WO2020125438A1 - 一种氧化钒复合薄膜及其制备方法 - Google Patents

一种氧化钒复合薄膜及其制备方法 Download PDF

Info

Publication number
WO2020125438A1
WO2020125438A1 PCT/CN2019/123443 CN2019123443W WO2020125438A1 WO 2020125438 A1 WO2020125438 A1 WO 2020125438A1 CN 2019123443 W CN2019123443 W CN 2019123443W WO 2020125438 A1 WO2020125438 A1 WO 2020125438A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
vanadium oxide
substrate
flexible material
flexible
Prior art date
Application number
PCT/CN2019/123443
Other languages
English (en)
French (fr)
Inventor
鲁远甫
李锐
李光元
焦国华
吕建成
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020125438A1 publication Critical patent/WO2020125438A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Definitions

  • the present application relates to an intelligent temperature control film, especially a vanadium oxide composite film and a preparation method thereof.
  • the energy consumption of heating and air conditioning accounts for about 55% of the total energy consumption of buildings, and the energy consumption per unit area of building in my country is 2 to 3 times that of developed countries, and it is increasing year by year, and energy waste is extremely serious.
  • windows are an indispensable and important part of the building. It makes the lighting and ventilation of the building greatly improved, and it also allows the house to have a certain open area and expand the view.
  • light-transmitting envelopes such as exterior windows and glass curtain walls account for an ever-increasing proportion of the external surface area.
  • the heat energy of solar radiation mainly enters the interior through the windows.
  • the outdoor temperature When the outdoor temperature is high, the near infrared sunlight cannot be effectively cut off, which increases the cooling load of the air conditioner.
  • the outdoor temperature When the outdoor temperature is low, The indoor heat is dissipated through the glass surface in the form of heat radiation, which increases the insulation load of the air conditioner.
  • the cooling temperature is increased by 2°C, and the cooling load is reduced by about 20%; the heating temperature is lowered by 2°C, and the heating load is reduced by about 30%.
  • improving the thermal insulation performance of window glass will be the key to improving building energy consumption.
  • a smart glass with automatic temperature adjustment (CN204020142U) discloses a laminated structure composed of one or more light-transmitting material layers and at least one vanadium dioxide film, but its light transmission The rate is unknown, the performance is not high, and it is difficult to adjust the temperature in both directions.
  • the cleaning and replacement of the smart glass obtained by this method not only increases the cost of manual maintenance, but also increases hidden safety risks.
  • this application proposes a vanadium oxide composite film and its preparation method, using a flexible material with high temperature resistance, corrosion resistance, environmental friendliness, and high light transmittance as the substrate, with a layer of vanadium oxide in the middle
  • the film constitutes a layered structure.
  • This film has good adaptability to rigid substrates such as glass and silicon wafers, and has excellent characteristics such as flexibility, tortuosity, wide adaptability, and portability. At the same time, it is easy to disassemble, clean, and assemble. It can also control the temperature in both directions and modulate infrared light. Good performance.
  • the present application relates to a method for preparing a vanadium oxide composite film, which includes, step one, forming a high temperature resistant first flexible material film on a substrate to form a substrate; step two, the first on the substrate Forming a vanadium oxide precursor film on the flexible material; step three, performing high-temperature annealing on the substrate formed with the vanadium oxide precursor film to form a composite film having a vanadium oxide film; step four, forming on the vanadium oxide film The second flexible material film.
  • a substrate preparation step is further included; wherein, the substrate is a silicon substrate.
  • the substrate preparation step further includes forming a silicon nitride layer on the silicon substrate to form a silicon substrate having a silicon nitride layer; in step one, the first flexible material film is formed on the substrate On the silicon nitride layer on the substrate.
  • a peeling step is further included; wherein the peeling step includes peeling the first flexible material film, the vanadium oxide film and the second flexible material film from the substrate to obtain A composite film of a vanadium oxide film is formed in the first flexible material film and the second flexible material film.
  • the thermal decomposition temperature of the high temperature resistant first flexible material is higher than the temperature of high temperature annealing in step three.
  • the first flexible material film and the second flexible material film are formed of a light-transmitting material having high transmittance in both visible and infrared wavelength bands.
  • the first flexible material is a high temperature resistant resin material.
  • the high temperature resistant resin material is polyimide.
  • the thermal decomposition temperature of the polyimide is greater than 400°C.
  • the first flexible material film and the second flexible material film are made of the same material.
  • the vanadium oxide precursor thin film is formed on the first flexible material by a magnetron sputtering method.
  • the conditions of the magnetron sputtering are: the substrate temperature is 100-400° C., the vacuum degree is less than 5.0 ⁇ 10 -4 Pa, the distance between the target and the substrate is 80 mm, and the argon flow rate is 15-30 sccm, Oxygen flow rate is 0.3-2.0sccm, argon-oxygen ratio is 7.5:1-39:1, sputtering working pressure is 0.3Pa, sputtering power is 150-200W, and deposition time is 60min.
  • the condition for performing high-temperature annealing in step three is to anneal the vanadium oxide precursor film in a vacuum or inert environment.
  • the temperature for high-temperature annealing in step three is in the range of 420-480°C.
  • the annealing environment is an argon atmosphere with a vacuum of 0.1-0.3 Pa.
  • the second step further includes uniformly applying the polyimide solution on the substrate by means of knife coating or spin coating, baking at 25-60°C for 3 hours, and then at 300-400°C Heating for 8 hours under annealing to obtain a uniform polyimide film on the silicon substrate to form the first flexible material film.
  • the fourth step further includes uniformly applying the polyimide solution on the vanadium oxide film by knife coating or spin coating, baking at 25-60°C for 3 hours, and then at 300-400 Heating at °C for 8 hours for annealing to obtain a uniform polyimide film on the vanadium oxide film to form the second flexible material film.
  • the thickness of the first flexible material film is 10-20 ⁇ m
  • the thickness of the vanadium oxide film is less than 100 nm
  • the thickness of the second flexible material film is 10-20 ⁇ m.
  • the present application also relates to a method for preparing a vanadium oxide composite film, which includes step one, preparing a substrate, and forming a silicon nitride layer on a silicon substrate; step two, placing the substrate in deionized water and anhydrous water in sequence Ultrasonic cleaning in ethanol and acetone solvents for 10 minutes, respectively, and drying; Step three, prepare the substrate, forming the first polyimide film on the substrate; Step four, place the substrate in deionization Ultrasonic cleaning in water, absolute ethanol, and acetone solvents for 10 minutes and drying; Step five: Place the cleaned substrate in a high vacuum RF magnetron sputtering device with a vacuum of 5.0 ⁇ 10 -4 Pa.
  • the argon flow rate is 15-30sccm
  • the oxygen flow rate is 0.3-2.0sccm
  • the argon-oxygen ratio is 7.5:1-39:1
  • the sputtering working pressure is 0.3Pa
  • the sputtering power is 150-200W
  • the substrate temperature is 100-400°C
  • the argon flow rate is 15-30sccm
  • the oxygen flow rate is 0.3-2.0sccm
  • the argon-oxygen ratio is 7.5:1-39:1
  • the sputtering working pressure is 0.3Pa
  • the sputtering power is 150-200W
  • a peeling step is further included; wherein the peeling step includes peeling the first flexible material film, the vanadium oxide film and the second flexible material film from the substrate to obtain A composite film of a vanadium oxide film is formed in the first flexible material film and the second flexible material film.
  • the third step further includes uniformly applying the polyimide solution on the substrate by means of knife coating or spin coating, baking at 25-60°C for 3 hours, and then at 300-400°C Heating for 8 hours under annealing to obtain a uniform polyimide film on the silicon substrate to form a first polyimide film.
  • the seventh step further includes applying the polyimide solution uniformly on the vanadium oxide film by knife coating or spin coating, baking at 25-60°C for 3 hours, and then at 300-400 Heating at °C for 8 hours for annealing to obtain a uniform polyimide film on the vanadium oxide film to form a second polyimide film.
  • the thickness of the first flexible material film is 10-20 m
  • the thickness of the vanadium oxide film is less than 100 nm
  • the thickness of the second flexible material film is 10-20 m.
  • the present application also relates to a vanadium oxide composite film, including a first flexible film, a vanadium oxide film, and a second flexible film; wherein, the vanadium oxide film is formed between the first flexible film and the second flexible film;
  • the temperature of the vanadium oxide composite film is lower than the phase transition temperature of vanadium oxide, the infrared light in the incident light can penetrate the vanadium oxide composite film and transmit to the other side;
  • the temperature of the vanadium oxide composite film is higher than the oxidation At the phase transition temperature of vanadium, the infrared light in the incident light can be reflected by the vanadium oxide composite film.
  • the first flexible film and the second flexible film are formed of the same material.
  • both the first flexible film and the second flexible film are formed of polyimide material.
  • the composite film has a modulation effect on the transmittance of infrared light in the wavelength range of 750-1700 nm.
  • the thickness of the first flexible material film is 10-20 ⁇ m
  • the thickness of the vanadium oxide film is less than 100 nm
  • the thickness of the second flexible material film is 10-20 ⁇ m.
  • the vanadium oxide composite film is prepared by the method described in any one of the foregoing methods.
  • the beneficial effect of the present application is that the flexible material polyimide with high temperature resistance, corrosion resistance, environmental friendliness and high light transmittance is used as the substrate on both sides, and the high temperature is used to prepare vanadium oxide with good performance in the middle
  • the thin film makes the modulation amplitude of the whole thin film for infrared light relatively large, and the thin film proposed in this application has good adhesion to rigid substrates such as glass and silicon wafers, and has a wider application range.
  • Figure 1 Schematic diagram of vanadium oxide composite film under low temperature environment
  • Figure 2 Schematic diagram of vanadium oxide composite film under high temperature environment
  • Figure 3 Scanning electron microscope image of the vanadium oxide film prepared by the method of Example 1;
  • Figure 4 The modulation effect of the vanadium oxide composite film prepared in the method of Example 1 on the infrared band.
  • This embodiment relates to a vanadium oxide composite film and its preparation method, which uses a flexible material with high temperature resistance, corrosion resistance, environmental friendliness, and high light transmittance as the substrate, with a layer of vanadium oxide (VO x ) film in the middle.
  • VO x vanadium oxide
  • This film has good adaptability to rigid substrates such as glass and silicon wafers. It has flexibility, tortuosity and wide adaptability. It also has good compatibility with the glass already used in reality. It is easy to disassemble, clean and assemble. It can control the temperature in two directions, it is light and has good modulation performance for infrared light.
  • the vanadium oxide is not limited to VO 2 or V 2 O 5 , that is, oxides including various forms of vanadium, that is, generally referred to as VOx by those skilled in the art.
  • the preparation method mainly includes forming a high-temperature-resistant first flexible material film on a substrate, and forming a substrate therefrom, the substrate can be used in a subsequent step to form a vanadium oxide film; the first on the substrate Forming a vanadium oxide precursor film on a flexible material, and then further annealing the substrate on which the vanadium oxide precursor film is formed to form a composite film of the vanadium oxide film; further forming a second on the vanadium oxide film Flexible material film.
  • a step of preparing a substrate is also included, and a silicon substrate is generally selected as the substrate of the composite film, so as to facilitate the direct integration of the composite film with the semiconductor device manufacturing process.
  • the step of preparing the substrate further includes forming a silicon nitride layer on the silicon substrate to form a silicon substrate having a silicon nitride layer; and further forming the first flexible material film On the silicon nitride layer on the substrate.
  • the silicon nitride layer can function as an insulating layer, making the whole better suited for MEMS process preparation in device processing.
  • the silicon nitride layer only serves as a carrier for the flexible film together with the silicon wafer, and does not participate in the direct reaction.
  • a peeling step is further included; wherein the peeling step includes peeling the first flexible material film, the vanadium oxide film, and the second flexible material film from the substrate to obtain the first A composite film of a vanadium oxide film is formed in the flexible material film and the second flexible material film.
  • a flexible vanadium oxide composite film can be obtained separately, which can be suitable for use as a separate flexible film material under different use environments and use conditions.
  • the high temperature resistant flexible material is preferably a high temperature resistant resin material, and further preferably a polyimide resin material, and the thermal decomposition temperature of the polyimide is greater than 400°C.
  • the thermal decomposition temperature of the high temperature resistant flexible material is higher than the temperature of high temperature annealing. Therefore, the vanadium oxide film formed on the surface of the first flexible material film can be annealed under high temperature conditions, and the surface is uniform, the structure is dense, the film formation quality is good, the crystal is good, and the vanadium oxide and polyimide Combined with a vanadium oxide composite film that is tight and hard to fall off
  • the first flexible material film and the second flexible material film are formed of a light-transmitting material having high transmittance in both visible light and infrared light bands. Since the first flexible material film and the second flexible material film are formed of a light-transmitting material, the flexible vanadium oxide composite film can be applied to an environment requiring light transmission, such as a window.
  • the first flexible material film and the second flexible material film are made of the same material. Therefore, the manufacturing cost of the flexible vanadium oxide composite film during the entire manufacturing process can be reduced.
  • the vanadium oxide precursor film is formed on the first flexible material by a magnetron sputtering method; and the condition of the magnetron sputtering is preferably that the substrate temperature is 100-400°C, Vacuum degree is less than 5.0 ⁇ 10 -4 Pa, distance between target and substrate is 80mm, argon flow rate is 15-30sccm, oxygen flow rate is 0.3-2.0sccm, argon-oxygen ratio is 7.5:1-39:1, sputtering Working pressure is 0.3Pa, sputtering power is 150-200W, deposition time is 60min; wherein, the target used is a metal vanadium target, its mass purity ⁇ 99.99%, argon purity ⁇ 99.999%, oxygen Purity ⁇ 99.99%. In this way, a vanadium oxide film with uniform surface, dense structure, good film formation quality, and good crystallization, and the combination of vanadium oxide and polyimide is not easy to fall off.
  • the high temperature annealing condition is that the vanadium oxide precursor film is annealed in a vacuum or inert environment; further preferably, in an argon atmosphere with a vacuum of 0.1-0.3 Pa, at 420- After annealing at 480°C for more than 30min, the obtained vanadium oxide film is a layered polycrystalline film.
  • High-temperature annealing under vacuum or inert conditions helps to improve the quality of film formation, forming a thin film of vanadium oxide with uniform surface, dense structure, good crystallization, and not easy to fall off.
  • the first flexible material film is prepared by uniformly applying the polyimide solution on the substrate by knife coating or spin coating, and baking at 25-60° C. 3 Hour, and then heated at 300-400°C for 8 hours for annealing to obtain a uniform polyimide film on the silicon substrate to form the first flexible material film;
  • the second flexible material film is also preferably the same Steps are formed on the vanadium oxide film.
  • a high temperature resistant polyimide film can be formed, and two flexible material films can be formed using the same method, which can reduce the overall manufacturing cost.
  • the obtained polyimide film has a dielectric constant of 3.4 and a thermal decomposition temperature of 494°C.
  • the thickness of the first flexible material film is 10-20 ⁇ m
  • the thickness of the vanadium oxide film is less than 100 nm
  • the thickness of the second flexible material film is 10-20 ⁇ m.
  • a specific method for preparing a vanadium oxide thin film includes: step one, preparing a substrate and forming a silicon nitride layer on a silicon substrate; step two, placing the substrate in deionized water and absolute ethanol in sequence , Ultrasonic cleaning in acetone solvent for 10 minutes, and drying; Step three, prepare the substrate, forming a first polyimide film on the substrate; Step four, place the substrate in deionized water in sequence , Ultrasonic cleaning in absolute ethanol and acetone solvents for 10 minutes, and drying; Step five, the cleaned substrate is placed in a high vacuum RF magnetron sputtering equipment with a vacuum of 5.0 ⁇ 10 -4 Pa, in The substrate temperature is 100-400°C, the argon flow rate is 15-30sccm, the oxygen flow rate is 0.3-2.0sccm, the argon-oxygen ratio is 7.5:1-39:1, the sputtering working pressure is 0.3Pa, and the sputtering power
  • a peeling step is further included; wherein the peeling step includes removing the first flexible material film, the vanadium oxide film, and the second flexible material film from the substrate After peeling, a composite film in which a vanadium oxide film is formed in the first flexible material film and the second flexible material film is obtained.
  • a flexible vanadium oxide composite film can be obtained separately, which can be suitable for use as a separate flexible film material under different use environments and use conditions.
  • the third step further includes uniformly applying the polyimide solution on the substrate by knife coating or spin coating, baking at 25-60° C. 3, and then at 300- After heating at 400°C for 8 hours for annealing, a uniform polyimide film was obtained on the silicon substrate.
  • a polyimide film having a high thermal decomposition temperature can be obtained.
  • the thermal decomposition temperature of the polyimide film is greater than 400°C.
  • the obtained polyimide film has a dielectric constant of 3.4 and a thermal decomposition temperature of 494°C.
  • the vanadium oxide composite film prepared by the above preparation method includes a first flexible film, a vanadium oxide film, and a second flexible film; wherein, the vanadium oxide film is formed between the first flexible film and the second flexible film; when When the temperature of the vanadium oxide composite film is lower than the phase transition temperature of vanadium oxide, the infrared light in the incident light can penetrate the vanadium oxide composite film and transmit to the other side; when the temperature of the vanadium oxide composite film is high At the phase transition temperature of vanadium oxide, the infrared light in the incident light can be reflected by the vanadium oxide composite film.
  • the infrared light transmittance of the vanadium oxide composite film can be changed with temperature, and intelligent automatic adjustment of the transmitted infrared light can be realized to play a role in assisting the adjustment of the indoor temperature to a certain extent.
  • the indoor temperature rises rapidly.
  • the vanadium oxide phase transition temperature is reached, it is changed from the original monoclinic phase to the tetragonal phase, that is, from full-band transmitted infrared light to full-band reflected infrared light, thus Energy in the infrared region, which accounts for 48% of solar radiation energy, is reduced into the room, reducing the burden on the air conditioner and saving energy.
  • the vanadium oxide When the outdoor temperature is lower than the vanadium oxide phase transition temperature, the vanadium oxide is a semiconductor monoclinic phase, and infrared light is transmitted in the full wave band, so that warm sunlight enters the room through the window glass and the temperature rises.
  • vanadium oxide changes into a metal tetragonal phase, and infrared light is reflected in the full waveband. Therefore, the indoor heat radiation is firmly locked in the room, reducing the indoor heat loss through the window glass, thereby reducing the indoor heating load, and saving energy consumption.
  • the laminated structure of the composite film is an upper light-transmitting material layer, a vanadium oxide film, and a lower light-transmitting material layer in order from top to bottom.
  • This structure makes the vanadium oxide film sandwiched between the upper and lower light-transmitting material layers, which well protects the vanadium oxide film from contacting other impurities or sharp objects, which can cause pollution or damage to the vanadium oxide film, and also avoids long-term Exposure to air causes the vanadium oxide film to be oxidized to reduce the control effect of sunlight energy entering the room.
  • the first flexible film and the second flexible film are formed of the same material, preferably both the first flexible film and the second flexible film are formed of a polyimide material. Therefore, the vanadium oxide composite film can have an effect of reflecting ultraviolet light while having a high transmittance in the visible light band, and the vanadium oxide composite film can be made flexible as a whole, and the vanadium oxide film can be firmly connected and not easy to fall off.
  • the thickness of the first flexible material film is 10-20 ⁇ m
  • the thickness of the vanadium oxide film is less than 100 nm
  • the thickness of the second flexible material film is 10-20 ⁇ m.
  • the composite film thus formed can not only ensure sufficient light transmittance and flexibility, but also have sufficient infrared light modulation effect.
  • the working wavelength of the composite film of the present application is preferably in the range of 750-1500 nm.
  • Step 1 Prepare the substrate.
  • a silicon substrate is provided, and a silicon nitride layer is formed on the silicon substrate by a plasma enhanced chemical vapor deposition method.
  • the size of the silicon substrate used is 33mm ⁇ 33mm.
  • the silicon nitride layer can function as an insulating layer, making the whole better suited for MEMS process preparation in device processing.
  • the silicon nitride layer only serves as a carrier for the flexible film together with the silicon wafer, and does not participate in the direct reaction.
  • Step 2 Put the substrate in deionized water, absolute ethanol, and acetone solvents in sequence for 10 minutes, and dry them.
  • Step 3 Prepare the substrate.
  • the polyimide (PI) solution is evenly applied on the cleaned substrate by scraping or spin coating, and baked at 25-60°C for 3 hours to remove the organic components in the polyimide, After heating at a high temperature of 300-400°C for 8 hours, an imidization reaction occurs, and finally a uniform first polyimide film is obtained on the substrate.
  • the obtained polyimide had a dielectric constant of 3.4 and a thermal decomposition temperature of 494°C.
  • Step 4 Put the substrate into the deionized water, absolute ethanol and acetone solvents in sequence for 10 minutes, and dry them.
  • Step five prepare a vanadium oxide precursor film. Place the cleaned substrate in a high vacuum RF magnetron sputtering device with a vacuum of less than 5.0 ⁇ 10 -4 Pa, and use a mixed gas of oxygen and argon as the working gas, and the vacuum degree of sputtering is 2.5 ⁇ 4.0 ⁇ 10 -4 Pa, metal vanadium as target, distance between target and substrate is 80mm, argon flow rate is 30sccm, oxygen flow rate is 0.83sccm, argon-oxygen ratio is 36:1, sputtering working pressure is 0.3Pa , The sputtering power is 190W, the substrate temperature is 400°C during the growth, and the deposition time is 60min.
  • the mass purity of the metal vanadium target is 99.99%, the purity of argon is ⁇ 99.999%, and the purity of oxygen is ⁇ 99.99%.
  • the resulting vanadium oxide (VO x ) is a layered amorphous VO x thin film.
  • Step six high temperature annealing. It is preferable to anneal at high temperature in a vacuum or argon atmosphere.
  • the gas atmosphere was adjusted to an argon atmosphere of 0.1-0.3 Pa, and annealed at about 480°C for 30 min.
  • the obtained vanadium oxide (VO x ) was a layered polycrystalline thin film.
  • Step 7 Apply the polyimide (PI) solution uniformly on the prepared vanadium oxide film by scraping or spin coating, and prepare a uniform second polyimide film in the same way as in step 3 to obtain Composite vanadium oxide film.
  • PI polyimide
  • step 8 the first polyimide film, the vanadium oxide film and the second polyimide film formed in steps 3 to 7 are peeled from the substrate together to form a flexible vanadium oxide composite film.
  • the vanadium oxide composite film 1 obtained by this method includes a first polyimide film 11, a vanadium oxide film 12, and a second polyimide film 13, and the vanadium oxide film 12 is formed in Between the first polyimide film 11 and the second polyimide film 13.
  • the thickness of the first polyimide film 11 is 10-20 ⁇ m
  • the thickness of the vanadium oxide film 12 is less than 100 nm
  • the thickness of the second polyimide film 13 is 10-20 ⁇ m.
  • the vanadium oxide composite film 1 uses a flexible material polyimide film with high temperature resistance, corrosion resistance, environmental friendliness, and high light transmittance as a substrate, with a layered structure of vanadium oxide film in the middle.
  • the composite film has good adaptability to rigid substrates such as glass and silicon wafers, and has excellent characteristics such as flexibility, tortuosity, wide adaptability, and portability.
  • FIG. 3 shows that the vanadium oxide film in the flexible vanadium oxide composite film finally obtained by the method of this embodiment is manufactured by ZEISS produced by Carl Zeiss Corporation.
  • the standard scanning electron microscope picture obtained under the scanning electron microscope of model 55. It can be seen from the figure that the vanadium oxide film has the characteristics of layer growth, the film structure is dense, and the crystallization effect is good, and the quality of the film is high.
  • FIG. 4 is a schematic diagram of the modulation effect of the vanadium oxide composite film 1 obtained by the method of this embodiment on the infrared wave band.
  • the figure shows the modulation effect of the vanadium oxide composite film 1 on light of different wavelengths in the infrared band at 25°C and 80°C, respectively. At 80°C, the transmittance of light in the infrared band gradually decreases.
  • the vanadium oxide composite film 1 has a high transmittance for visible light 22 in natural light 2 from the sun, allowing visible light 22 to penetrate the vanadium oxide composite film 1 and be transmitted to the other side
  • the vanadium oxide composite film 1 has a high reflectivity for the ultraviolet light 23 in the natural light 2 from the sun, that is, the ultraviolet light 23 in the natural light 2 has a low transmittance.
  • the transmittance of the vanadium oxide composite film 1 to the infrared light 21 in the incident natural light 2 gradually increases, so that the characteristics shown in FIG.
  • the infrared light 21 and the visible light 22 in the natural light 2 from the sun can penetrate the vanadium oxide composite film 1 and transmit to the other side, while the ultraviolet light 23 in the natural light 2 has a low transmittance and a high reflectance.
  • the transmittance of the vanadium oxide composite film 1 to the infrared light 21 in the incident natural light 2 gradually decreases, so that the characteristics shown in FIG. 2 are exhibited. That is, the visible light 22 in the natural light 2 from the sun can penetrate the vanadium oxide composite film 1 and transmit to the other side, while the infrared light 21 and the ultraviolet light 23 in the natural light 2 have lower transmittance and higher reflectance.
  • the vanadium oxide composite film 1 Since the vanadium oxide composite film 1 has such characteristics, if the vanadium oxide composite film 1 is applied to an existing glass window, it can be used in a relatively low temperature environment as shown in FIG. 1 and as shown in FIG. 2 Under the relatively high temperature environment shown, adaptive adjustment of the amount of infrared light entering the room can effectively help adjust the indoor temperature.
  • the vanadium oxide composite film 1 uses a flexible material polyimide that is resistant to high temperature, corrosion, environment, and high light transmittance as a substrate, and uses high temperature to prepare vanadium oxide with good performance in the middle, making the overall film for infrared light The modulation amplitude is more obvious. Since the vanadium oxide composite film 1 is a flexible composite film, it is easy to apply to rigid substrates such as glass and silicon wafers, and has good adhesion. During use, it is not only easy to install, but also easier to maintain and replace.
  • This application proposes a flexible intelligent temperature control film, which uses a flexible material with high temperature resistance, corrosion resistance, environmental friendliness, and high light transmittance as a substrate, and a layered structure of a layer of vanadium oxide film in the middle.
  • This film has good adaptability to rigid substrates such as glass and silicon wafers. It has excellent characteristics such as flexibility, tortuosity, wide adaptability, and portability. It is also easy to disassemble, clean, and assemble. It can also control the temperature in both directions. Good modulation performance.
  • the composite film of the present application has a relatively large modulation amplitude for infrared light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

一种氧化钒复合薄膜(1),包括第一柔性薄膜(11),氧化钒薄膜(12),以及第二柔性薄膜(13);其中,所述氧化钒薄膜(12)形成于第一柔性薄膜(11)和第二柔性薄膜(13)之间;当所述氧化钒复合薄膜(1)的温度降低时,所述氧化钒复合薄膜(1)对入射光(2)中的红外光(21)的透射率增加;当所述氧化钒复合薄膜(1)的温度升高时,所述氧化钒复合薄膜(1)对入射光(2)中的红外光(21)的透射率降低。上述氧化钒复合薄膜(1)使用耐高温、耐腐蚀、环境友好、透光率高的柔性材料作为基底,中间由一层氧化钒薄膜(12)组成层叠结构。这种薄膜与玻璃、硅片等刚性基底相适应性好,具备柔性、曲折性、适应性广、轻便等优良特性,同时便于拆卸、清洗和装配,还可双向控温,对红外光的调制性能好。

Description

一种氧化钒复合薄膜及其制备方法 技术领域
本申请涉及一种智能温控薄膜,特别是一种氧化钒复合薄膜及其制备方法。
背景技术
全球经济的发展不断消耗着有限的不可再生能源,人类将面临着能源短缺的危机。在全世界日益增长的能源消耗中,无论是发达国家还是发展中国家,建筑能耗都是国家总能耗中比较重大的一项,发达国家的建筑能耗甚至占到全国总能耗的三分之一左右。
在各类能耗中,采暖和空调的能耗占建筑总能耗的55%左右,并且我国建筑单位面积能耗是发达国家的2至3倍,并呈逐年上升趋势,能源浪费极其严重。在现代建筑物中,窗户是建筑物不可缺少的重要组成部分,它使得建筑物的采光和通风都能大大改善,又能使得住宅有一定的敞开面积,扩大视野。随着建筑形式的现代化,外窗和玻璃幕墙等透光型围护结构占外表面面积的比例越来越高,太阳辐射的热能主要通过窗户进入室内。
据测算,通过普通玻璃窗进行的热交换损耗在冬夏季节分别占58%和73%,由此可见在建筑中的热量损耗的大部分都是通过玻璃窗的热交换而造成的,特别是夏季的损耗高达73%。这是由于太阳光能量约99%分布在波长为0.2-2.5μm的范围内,其中0.2~0.38μm的紫外光区占总能量的约8%,0.38~0.76μm的可见光占约43%,0.76~2.5μm的红外光占48%,而普通玻璃对不同波长的太阳光不具有调控能力,室外温度较高时,不能有效截止近红外太阳光,增加 了空调的制冷负荷,室外温度低时,室内热量又以热辐射的形式通过玻璃表面散失,增加了空调的保温负荷。在采用空调调节室内温度的情况下,据测量,制冷温度提高2℃,制冷负荷减少约20%;制热温度调低2℃,制热负荷减少约30%。由上述可知,改善窗玻璃绝热性能将是改善建筑能耗的关键所在。
现有建筑物主要使用普通玻璃与商业应用的被动调热型的低辐射率(Low-E)镀膜玻璃,可有效减少玻璃表面的辐射率,进而减少相应的辐射散热,提高了窗玻璃绝热的性能。但是,这些玻璃一旦在结构形成之后,其光学特性很难发生改变,不能随着季节变化进行双向调节,且难以重新组装、拆换。此外,中国已有的玻璃幕墙已占全球总量的85%。据不完全统计,在近20年的时间里,光玻璃幕墙在中国已突破5亿平方米。如此庞大的数量难以在短时间内更换新型的玻璃。另外,玻璃经常的清洗与更换,不仅增加了人工维护的成本,也增加了安全隐患。
现有技术“一种自动调温的智能玻璃”(CN204020142U)公开了一种由一层或多层透光材料层与至少一层二氧化钒薄膜组成的层叠结构的组合体,不过其透光率不明,性能不高,难以双向调节温度。此外,该方法得到的智能玻璃的清洗与更换不仅增加了人工维护的成本,也增加了安全隐患。
申请内容
针对以上现有技术存在的技术问题,本申请提出一种氧化钒复合薄膜及其制备方法,使用耐高温、耐腐蚀、环境友好、透光率高的柔性材料作为基底,中间由一层氧化钒薄膜组成层叠结构。这种薄膜与玻璃、硅片等刚性基底相适应性好,具备柔性、曲折性、适应性广、轻便等优良特性,同时便于拆卸、清洗、装配,还可双向控温,对红外光的调制性能好。
本申请涉及一种氧化钒复合薄膜的制备方法,包括,步骤一,在衬底上形成耐高温的第一柔性材料薄膜,以形成基片;步骤二,在所述基片上的所述第 一柔性材料上形成氧化钒前驱体薄膜;步骤三,对形成有所述氧化钒前驱体薄膜的基片进行高温退火,形成具有氧化钒薄膜的复合薄膜;步骤四,在所述氧化钒薄膜上形成第二柔性材料薄膜。
优选为,在所述步骤一之前,还包括衬底准备步骤;其中,所述衬底为硅衬底。
优选为,所述衬底准备步骤进一步包括,在所述硅衬底上形成氮化硅层,以形成具有氮化硅层的硅衬底;步骤一中所述第一柔性材料薄膜形成于所述衬底上的所述氮化硅层上。
优选为,所述步骤三之后,还包括剥离步骤;其中,所述剥离步骤包括,将所述第一柔性材料薄膜、氧化钒薄膜和第二柔性材料薄膜从所述衬底上剥离,获得在所述第一柔性材料薄膜和所述第二柔性材料薄膜内形成有氧化钒薄膜的复合薄膜。
优选为,所述耐高温的第一柔性材料的热分解温度高于步骤三中高温退火的温度。
优选为,所述第一柔性材料薄膜与所述第二柔性材料薄膜由在可见、红外波段内均具有高透射性的透光材料形成。
优选为,所述第一柔性材料为耐高温树脂材料。
优选为,所述耐高温树脂材料为聚酰亚胺。
优选为,所述聚酰亚胺的热分解温度大于400℃。
优选为,所述第一柔性材料薄膜与所述第二柔性材料薄膜由相同的材料构成。
优选为,步骤二中,通过磁控溅射方法在所述第一柔性材料上形成所述氧化钒前驱体薄膜。
优选为,所述磁控溅射的条件为:基片温度为100-400℃,真空度低于5.0×10 -4Pa,靶材与基片距离为80mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.3Pa,溅射功率为150-200W,沉积时间为60min。
优选为,步骤三中进行高温退火的条件为,在真空或惰性环境中对所述氧化钒前驱体薄膜进行退火。
优选为,步骤三中进行高温退火的温度在420-480℃范围内。
优选为,所述退火的环境为,真空度为0.1-0.3Pa的氩气氛围。
优选为,所述步骤二还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜,以形成所述第一柔性材料薄膜。
优选为,所述步骤四还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述氧化钒薄膜上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在所述氧化钒薄膜上得到均匀的聚酰亚胺薄膜,以形成所述第二柔性材料薄膜。
优选为,第一柔性材料薄膜的厚度为10-20μm,氧化钒薄膜的厚度小于100nm,第二柔性材料薄膜的厚度为10-20μm。
本申请还涉及一种氧化钒复合薄膜的制备方法,包括,步骤一,准备衬底, 在硅基底上形成氮化硅层;步骤二,将所述衬底依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;步骤三,准备基片,在所述衬底上形成第一聚酰亚胺薄膜;步骤四,将所述基片依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;步骤五,将清洗好的基片置于真空度为5.0×10 -4Pa的高真空射频磁控溅射设备里,在基片温度为100-400℃、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.3Pa、溅射功率为150-200W、靶材与基片距离为80mm的条件下,沉积60min,以在所述基片上形成氧化钒前驱体薄膜;所述靶材为金属钒靶;步骤六,在420-480℃退火30min以上,获得的氧化钒薄膜为层状多晶的薄膜;步骤七,在所述氧化钒薄膜上形成第二聚酰亚胺薄膜。
优选为,所述步骤七之后,还包括剥离步骤;其中,所述剥离步骤包括,将所述第一柔性材料薄膜、氧化钒薄膜和第二柔性材料薄膜从所述衬底上剥离,获得在所述第一柔性材料薄膜和所述第二柔性材料薄膜内形成有氧化钒薄膜的复合薄膜。优选为,所述步骤三还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜,以形成第一聚酰亚胺薄膜。
优选为,所述步骤七还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述氧化钒薄膜上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在所述氧化钒薄膜上得到均匀的聚酰亚胺薄膜,以形成第二聚酰亚胺薄膜。
优选为,第一柔性材料薄膜的厚度为10-20μm,氧化钒薄膜的厚度小于 100nm,第二柔性材料薄膜的厚度为10-20μm。
本申请还涉及一种氧化钒复合薄膜,包括第一柔性薄膜,氧化钒薄膜以及第二柔性薄膜;其中,所述氧化钒薄膜形成于第一柔性薄膜和第二柔性薄膜之间;当所述氧化钒复合薄膜的温度低于氧化钒的相变温度时,入射光中的红外光能够穿透所述氧化钒复合薄膜并透射至另一侧;当所述氧化钒复合薄膜的温度高于氧化钒的相变温度时,入射光中的红外光能够被所述氧化钒复合薄膜反射。
优选为,所述第一柔性薄膜和所述第二柔情薄膜由相同材料形成。
优选为,所述第一柔性薄膜和所述第二柔性薄膜均由聚酰亚胺材料形成。
优选为,所述复合薄膜对波长范围在750-1700nm内的红外光的透射率具有调制作用。
优选为,第一柔性材料薄膜的厚度为10-20μm,氧化钒薄膜的厚度小于100nm,第二柔性材料薄膜的厚度为10-20μm。
优选为,所述氧化钒复合薄膜由前述各方法中任一项所述的方法制备形成。
与现有技术相比,本申请的有益效果在于,用耐高温、耐腐蚀、环境友好、透光率高的柔性材料聚酰亚胺作为两侧基底,在中间使用高温制备性能良好的氧化钒薄膜,使得整体薄膜对于红外光的调制幅度比较大,且本申请提出的薄膜与玻璃、硅片等刚性基底粘附性好,适用范围更广。
附图说明
附图1:氧化钒复合薄膜低温环境下示意图;
附图2:氧化钒复合薄膜高温环境下示意图;
附图3:实施例1方法制备的氧化钒薄膜扫描电子显微镜图;
附图4:实施例1方法制备的氧化钒复合薄膜对红外波段的调制作用。
具体实施方式
本实施方式涉及的一种氧化钒复合薄膜及其制备方法,使用耐高温、耐腐蚀、环境友好、透光率高的柔性材料作为基底,中间由一层氧化钒(VO x)薄膜组成层叠结构的组合体。这种薄膜与玻璃、硅片等刚性基底相适应性好,具备柔性、曲折性、适应性广,也具备与现实中已使用玻璃具有很好兼容的特性,便于拆卸、清洗、装配,该薄膜可双向控温,轻便,对红外光的调制性能好。其中,所述氧化钒不仅限于VO 2或V 2O 5,即包括各种形式的钒的氧化物,即通常被本领域技术人员记做VOx。
制备方法主要包括,在衬底上形成耐高温的第一柔性材料薄膜,并以此形成基片,所述基片能够用于后续步骤中形成氧化钒薄膜;在所述基片上的所述第一柔性材料上形成氧化钒前驱体薄膜,然后进一步对形成有所述氧化钒前驱体薄膜的基片进行高温退火,以形成氧化钒薄膜的复合薄膜;进一步在所述氧化钒薄膜上形成第二柔性材料薄膜。
在一些实施例中,还包括准备衬底的步骤,通常选用硅衬底作为所述复合薄膜的衬底,以方便将所述复合薄膜直接与半导体器件制备工艺相结合。
在一些实施例中,准备衬底的步骤进一步包括,在所述硅衬底上形成氮化硅层,以形成具有氮化硅层的硅衬底;并进一步将所述第一柔性材料薄膜形成于所述衬底上的所述氮化硅层上。氮化硅层能够起到绝缘层的作用,使得整体更好的适用于器件加工中的MEMS工艺制备。在反应过程中,所述氮化硅层仅与硅片一同作为柔性薄膜的载体,不参与直接反应。
在一些实施例中,还包括剥离步骤;其中,所述剥离步骤包括,将所述第一柔性材料薄膜、氧化钒薄膜和第二柔性材料薄膜从所述衬底上剥离,获得在所述第一柔性材料薄膜和所述第二柔性材料薄膜内形成有氧化钒薄膜的复合薄膜。通过此步骤,可以单独获得柔性的氧化钒复合薄膜,能够适于在不同使用环境和使用条件下作为单独的柔性薄膜材料使用。
在一些实施例中,所述耐高温柔性材料优选为耐高温树脂材料,并进一步优选为聚酰亚胺树脂材料,且所述聚酰亚胺的热分解温度大于400℃。优选为,所述耐高温柔性材料的热分解温度高于高温退火的温度。由此使得形成在所述第一柔性材料薄膜表面的氧化钒薄膜能够在高温的条件下进行退火,并形成表面均匀、结构致密、成膜质量好、结晶良好,且氧化钒与聚酰亚胺结合紧密不易脱落的氧化钒复合薄膜。
在一些实施例中,所述第一柔性材料薄膜与所述第二柔性材料薄膜由在可见光和红外光波段内均具有高透射性的透光材料形成。由于所述第一柔性材料薄膜与所述第二柔性材料薄膜为透光材料形成,以使得柔性氧化钒复合薄膜能够适用于如窗户等需要透光的环境中。
在一些实施例中,所述第一柔性材料薄膜与所述第二柔性材料薄膜由相同的材料构成。由此可以降低柔性氧化钒复合薄膜在整个制备过程中的制备成本。
在一些实施例中,通过磁控溅射方法在所述第一柔性材料上形成所述氧化钒前驱体薄膜;且所述磁控溅射的条件优选为,基片温度为100-400℃,真空度低于5.0×10 -4Pa,靶材与基片距离为80mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.3Pa,溅射功率为 150-200W,沉积时间为60min;其中,所使用的所述靶材为金属钒靶,其质量纯度≥99.99%,氩气的纯度≥99.999%,氧气的纯度≥99.99%。以此获得表面均匀、结构致密、成膜质量好、结晶良好,且氧化钒与聚酰亚胺结合紧密不易脱落的氧化钒薄膜。
在一些实施例中,高温退火的条件为,在真空或惰性环境中对所述氧化钒前驱体薄膜进行退火;进一步优选为,在真空度为0.1-0.3Pa的氩气氛围中,在420-480℃退火30min以上,获得的氧化钒薄膜为层状多晶的薄膜。在真空或惰性条件下进行高温退火,有助于提高成膜质量,形成表面均匀、结构致密、结晶良好、不易脱落的氧化钒薄膜。
在一些实施例中,所述第一柔性材料薄膜的制备步骤为:将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜,以形成所述第一柔性材料薄膜;所述第二柔性材料薄膜优选也使用相同的步骤形成在所述氧化钒薄膜上。由此可以形成耐高温的聚酰亚胺薄膜,使用相同的方法形成两个柔性材料薄膜,能够降低整体制备成本。优选为,所得的聚酰亚胺薄膜的介电常数为3.4,热分解温度为494℃。
在一些实施例中,所述第一柔性材料薄膜的厚度为10-20μm,所述氧化钒薄膜的厚度小于100nm,所述第二柔性材料薄膜的厚度为10-20μm。由此形成的复合薄膜既能够保证足够的透光性和柔韧性,又能够起到足够的红外光调制效果。
在一些实施例中,具体的氧化钒薄膜制备方法包括,步骤一,准备衬底,在硅基底上形成氮化硅层;步骤二,将所述衬底依次放入去离子水、无水乙醇、 丙酮溶剂中分别超声清洗10分钟,并烘干;步骤三,准备基片,在所述衬底上形成第一聚酰亚胺薄膜;步骤四,将所述基片依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;步骤五,将清洗好的基片置于真空度为5.0×10 -4Pa的高真空射频磁控溅射设备里,在基片温度为100-400℃、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.3Pa、溅射功率为150-200W、靶材与基片距离为80mm的条件下,沉积60min,以在所述基片上形成氧化钒前驱体薄膜;所述靶材为质量纯度≥99.99%的金属钒靶;步骤六,在420-480℃退火30min以上,获得的氧化钒薄膜为层状多晶的薄膜;步骤七,在所述氧化钒薄膜上形成第二聚酰亚胺薄膜。以此获得表面均匀、结构致密、成膜质量好、结晶良好、且氧化钒与聚酰亚胺结合紧密不易脱落的氧化钒薄膜。
在一些实施例中,在所述步骤七之后,还包括剥离步骤;其中,所述剥离步骤包括,将所述第一柔性材料薄膜、氧化钒薄膜和第二柔性材料薄膜从所述衬底上剥离,获得在所述第一柔性材料薄膜和所述第二柔性材料薄膜内形成有氧化钒薄膜的复合薄膜。通过此步骤,可以单独获得柔性的氧化钒复合薄膜,能够适于在不同使用环境和使用条件下作为单独的柔性薄膜材料使用。
在一些实施例中,所述步骤三还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在25-60℃下烘烤3,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜。通过此步骤,可以获得具有高热分解温度的聚酰亚胺薄膜,优选为,所述聚酰亚胺薄膜的热分解温度大于400℃。优选为,所得的聚酰亚胺薄膜的介电常数为3.4,热分解温度为494℃。
通过以上制备方法制备获得的氧化钒复合薄膜,包括第一柔性薄膜,氧化 钒薄膜,以及第二柔性薄膜;其中,所述氧化钒薄膜形成于第一柔性薄膜和第二柔性薄膜之间;当所述氧化钒复合薄膜的温度低于氧化钒的相变温度时,入射光中的红外光能够穿透所述氧化钒复合薄膜并透射至另一侧;当所述氧化钒复合薄膜的温度高于氧化钒的相变温度时,入射光中的红外光能够被所述氧化钒复合薄膜反射。以此使得所述氧化钒复合薄膜的红外光透射率能够随着温度变化,对透射的红外光实现智能自动调节,以在一定程度上起到辅助调节室内温度的作用。当室外温度较高时,室内温度快速升高,在达到氧化钒相变温度后,使其由原来的单斜相转变为四方相,即由全波段透射红外光转变成全波段反射红外光,从而减少了占太阳光辐射能量48%的红外区的能量进入室内,减轻了空调的负担,节约了能源。当室外温度低于氧化钒相变温度时,此时氧化钒为半导体态的单斜相,全波段透射红外光,使得温暖的阳光透过窗玻璃进入室内,温度上升。而室内达到相变温度时氧化钒又发生相变成为金属态的四方相,全波段反射红外光。从而将室内的热辐射牢牢锁在室内,减少室内热量通过窗玻璃散失,进而减轻室内取暖的负荷,节约能耗。
此外,所述复合薄膜的层叠结构从上到下依次为上透光材料层、氧化钒膜、下透光材料层。这样的结构使得氧化钒薄膜夹在上下两层透光材料层中间,很好的保护了氧化钒薄膜不会接触其他杂质或尖锐物从而造成氧化钒薄膜的污染或破损,同时也避免了因为长期接触空气使得氧化钒薄膜被氧化而降低其対进入室内的太阳光能量的控制作用。
在一些实施例中,所述第一柔性薄膜和所述第二柔性薄膜由相同的材料形成,优选为所述第一柔性薄膜和所述第二柔性薄膜均由聚酰亚胺材料形成。因此使得所述氧化钒复合薄膜能够具有在可见光波段具有高透过率的同时反射 紫外光的效果,并且能够使得氧化钒复合薄膜整体具有柔性,且所述氧化钒薄膜能够稳固连接,不易脱落。
在一些实施例中,所述第一柔性材料薄膜的厚度为10-20μm,所述氧化钒薄膜的厚度小于100nm,所述第二柔性材料薄膜的厚度为10-20μm。由此形成的复合薄膜既能够保证足够的透光性和柔韧性,又能够起到足够的红外光调制效果。其中,本申请的复合薄膜的工作波长优选在750-1500nm的范围内。
实施例1
本实施例涉及的氧化钒复合薄膜的制备方法具体如下:
步骤一,准备衬底。提供硅基底,并在所述硅基底上通过等离子体增强化学气相沉积法形成氮化硅层。其中所用的硅基底尺寸为33mm×33mm。氮化硅层能够起到绝缘层的作用,使得整体更好的适用于器件加工中的MEMS工艺制备。在反应过程中,所述氮化硅层仅与硅片一同作为柔性薄膜的载体,不参与直接反应。
步骤二,将所述衬底依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干。
步骤三,准备基片。将聚酰亚胺(PI)溶液用刮涂或旋涂的方法均匀涂抹在清洗干净的所述衬底上,在25-60℃下烘烤3小时,除去聚酰亚胺中的有机成分,再在高温300-400℃下加热8小时,发生亚胺化反应,最终在所述衬底上得到均匀的第一聚酰亚胺薄膜。所得的聚酰亚胺介电常数为3.4,热分解温度为494℃。
步骤四,将所述基片依次放入去离子水、无水乙醇、丙酮溶剂中分别超声 清洗10分钟,并烘干。
步骤五,制备氧化钒前驱体薄膜。将清洗好的基片置于真空度为低于5.0×10 -4Pa的高真空射频磁控溅射设备里,以氧气与氩气的混合气体作为工作气体,溅射工作的真空度为2.5~4.0×10 -4Pa,金属钒作为靶材,靶材与基片距离为80mm,氩气流量为30sccm,氧气流量为0.83sccm,氩氧比为36:1,溅射工作气压为0.3Pa,溅射功率为190W,生长时基片温度为400℃,沉积时间为60min。其中,金属钒靶的质量纯度为99.99%,氩气的纯度≥99.999%,氧气的纯度≥99.99%。所得的氧化钒(VO x)为层状非晶的VO x薄膜。
步骤六,高温退火。优选在真空或氩气氛围中高温退火。将气体氛围调整到0.1-0.3Pa的氩气氛围,在480℃左右退火30min,获得的氧化钒(VO x)为层状多晶的薄膜。
步骤七,将聚酰亚胺(PI)溶液用刮涂或旋涂的方法均匀涂抹在已制备的氧化钒薄膜上,以步骤三同样的方法制备得到均匀的第二聚酰亚胺薄膜,获得复合的氧化钒薄膜。
步骤八,将步骤三至步骤七形成的第一聚酰亚胺薄膜、氧化钒薄膜以及第二聚酰亚胺薄膜一同从所述衬底上剥离,以形成柔性的氧化钒复合薄膜。
参见附图1和2可知,由此方法获得的氧化钒复合薄膜1包括第一聚酰亚胺薄膜11、氧化钒薄膜12以及第二聚酰亚胺薄膜13,所述氧化钒薄膜12形成于所述第一聚酰亚胺薄膜11与所述第二聚酰亚胺薄膜13之间。其中,所述第一聚酰亚胺薄膜11的厚度为10-20μm,所述氧化钒薄膜12的厚度小于100nm,所述第二聚酰亚胺薄膜13的厚度为10-20μm。所述氧化钒复合薄膜1使用耐高温、耐腐蚀、环境友好、透光率高的柔性材料聚酰亚胺薄膜作为基底,中间由一层氧 化钒薄膜组成层叠结构。这种复合薄膜与玻璃、硅片等刚性基底相适应性好,具备柔性、曲折性、适应性广、轻便等优良特性。
图3所示为,本实施例方法最终获得的柔性氧化钒复合薄膜中的氧化钒薄膜在Carl Zeiss Corporation公司产的ZEISS
Figure PCTCN2019123443-appb-000001
55型号的扫描电镜下获得的标准的扫描电子显微镜图。从图中可以看出,所述氧化钒薄膜具备层状生长的特性,薄膜结构致密,且结晶效果好,薄膜的质量高。
图4所示为,本实施例方法获得的氧化钒复合薄膜1对红外波段的调制作用示意图。图中分别给出了25℃和80℃下所述氧化钒复合薄膜1对于红外波段不同波长的光的调制作用,在80℃下明显表现出对于红外波段光的透射率逐渐降低。
如图1和2所示,所述氧化钒复合薄膜1对于来自太阳的自然光2中的可见光22具有较高的透射率,允许可见光22穿透所述氧化钒复合薄膜1并透射至另一侧;所述氧化钒复合薄膜1对于来自太阳的自然光2中的紫外光23具有较高的反射率,即自然光2中的紫外光23具有较低的透射率。随着所述氧化钒复合薄膜1的温度的降低,所述氧化钒复合薄膜1对于入射的自然光2中的红外光21的透射率逐渐增加,以至于表现出如图1所示的特性,即来自太阳的自然光2中的红外光21和可见光22能够穿透所述氧化钒复合薄膜1并透射到另一侧,而自然光2中的紫外光23的透射率较低、反射率较高。随着所述氧化钒复合薄膜1的温度的升高,所述氧化钒复合薄膜1对于入射的自然光2中的红外光21的透射率逐渐降低,以至于表现出如图2所示的特性,即来自太阳的自然光2中的可见光22能够穿透所述氧化钒复合薄膜1并透射到另一侧,而自然光2中的红外光21和紫外光23的透射率较低、反射率较高。
由于所述氧化钒复合薄膜1具有如此的特性,因此若将所述氧化钒复合薄膜1施加到现有的玻璃窗上,能够在如图1所示的相对低温环境下,以及如图2所示的相对高温环境下,对射入室内的红外光量进行自适应调节,能够对室内温度起到有效的辅助调节作用。
此外,所述氧化钒复合薄膜1用耐高温、耐腐蚀、环境友好、透光率高的柔性材料聚酰亚胺作为基底,在中间使用高温制备性能良好的氧化钒,使得整体薄膜对于红外光的调制幅度比较明显。由于所述氧化钒复合薄膜1为柔性复合薄膜,因此易于施加到玻璃、硅片等刚性基底上,并且具有良好的粘附性,在使用过程中,不仅易于安装,更易于维护和更换。
本申请提出一种柔性智能控温薄膜,使用耐高温、耐腐蚀、环境友好、透光率高的柔性材料作为基底,中间由一层氧化钒薄膜组成层叠结构。这种薄膜与玻璃、硅片等刚性基底相适应性好,具备柔性、曲折性、适应性广、轻便等优良特性,而且便于拆卸、清洗、装配,同时还可双向控温,对红外光的调制性能好。与现有技术相比,本申请的复合薄膜整体对于红外光的调制幅度比较大。
上面所述的只是说明本申请的一些实施方式,由于对相同技术领域的普通技术人员来说很容易在此基础上进行若干修改和改动,因此本说明书并非是要将本申请局限在所示和所述的具体结构、方法步骤、工艺流程、适用范围内,故凡是所有可能被利用的相应修改及等同物,均属于本申请所申请的专利范围。

Claims (29)

  1. 一种氧化钒复合薄膜的制备方法,包括,
    步骤一,在衬底上形成耐高温的第一柔性材料薄膜,以形成基片;
    步骤二,在所述基片上的所述第一柔性材料上形成氧化钒前驱体薄膜;
    步骤三,对形成有所述氧化钒前驱体薄膜的基片进行高温退火,形成具有氧化钒薄膜的复合薄膜;
    步骤四,在所述氧化钒薄膜上形成第二柔性材料薄膜。
  2. 如权利要求1所述的方法,其特征在于,在所述步骤一之前,还包括衬底准备步骤;其中,所述衬底为硅衬底。
  3. 如权利要求2所述的方法,其特征在于,所述衬底准备步骤进一步包括,在所述硅衬底上形成氮化硅层,以形成具有氮化硅层的硅衬底;步骤一中所述第一柔性材料薄膜形成于所述衬底上的所述氮化硅层上。
  4. 如权利要求1所述的方法,其特征在于,所述步骤三之后,还包括剥离步骤;其中,所述剥离步骤包括,将所述第一柔性材料薄膜、氧化钒薄膜和第二柔性材料薄膜从所述衬底上剥离,获得在所述第一柔性材料薄膜和所述第二柔性材料薄膜内形成有氧化钒薄膜的复合薄膜。
  5. 如权利要求1所述的方法,其特征在于,所述耐高温的第一柔性材料的热分解温度高于步骤三中高温退火的温度。
  6. 如权利要求5所述的方法,其特征在于,所述第一柔性材料薄膜与所述第二柔性材料薄膜由在可见光和红外光波段内均具有高透射性的透光材料 形成。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一柔性材料为耐高温树脂材料。
  8. 如权利要求7所述的方法,其特征在于,所述耐高温树脂材料为聚酰亚胺。
  9. 如权利要求8所述的方法,其特征在于,所述聚酰亚胺的热分解温度大于400℃。
  10. 如权利要求1-9中任一项所述的方法,其特征在于,所述第一柔性材料薄膜与所述第二柔性材料薄膜由相同的材料构成。
  11. 如权利要求1-10中任一项所述的方法,其特征在于,步骤二中,通过磁控溅射方法在所述第一柔性材料上形成所述氧化钒前驱体薄膜。
  12. 如权利要求11所述的方法,其特征在于,所述磁控溅射的条件为:基片温度为100-400℃,真空度低于5.0×10 -4Pa,靶材与基片距离为80mm,氩气流量为15-30sccm,氧气流量为0.3-2.0sccm,氩氧比为7.5:1-39:1,溅射工作气压为0.3Pa,溅射功率为150-200W,沉积时间为60min。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,步骤三中进行高温退火的条件为,在真空或惰性环境中对所述氧化钒前驱体薄膜进行退火。
  14. 如权利要求1-13中任一项所述的方法,其特征在于,步骤三中进行高温退火的温度在420-480℃范围内。
  15. 如权利要求13或14所述的方法,其特征在于,所述退火的环境为,真空度为0.1-0.3Pa的氩气氛围。
  16. 如权利要求1-15中任一项所述的方法,其特征在于,所述步骤二还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜,以形成所述第一柔性材料薄膜。
  17. 如权利要求1-16中任一项所述的方法,其特征在于,所述步骤四还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述氧化钒薄膜上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在所述氧化钒薄膜上得到均匀的聚酰亚胺薄膜,以形成所述第二柔性材料薄膜。
  18. 如权利要求1-17中任一项所述的方法,其特征在于,所述第一柔性材料薄膜的厚度为10-20μm;所述氧化钒薄膜的厚度小于100nm;所述第二柔性材料薄膜的厚度为10-20μm。
  19. 一种氧化钒复合薄膜的制备方法,包括,
    步骤一,准备衬底,在硅基底上形成氮化硅层;
    步骤二,将所述衬底依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;
    步骤三,准备基片,在所述衬底上形成第一聚酰亚胺薄膜;
    步骤四,将所述基片依次放入去离子水、无水乙醇、丙酮溶剂中分别超声清洗10分钟,并烘干;
    步骤五,将清洗好的基片置于真空度为5.0×10 -4Pa的高真空射频磁控溅射设备里,在基片温度为100-400℃、氩气流量为15-30sccm、氧气流量为0.3-2.0sccm、氩氧比为7.5:1-39:1、溅射工作气压为0.3Pa、溅射功率为 150-200W、靶材与基片距离为80mm的条件下,沉积60min,以在所述基片上形成氧化钒前驱体薄膜;所述靶材为金属钒靶;
    步骤六,在420-480℃退火30min以上,获得的氧化钒薄膜为层状多晶的薄膜;
    步骤七,在所述氧化钒薄膜上形成第二聚酰亚胺薄膜。
  20. 如权利要求19所述的方法,其特征在于,所述步骤七之后,还包括剥离步骤;其中,所述剥离步骤包括,,将所述第一柔性材料薄膜、氧化钒薄膜和第二柔性材料薄膜从所述衬底上剥离,获得在所述第一柔性材料薄膜和所述第二柔性材料薄膜内形成有氧化钒薄膜的复合薄膜。
  21. 如权利要求19或20所述的方法,其特征在于,所述步骤三还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述衬底上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在硅基底上得到均匀的聚酰亚胺薄膜,以形成第一聚酰亚胺薄膜。
  22. 如权利要求19或21所述的方法,其特征在于,所述步骤七还包括,将聚酰亚胺溶液用刮涂或旋涂的方法均匀涂抹在所述氧化钒薄膜上,在25-60℃下烘烤3小时,然后在300-400℃下加热8小时进行退火,在所述氧化钒薄膜上得到均匀的聚酰亚胺薄膜,以形成第二聚酰亚胺薄膜。
  23. 如权利要求18-22中任一项所述的方法,其特征在于,所述第一柔性材料薄膜的厚度为10-20μm;所述氧化钒薄膜的厚度小于100nm;所述第二柔性材料薄膜的厚度为10-20μm。
  24. 一种氧化钒复合薄膜,包括第一柔性薄膜,氧化钒薄膜以及第二柔性 薄膜;其中,所述氧化钒薄膜形成于第一柔性薄膜和第二柔性薄膜之间;当所述氧化钒复合薄膜的温度低于氧化钒的相变温度时,入射光中的红外光能够穿透所述氧化钒复合薄膜并透射至另一侧;当所述氧化钒复合薄膜的温度高于氧化钒的相变温度时,入射光中的红外光能够被所述氧化钒复合薄膜反射。
  25. 如权利要求24所述的氧化钒复合薄膜,其特征在于,所述第一柔性薄膜和所述第二柔情薄膜由相同透明材料形成,所述透明材料为在可见光波段和红外光波段透明的材料。
  26. 如权利要求25所述的氧化钒复合薄膜,其特征在于,所述第一柔性薄膜和所述第二柔性薄膜均由聚酰亚胺材料形成。
  27. 如权利要求24-26中任一项所述的氧化钒复合薄膜,其特征在于,所述复合薄膜对波长范围在750-1700nm内的红外光的透射率具有调制作用。
  28. 如权利要求24-27中任一项所述的氧化钒复合薄膜,其特征在于,所述第一柔性材料薄膜的厚度为10-20μm;所述氧化钒薄膜的厚度小于100nm;所述第二柔性材料薄膜的厚度为10-20μm。
  29. 如权利要求24-28中任一项所述的氧化钒复合薄膜,其特征在于,所述氧化钒复合薄膜由权利要求1-23中任一项所述的方法制备形成。
PCT/CN2019/123443 2018-12-18 2019-12-05 一种氧化钒复合薄膜及其制备方法 WO2020125438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811549418.2 2018-12-18
CN201811549418.2A CN109457228B (zh) 2018-12-18 2018-12-18 一种自动控温的智能薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2020125438A1 true WO2020125438A1 (zh) 2020-06-25

Family

ID=65613671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123443 WO2020125438A1 (zh) 2018-12-18 2019-12-05 一种氧化钒复合薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN109457228B (zh)
WO (1) WO2020125438A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105765A (zh) * 2021-03-31 2021-07-13 东南大学 一种具有高可见光透过率的智能隔热复合涂层及其制法
CN114300571A (zh) * 2021-10-22 2022-04-08 中国石油大学(华东) 一种柔性单晶薄膜光电探测器件及其制备方法
CN116103613A (zh) * 2023-02-27 2023-05-12 无锡尚积半导体科技有限公司 一种二氧化钒薄膜及其制备方法
CN116200712A (zh) * 2023-02-21 2023-06-02 电子科技大学 一种高开关比二氧化钒薄膜及制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402566B (zh) * 2018-12-18 2021-03-26 深圳先进技术研究院 一种两步法制备柔性氧化钒薄膜的方法
CN109457228B (zh) * 2018-12-18 2022-07-08 深圳先进技术研究院 一种自动控温的智能薄膜及其制备方法
CN113246562B (zh) * 2020-02-13 2023-10-31 Agc株式会社 夹层玻璃、车辆
CN113652640B (zh) * 2021-08-20 2022-10-04 电子科技大学 溅射制备纳米复合相氧化钒柔性薄膜的方法及薄膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273619A (ja) * 1999-03-26 2000-10-03 Asahi Glass Co Ltd 薄膜の製造方法
CN101174671A (zh) * 2007-10-18 2008-05-07 天津大学 具有相变特性二氧化钒纳米薄膜的制备方法
CN104143609A (zh) * 2014-08-07 2014-11-12 张家港康得新光电材料有限公司 阻隔膜及其制作方法
CN204020142U (zh) * 2014-08-14 2014-12-17 宁波浙铁大风化工有限公司 一种自动调温的智能玻璃
CN107219581A (zh) * 2016-03-21 2017-09-29 张家港康得新光电材料有限公司 智能温控膜与其的应用
CN109457228A (zh) * 2018-12-18 2019-03-12 深圳先进技术研究院 一种自动控温的智能薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867907B (zh) * 2012-10-11 2016-09-21 南京大学 一种制备柔性超导薄膜的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273619A (ja) * 1999-03-26 2000-10-03 Asahi Glass Co Ltd 薄膜の製造方法
CN101174671A (zh) * 2007-10-18 2008-05-07 天津大学 具有相变特性二氧化钒纳米薄膜的制备方法
CN104143609A (zh) * 2014-08-07 2014-11-12 张家港康得新光电材料有限公司 阻隔膜及其制作方法
CN204020142U (zh) * 2014-08-14 2014-12-17 宁波浙铁大风化工有限公司 一种自动调温的智能玻璃
CN107219581A (zh) * 2016-03-21 2017-09-29 张家港康得新光电材料有限公司 智能温控膜与其的应用
CN109457228A (zh) * 2018-12-18 2019-03-12 深圳先进技术研究院 一种自动控温的智能薄膜及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105765A (zh) * 2021-03-31 2021-07-13 东南大学 一种具有高可见光透过率的智能隔热复合涂层及其制法
CN114300571A (zh) * 2021-10-22 2022-04-08 中国石油大学(华东) 一种柔性单晶薄膜光电探测器件及其制备方法
CN116200712A (zh) * 2023-02-21 2023-06-02 电子科技大学 一种高开关比二氧化钒薄膜及制备方法
CN116103613A (zh) * 2023-02-27 2023-05-12 无锡尚积半导体科技有限公司 一种二氧化钒薄膜及其制备方法

Also Published As

Publication number Publication date
CN109457228B (zh) 2022-07-08
CN109457228A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
WO2020125438A1 (zh) 一种氧化钒复合薄膜及其制备方法
CN101805135B (zh) 镀有双层减反射膜的光伏玻璃及其制备方法
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
CN102424533B (zh) 减反射可见光与反射近红外线双功能镀膜玻璃及其制备方法
CN104961354B (zh) 一种高可见光透过率二氧化钒基薄膜的制备方法
CN202242180U (zh) 异地可钢化高透净色低辐射镀膜玻璃
AU2018220077A1 (en) Curved-surface coated plate, preparation method thereof and solar module
Yang et al. Optical properties and thermal stability of colored solar selective absorbing coatings with double-layer antireflection coatings
CN102030485A (zh) 智能调控复合膜玻璃及其制备方法
CN103884122B (zh) 一种太阳能光热转换集热器透明热镜及其制备方法
CN103507389A (zh) 制造热致变色窗户的方法
CN104975262A (zh) 相变型二氧化钒薄膜及其制备方法
CN104928641B (zh) 一种氧化硅红外增透氧化钒薄膜的制备方法
CN107487991B (zh) 一种二氧化钒多层膜及其制备方法
JP2014218426A (ja) サーモクロミックウィンドウ
KR101456220B1 (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
KR101194258B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
CN104261694B (zh) 一种红外透过率自动调节智能玻璃的产业化制备方法
CN104034071A (zh) 暗绿色太阳能光谱选择性吸收涂层及其制备方法和应用
CN103771725A (zh) 一种新型多功能节能玻璃镀膜结构及制备方法
CN103137717A (zh) 铜掺杂氧化锡透明导电薄膜及其制备方法
CN113652640B (zh) 溅射制备纳米复合相氧化钒柔性薄膜的方法及薄膜
Wang et al. The effect of Cu doping into Ag in ZnO/Ag/ZnO/SiO2 on reduction of the thermal effect of solar cells
CN110128027B (zh) 一种多级渐变式自发调温的复合涂层及其制备方法
CN209940851U (zh) 磷掺杂自洁净三银low-e玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899735

Country of ref document: EP

Kind code of ref document: A1