WO2020125439A1 - 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法 - Google Patents

一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法 Download PDF

Info

Publication number
WO2020125439A1
WO2020125439A1 PCT/CN2019/123450 CN2019123450W WO2020125439A1 WO 2020125439 A1 WO2020125439 A1 WO 2020125439A1 CN 2019123450 W CN2019123450 W CN 2019123450W WO 2020125439 A1 WO2020125439 A1 WO 2020125439A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
vanadium oxide
film
buffer layer
target
Prior art date
Application number
PCT/CN2019/123450
Other languages
English (en)
French (fr)
Inventor
鲁远甫
李锐
李光元
杨春雷
魏广路
佘荣斌
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020125439A1 publication Critical patent/WO2020125439A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Definitions

  • the present application relates to a method for preparing a thin film of microelectronic semiconductor technology, in particular to a method for preparing a thermosensitive thin film material for a flexible vanadium oxide terahertz detector using low-temperature buffer layer technology.
  • Terahertz wave detection technology in military technology such as non-destructive detection of explosives and biochemical detection, military communications, strategic missiles, aerospace vehicles, hidden weapons inspection, battlefield medical treatment, as well as security inspections at airports or important occasions, medical human imaging, Civil technology such as environmental monitoring, plant structure research, geological survey, archaeology, and cultural relic identification all have significant scientific value.
  • terahertz radiation photon energy is only millielectron volts (0.414 ⁇ 41.4meV), which is equivalent to the low-frequency vibration and rotation energy of molecules. Therefore, the tiny noise of the environment or devices often masks the terahertz weak detection signal. For this reason, traditional terahertz detectors require special operations at deep and low temperatures (below the temperature of liquid helium), highly sensitive superconducting detection materials (such as NbN materials, yttrium barium copper oxide (YBaCuO) and their derivatives, etc.) Conditions to improve the signal-to-noise ratio of the detector.
  • the related terahertz detectors reported so far are all prepared on a silicon substrate, and the device processing is difficult: according to the " ⁇ /4 principle" of the infrared microbolometer microbridge, it is applied to terahertz detection. 100 ⁇ m (3THz), the height of the micro-bridge resonant cavity needs to reach 25 ⁇ m (Note: the infrared detector is only 1 ⁇ 2 ⁇ m), and the manufacturing accuracy of the microbridge is 0.1 ⁇ 1 ⁇ m.
  • Current device materials and processing technology (MEMS) are difficult to meet the relevant requirements.
  • a VO x terahertz detector based on a flexible substrate can avoid complex CMOS processes, reduce the difficulty of the preparation process, and reduce the cost of manufacturing the detector.
  • CMOS processes complex CMOS processes
  • flexible terahertz detectors mainly because the preparation of good quality VO x thermosensitive thin films on flexible substrates requires growth at high temperatures (>400°C), and most flexible materials Does not have high temperature resistance.
  • the prior art "A preparation method of a terahertz modulator film material based on a flexible substrate” discloses a VO 2 film based on a flexible substrate polyimide, which is controlled by magnetron at low temperature
  • a metal V film was prepared by sputtering, and then a VO x film was obtained by heat treatment in an oxygen atmosphere at a temperature of 250-300° C. for 30-180 s. Because the film is grown at a low temperature and the heat treatment temperature is low, it is not enough to grow a thin film of good quality VO x . Therefore, the resulting film has a poor crystal form, mainly an amorphous structure, the surface is not dense, and the performance is poor. Not suitable for use on flexible terahertz detectors.
  • the prior art also has VO x grown on polyimide (PI), but all use low temperature ( ⁇ 300° C.) sputter deposition, or use chemical solution hydrothermal growth.
  • the VO x grown on the low-temperature PI substrate is mainly amorphous, with low crystallinity and poor performance, and the VO x deposited at high temperature based on the existing preparation method exhibits island-like growth and large surface fluctuations, which is not conducive to the formation of stable electricity performance.
  • this application proposes a low-temperature buffer layer technology, by using high temperature resistant polyimide PI (high temperature resistance up to 500 °C) as a substrate, using magnetron sputtering at low temperature First prepare a vanadium oxide (VO x ) buffer layer, after annealing, and then use magnetron sputtering to grow vanadium oxide film at high temperature, and finally obtain a uniform surface, dense structure, good film formation quality, good crystallization, and polymerization Vanadium oxide composite flexible film with tight imide binding and not easy to fall off.
  • VO x vanadium oxide
  • the present application relates to a method for preparing a vanadium oxide composite film, which includes, step one, forming a high temperature resistant flexible material film on a substrate to form a substrate; step two, forming the flexible material film on the substrate Vanadium oxide buffer layer; step three, annealing the substrate formed with the vanadium oxide buffer layer; step four, forming a vanadium oxide thin film on the vanadium oxide buffer layer again.
  • a substrate preparation step is further included; wherein, the substrate is a silicon substrate.
  • the substrate preparation step further includes forming a silicon nitride layer on the silicon substrate to form a silicon substrate having a silicon nitride layer; in step one, the flexible material film is formed on the nitrogen On the silicon layer.
  • a peeling step is further included; wherein, the peeling step includes peeling the flexible material film formed with the vanadium oxide buffer layer and the vanadium oxide film from the substrate to obtain A flexible vanadium oxide composite film formed of a vanadium oxide buffer layer and a vanadium oxide film is formed on the flexible material film.
  • the thermal decomposition temperature of the high temperature resistant flexible material is higher than the annealing temperature in step three.
  • the high temperature resistant flexible material is a high temperature resistant resin material.
  • the high temperature resistant resin material is polyimide.
  • the thermal decomposition temperature of the polyimide is greater than 400°C.
  • the vanadium oxide buffer layer is formed on the flexible material film by a magnetron sputtering method.
  • the conditions for forming the vanadium oxide buffer layer by magnetron sputtering are: the substrate temperature is 80-150° C., the vacuum degree is 2.5-4.0 ⁇ 10 -4 Pa, and the distance between the target and the substrate is 60-110 mm , Argon flow rate is 15-30sccm, oxygen flow rate is 0.3-2.0sccm, argon-oxygen ratio is 7.5:1-39:1, sputtering working pressure is 0.2-0.45Pa, sputtering power is 150-300W, deposition time is 0.5-4min.
  • the target material is a metal vanadium target.
  • the annealing temperature is 420-550°C.
  • a vanadium oxide thin film is formed on the vanadium oxide buffer layer again by a magnetron sputtering method.
  • the conditions for the magnetron sputtering to form the vanadium oxide film again are: the substrate temperature is 400-550° C., the distance between the target and the substrate is 60-110 mm, the argon flow rate is 15-30 sccm, and the oxygen flow rate is 0.3- 2.0sccm, argon-oxygen ratio is 7.5:1-39:1, sputtering working pressure is 0.2-0.45Pa, sputtering power is 150-300W, deposition time is 5-20min.
  • the present application also relates to a method for preparing a vanadium oxide composite thin film, which includes, step one, forming a silicon nitride layer on a silicon substrate to form a substrate; step two, placing the substrate in deionized water, without Ultrasonic cleaning in aqueous ethanol and acetone solvents for 10 minutes, and drying; Step three, forming a polyimide film on the substrate to form a substrate; Step four, the substrate is placed in deionization Ultrasonic cleaning in water, absolute ethanol, and acetone solvents for 10 minutes and drying; Step five: Place the cleaned substrate in a high vacuum RF magnetron sputtering device with a vacuum of 2.5 ⁇ 4.0 ⁇ 10 -4 Pa
  • a substrate temperature of 80-150°C an argon flow rate of 15-30 sccm, an oxygen flow rate of 0.3-2.0 sccm, an argon-oxygen ratio of 7.5:1-39:1, and a sputtering working pressure of 0.2-0.45
  • the argon-oxygen ratio is 7.5:1-39:1, the sputtering working pressure is 0.2-0.45Pa, and the sputtering power is 150-300W, and the vanadium oxide buffer layer is deposited again for 5-20min to obtain Vanadium oxide film; the target material is a metal vanadium target.
  • a peeling step is further included; wherein the peeling step includes peeling the polyimide film formed with the vanadium oxide buffer layer and the vanadium oxide film from the substrate to obtain A flexible vanadium oxide composite film formed of a vanadium oxide buffer layer and a vanadium oxide film is formed on the flexible material film.
  • the third step further includes uniformly applying the polyimide solution on the substrate by means of knife coating or spin coating, baking at 50-60°C for 2 hours, and then at 300-400°C Heating for 8 hours under annealing to obtain a uniform polyimide film on the silicon substrate.
  • the present application also relates to a vanadium oxide composite film formed by any of the above methods.
  • the beneficial effect of the present application lies in overcoming the shortcomings of the existing low-temperature technology for preparing flexible vanadium oxide.
  • a flexible polyimide-based substrate which uses a magnetron sputtering method to obtain a composite film preparation method with a simple preparation process and easy control.
  • the composite flexible film obtained by this method has a uniform surface and a structure It is dense, has good film formation quality, good crystallization, and the combination of vanadium oxide and polyimide is not easy to fall off.
  • the technical solution of the present application can lay the foundation for the preparation of flexible vanadium oxide devices, such as vanadium oxide terahertz detectors.
  • Figure 1 The overall structure of the vanadium oxide composite film
  • Figure 2 Schematic diagram of the layered vanadium oxide composite film
  • Figure 3 Scanning electron microscope image of the vanadium oxide film prepared by the method of Example 1;
  • Figure 4 Atomic force microscope image of the vanadium oxide film prepared by the method of Example 1;
  • Figure 5 Variation curve of resistance of vanadium oxide thin film prepared by the method of Example 1 with temperature.
  • This embodiment relates to a method for preparing a flexible vanadium oxide (VO x ) film.
  • the method mainly includes forming a vanadium oxide buffer layer on a flexible material film on a substrate, and annealing the substrate on which the vanadium oxide buffer layer is formed Then, a step of forming a vanadium oxide film on the vanadium oxide buffer layer.
  • the vanadium oxide is not limited to VO 2 , V 2 O 5 , that is, oxides including various forms of vanadium, which are generally referred to as VO x by those skilled in the art.
  • the main steps of the manufacturing method include forming a high-temperature resistant flexible material film 13 on a substrate, and forming a substrate therefrom, which can be used to form a vanadium oxide buffer layer 12 in subsequent steps, That is, a vanadium oxide buffer layer 12 is formed on the flexible material on the substrate, and then the substrate on which the vanadium oxide buffer layer 12 is formed is further annealed. After the annealing is completed, the vanadium oxide thin film 11 is formed on the vanadium oxide buffer layer 12 again.
  • the vanadium oxide crystal buffer layer is formed on the substrate by low-temperature sputtering, which can ensure that the vanadium oxide crystal is formed in the case of layer growth, and the formed film has good adhesion, and then the annealing at high temperature can be performed. Effectively diffuse elements uniformly to form a thin film with good film formation quality and small surface roughness.
  • a step of preparing a substrate is also included, and a silicon substrate is generally selected as the substrate of the composite thin film, so as to facilitate making the composite thin film directly into related devices in a terahertz detector.
  • the step of preparing the substrate further includes forming a silicon nitride layer 14 on the silicon substrate 15 to form a silicon substrate 15 having the silicon nitride layer 14; and further applying the flexible material A thin film 13 is formed on the silicon nitride layer 14 on the substrate.
  • the silicon nitride layer can function as an insulating layer, making the whole better suited for MEMS process preparation in device processing. During the reaction, the silicon nitride layer only serves as a carrier for the flexible film together with the silicon wafer, and does not participate in the direct reaction.
  • a peeling step is further included; wherein the peeling step includes peeling the flexible material film 13 formed with the vanadium oxide buffer layer 12 and the vanadium oxide film 11 from the substrate, obtained in the A flexible vanadium oxide buffer film 12 and a vanadium oxide thin film 11 are formed on the flexible material film 13 to form a flexible vanadium oxide composite film.
  • the peeling step includes peeling the flexible material film 13 formed with the vanadium oxide buffer layer 12 and the vanadium oxide film 11 from the substrate, obtained in the A flexible vanadium oxide buffer film 12 and a vanadium oxide thin film 11 are formed on the flexible material film 13 to form a flexible vanadium oxide composite film.
  • the high temperature resistant flexible material is preferably a high temperature resistant resin material, and further preferably a polyimide resin material, and the thermal decomposition temperature of the polyimide is greater than 400°C.
  • the thermal decomposition temperature of the high temperature resistant flexible material is higher than the annealing temperature.
  • the vanadium oxide buffer layer is formed on the flexible material by a magnetron sputtering method; and the conditions of the magnetron sputtering are preferably that the substrate temperature is 80-150° C. and vacuum The degree is 2.5 ⁇ 4.0 ⁇ 10 -4 Pa, the distance between the target and the substrate is 60-110mm, the argon flow rate is 15-30sccm, the oxygen flow rate is 0.3-2.0sccm, the argon-oxygen ratio is 7.5:1-39:1, The sputtering working pressure is 0.2-0.45Pa, the sputtering power is 150-300W, and the deposition time is 0.5-4min; wherein, the target material used is a metal vanadium target, its mass purity is ⁇ 99.99%, and the purity of argon gas ⁇ 99.999%, purity of oxygen ⁇ 99.99%.
  • a vanadium oxide buffer layer with a uniform surface, a dense structure, good film formation quality, good crystallization, and a
  • the annealing temperature is 420-550°C; further preferably, the vanadium oxide precursor film is annealed in a vacuum or inert environment; further preferably, argon at a vacuum of 0.1-0.3 Pa In an atmosphere, anneal at 420-550°C for 30 min or more.
  • High-temperature annealing under vacuum or inert conditions helps to improve the quality of film formation, forming a vanadium oxide buffer layer with a uniform surface, dense structure, good crystallization, and not easy to fall off.
  • a vanadium oxide thin film is formed on the vanadium oxide buffer layer again by a magnetron sputtering method; and the conditions of the magnetron sputtering are preferably that the substrate temperature is 400-550° C.
  • the distance between the material and the substrate is 60-110mm, the argon flow rate is 15-30sccm, the oxygen flow rate is 0.3-2.0sccm, the argon-oxygen ratio is 7.5:1-39:1, the sputtering working pressure is 0.2-0.45Pa, sputtering
  • the power is 150-300W, and the deposition time is 5-20min; wherein, the target used is a metal vanadium target, its mass purity is ⁇ 99.99%, the purity of argon is ⁇ 99.999%, and the purity of oxygen is ⁇ 99.99%.
  • a vanadium oxide film with a uniform surface, a dense structure, good film formation quality, good crystallization, and a combination of vanadium oxide and polyimide is not easy to fall off.
  • a specific method for preparing a vanadium oxide film includes: step one, forming a silicon nitride layer on a silicon substrate to form a substrate; step two, placing the substrate in deionized water and anhydrous Ultrasonic cleaning in ethanol and acetone solvents for 10 minutes, respectively, and drying; Step three, a polyimide film is formed on the substrate to form a substrate; Step four, the substrate is sequentially placed in deionized water , Ultrasonic cleaning in absolute ethanol and acetone solvents for 10 minutes, and drying; Step five, the cleaned substrate is placed in a high vacuum RF magnetron sputtering equipment with a vacuum of 2.5 ⁇ 4.0 ⁇ 10 -4 Pa , At a substrate temperature of 80-150°C, argon flow rate of 15-30sccm, oxygen flow rate of 0.3-2.0sccm, argon-oxygen ratio of 7.5:1-39:1, sputtering working pressure of 0.2-0.45Pa, With a sp
  • a peeling step is further included; wherein, the peeling step includes peeling the polyimide film formed with the vanadium oxide film from the substrate to obtain A flexible vanadium oxide composite film with a vanadium oxide buffer layer and a vanadium oxide film formed on the flexible material film.
  • the peeling step includes peeling the polyimide film formed with the vanadium oxide film from the substrate to obtain A flexible vanadium oxide composite film with a vanadium oxide buffer layer and a vanadium oxide film formed on the flexible material film.
  • the third step further includes uniformly applying the polyimide solution on the substrate by knife coating or spin coating, baking at 50-60°C for 2 hours, and then at 300 -Heating at 400°C for 8 hours for annealing to obtain a uniform polyimide film on the silicon substrate.
  • a polyimide film having a high thermal decomposition temperature can be obtained.
  • the thermal decomposition temperature of the polyimide film is greater than 400°C.
  • the obtained polyimide film has a dielectric constant of 3.4 and a thermal decomposition temperature of 494°C.
  • Step 1 Prepare the substrate.
  • a silicon substrate is provided, and a silicon nitride layer is formed on the silicon substrate.
  • the silicon nitride layer is formed by a plasma enhanced chemical vapor deposition method; wherein the size of the silicon substrate used is 33 mm ⁇ 33 mm.
  • the silicon nitride layer can function as an insulating layer, making the whole better suited for MEMS process preparation in device processing.
  • the silicon nitride layer only serves as a carrier for the flexible film together with the silicon wafer, and does not participate in the direct reaction.
  • Step 2 Put the substrate in deionized water, absolute ethanol, and acetone solvents in sequence for 10 minutes to remove organic matter on the surface. Finally, wash with deionized water, and dry the film with a blower.
  • Step 3 Prepare the substrate.
  • the polyimide (PI) solution is evenly applied on the cleaned substrate by scraping or spin coating, and baked at 50-60°C for 2 hours to remove the organic components in the polyimide, After heating at a high temperature of 300-400°C for 8 hours, an imidization reaction occurs, and finally a uniform polyimide film is obtained on the substrate.
  • the obtained polyimide had a dielectric constant of 3.4 and a thermal decomposition temperature of 570°C.
  • Step 4 Place the substrate in the deionized water, absolute ethanol, and acetone solvents in sequence for 10 minutes to remove organic matter on the surface. Finally, wash with deionized water and dry the film with a blower.
  • Step five prepare a vanadium oxide buffer layer.
  • the vacuum degree of sputtering work is 2.5 ⁇ 4.0 ⁇ 10 -4 Pa, metal vanadium as target, the distance between target and substrate is 80mm, argon flow rate is 15sccm, oxygen flow rate is 1.0sccm, argon-oxygen ratio is 15:1, sputtering working pressure is 0.3Pa ,
  • the sputtering power is 200W
  • the substrate temperature is 100°C during the growth
  • the deposition time is 1min.
  • the mass purity of the metal vanadium target is 99.99%
  • the purity of argon is ⁇ 99.999%
  • the purity of oxygen is ⁇ 99.99%.
  • Step six annealing.
  • the vanadium oxide buffer layer formed on the substrate is directly annealed at high temperature in a vacuum or argon atmosphere, the gas atmosphere is adjusted to an argon atmosphere of 0.1-0.3 Pa, and annealed at 470°C for 30 min.
  • Step 7 Prepare a vanadium oxide film. After the annealing is completed, a vanadium oxide film is grown on the low-temperature buffer layer again using magnetron sputtering.
  • the mixed gas of oxygen and argon is used as the working gas
  • the metal vanadium is used as the target
  • the distance between the target and the substrate is 80mm
  • the flow of argon is 15sccm
  • the flow of oxygen is 1.0sccm
  • the ratio of argon to oxygen is 15:1
  • sputtering work The gas pressure is 0.3 Pa
  • the sputtering power is 200 W
  • the substrate temperature during growth is 440° C.
  • the deposition time is 10 min
  • the thickness of the obtained vanadium oxide (VO x ) film is 500-600 nm.
  • the mass purity of the metal vanadium target is 99.99%
  • the purity of argon is ⁇ 99.999%
  • the purity of oxygen is ⁇ 99.99%.
  • the vanadium oxide composite film 1 obtained by this method includes a silicon substrate 15, a silicon nitride layer 14, a polyimide film 13, a vanadium oxide buffer layer 12, and a vanadium oxide film 11.
  • the vanadium oxide thin film 11 has a uniform surface, a dense structure, good film formation quality, and good crystallization, and the vanadium oxide and polyimide are tightly combined and are not easy to fall off.
  • the polyimide film 13 and the silicon nitride layer 14 can be peeled from each other to form the flexibility of the vanadium oxide buffer layer 12 and the vanadium oxide film 11 formed on the surface of the flexible polyimide film 13 Vanadium oxide composite film.
  • FIG. 3 shows the vanadium oxide film in the flexible vanadium oxide composite film finally obtained by the method of this embodiment, and is produced by ZEISS produced by Carl Zeiss Corporation.
  • the standard scanning electron microscope picture obtained under the scanning electron microscope of model 55. It can be seen from the figure that the vanadium oxide film has the characteristics of layer growth, the film structure is dense, and the crystallization effect is good, and the quality of the film is high.
  • FIG. 4 shows an atomic force microscope image of the vanadium oxide film in the flexible vanadium oxide composite film finally obtained by the method of this example, characterized by using Agilent model AFM. It can be seen from the figure that the surface of the vanadium oxide film is flat and the surface roughness is small.
  • FIG. 5 is a graph showing the resistance change of the flexible vanadium oxide composite film finally obtained by the method of this embodiment with temperature.
  • the vanadium oxide film has a relatively high resistance of -2% to -3%
  • the temperature coefficient is comparable to that of vanadium oxide thin films prepared on rigid substrates such as silicon and rutile.
  • this application proposes a method for preparing a vanadium oxide composite film, which uses high temperature resistant polyimide PI (high temperature resistance up to 500°C) as a substrate, and uses magnetron sputtering to prepare at low temperature First a vanadium oxide (VOx) buffer layer, after annealing treatment, then use magnetron sputtering to grow vanadium oxide film at high temperature.
  • the preparation method proposed in this application is simple and easy to control, which overcomes the shortcomings of the existing low-temperature preparation of flexible vanadium oxide technology.
  • the vanadium oxide composite film obtained by this method has a uniform surface, dense structure, and film formation quality Good, well crystallized, tightly bonded to polyimide and not easy to fall off, it is very suitable for use in vanadium oxide devices, such as the preparation process of vanadium oxide terahertz detectors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种氧化钒复合薄膜(1)的制备方法,包括,步骤一,在衬底上形成耐高温柔性材料薄膜(13),以形成基片;步骤二,在所述基片上的所述柔性材料薄膜(13)上形成氧化钒缓冲层(12);步骤三,对形成有所述氧化钒缓冲层(12)的基片进行退火;步骤四,在所述氧化钒缓冲层(12)上再次形成氧化钒薄膜(11)。上述方法制备过程简单,且容易控制,通过该制备方法所获得的复合柔性薄膜表面均匀、结构致密、成膜质量好、结晶良好、与聚酰亚胺结合紧密且不易脱落,为柔性氧化钒器件,例如氧化钒太赫兹探测器的制备奠定了基础。

Description

一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法 技术领域
本申请涉及一种微电子半导体技术薄膜的制备方法,特别是一种使用了低温缓冲层技术的制备柔性氧化钒太赫兹探测器热敏薄膜材料的制备方法。
背景技术
太赫兹波是指频率在0.1~10THz(1THz=10 12Hz)范围内的电磁波,对应波长范围为3mm~30μm,位于毫米波与红外波之间。太赫兹波探测技术在爆炸物及生化探测、军用通信、战略导弹、航空航天飞行器等无损探测、隐藏武器检查、战地医疗等军用技术方面,以及在机场或重要场合的安全检查、医学人体成像、环境监测、植物结构研究、地质勘查、考古及文物鉴定等民用技术方面都具有重大的科学价值。
在太赫兹波的开发和利用当中,太赫兹信号的检测至关重要。由于太赫兹辐射光子能量只有毫电子伏特(0.414~41.4meV),与分子的低频振动和转动能量相当,所以,环境或器件的微小噪音往往就会掩盖住太赫兹微弱的检测信号。为此,传统的太赫兹探测器需要深低温工作环境(液氦温度以下)、高度灵敏的超导检测材料(如NbN类材料、钇钡铜氧(YBaCuO)以及它们的衍生物等)等特殊条件,以提高探测器的信噪比。然而,这些特殊要求导致了传统的太赫兹探测器存在器件结构复杂、体积庞大、制造难度大、成本高等缺点,同时也限制了相关应用研究的深入开展。所以,研制更加简易的探测材料和器件结构、减小器件体积、降低制造成本,是太赫兹探测技术发展的一个重要趋势。
目前报道的相关太赫兹探测器均为在硅基底上制备,器件加工难度较大:根据红外微测辐射热计微桥的“λ/4原理”,应用到太赫兹检测,如若需检测波长为100μm(3THz),则微桥谐振腔的高度需达到25μm(注:红外探测器 仅为1~2μm),而且微桥的制造精度为0.1~1μm。目前的器件材料及加工技术(MEMS)均难以满足相关要求。
基于柔性基底的VO x太赫兹探测器,则能够避开复杂的CMOS工艺,降低制备工艺的难度,减少制造探测器的成本。但目前有关于柔性太赫兹探测器的报道极少,主要是因为要在柔性基底上制备质量好的VO x热敏薄膜,需要在高温(>400℃)下生长,而绝大多数的柔性材料不具备耐高温的性能。
现有技术“一种基于柔性基底的太赫兹调制器膜材料的制备方法”(CN201310272361.7)公开了一种基于柔性基底聚酰亚胺的VO 2薄膜,此薄膜是在低温下通过磁控溅射制备金属V膜,然后在氧气氛围内,在250~300℃温度下,热处理30~180s获得VO x薄膜。由于该薄膜是在低温下生长,且热处理温度较低,不足以生长出质量好VO x的薄膜,故制得的薄膜晶型较差,主要为非晶组织,表面不致密,性能较差,不适合应用于在柔性太赫兹探测器上。
此外,现有技术还有在聚酰亚胺(PI)上生长的VO x,但都使用低温(<300℃)溅射沉积,或者使用化学溶液水热生长。低温PI基底上生长的VO x主要呈现非晶态,结晶程度低,性能较差,而基于现有的制备方法在高温沉积的VO x呈现岛状生长,表面起伏大,不利于形成稳定的电学性能。
申请内容
针对以上现有技术存在的技术问题,本申请提出一种低温缓冲层技术,通过使用耐高温的聚酰亚胺PI(耐高温可达500℃)作为基片,使用磁控溅射在低温下先制备一层氧化钒(VO x)缓冲层,经过退火处理后,再使用磁控溅射在高温下生长氧化钒薄膜,最后获得表面均匀、结构致密、成膜质量好、结晶良好、与聚酰亚胺结合紧密、不易脱落的氧化钒复合柔性薄膜。
本申请涉及一种氧化钒复合薄膜的制备方法,包括,步骤一,在衬底上形成耐高温柔性材料薄膜,以形成基片;步骤二,在所述基片上的所述柔性材料薄膜上形成氧化钒缓冲层;步骤三,对形成有所述氧化钒缓冲层的基片进行退火;步骤四,在所述氧化钒缓冲层上再次形成氧化钒薄膜。
优选为,在所述步骤一之前,还包括衬底准备步骤;其中,所述衬底为硅 衬底。
优选为,所述衬底准备步骤进一步包括,在所述硅衬底上形成氮化硅层,以形成具有氮化硅层的硅衬底;步骤一中所述柔性材料薄膜形成于所述氮化硅层上。
优选为,所述步骤四之后,还包括剥离步骤;其中,所述剥离步骤包括,将形成有氧化钒缓冲层和氧化钒薄膜的所述柔性材料薄膜与所述衬底剥离,获得在所述柔性材料薄膜上形成氧化钒缓冲层及氧化钒薄膜的柔性氧化钒复合薄膜。
优选为,所述耐高温柔性材料的热分解温度高于步骤三中退火的温度。
优选为,所述耐高温柔性材料为耐高温树脂材料。
优选为,所述耐高温树脂材料为聚酰亚胺。
优选为,所述聚酰亚胺的热分解温度大于400℃。
优选为,步骤二中,通过磁控溅射方法在所述柔性材料薄膜上形成所述氧化钒缓冲层。
优选为,形成所述氧化钒缓冲层的磁控溅射的条件为:基片温度为80-150℃,真空度为2.5~4.0×10 -4Pa,靶材与基片距离为60-110mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.2-0.45Pa,溅射功率为150-300W,沉积时间为0.5-4min。
优选为,所述靶材为金属钒靶。
优选为,所述退火的温度为420-550℃。
优选为,所述步骤四中,通过磁控溅射方法在所述氧化钒缓冲层上再次形 成氧化钒薄膜。
优选为,再次形成氧化钒薄膜的磁控溅射的条件为:基片温度为400-550℃,靶材与基片距离为60-110mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.2-0.45Pa,溅射功率为150-300W,沉积时间为5-20min。
本申请还涉及一种氧化钒复合薄膜的制备方法,包括,步骤一,在硅基底上形成氮化硅层,以形成衬底;步骤二,将所述衬底依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;步骤三,在所述衬底上形成聚酰亚胺薄膜,以形成基片;步骤四,将所述基片依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;步骤五,将清洗好的基片置于真空度为2.5~4.0×10 -4Pa的高真空射频磁控溅射设备里,在基片温度为80-150℃、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.2-0.45Pa、,溅射功率为150-200W、靶材与基片距离为60-110mm的条件下,沉积0.5-4min,以在所述基片上形成氧化钒缓冲层;所述靶材为金属钒靶;步骤六,在420-550℃退火30min以上;步骤七,在基片温度为400-550℃、靶材与基片距离为60-110mm、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.2-0.45Pa、溅射功率为150-300W的条件下,在所述氧化钒缓冲层上再次沉积5-20min,以获得氧化钒薄膜;所述靶材为金属钒靶。
优选为,所述步骤七之后,还包括剥离步骤;其中,所述剥离步骤包括,将形成有氧化钒缓冲层和氧化钒薄膜的所述聚酰亚胺薄膜与所述衬底剥离,获得在所述柔性材料薄膜上形成氧化钒缓冲层及氧化钒薄膜的柔性氧化钒复合 薄膜。
优选为,所述步骤三还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在50-60℃下烘烤2小时,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜。
本申请还涉及一种通过以上任一种方法制备形成的氧化钒复合薄膜。
与现有技术相比,本申请的有益效果在于,克服了现有低温制备柔性氧化钒技术的不足。提供了一种基于柔性聚酰亚胺为基片,采用磁控溅射方法,获得了一种制备过程简单,且容易控制的复合薄膜制备方法,通过该方法获得的复合柔性薄膜表面均匀、结构致密、成膜质量好、结晶良好,且氧化钒与聚酰亚胺结合紧密,不易脱落,本申请的技术方案能够为柔性氧化钒器件,例如氧化钒太赫兹探测器的制备奠定基础。
附图说明
附图1:氧化钒复合薄膜整体结构图;
附图2:氧化钒复合薄膜分层示意图;
附图3:实施例1方法制备的氧化钒薄膜扫描电子显微镜图;
附图4:实施例1方法制备的氧化钒薄膜原子力显微镜图;
附图5:实施例1方法制备的氧化钒薄膜电阻随温度变化曲线图。
具体实施方式
本实施方式涉及一种柔性氧化钒(VO x)薄膜的制备方法,该方法主要包括在基片上的柔性材料薄膜上形成氧化钒缓冲层,对形成有所述氧化钒缓冲层的基片进行退火后再在所述氧化钒缓冲层上形成氧化钒薄膜的步骤。其中,所述氧化钒不限于VO 2,V 2O 5,即包括各种形式的钒的氧化物,通常被本领域技 术人员记做VO x
具体参见附图1和2,制备方法主要步骤包括,在衬底上形成耐高温柔性材料薄膜13,并以此形成基片,所述基片能够用于后续步骤中形成氧化钒缓冲层12,即在所述基片上的所述柔性材料上形成氧化钒缓冲层12,然后进一步对形成有所述氧化钒缓冲层12的基片进行退火。退火完成后,在所述氧化钒缓冲层12上再次继续形成氧化钒薄膜11。先在所述基片上通过低温溅射的方法形成氧化钒晶体缓冲层,能够保证在层状生长的情况下形成所述氧化钒晶体,形成的薄膜结合性好,然后再进行高温下退火,能够有效的使元素均匀扩散,形成成膜质量好,表面粗糙度小的薄膜。
在一些实施例中,还包括准备衬底的步骤,通常选用硅衬底作为所述复合薄膜的衬底,以方便将所述复合薄膜直接制作成太赫兹探测器中的相关器件。
在一些实施例中,准备衬底的步骤进一步包括,在所述硅衬底15上形成氮化硅层14,以形成具有氮化硅层14的硅衬底15;并进一步将所述柔性材料薄膜13形成于所述衬底上的所述氮化硅层14上。氮化硅层能够起到绝缘层的作用,使得整体更好的适用于器件加工中的MEMS工艺制备。在反应过程中,所述氮化硅层仅与硅片一同作为柔性薄膜的载体,不参与直接反应。
在一些实施例中,还包括剥离步骤;其中,所述剥离步骤包括,将形成有氧化钒缓冲层12和氧化钒薄膜11的所述柔性材料薄膜13与所述衬底剥离,获得在所述柔性材料薄膜13上形成氧化钒缓冲层12及氧化钒薄膜11的柔性氧化钒复合薄膜。通过此步骤,可以单独获得柔性的氧化钒复合薄膜,能够适于在不同使用环境和使用条件下作为单独的柔性薄膜材料使用。
在一些实施例中,所述耐高温柔性材料优选为耐高温树脂材料,并进一步 优选为聚酰亚胺树脂材料,且所述聚酰亚胺的热分解温度大于400℃。优选为,所述耐高温柔性材料的热分解温度高于退火的温度。由此使得形成在所述柔性材料薄膜13表面的氧化钒缓冲层12能够在高温的条件下进行退火,并进一步在其表面形成表面均匀、结构致密、成膜质量好、结晶良好、且氧化钒与聚酰亚胺结合紧密不易脱落的氧化钒复合薄膜。
在一些实施例中,通过磁控溅射方法在所述柔性材料上形成所述氧化钒缓冲层;且所述磁控溅射的条件优选为,所述基片温度为80-150℃,真空度为2.5~4.0×10 -4Pa,靶材与基片距离为60-110mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.2-0.45Pa,溅射功率为150-300W,沉积时间为0.5-4min;其中,所使用的所述靶材为金属钒靶,其质量纯度≥99.99%,氩气的纯度≥99.999%,氧气的纯度≥99.99%。以此获得表面均匀、结构致密、成膜质量好、结晶良好、且氧化钒与聚酰亚胺结合紧密不易脱落的氧化钒缓冲层。
在一些实施例中,退火的温度为420-550℃;进一步优选为,在真空或惰性环境中对所述氧化钒前驱体薄膜进行退火;进一步优选为,在真空度为0.1-0.3Pa的氩气氛围中,在420-550℃退火30min以上。在真空或惰性条件下进行高温退火,有助于提高成膜质量,形成表面均匀、结构致密、结晶良好、不易脱落的氧化钒缓冲层。
在一些实施例中,通过磁控溅射方法在所述氧化钒缓冲层上再次形成氧化钒薄膜;且所述磁控溅射的条件优选为,所述基片温度为400-550℃,靶材与基片距离为60-110mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.2-0.45Pa,溅射功率为150-300W,沉积时间 为5-20min;其中,所使用的所述靶材为金属钒靶,其质量纯度≥99.99%,氩气的纯度≥99.999%,氧气的纯度≥99.99%。以此获得表面均匀、结构致密、成膜质量好、结晶良好、且氧化钒与聚酰亚胺结合紧密不易脱落的氧化钒薄膜。
在一些实施例中,具体的氧化钒薄膜制备方法包括,步骤一,在硅基底上形成氮化硅层,以形成衬底;步骤二,将所述衬底依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;步骤三,在所述衬底上形成聚酰亚胺薄膜,以形成基片;步骤四,将所述基片依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;步骤五,将清洗好的基片置于真空度为2.5~4.0×10 -4Pa的高真空射频磁控溅射设备里,在基片温度为80-150℃、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.2-0.45Pa、,溅射功率为150-300W、靶材与基片距离为60-110mm的条件下,沉积0.5-4min,以在所述基片上形成氧化钒缓冲层;所述靶材为金属钒靶;步骤六,在420-550℃退火30min以上;步骤七,在基片温度在400-550℃、靶材与基片距离为60-110mm、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.2-0.45Pa、溅射功率为150-300W的条件下,在所述氧化钒缓冲层上再次沉积5-20min,以获得氧化钒薄膜;所述靶材为金属钒靶。以此获得表面均匀、结构致密、成膜质量好、结晶良好、且氧化钒与聚酰亚胺结合紧密不易脱落的氧化钒薄膜。
在一些实施例中,在所述步骤六之后,还包括剥离步骤;其中,所述剥离步骤包括,将形成有氧化钒薄膜的所述聚酰亚胺薄膜与所述衬底剥离,获得在所述柔性材料薄膜上形成氧化钒缓冲层及氧化钒薄膜的柔性氧化钒复合薄膜。 通过此步骤,可以单独获得柔性的氧化钒复合薄膜,能够适于在不同使用环境和使用条件下作为单独的柔性薄膜材料使用。
在一些实施例中,所述步骤三还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在50-60℃下烘烤2小时,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜。通过此步骤,可以获得具有高热分解温度的聚酰亚胺薄膜,优选为,所述聚酰亚胺薄膜的热分解温度大于400℃。优选为,所得的聚酰亚胺薄膜的介电常数为3.4,热分解温度为494℃。
实施例1
本实施例涉及的氧化钒复合薄膜的制备方法具体如下:
步骤一,准备衬底。提供硅基底,并在所述硅基底上形成氮化硅层。优选为,通过等离子体增强化学气相沉积法形成所述氮化硅层;其中,所用的硅基底尺寸为33mm×33mm。氮化硅层能够起到绝缘层的作用,使得整体更好的适用于器件加工中的MEMS工艺制备。在反应过程中,所述氮化硅层仅与硅片一同作为柔性薄膜的载体,不参与直接反应。
步骤二,将所述衬底依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,除去表面的有机物杂志,最后用去离子水洗净,用吹风机吹干薄膜。
步骤三,准备基片。将聚酰亚胺(PI)溶液用刮涂或旋涂的方法均匀涂抹在清洗干净的所述衬底上,在50-60℃下烘烤2小时,除去聚酰亚胺中的有机成分,再在高温300-400℃下加热8小时,发生亚胺化反应,最终在所述基底 上得到均匀的聚酰亚胺薄膜。所得的聚酰亚胺介电常数为3.4,热分解温度为570℃。
步骤四,将所述基片依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,除去表面的有机物杂志,最后用去离子水洗净,用吹风机吹干薄膜。
步骤五,制备氧化钒缓冲层。将清洗好的基片置于真空度为2.5~4.0×10 -4Pa的高真空射频磁控溅射设备里,以氧气与氩气的混合气体作为工作气体,溅射工作的真空度为2.5~4.0×10 -4Pa,金属钒作为靶材,靶材与基片距离为80mm,氩气流量为15sccm,氧气流量为1.0sccm,氩氧比为15:1,溅射工作气压为0.3Pa,溅射功率为200W,生长时基片温度为100℃,沉积时间为1min。其中,金属钒靶质量纯度为99.99%,氩气的纯度≥99.999%,氧气的纯度≥99.99%。
步骤六,退火。直接对形成在所述基片上的氧化钒缓冲层,在真空或氩气氛围中高温退火,将气体氛围调整到0.1-0.3Pa的氩气氛围,在470℃下退火30min。
步骤七,制备氧化钒薄膜。在退火完成后,在所述低温缓冲层上再次使用磁控溅射方法生长氧化钒薄膜。以氧气与氩气的混合气体作为工作气体,金属钒作为靶材,靶材与基片距离为80mm,氩气流量为15sccm,氧气流量为1.0sccm,氩氧比为15:1,溅射工作气压为0.3Pa,溅射功率为200W,生长时基片温度为440℃,沉积时间为10min,得到的氧化钒(VO x)薄膜厚度为500-600nm。其中,金属钒靶质量纯度为99.99%,氩气的纯度≥99.999%,氧气的纯度≥99.99%。
参见附图1和2可知,由此方法获得的氧化钒复合薄膜1包括硅基底15、 氮化硅层14、聚酰亚胺薄膜13、氧化钒缓冲层12以及氧化钒薄膜11。所述氧化钒薄膜11表面均匀、结构致密、成膜质量好、结晶良好,且氧化钒与聚酰亚胺结合紧密,不易脱落。其中,所述聚酰亚胺薄膜13可以与所述氮化硅层14之间相互剥离,以形成在柔性聚酰亚胺薄膜13表面上形成有氧化钒缓冲层12及氧化钒薄膜11的柔性氧化钒复合薄膜。
图3所示为本实施例方法最终获得的柔性氧化钒复合薄膜中的氧化钒薄膜,在Carl Zeiss Corporation公司产的ZEISS
Figure PCTCN2019123450-appb-000001
55型号的扫描电镜下获得的标准的扫描电子显微镜图。从图中可以看出,所述氧化钒薄膜具备层状生长的特性,薄膜结构致密,且结晶效果好,薄膜的质量高。
图4所示为本实施例方法最终获得的柔性氧化钒复合薄膜中的氧化钒薄膜,使用Agilent型号的AFM表征的原子力显微镜图。从图中可以看出,所述氧化钒薄膜表面平整,表面粗糙度小。
图5所示为本实施例方法最终获得的柔性氧化钒复合薄膜的电阻随温度变化曲线图,从图中可以看出,所述氧化钒薄膜具有-2%~-3%的较高的电阻温度系数,与在硅、金红石等刚性基底上制备的氧化钒薄膜性能相当。
综上所述,本申请提出一种氧化钒复合薄膜的制备方法,通过使用耐高温的聚酰亚胺PI(耐高温可达500℃)作为基片,使用磁控溅射,在低温下制备先一层氧化钒(VOx)缓冲层,经过退火处理后,再使用磁控溅射在高温下生长氧化钒薄膜。与现有技术相比,本申请提出的方法制备过程简单且容易控制,克服了现有低温制备柔性氧化钒技术的不足,通过该方法获得的氧化钒复合薄膜表面均匀、结构致密、成膜质量好、结晶良好、与聚酰亚胺结合紧密且不易脱落,非常适合应用于氧化钒器件,例如氧化钒太赫兹探测器的制备过程中。
上面所述的只是说明本申请的一些实施方式,由于对相同技术领域的普通技术人员来说很容易在此基础上进行若干修改和改动,因此本说明书并非是要 将本申请局限在所示和所述的具体结构、方法步骤、工艺流程、适用范围内,故凡是所有可能被利用的相应修改及等同物,均属于本申请所申请的专利范围。

Claims (18)

  1. 一种氧化钒复合薄膜的制备方法,包括,
    步骤一,在衬底上形成耐高温柔性材料薄膜,以形成基片;
    步骤二,在所述基片上的所述柔性材料薄膜上形成氧化钒缓冲层;
    步骤三,对形成有所述氧化钒缓冲层的基片进行退火;
    步骤四,在所述氧化钒缓冲层上再次形成氧化钒薄膜。
  2. 如权利要求1所述的方法,其特征在于,在所述步骤一之前,还包括衬底准备步骤;其中,所述衬底为硅衬底。
  3. 如权利要求2所述的方法,其特征在于,所述衬底准备步骤进一步包括,在所述硅衬底上形成氮化硅层,以形成具有氮化硅层的硅衬底;步骤一中所述柔性材料薄膜形成于所述氮化硅层上。
  4. 如权利要求1所述的方法,其特征在于,所述步骤四之后,还包括剥离步骤;其中,所述剥离步骤包括,将形成有氧化钒缓冲层和氧化钒薄膜的所述柔性材料薄膜与所述衬底剥离,获得在所述柔性材料薄膜上形成有氧化钒缓冲层及氧化钒薄膜的复合薄膜。
  5. 如权利要求1所述的方法,其特征在于,所述耐高温柔性材料的热分解温度高于步骤三中退火的温度。
  6. 如权利要求5所述的方法,其特征在于,所述耐高温柔性材料为耐高温树脂材料。
  7. 如权利要求6所述的方法,其特征在于,所述耐高温树脂材料为聚酰 亚胺。
  8. 如权利要求7所述的方法,其特征在于,所述聚酰亚胺的热分解温度大于400℃。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,步骤二中,通过磁控溅射方法在所述柔性材料薄膜上形成所述氧化钒缓冲层。
  10. 如权利要求9所述的方法,其特征在于,形成所述氧化钒缓冲层的磁控溅射的条件为:基片温度为80-150℃,真空度为2.5~4.0×10 -4Pa,靶材与基片距离为60-110mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.2-0.45Pa,溅射功率为150-300W,沉积时间为0.5-4min。
  11. 如权利要求10所述的方法,其特征在于,所述靶材为金属钒靶。
  12. 如权利要求1-11中任一项所述的方法,其特征在于,所述退火的温度为420-550℃。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,所述步骤四中,通过磁控溅射方法在所述氧化钒缓冲层上再次形成氧化钒薄膜。
  14. 如权利要求13所述的方法,其特征在于,再次形成氧化钒薄膜的磁控溅射的条件为:基片温度为400-550℃,靶材与基片距离为60-110mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.2-0.45Pa,溅射功率为150-300W,沉积时间为5-20min。
  15. 一种氧化钒复合薄膜的制备方法,包括,
    步骤一,在硅基底上形成氮化硅层,以形成衬底;
    步骤二,将所述衬底依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;
    步骤三,在所述衬底上形成聚酰亚胺薄膜,以形成基片;
    步骤四,将所述基片依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;
    步骤五,将清洗好的基片置于真空度为2.5~4.0×10 -4Pa的高真空射频磁控溅射设备里,在基片温度为80-150℃、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.2-0.45Pa、,溅射功率为150-200W、靶材与基片距离为60-110mm的条件下,沉积0.5-4min,以在所述基片上形成氧化钒缓冲层;所述靶材为金属钒靶;
    步骤六,在420-550℃退火30min以上;
    步骤七,在基片温度为400-550℃、靶材与基片距离为60-110mm、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.2-0.45Pa、溅射功率为150-300W的条件下,在所述氧化钒缓冲层上再次沉积5-20min,以获得氧化钒薄膜;所述靶材为金属钒靶。
  16. 如权利要求15所述的方法,其特征在于,所述步骤七之后,还包括剥离步骤;其中,所述剥离步骤包括,将形成有氧化钒缓冲层和氧化钒薄膜的所述聚酰亚胺薄膜与所述衬底剥离,获得在所述柔性材料薄膜上形成有氧化钒缓冲层及氧化钒薄膜的复合薄膜。
  17. 如权利要求15或16所述的方法,其特征在于,所述步骤三还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在50-60℃下烘 烤2小时,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜。
  18. 一种通过权利要求1-17中任一项所述的方法制备形成的氧化钒复合薄膜。
PCT/CN2019/123450 2018-12-18 2019-12-05 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法 WO2020125439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811549404.0 2018-12-18
CN201811549404.0A CN109666909B (zh) 2018-12-18 2018-12-18 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法

Publications (1)

Publication Number Publication Date
WO2020125439A1 true WO2020125439A1 (zh) 2020-06-25

Family

ID=66145144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123450 WO2020125439A1 (zh) 2018-12-18 2019-12-05 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法

Country Status (2)

Country Link
CN (1) CN109666909B (zh)
WO (1) WO2020125439A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109666909B (zh) * 2018-12-18 2021-07-27 深圳先进技术研究院 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法
CN109402566B (zh) * 2018-12-18 2021-03-26 深圳先进技术研究院 一种两步法制备柔性氧化钒薄膜的方法
CN116200704A (zh) * 2023-02-27 2023-06-02 无锡尚积半导体科技有限公司 一种金属氧化物薄膜的制备方法及氧化物薄膜
CN116103613A (zh) * 2023-02-27 2023-05-12 无锡尚积半导体科技有限公司 一种二氧化钒薄膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273619A (ja) * 1999-03-26 2000-10-03 Asahi Glass Co Ltd 薄膜の製造方法
CN101174671A (zh) * 2007-10-18 2008-05-07 天津大学 具有相变特性二氧化钒纳米薄膜的制备方法
CN103193190A (zh) * 2013-04-11 2013-07-10 电子科技大学 一种红外-太赫兹双波段阵列探测器微桥结构及其制备方法
CN103361614A (zh) * 2013-06-29 2013-10-23 天津大学 一种基于柔性基底的太赫兹调制器膜材料的制备方法
CN103364973A (zh) * 2013-06-29 2013-10-23 天津大学 一种柔性太赫兹波调制器
CN104143609A (zh) * 2014-08-07 2014-11-12 张家港康得新光电材料有限公司 阻隔膜及其制作方法
CN109666909A (zh) * 2018-12-18 2019-04-23 深圳先进技术研究院 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322670B2 (en) * 1996-12-31 2001-11-27 Honeywell International Inc. Flexible high performance microbolometer detector material fabricated via controlled ion beam sputter deposition process
CN102867907B (zh) * 2012-10-11 2016-09-21 南京大学 一种制备柔性超导薄膜的方法
KR20140133985A (ko) * 2013-05-13 2014-11-21 코닝정밀소재 주식회사 이산화바나듐 코팅 기판 제조방법
CN103882399A (zh) * 2014-03-18 2014-06-25 天津大学 基于柔性基底具有相变特性纳米氧化钒功能薄膜的制备方法
CN103882389B (zh) * 2014-03-24 2016-06-29 无锡艾立德智能科技有限公司 一种高电阻温度系数氧化钒薄膜制备方法
KR101762308B1 (ko) * 2014-10-31 2017-07-28 부경대학교 산학협력단 유연 열변색 필름
CN104878358B (zh) * 2015-06-12 2017-07-21 电子科技大学 一种高电阻温度系数氧化钒热敏薄膜材料及其制备方法
CN105887016B (zh) * 2016-05-24 2018-04-10 中国科学技术大学 一种柔性二氧化钒薄膜的制备方法、产物及应用
CN108220897B (zh) * 2016-12-14 2019-11-19 中国科学院上海硅酸盐研究所 磁控溅射低温制备二氧化钒薄膜的方法
CN108231910A (zh) * 2018-02-09 2018-06-29 沈阳工程学院 一种柔性基片衬底的异质结构薄膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273619A (ja) * 1999-03-26 2000-10-03 Asahi Glass Co Ltd 薄膜の製造方法
CN101174671A (zh) * 2007-10-18 2008-05-07 天津大学 具有相变特性二氧化钒纳米薄膜的制备方法
CN103193190A (zh) * 2013-04-11 2013-07-10 电子科技大学 一种红外-太赫兹双波段阵列探测器微桥结构及其制备方法
CN103361614A (zh) * 2013-06-29 2013-10-23 天津大学 一种基于柔性基底的太赫兹调制器膜材料的制备方法
CN103364973A (zh) * 2013-06-29 2013-10-23 天津大学 一种柔性太赫兹波调制器
CN104143609A (zh) * 2014-08-07 2014-11-12 张家港康得新光电材料有限公司 阻隔膜及其制作方法
CN109666909A (zh) * 2018-12-18 2019-04-23 深圳先进技术研究院 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法

Also Published As

Publication number Publication date
CN109666909A (zh) 2019-04-23
CN109666909B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2020125439A1 (zh) 一种低温缓冲层技术制备柔性氧化钒复合薄膜的方法
CN109713058A (zh) 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
CN108517555B (zh) 基于范德华外延获得大面积高质量柔性自支撑单晶氧化物薄膜的方法
CN113481602B (zh) 一种具有超导特性的无限层型镍酸盐薄膜的制备方法
CN102867907A (zh) 一种制备柔性超导薄膜的方法
CN104195552A (zh) 一种在硅基底上制备高电阻变化率二氧化钒薄膜的方法
Jlassi et al. NiO thin films synthesized by sol-gel: Potentiality for the realization of antireflection layer for silicon based solar cell applications
WO2020125440A1 (zh) 一种两步法制备柔性氧化钒薄膜的方法
US11572279B2 (en) Two-dimensional material nanosheets with large area and controllable thickness and general preparation method therefor
CN109811319A (zh) 一种基于Al纳米颗粒光热的智能温控薄膜及其制备方法
Wei et al. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness
CN111403550B (zh) 一种钙钛矿太阳能电池及其制备方法
CN109449247A (zh) 锡掺杂氧化钼薄膜、基于锡掺杂氧化钼薄膜的宽光谱光电探测器阵列及其制备方法
CN113193069B (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
Chu et al. Surface engineering of the flexible metallic substrate by SDP‐Gd‐Zr‐O layer for IBAD‐MgO templates
CN114920213A (zh) 一种二硒化钨的制备方法
Shiota et al. Preparation of (La1− xSrx) MnO3− δ thin films on Si (100) substrates by a metal-organic decomposition method for smart radiation devices
Kumari et al. Structural, Morphological and Electrical Properties of CdO Thin Film Produced by Sol–Gel Spin Coating Procedure
Zhao et al. Preparation of a double-layer YBa2Cu3O7-x/CeO2 film on a Hastelloy C276 metal substrate with buffer layers of LaMnO3/MgO/Gd2Zr2O7 by laser chemical vapor deposition
Hwang et al. Spin coating-pyrolysis derived highly c-axis-oriented ZnO layers pre-fired at various temperatures
CN111403605A (zh) 一种自供能钙钛矿光电探测器及其制备方法
Sinha et al. Fabrication and properties of MgB 2 coated superconducting tapes
Fujishiro et al. Investigation of fabrication conditions for VO2 thin films by MOD using carbon thermal reduction
Tsai et al. Photoelectric Characteristics of Trilayer Thin-film Structures Processed at Different Annealing Temperatures for Photosensors.
CN116825878B (zh) 一种面外p-n结面内自发电极化二维体光伏材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 19897599

Country of ref document: EP

Kind code of ref document: A1