902092T3 (fi) 2024-05-16
JP7201824B2 (ja) 2023-01-10
JP2022514790A (ja) 2022-02-15
US20220085746A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2020125626A1 (zh) 电机驱动装置、控制方法、车辆及可读存储介质
JP7288057B2 (ja) 動力電池の充電方法、及び車両の動力電池の充電方法
CN111355432B (zh) 电机驱动装置、控制方法、车辆及可读存储介质
CN111347935B (zh) 一种车辆及其动力电池加热装置与方法
CN111354999B (zh) 一种车辆及其动力电池加热装置与方法
CN111355429B (zh) 电机驱动装置、控制方法、车辆及可读存储介质
CN111347925B (zh) 一种车辆、电机控制电路、动力电池充电方法与加热方法
CN111873830B (zh) 一种用于电动汽车的分布式双电机驱动与车载充电集成系统及其充电控制方法
CN112977173B (zh) 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN111355430B (zh) 电机控制电路、充放电方法、加热方法及车辆
CN111347937B (zh) 动力电池的加热方法、电机控制电路及车辆
CN111347938A (zh) 一种车辆及其动力电池加热装置与方法
CN111347886B (zh) 电机驱动装置、控制方法、车辆及可读存储介质
CN111355433B (zh) 电机控制电路、车辆及其加热方法
CN111355435B (zh) 电机控制电路、车辆及其加热方法
JP7313532B2 (ja) エネルギー変換装置、動力システム及び車両
CN113752912A (zh) 车辆、能量转换装置及其控制方法
CN113119804B (zh) 能量转换装置、控制方法、车辆及可读存储介质
CN114435163A (zh) 一种电动汽车双电池集成化充电拓扑电路及其交错控制策略方法
CN111355414B (zh) 车辆、电机驱动装置、控制方法及可读存储介质
Zhou et al. Research of electric vehicle on-board controller based on inverter time division multiplexing
CN112731798B (zh) 基于dc-dc变换器的pi控制方法及控制器
CN115912434A (zh) 一种新型电力系统下光储全拓扑场景仿真建模方法
CN115117988A (zh) 基于igbt的充电模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019898038

Country of ref document: EP

Effective date: 20210721