WO2020125310A1 - 定位方法和相关设备 - Google Patents

定位方法和相关设备 Download PDF

Info

Publication number
WO2020125310A1
WO2020125310A1 PCT/CN2019/119902 CN2019119902W WO2020125310A1 WO 2020125310 A1 WO2020125310 A1 WO 2020125310A1 CN 2019119902 W CN2019119902 W CN 2019119902W WO 2020125310 A1 WO2020125310 A1 WO 2020125310A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
vehicle
positioning
information
measurement results
Prior art date
Application number
PCT/CN2019/119902
Other languages
English (en)
French (fr)
Inventor
达人
任斌
缪德山
李辉
高雪媛
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to US17/415,678 priority Critical patent/US11921226B2/en
Priority to EP19900568.7A priority patent/EP3902292A4/en
Priority to JP2021536011A priority patent/JP2022514430A/ja
Priority to KR1020217020998A priority patent/KR20210097784A/ko
Publication of WO2020125310A1 publication Critical patent/WO2020125310A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0428Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/018Involving non-radio wave signals or measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system
    • G01S5/02685Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system involving dead reckoning based on radio wave measurements

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a positioning method and related equipment.
  • GNSS Global Navigation Satellite System
  • 5G fifth generation mobile communication technology
  • NR new radio
  • the GNSS navigation and positioning system using real-time dynamic differential technology can greatly improve the positioning accuracy of the vehicle navigation and positioning system, and it is possible to reduce the positioning error to the decimeter or even centimeter level.
  • GNSS cannot work properly in many situations. For example, in an urban environment, GNSS may not work properly because the GNSS signal is blocked by a building.
  • the second problem of the GNSS navigation and positioning system with real-time dynamic differential technology is the need to obtain differential correction information from the differential server.
  • the delay of the differential correction information is generally about a few seconds or even longer. Therefore, it is difficult to rely on GNSS alone to meet the requirements of the future 5G Internet of Vehicles system in terms of positioning accuracy, availability, reliability, and positioning time delay for the navigation positioning system.
  • GNSS In order to make up for the inherent shortcomings of GNSS, one possible method is to combine GNSS with other vehicle navigation sensors, such as inertial sensors (IMU), lidar, and optical sensors, as shown in Figure 1.
  • vehicle navigation sensors such as inertial sensors (IMU), lidar, and optical sensors, as shown in Figure 1.
  • IMU inertial sensors
  • lidar lidar
  • optical sensors as shown in Figure 1.
  • the vehicle integrated navigation and positioning system generally can only maintain a certain positioning accuracy within a short time after the GNSS signal is lost.
  • the related art vehicle integrated navigation and positioning system shown in FIG. 1 has the following disadvantages.
  • GNSS cannot work normally due to signal problems
  • the GNSS-based vehicle integrated navigation and positioning system can only maintain a certain accuracy in a short time, but cannot maintain high accuracy in a long time.
  • various vehicle navigation sensors have their own limitations, for example: weather conditions (such as fog, snow and rain) have a great influence on the measurement of lidar and optical sensors; good performance IMU can be able to solve the problem after losing GNSS signals
  • the time to continue to maintain the navigation accuracy is longer, but the price is expensive, and the low-cost IMU has a large measurement error, and the time to maintain the navigation accuracy after the problem of missing GNSS signals is short. Therefore, the related-vehicle navigation and positioning system cannot yet meet the requirements of the future IOV system for high-precision, high availability, high reliability, low latency and low cost of the navigation and positioning system.
  • Embodiments of the present disclosure provide a positioning method and related equipment to provide accurate and reliable positioning information for a connected vehicle system.
  • An embodiment of the present disclosure provides a positioning method, including:
  • the first vehicle measures the positioning reference signal PRS and the carrier phase reference signal C-PRS sent by multiple positioning reference devices to obtain multiple PRS measurement results and multiple C-PRS measurement results.
  • the multiple positioning reference devices include a network Side equipment and other vehicles;
  • the first vehicle performs a positioning operation according to the multiple PRS measurement results and multiple C-PRS measurement results;
  • the positioning operation includes: sending the plurality of PRS measurement results and the plurality of C-PRS measurement results to the positioning server, and receiving the plurality of PRS measurement results and the plurality of C- returned from the positioning server The positioning information of the first vehicle determined by the PRS measurement result; or
  • the positioning operation includes: the first vehicle determining positioning information of the first vehicle according to the plurality of PRS measurement results and the plurality of C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the change in the relative distance between the first vehicle and other vehicles Information, the relative position of the first vehicle relative to other vehicles, and the change information of the relative position of the first vehicle relative to other vehicles.
  • An embodiment of the present disclosure also provides another positioning method, including:
  • the network-side device sends PRS and C-PRS to the first vehicle, so that the first vehicle measures the PRS to obtain the PRS measurement result, and measures the C-PRS to obtain the C-PRS measurement result ;
  • the PRS measurement result and the C-PRS measurement result are used for positioning information of the first vehicle, and the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, The relative distance between the first vehicle and other vehicles, the change information of the relative distance between the first vehicle and other vehicles, the relative position of the first vehicle relative to other vehicles, the relative position of the first vehicle relative to other vehicles Change of location information.
  • An embodiment of the present disclosure also provides another positioning method, including:
  • the positioning server receives the PRS measurement result of the positioning reference signal PRS sent by a plurality of positioning reference devices sent by the first vehicle, where the plurality of positioning reference devices include network-side devices and other vehicles;
  • the positioning server receives the C-PRS measurement result of the carrier phase reference signal C-PRS sent by the plurality of positioning reference devices and sent by the first vehicle;
  • the positioning server determines positioning information of the first vehicle according to the multiple PRS measurement results and the multiple C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the relative distance between the first vehicle and other vehicles Change information of the first vehicle, relative position of the first vehicle relative to other vehicles, change information of the relative position of the first vehicle relative to other vehicles.
  • An embodiment of the present disclosure also provides a first vehicle, including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor;
  • the transceiver is used to measure the positioning reference signal PRS and the carrier phase reference signal C-PRS sent by multiple positioning reference devices to obtain multiple PRS measurement results and multiple C-PRS measurement results, and the multiple positioning Reference equipment includes network-side equipment and other vehicles;
  • the processor is configured to read a program in the memory and perform the following process: perform a positioning operation according to the multiple PRS measurement results and multiple C-PRS measurement results;
  • the positioning operation includes: sending the plurality of PRS measurement results and the plurality of C-PRS measurement results to the positioning server, and receiving the plurality of PRS measurement results and the plurality of C- returned from the positioning server The positioning information of the first vehicle determined by the PRS measurement result; or
  • the positioning operation includes: the first vehicle determining positioning information of the first vehicle according to the plurality of PRS measurement results and the plurality of C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the change in the relative distance between the first vehicle and other vehicles Information, the relative position of the first vehicle relative to other vehicles, and the change information of the relative position of the first vehicle relative to other vehicles.
  • An embodiment of the present disclosure also provides a network-side device, including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor;
  • the transceiver is used to send PRS and C-PRS to the first vehicle, so that the first vehicle measures the PRS to obtain the PRS measurement result, and measures the C-PRS to obtain the C -PRS measurement results;
  • the PRS measurement result and the C-PRS measurement result are used for positioning information of the first vehicle, and the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, The relative distance between the first vehicle and other vehicles, the change information of the relative distance between the first vehicle and other vehicles, the relative position of the first vehicle relative to other vehicles, the relative position of the first vehicle relative to other vehicles Change of location information.
  • An embodiment of the present disclosure also provides a positioning server including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor;
  • the transceiver is configured to receive a PRS measurement result of a positioning reference signal PRS sent by a plurality of positioning reference devices sent by a first vehicle.
  • the plurality of positioning reference devices include network-side devices and other vehicles; and, receive the A C-PRS measurement result of the carrier phase reference signal C-PRS sent by the multiple positioning reference devices and sent by the first vehicle;
  • the processor is configured to read a program in the memory and perform the following process: determine the positioning information of the first vehicle based on the multiple PRS measurement results and multiple C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the relative distance between the first vehicle and other vehicles Change information of the first vehicle, relative position of the first vehicle relative to other vehicles, change information of the relative position of the first vehicle relative to other vehicles.
  • An embodiment of the present disclosure also provides another first vehicle, including:
  • a measurement unit configured to measure the positioning reference signal PRS and the carrier phase reference signal C-PRS sent by multiple positioning reference devices to obtain multiple PRS measurement results and multiple C-PRS measurement results, the multiple positioning reference devices Including network side equipment and other vehicles;
  • a positioning operation unit configured to perform positioning operations based on the multiple PRS measurement results and multiple C-PRS measurement results
  • the positioning operation includes: sending the plurality of PRS measurement results and the plurality of C-PRS measurement results to the positioning server, and receiving the plurality of PRS measurement results and the plurality of C- returned from the positioning server The positioning information of the first vehicle determined by the PRS measurement result; or
  • the positioning operation includes: the first vehicle determining positioning information of the first vehicle according to the plurality of PRS measurement results and the plurality of C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the change in the relative distance between the first vehicle and other vehicles Information, the relative position of the first vehicle relative to other vehicles, and the change information of the relative position of the first vehicle relative to other vehicles.
  • An embodiment of the present disclosure also provides another network-side device, including:
  • the transceiver unit is used to send PRS and C-PRS to the first vehicle, so that the first vehicle measures the PRS to obtain the PRS measurement result, and measures the C-PRS to obtain the C-PRS Measurement result
  • the PRS measurement result and the C-PRS measurement result are used for positioning information of the first vehicle, and the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, The relative distance between the first vehicle and other vehicles, the change information of the relative distance between the first vehicle and other vehicles, the relative position of the first vehicle relative to other vehicles, the relative position of the first vehicle relative to other vehicles Change of location information.
  • An embodiment of the present disclosure also provides another positioning server, including:
  • a transceiver unit configured to receive a PRS measurement result of a positioning reference signal PRS sent by a plurality of positioning reference devices sent by a first vehicle, the plurality of positioning reference devices including a network side device and other vehicles; and, receiving the first A C-PRS measurement result of the carrier phase reference signal C-PRS sent by the multiple positioning reference devices sent by the vehicle;
  • a positioning unit configured to determine positioning information of the first vehicle according to the multiple PRS measurement results and the multiple C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the relative distance between the first vehicle and other vehicles Change information of the first vehicle, relative position of the first vehicle relative to other vehicles, change information of the relative position of the first vehicle relative to other vehicles.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the steps in the first vehicle-side positioning method provided by the embodiment of the present disclosure, or the program is When executed by the processor, the steps in the positioning method of the network side device provided by the embodiment of the present disclosure are implemented, or when the program is executed by the processor, the steps in the positioning method of the positioning server side provided by the embodiment of the present disclosure are implemented.
  • Vehicle positioning through PRS and C-PRS sent by the 5G NR system itself can work when the GNSS satellite signal is weak or cannot be received. Operators can also adjust and configure the number, location, and transmission frequency of sending terminals that send PRS and C-PRS signals as needed to avoid problems similar to GNSS's inability to work due to weak received signals;
  • the large bandwidth and high data rate of the 5G NR wireless communication system can reduce the time for positioning information exchange and positioning measurement to a few milliseconds or less.
  • FIG. 1 is a schematic diagram of a vehicle integrated navigation and positioning system in an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of subcarrier distribution and frequency spectrum for transmitting C-RPS provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a scenario applicable to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another scenario to which the embodiments of the present disclosure can be applied.
  • FIG. 6 is a schematic diagram of a positioning method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another positioning method provided by an embodiment of the present disclosure.
  • Example 9 is a schematic diagram of a navigation and positioning system of Example 1 provided by an embodiment of the present disclosure.
  • Example 10 is a schematic diagram of a scenario of Example 1 provided by an embodiment of the present disclosure.
  • Example 11 is a schematic diagram of a scenario of Example 2 provided by an embodiment of the present disclosure.
  • Example 12 is a schematic diagram of a scene of Example 2.1 provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an example 2.2 scenario provided by an embodiment of the present disclosure.
  • Example 14 is a schematic diagram of a scene of Example 2.3 provided by an embodiment of the present disclosure.
  • FIG. 15 is a structural diagram of a first vehicle provided by an embodiment of the present disclosure.
  • 16 is a structural diagram of a network side device provided by an embodiment of the present disclosure.
  • FIG. 17 is a structural diagram of a positioning server provided by an embodiment of the present disclosure.
  • FIG. 19 is a structural diagram of another network-side device provided by an embodiment of the present disclosure.
  • FIG. 20 is a structural diagram of another positioning server provided by an embodiment of the present disclosure.
  • the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) released the first phase standard (Release 15) of the 5G NR wireless communication system in 2018.
  • the 5G NR system has many features that help to improve the accuracy of position information, for example, large bandwidth, large antenna array and so on.
  • 3GPP has also started the next phase (release-16) 5G NR positioning standard research project (study item, SI).
  • SI 5G NR positioning standard research project
  • this SI sets the outdoor horizontal positioning accuracy to a range of 10 meters, which is far from satisfying the positioning accuracy of the vehicle navigation and positioning system. Claim. Therefore, how to make full use of the characteristics of the 5G NR system to provide accurate and reliable positioning information for the future car networking system is a problem worthy of research and solution.
  • 5G NR positioning reference signals are used to represent all available 5G NR reference signals for positioning, which may specifically include: 5G NR uplink reference signals specified in the protocol, such as sounding reference signals ( sounding reference (SRS); downlink reference signals, such as synchronization reference signal (synchronization signal) and channel state indication reference signal (channel state state indication reference (CSI-RS), custom 5G NR positioning reference signal, and protocol Reference signals for 5G NR positioning design that may be newly specified in the future.
  • the network can configure the time and frequency resources used to send the PRS to senders (including base stations or vehicles) that send 5G PRS for participating in vehicle positioning.
  • the user terminal in the Internet of Vehicles is usually a vehicle. Of course, the method described herein can also be applied to other terminals (such as mobile phones).
  • An embodiment of the present disclosure also provides a carrier phase reference signal (C-PRS) in 5G NR.
  • the C-PRS signal may be a sinusoidal carrier phase reference signal (SPRS) (SPRS is also referred to herein as a pure sinusoidal carrier signal) or a carrier signal carrying data.
  • SPRS sinusoidal carrier phase reference signal
  • the bandwidth occupied by the signal itself will be very small.
  • SCS c subcarrier spacing between carrier frequencies of pure sinusoidal carrier signals used for positioning can be configured to be much smaller than the subcarrier spacing (SCS d ) of data communication, as shown in FIG. 2.
  • the subcarrier spacing between the carrier frequencies of the pure sinusoidal carrier signal used for positioning mainly considers the transmitter's frequency error and Doppler shift. It depends on the speed of the vehicle and the carrier frequency. For example, assuming that the frequency error of the transmitter is less than 0.05 ppm, the speed of the vehicle is less than 450 km/h, and the carrier frequency is less than 6 GHz, the subcarrier spacing SCS c between the carrier frequencies of pure sinusoidal signals can be set to less than 3 kHz, which is much smaller than 5 G
  • the subcarrier spacing used for NR data communication is 15kHz/30kHz. Since the SCS of the subcarrier occupied by the C-PRS is smaller than the SCS of data communication in the target carrier, the frequency resource of the carrier can be saved.
  • the sub-carriers occupied by C-PRS sent by multiple devices may be located at the edge or guard band of the target carrier.
  • the C-PRS transmission can be performed at the edge of the carrier or the guard band of the carrier, as shown in FIG. 2(a). Since the carrier phase positioning signal is a pure sinusoidal signal, the positioning signal causes negligible inter-channel spectrum for adjacent carrier signals, as shown in Figure 2(b). In addition, since the C-PRS can be transmitted at the carrier edge or the guard band of the carrier at very small subcarrier intervals, it only needs to be very small or does not even occupy data communication carrier resources. Since the C-PRS can be transmitted at the carrier edge or the carrier's guard band at very small subcarrier intervals, it only needs to be very small or does not even occupy data communication carrier resources, saving frequency resources.
  • the receiver can measure the C-PRS from each neighboring cell according to the provided C-PRS configuration of each neighboring cell and generate a carrier phase measurement value. Because C-PRS is a simple sinusoidal signal in the time domain, carrier phase tracking techniques can be obtained using many related-art carrier phase tracking techniques. In general, the receiver needs to implement a carrier phase-locked loop (PLL) to measure the carrier phase. Moreover, PLLs have been widely used in communication and navigation receivers, so that the use of PLLs for measurement will not increase the measurement cost of the user terminal.
  • PLL carrier phase-locked loop
  • the related art PLL is composed of three basic components: a phase detector, which is responsible for providing the output measurement results, which is proportional to the carrier error to be compensated; a loop filter, which is a narrow-band low-pass filter, which can be smoothed Changes caused by noise output from the phase detector; finally, a digitally implemented numerically controlled oscillator (NCO) or analog voltage controlled oscillator (VCO) for application based on the loop filter output
  • NCO numerically controlled oscillator
  • VCO analog voltage controlled oscillator
  • the phase of the repetitive signal inside the receiver is the output of the PLL.
  • the C-PRS measurement result also referred to as carrier phase measurement result
  • ⁇ i (k) from the C-PRS of cell i at time k can be expressed as follows:
  • r i (k) is the distance from the UE to the cell i; ⁇ is the wavelength of the C-PRS, N i is the integer ambiguity to be solved during the positioning calculation; w i is the carrier phase measurement error .
  • the carrier phase measurement error is mainly affected by multipath.
  • the receiving end after monitoring the C-PRS sent from the adjacent base station or vehicle to obtain the carrier phase measurement result, the receiving end (specifically, each vehicle) may use the carrier phase measurement value (CP) and other positioning measurements (such as TOA /TDOA/RSRP) together to calculate the positioning information of the receiving end.
  • CP carrier phase measurement value
  • other positioning measurements such as TOA /TDOA/RSRP
  • the positioning of the vehicle by the above formula is not limited, because, when the position of the vehicle is fixed, the measurement result of the SPRS measurement is also fixed, then this relationship can be determined
  • the position of the vehicle can also be used to locate the vehicle through other relationships between SPRS measurement results and position.
  • the vehicle may perform weighting processing based on the positioning results of other positioning measurements (such as TOA/TDOA/RSRP) and the positioning results obtained based on the reference signals (PRS, C-PRS) to obtain the positioning information of the vehicle.
  • the receiving end may also report the positioning measurement value to the positioning server, and the positioning server uses various related technology positioning algorithms according to the PRS and C-PRS configuration information and the positioning measurement value provided by the vehicle. Determine the positioning information of the vehicle with high accuracy. For vehicle navigation and positioning systems, the receiving end can maintain the carrier phase loop to the locked state to provide carrier phase measurement without worrying about power consumption.
  • the resource configuration for sending C-PRS may adopt multiple methods:
  • the sender can send the C-PRS at the configured single frequency or multiple frequencies according to the configured transmission cycle, time offset, and length of on/off duration;
  • the cell can start or stop sending C-PRS according to a certain positioning requirement.
  • the positioning needs may be to locate the server or base station or a certain vehicle.
  • the resource configuration for sending C-PRS can also be used in multiple ways:
  • the frequency hopping mode may depend on the sending time of the C-PRS, the identifier (ID) of the sending end, the bandwidth of the C-PRS sent by the network configuration, and so on.
  • the network can provide C-PRS configuration information to the vehicle receiving end through the positioning server or the base station.
  • the above C-PRS configuration information can be directly extended by the current 3GPP long-term evolution (LTE) positioning protocol (LTE positioning protocol (LPP) (TS) 36.355) and positioning protocol A (LPPa) Provided to a vehicle receiving end.
  • LTE positioning protocol LTE positioning protocol
  • LPPa positioning protocol A
  • adding C-PRS configuration information to the messages used to configure C-PRS configuration information in LTE positioning protocol (LPP) and positioning protocol A (LPPa) which can reduce adjustments in the vehicle positioning process, and can also avoid passing Additional signaling is used to transmit C-PRS configuration information to save transmission overhead.
  • the vehicle can also obtain PRS configuration information, where the PRS configuration information can refer to the current 3GPP LTE positioning protocol (LPP) (TS 36.355) and/or positioning protocol A (LPPa), which is not limited here
  • the measurement of PRS may also refer to the current 3GPP LTE positioning protocol (LPP) (TS 36.355) and/or positioning protocol A (LPPa), which is not described in detail here.
  • the above C-PRS configuration information may be to measure the corresponding C-PRS on the corresponding frequency resource at the corresponding time to improve the accuracy of the C-PRS measurement, and also avoid blind measurement by the user terminal The power consumption caused by C-PRS is wasted.
  • the C-PRS configuration information may also be provided to the vehicle receiving end in the form of broadcast by each cell.
  • the C-PRS configuration information generally includes at least the frequency and time resource configuration of the C-PRS transmission of each neighboring cell used for carrier phase positioning at the receiving end of the vehicle.
  • the information related to the C-PRS configuration may also include the location of the transmit antenna of each cell, so that the receiving end of the vehicle uses the measurement value to locate itself.
  • the above C-PRS configuration information may be sent by the positioning server or the base station in a unified manner, or each base station may send its own SPRS configuration information, etc., which is not limited.
  • the PRS configuration information can also be obtained, so that the PRS can be measured according to the PRS configuration information.
  • the PRS configuration information and the SPRS configuration information may be obtained through the same message, or the PRS configuration information and the SPRS configuration information respectively obtained through different methods, which is not limited in this embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
  • UE User Equipment
  • the terminal 11 may be a vehicle, a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (personal digital assistant) (PDA), a mobile internet device (Mobile Internet Device, MID) or a wearable device
  • PDA personal digital assistant
  • MID mobile internet device
  • MID Mobile Internet Device
  • the positioning reference device 12 may be a network-side device, for example, a base station, which may be a macro station, an LTE base station (evolved Node B, eNB), 5G, NR, etc.; or the network-side device may also be a small station, such as a low-power node (low power node, LPN), pico, femto and other small stations, or network-side equipment can access points (AP); the base station can also be a central unit (CU) and its Management is a network node composed of multiple Transmission and Reception Points (TRP) controlled together.
  • a base station which may be a macro station, an LTE base station (evolved Node B, eNB), 5G, NR, etc.
  • the network-side device may also be a small station, such as a low-power node (low power node, LPN), pico, femto and other small stations, or network-side equipment can access points (AP);
  • the base station can
  • the above-mentioned positioning reference device 12 may be other user terminals than the user terminal 11, for example, the user terminal 11 and other user terminals are vehicle user terminals, so that it can be applied to vehicle networking (Vehicle to X) in the embodiments of the present disclosure , V2X) vehicle cooperative positioning system.
  • V2X vehicle networking
  • some of the multi-location reference devices 12 may be user terminals other than the user terminal 11, and other positioning reference devices 12 may be network-side devices.
  • all positioning reference devices 12 are other user terminals or network side devices than the user terminal 11, which is not limited in this embodiment of the present disclosure.
  • the vehicle user terminal may be an in-vehicle communication device, or may be a user terminal (for example, a mobile phone) located inside the vehicle, etc., which is not limited in this embodiment of the present disclosure.
  • the positioning server 13 may be a server device, or the positioning server may be a network-side device (for example, a base station) in which a wireless communication system is placed. Of course, in some cases, the positioning server 13 may be a positioning reference The device 12 is the same device. It should be noted that, in the embodiment of the present disclosure, the specific type of the positioning server 13 is not limited.
  • the embodiments of the present disclosure can be applied to the positioning of a user terminal in a wireless communication system.
  • the user terminal measures PRS and C-PRS sent by network-side devices in multiple cells to achieve positioning.
  • a vehicle user terminal measures the PRS and C-PRS sent by the network side device of the cell and another vehicle to achieve positioning.
  • Embodiments of the present disclosure provide a vehicle navigation and positioning system based on 5G NR reference signals.
  • a vehicle navigation and positioning system based on 5G NR reference signals can be combined with GNSS and other navigation and positioning systems to form a vehicle-two combined navigation and positioning system and
  • the IoV collaborative navigation and positioning system provides 5G NR IoV systems with ultra-precision, high availability, high reliability, low latency and low cost positioning functions.
  • Embodiments of the present disclosure also provide a positioning reference signal (PRS) and a carrier phase reference signal (C-PRS, also referred to as a carrier phase measurement reference signal) based on a 5G NR radio communication system positioning reference signal (PRS) Vehicle integrated navigation and positioning system.
  • the 5G NR radio communication system positioning reference signal represents all 5G NR reference signals that can be used for positioning, including the 5G NR uplink and downlink reference signals specified in the protocol, and custom 5G NR positioning reference signal, and 5G NR positioning design reference signal that may be newly specified in the agreement in the future.
  • the 5G NR carrier phase measurement reference signal (C-PRS) represents all reference signals that can be used to obtain the 5G NR carrier phase, including the 5G NR carrier phase reference signal described in the embodiments of the present disclosure.
  • the sending end of the reference signal can be a base station and/or a vehicle
  • the receiving end can simultaneously send 5G NR PRS and 5G NR C-PRS.
  • the receiving end obtains positioning measurement values of related technologies by measuring 5G NR and PRS, such as time of arrival (TOA) of positioning reference signals or time difference of arrival (TOD) of positioning reference signals, positioning reference signals
  • TOA time of arrival
  • TOD time difference of arrival
  • the received power strength reference signal received power, RSRP
  • positioning reference signal angle of arrival angle of arrival
  • AOA positioning reference signal angle of arrival
  • the carrier phase measurement value represents the phase difference between the received NR carrier reference signal and the carrier signal generated inside the receiver.
  • the receiving end After monitoring 5G, NR, PRS/C-PRS sent from adjacent multiple base stations or vehicles to obtain various positioning measurement values (TOA/TDOA/AOA/RSRP/CP, etc.), the receiving end (vehicle) can convert these positioning measurement values Combine together to calculate the position of the receiving end (vehicle). The receiving end can also report these positioning measurement values to the positioning server, and the positioning server uses various related technology positioning algorithms to determine the position of the UE with high accuracy according to the PRS and C-PRS configuration information and the positioning measurement values provided by the UE .
  • the measurement error of TOA/TDOA is directly related to the design and configuration of 5G NR PRS signals (such as signal transmission frequency, period, bandwidth, etc.) and received signal quality (such as signal-to-interference and noise ratio (signal to interference) and noise ratio (SINR)).
  • 5G NR PRS signals such as signal transmission frequency, period, bandwidth, etc.
  • received signal quality such as signal-to-interference and noise ratio (signal to interference) and noise ratio (SINR)
  • SINR signal-to-interference and noise ratio
  • TOA/TDOA can be controlled within a few meters or less.
  • Such accuracy has met the performance requirements of general point-to-point route navigation.
  • the IoV system needs more precise positioning information to support various functions of the IoV system, such as the vehicle's automatic driving function. Only using 5G NR will not meet these needs.
  • GNSS carrier phase measurement values can achieve centimeter-level accuracy, the main reason is that the carrier phase measurement error is very small, only about 10% of the carrier wavelength. For example, when the carrier frequency is 2.0 GHz, the carrier wavelength is 15 cm, and the carrier phase measurement error is only in the range of 1 to 2 cm. In the same way, if 5G introduces C-PRS, the measurement error of the carrier phase measured by NR C-PRS will also be in the range of 1 to 2 centimeters.
  • One of the favorable conditions for introducing carrier phase measurement in 5G NR is that under the normal working state of 5G NR, the received signal power of 5G NR is much greater than that of GNSS.
  • the power of the satellite signal reaching the ground receiver is only -128.5dBm in the entire carrier frequency bandwidth
  • the reference signal power of the receiving end is usually not less than -100dBm in the 15kHz bandwidth. Since the received reference signal power of 5GNR is much greater than the power of GNSS reaching the ground receiver, the 5GNR receiver can lock the wave phase reference signal more easily and faster than GNSS to provide carrier phase measurements. And, if a phase loss occurs, the 5G NR receiver can recover the phase lock faster than the GNSS receiver.
  • the main difficulty in positioning using the carrier phase measurement value is that the carrier phase measurement value contains an unknown number of integer multiples of the carrier wavelength, which is often called integer ambiguity (Integer Ambiguity).
  • integer ambiguity Integer Ambiguity
  • 5G NR high carrier frequency, large bandwidth and other characteristics can be used to control the TOA/TDOA measurement error to a few meters or Even smaller ranges help to quickly search for integer ambiguity. In GNSS, this cannot be achieved by adjusting GNSS transmission parameters.
  • the basic process of the vehicle navigation and positioning system based on 5G, NR, PRS and C-PRS is as follows:
  • the sender (base station and/or vehicle) of PRS/C-PRS provides relevant PRS and C-PRS configuration information to the receiver (vehicle) of PRS/C-PRS through the 5G NR network, including the transmission and transmission cycle of PRS , Time-frequency resources, transmission power; C-PRS transmission frequency and power; transmission antenna position, etc.; if the vehicle needs a positioning estimation algorithm to obtain the positioning result, the vehicle also needs to obtain the absolute position of each base station.
  • the sender (base station and/or vehicle) of PRS/C-PRS sends PRS and C-PRS on the configured time-frequency resources;
  • the receiving end measures PRS and C-PRS according to the PRS/C-PRS configuration information provided by the sending end to obtain positioning measurement values.
  • the positioning measurement value can include the time of arrival (TOA) or time difference of arrival (TDOA) of the reference signal, the received signal strength of the reference signal (reference signal received power (RSRP), the angle of arrival of the reference signal (angle of Arrival, AOA), the carrier phase Measured value (carrier phase, CP), etc.
  • the receiving end (vehicle) accurately calculates the absolute or relative position of the own vehicle based on the PRS and C-PRS configuration information and positioning measurement values (TOA/TDOA, AOA, RSRP, CP). If other positioning services need the vehicle's positioning information, the receiving end can report the positioning result to the 5G NR positioning server (Location Management Function, LMF), or the positioning measurement value to the LMF, and the LMF calculates the vehicle's position.
  • LMF Location Management Function
  • Vehicle positioning through PRS and C-PRS sent by the 5G NR system itself can work when the GNSS satellite signal is weak or cannot be received. Operators can also adjust and configure the number, location, and transmission frequency of sending terminals that send PRS and C-PRS signals as needed to avoid problems similar to GNSS's inability to work due to weak received signals;
  • the large bandwidth and high data rate of the 5G NR wireless communication system can reduce the time for positioning information exchange and positioning measurement to a few milliseconds or less.
  • FIG. 6 is a flowchart of a positioning method according to an embodiment of the present disclosure. As shown in FIG. 6, it includes the following steps:
  • the first vehicle measures a positioning reference signal PRS and a carrier phase reference signal C-PRS sent by multiple positioning reference devices to obtain multiple PRS measurement results and multiple C-PRS measurement results.
  • the multiple positioning reference devices Including network side equipment and other vehicles;
  • the first vehicle performs a positioning operation according to the multiple PRS measurement results and multiple C-PRS measurement results;
  • the positioning operation includes: sending the plurality of PRS measurement results and the plurality of C-PRS measurement results to the positioning server, and receiving the plurality of PRS measurement results and the plurality of C- returned from the positioning server The positioning information of the first vehicle determined by the PRS measurement result; or
  • the positioning operation includes: the first vehicle determining positioning information of the first vehicle according to the plurality of PRS measurement results and the plurality of C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the change in the relative distance between the first vehicle and other vehicles Information, the relative position of the first vehicle relative to other vehicles, and the change information of the relative position of the first vehicle relative to other vehicles.
  • the multiple positioning reference devices may include network side devices (such as base stations) of the cell and other vehicle devices.
  • the multiple positioning reference devices may refer to two or more positioning reference devices, for example, it may be determined according to requirements, and this embodiment of the present disclosure is not limited.
  • the measurement of the PRS may be to measure parameters such as the time difference of arrival or received power of each PRS.
  • the C-PRS may be a sinusoidal carrier positioning reference signal used for carrier phase positioning.
  • the C-PRS is a sinusoidal carrier signal (or may also be referred to as a pure sinusoidal carrier signal), and multiple positioning reference devices
  • the C-PRS may be sent on different frequency resources, for example, network side devices in different neighboring cells may send the C-PRS in different subcarriers. In this way, the vehicle can measure the phase information of different C-PRS.
  • the positioning information of the first vehicle can be determined according to the obtained measurement result.
  • the measurement error of the carrier phase measurement value can be in the order of centimeters or less, the above-mentioned steps can realize the use of the carrier signal phase measurement value in combination with the positioning method using PRS, which can accurately determine the positioning information of the first vehicle.
  • the above method sends the carrier phase reference signal through the 3GPP wireless communication network itself, and performs the positioning operation according to the measured PRS measurement results and C-PRS measurement results. Since this method sends the carrier reference signal through the 3GPP wireless communication network itself, It can work when the global navigation satellite system (Global Navigation Satellite System, GNSS) satellite signal is weak or cannot be received, using 3GPP's C-PRS measurement results (carrier signal phase measurement values) and PRS measurement results to locate, so that The positioning information of the first vehicle can be determined with high accuracy.
  • positioning using PRS measurement results is a positioning method well known to those skilled in the art.
  • C-PRS measurement results can be combined with positioning methods using PRS measurement results for positioning to further improve the first vehicle Positioning accuracy.
  • the implementation manner for determining the positioning information of the first vehicle based on the multiple PRS measurement results and the multiple C-PRS measurement results is not limited, because when the first vehicle obtains After the measurement results of the PRS and C-PRS sent by the multiple positioning reference devices mentioned above, those skilled in the art can obtain the positioning information of the first vehicle through various mathematical solutions, for example, positioning algorithms of various related technologies can be used (For example: LTE positioning protocol (LPP or LPPa) to determine the positioning information of the first vehicle.
  • LPP or LPPa LTE positioning protocol
  • the first vehicle or the positioning server can also combine multiple positioning reference devices according to the measurement results of PRS and C-PRS
  • the location information of the transmitting antenna is used to locate the first vehicle to obtain location information with higher accuracy.
  • the measurement of the C-PRS may be a carrier phase measurement value obtained by measuring the phase difference between the received carrier reference signal and the carrier signal generated inside the receiver.
  • the first vehicle measures the C-PRS sent by the multiple positioning reference devices to obtain multiple C-PRS measurement results, including:
  • the first vehicle measures C-PRS sent by the multiple positioning reference devices on multiple different frequency resources to obtain multiple C-PRS measurement results, where different positioning reference devices use different frequency resources to send C-PRS PRS.
  • different positioning reference devices can use different frequency resources to send C-PRS, for example, different positioning reference devices send C-PRS in different subcarriers, so that the first vehicle can measure different C-PRS To improve the accuracy of the first vehicle positioning.
  • the first vehicle may obtain PRS configuration information and C-PRS configuration information of the multiple positioning reference devices, and both the PRS configuration information and C-PRS configuration information include frequency configuration information And time configuration information; then, in the above step 601, the first vehicle further measures the PRS sent by the plurality of positioning reference devices according to the PRS configuration information of the plurality of positioning reference devices, and, according to The C-PRS configuration information of the multiple positioning reference devices is used to measure the C-PRS sent by the multiple positioning reference devices.
  • the method further includes:
  • the first vehicle obtains C-PRS configuration information of the plurality of positioning reference devices, and the C-PRS configuration information of each positioning reference device includes frequency configuration information and time configuration information of the C-PRS sent by the positioning reference device;
  • the first vehicle measures C-PRS sent by the multiple positioning reference devices on multiple different frequency resources to obtain multiple C-PRS measurement results, including:
  • the first vehicle measures the C-PRS sent by the multiple positioning reference devices according to the C-PRS configuration information of the multiple positioning reference devices, to obtain multiple C-PRS measurement results.
  • each positioning reference device is configured with a fixed frequency resource to send the C-PRS, or each positioning reference device is configured with a different frequency at different times to send the C-PRS.
  • the frequency resource that each positioning reference device sends the C-PRS may be a pre-configured or predefined carrier frequency, for example, each cell sends a C-PRS for carrier phase positioning at the pre-configured or predefined carrier frequency.
  • the above configuration of different frequencies at different times to send the C-PRS may be a frequency hopping mode to configure different frequencies for each cell at different times to send the C-PRS.
  • the frequency hopping mode may depend on the transmission time of the C-PRS, the cell ID, the bandwidth of the network configuration to transmit the C-PRS, and so on.
  • the first vehicle measures the C-PRS sent by the multiple positioning reference devices to obtain multiple C-PRS measurement results, including:
  • the first vehicle measures C-PRS continuously sent by the multiple positioning reference devices to obtain multiple C-PRS measurement results;
  • the first vehicle measures the C-PRS periodically sent by the multiple positioning reference devices to obtain multiple C-PRS measurement results;
  • the first vehicle measures the C-PRS sent by the multiple positioning reference devices as needed to obtain multiple C-PRS measurement results.
  • the network can configure the time for sending C-PRS for each cell (location reference device of the cell) participating in carrier phase positioning.
  • a cell location reference device of a cell
  • the network can configure the time for sending C-PRS for each cell (location reference device of the cell) participating in carrier phase positioning.
  • a cell location reference device of a cell
  • the positioning reference device of the cell can continuously send C-PRS on the configured single frequency or multiple frequencies without interruption;
  • the positioning reference device of the cell can be configured on a single frequency or multiple frequencies according to the configured transmission period, time offset or on (or the duration of off Send C-PRS;
  • the positioning reference device of the cell can start or stop sending C-PRS according to a certain positioning requirement, which can come from a positioning server or a vehicle or a base station.
  • the positioning reference device can be flexibly configured to send C-PRS according to requirements, so as to improve the flexibility of the system.
  • the PRS measurement result may include: at least one of RSTD and RSRP;
  • the C-PRS measurement result includes: C-PRS-CP measurement value.
  • At least one of RSTD and RSRP of the PRS sent by the positioning reference device can be measured, and the C-PRS-CP measurement value of the C-PRS sent by the positioning reference device can be measured. Since the measurement error of the C-PRS-CP measurement value can be in the order of centimeters or less, measuring the C-PRS-CP measurement value in combination with at least one of RSTD and RSRP can further improve the accuracy of vehicle positioning.
  • the subcarrier spacing (SCS) of the subcarriers occupied by the C-PRS sent by the multiple positioning reference devices is smaller than the SCS of data communication in the target carrier, and the target carrier includes all The sub-carriers occupied by C-PRS sent by multiple positioning reference devices.
  • the sending the plurality of PRS measurement results and the plurality of C-PRS measurement results to the positioning server includes:
  • the report message including the plurality of PRS measurement results and information elements for reporting C-PRS measurement results, wherein the information elements include the C-PRS of each C-PRS Measurement results.
  • the above report message may be a report message defined in the current positioning protocol for reporting the PRS measurement result, for example: in this embodiment, the C-PRS measurement result (for example: C-PRS-CP measurement value) and other The positioning measurement (for example, at least one of RSTD and RSRP) is reported to the positioning server or base station of the network together for high-precision positioning of the vehicle.
  • the reporting method can be directly extended by the current 3GPP LTE positioning protocol (LPP) (TS 36.355) and positioning protocol A (LPPa), and the information element used to report the C-PRS measurement result is added to the report message reporting the PRS measurement result (information, element, IE).
  • the above information elements can be directly added to the report message for reporting PRS measurement results defined by the current positioning protocol, thereby reducing the number of vehicles Adjustment of the positioning process, as well as avoiding the addition of additional messages, to save vehicle power consumption and costs.
  • the information element further includes: at least one of a cell identifier corresponding to each C-PRS, a C-PRS index, a reference time during measurement, and a quality indication of a carrier measurement value.
  • the LPP/LPPa information elements used to report C-PRS measurement results include cell ID, C-PRS index, reference time during measurement, and measured C-PRS measurement results ( For example: carrier phase value) and the quality index of the carrier measurement value.
  • the calibration server or the first vehicle obtains the PRS measurement results (for example, at least one of RSTD and RSRP) and the C-PRS measurement results (for example: C-PRS-CP), it can configure the information according to the PRS and C-PRS and
  • the positioning measurement value provided by the first vehicle utilizes various related art positioning algorithms to determine the position of the first vehicle with high accuracy.
  • the first vehicle may be combined with the position information of the transmission antenna of each cell, and the first vehicle may use the measured value for positioning.
  • the method further includes at least one of the following:
  • the first vehicle exchanges a plurality of PRS measurement results and a plurality of C-PRS measurement results measured with each other vehicle with other vehicles;
  • the first vehicle and other vehicles exchange positioning information of their respective positioning
  • the first vehicle sends PRS and C-PRS to other vehicles;
  • the first vehicle exchanges respective PRS configuration information and C-PRS configuration information with other vehicles.
  • the above-mentioned other vehicles may be vehicles other than the method applied to the first vehicle.
  • the first vehicle can compare its measured PRS measurement results and C- The PRS measurement results are combined with multiple PRS measurement results measured by other vehicles and multiple C-PRS measurement results for positioning, thereby improving the accuracy of vehicle positioning.
  • the first vehicle may combine the positioning information when positioning, thereby improving the accuracy of vehicle positioning.
  • PRS and C-PRS can also be sent to other vehicles, so that other vehicles can measure the PRS and C-PRS to achieve positioning.
  • the PRS and C-PRS sent by other vehicles can be measured according to these PRS configuration information and C-PRS configuration information, thereby improving the accuracy of the measurement .
  • V2X vehicle cooperative positioning system can be applied to the V2X vehicle cooperative positioning system, and can also be applied to other scenarios, for example, scenarios where other network signals are relatively poor, etc.
  • This embodiment of the present disclosure is not limited.
  • the first vehicle may also measure the GNSS signal sent by the Global Navigation Satellite System GNSS to obtain a GNSS signal measurement result; and, the first vehicle Obtain the positioning measurement result measured by the positioning sensor set by itself.
  • the first vehicle further performs the positioning operation based on the multiple PRS measurement results, multiple C-PRS measurement results, the GNSS signal measurement results, and the positioning measurement results, For example, sending the multiple PRS measurement results and multiple C-PRS measurement results to the positioning server, and receiving the location determined by the multiple PRS measurement results and multiple C-PRS measurement results returned by the positioning server Positioning information of the first vehicle; or determining positioning information of the first vehicle according to the plurality of PRS measurement results and the plurality of C-PRS measurement results.
  • a better positioning result can be obtained based on GNSS.
  • positioning may be performed based on multiple PRS measurement results, multiple C-PRS measurement results, and the positioning measurement results to obtain better positioning results.
  • the embodiments of the present disclosure may also perform weighting processing on the positioning results obtained in the above various ways to obtain weighted results, and the weighted value of each positioning result is positively correlated with the credibility of the positioning result. It should be noted that this embodiment of the present disclosure does not specifically limit this.
  • the first vehicle sends the multiple PRS measurement results and the multiple C-PRS measurement results to the positioning server, which may specifically be a report message sent to the positioning server, where the report message includes The plurality of PRS measurement results and information elements for reporting C-PRS measurement results, where the information elements include the C-PRS measurement results of each C-PRS.
  • the information element may further include: at least one of a cell identifier corresponding to each C-PRS, a C-PRS index, a reference time during measurement, and a quality indication of a carrier measurement value.
  • FIG. 7 is a flowchart of another positioning method provided by an embodiment of the present disclosure, which is applied to a network-side device (such as a base station). As shown in FIG. 7, it includes the following steps:
  • the network side device sends PRS and C-PRS to the first vehicle, so that the first vehicle measures the PRS to obtain a PRS measurement result, and measures the C-PRS to obtain a C-PRS Measurement result
  • the PRS measurement result and the C-PRS measurement result are used for positioning information of the first vehicle, and the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, The relative distance between the first vehicle and other vehicles, the change information of the relative distance between the first vehicle and other vehicles, the relative position of the first vehicle relative to other vehicles, the relative position of the first vehicle relative to other vehicles Change of location information.
  • the network side device may send in any of the following ways:
  • the network-side device continuously sends C-PRS to the first vehicle
  • the network-side device periodically sends C-PRS to the first vehicle
  • the network-side device sends C-PRS to the first vehicle as needed.
  • the network-side device may also obtain GNSS signal quality information of the first vehicle, and the GNSS signal quality information includes that the first vehicle is capable of The number of satellite signals received and the satellite signal reception quality; then, the network-side device determines transmission parameters for sending the PRS and C-PRS to the first vehicle based on the GNSS signal quality information of the first vehicle
  • the transmission parameters include a transmission frequency, a transmission power, and a transmission frequency, wherein a higher quality GNSS signal quality information corresponds to a transmission parameter with a lower transmission level.
  • the network-side device may send the PRS and C-PRS to the first vehicle according to the sending parameter.
  • the quality of the GNSS signal quality information can be evaluated by the number of received GNSS signals and signal quality indicators (such as received signal power, etc.).
  • Higher-level transmission parameters correspond to at least one of higher transmission frequency, higher transmission power and wider transmission frequency, etc.
  • lower-level transmission parameters correspond to lower transmission frequency, lower transmission At least one of power and narrower transmission frequency.
  • the embodiments of the present disclosure can adjust the number, location, transmission frequency, transmission power, etc. of the sending end to send PRS and C-PRS signals to ensure the vehicle navigation and positioning system performance. For example, where the vehicle can effectively receive GNSS signals, reduce or do not send 5G NR carrier signal phase positioning reference signals to save system resources; and where the GNSS signal is weak or unable to receive GNSS signals, increase the 5G NR carrier signal phase Position the frequency of the reference signal or increase the power of the transmitted signal to ensure the performance of the vehicle navigation and positioning system.
  • the network side device may obtain the GNSS signal quality information of the first vehicle in one or more of the following ways:
  • the network side device receives the global navigation satellite system GNSS signal measurement result of the first vehicle; the network side device determines the GNSS signal quality information of the first vehicle according to the GNSS signal measurement result of the first vehicle;
  • the network side device requests the GNSS signal quality information of the first vehicle from the positioning server, and receives the GNSS signal quality information of the first vehicle returned by the positioning server.
  • different network side devices may send C-PRS to the first vehicle through different frequency resources.
  • Each network-side device can be configured with fixed frequency resources to send C-PRS, or each network-side device can be configured with different frequencies at different times to send C-PRS.
  • the network-side device may also send PRS configuration information and C-PRS configuration information to the first vehicle, the PRS configuration information and C-PRS configuration information Both include frequency configuration information and time configuration information.
  • FIG. 8 is a flowchart of another positioning method provided by an embodiment of the present disclosure, which is applied to the positioning server side. As shown in FIG. 8, it includes the following steps:
  • the positioning server receives a PRS measurement result of a positioning reference signal PRS sent by a plurality of positioning reference devices sent by a first vehicle, where the plurality of positioning reference devices include a network-side device and other vehicles;
  • the positioning server receives the C-PRS measurement result of the carrier phase reference signal C-PRS sent by the multiple positioning reference devices and sent by the first vehicle;
  • the positioning server determines positioning information of the first vehicle according to the multiple PRS measurement results and the multiple C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the relative distance between the first vehicle and other vehicles Change information of the first vehicle, relative position of the first vehicle relative to other vehicles, change information of the relative position of the first vehicle relative to other vehicles.
  • the positioning server may also send the positioning information of the first vehicle to the first vehicle, and/or send the first vehicle's positioning information to the other vehicles Location information.
  • the positioning server may also receive a GNSS signal measurement result and a positioning measurement result sent by the first vehicle, where the positioning measurement result is the measurement of the positioning sensor of the first vehicle itself The obtained positioning result. Then, in step 803, the positioning server further determines the positioning of the first vehicle based on the multiple PRS measurement results, multiple C-PRS measurement results, the GNSS signal measurement results, and the positioning measurement results information.
  • the positioning server may also receive a request message sent by the network side device to request GNSS signal quality information of the first vehicle, and send the GNSS signal quality of the first vehicle to the network side device Information, so that the network-side device determines transmission parameters for sending the PRS and C-PRS to the first vehicle based on the GNSS signal quality information of the first vehicle.
  • This example 1 is explained with the navigation and positioning system of a single vehicle as shown in FIG. 9. Specifically, this example 1 combines the vehicle positioning method based on 5G, NR, PRS and C-PRS with various vehicle positioning methods of the related art, which can provide more accurate and reliable positioning information for the Internet of Vehicles system.
  • the vehicle integrated navigation and positioning system based on 5G NR positioning technology given in Example 1 works as follows: When a vehicle fails to receive GNSS satellite signals, or fails to receive signals from a sufficient number of GNSS satellites, high accuracy cannot be achieved When determining the absolute position of the vehicle, the absolute position of the vehicle is determined with high accuracy by combining the measurement value obtained by the positioning reference signal sent by the base station and the measurement value provided by the vehicle's own positioning sensor.
  • the absolute position of the vehicle can be determined with high accuracy.
  • 5GNR wireless communication systems for example, high frequency, large bandwidth, and antenna arrays with a large number of antenna elements
  • a vehicle receives PRS and C-PRS sent from a sufficient number of base stations, it can use the related technology to observe the time difference of arrival (OTDOA) positioning technology, angle of arrival (angle of arrival, AOA) + timing advance ( Timing advance, TA)/RSRP positioning technology or carrier phase positioning technology, after solving the integer ambiguity, you can determine the absolute position of the vehicle with super precision to reach the positioning accuracy of the centimeter level.
  • OTDOA time difference of arrival
  • AOA angle of arrival
  • TA Timing advance
  • RSRP positioning technology carrier phase positioning technology
  • operators can adjust the number, location, transmission frequency, and transmission power of PRS and C-PRS signals to ensure the performance of vehicle navigation and positioning systems in an environment where GNSS cannot provide high-precision positioning information as needed.
  • the vehicle can effectively receive GNSS signals, reduce or do not send 5G NR carrier signal phase positioning reference signals to save system resources; and where the GNSS signal is weak or unable to receive GNSS signals, increase the 5G NR carrier signal phase Position the frequency of the reference signal or increase the power of the transmitted signal to ensure the performance of the vehicle navigation and positioning system.
  • This example 2 is described with a navigation and positioning system in which multiple vehicles cooperate with each other. It should be pointed out that in the 5G NR PRS and C-PRS-based Internet of Vehicles cooperative navigation and positioning system, the vehicle can accurately calculate the relative distance and relative value of the vehicle by measuring the PRS or C-PRS reference signals sent by the vehicles. The change of position, or relative distance and relative position, does not necessarily completely depend on the PRS or C-PRS reference signal sent by the base station.
  • vehicle B measures the C-PRS reference signal from vehicle A, that the PLL of the receiver of vehicle B has locked the C-PRS signal of vehicle A, and that at time k and k+1, the vehicle B measures the carrier phase observations from C-PRS of vehicle A with Carrier phase observation with Distance from vehicle A and vehicle B with It has the following relationship:
  • N is the carrier phase observation with Ambiguity of the entire cycle; w k and w k+1 are carrier phase measurement errors. Therefore, between time k and k+1, the change in the relative distance between vehicle A and vehicle B can be directly measured by the carrier phase with Obtained without solving for integer ambiguity N:
  • vehicle A uses multiple antennas to transmit PRS and C-PRS reference signals and vehicle B uses multiple antennas to measure the PRS and C-PRS reference signals from vehicle A
  • the PLL of vehicle B's receiver has locked vehicle A C-PRS signal
  • the antennas B1 and B2 of the vehicle B measure the two sets of carrier phase observations from the C-PRS of the antennas A1 and A2 of the vehicle A with Carrier phase observations and the distance between vehicle A antenna and vehicle B antenna with It has the following relationship:
  • N is the ambiguity of the carrier phase observation. Therefore, between time k and k+1, the change of the relative position coordinates of vehicle A and vehicle B can be changed by the carrier phase observation value, that is It is obtained without solving the integer ambiguity N.
  • the vehicle A is used as a reference coordinate system.
  • the position coordinates of the antennas B1 and B2 of the vehicle B relative to the vehicle A as the reference coordinate system at time k Position coordinates to time k+1
  • the change of can also be observed through the carrier phase It is obtained without solving the integer ambiguity N.
  • the Internet of Vehicles cooperative navigation and positioning system based on 5G, NR, PRS and C-PRS can provide higher positioning accuracy than related-art navigation and positioning systems.
  • Figures 12 and 13 respectively give two examples of the calculation of the positioning position by the vehicle and the calculation of the positioning position by the positioning server.
  • the vehicle's positioning calculation includes the following steps.
  • Step 1201 The base station sends PRS and C-PRS configuration information (including the actual location information of the base station) to the vehicle A;
  • Step 1202 The base station sends PRS and C-PRS configuration information (including the actual location information of the base station) to the vehicle B;
  • Step 1203 Vehicle A and vehicle B exchange PRS and C-PRS configuration information with each other;
  • Step 1204 The base station sends PRS and C-PRS reference signals to vehicle A;
  • Step 1205 The base station sends PRS and C-PRS reference signals to vehicle B;
  • Step 1206 Vehicle A sends PRS and C-PRS reference signals to vehicle B;
  • Step 1207 Vehicle B sends PRS and C-PRS reference signals to vehicle A;
  • Step 1208 vehicle A measures the PRS and C-PRS reference signals sent by the base station and vehicle B, simultaneously measures the GNSS signal, and obtains various measurement values through various positioning sensors of the vehicle itself;
  • Step 1209 Vehicle B measures the PRS and C-PRS reference signals sent by the base station and vehicle A, simultaneously measures the GNSS signal, and obtains various measurement values through various positioning sensors of the vehicle itself;
  • Step 1210 Vehicle A and Vehicle B exchange the acquired measured values with each other;
  • Step 1211 The vehicle A calculates the position of the vehicle (A, B) based on the acquired measurement values obtained in steps 8 and 10.
  • the calculation of the position of the vehicle (A, B) in step 11 may have a variety of situations. On the one hand, it depends on the specific positioning requirements of the vehicle A, and on the other hand, it depends on the measured values obtained by the vehicle A. For example, vehicle A may only calculate the position of vehicle A itself, or it may calculate the position of vehicle B, the relative position between AB, the relative distance between AB, the change in the relative position between AB, and the relative between AB according to the specific application requirements. Changes in distance, etc. Vehicle A should use all measurements to obtain the best positioning performance.
  • Step 1212 The vehicle B calculates the position of the vehicle (A, B) based on the acquired measurement values obtained in steps 9 and 10;
  • Step 1213 Vehicle A and vehicle B can exchange the positions of the calculated vehicles (A, B) with each other, so as to mutually monitor the reliability of positioning;
  • Step 1214 Vehicle A reports the position information of vehicle A and vehicle B calculated by the vehicle to the positioning server;
  • Step 1215 The vehicle B reports the position information of the vehicle A and the vehicle B calculated by the own vehicle to the positioning server.
  • vehicles in addition to receiving the PRS and C-PRS signals sent by the base station, vehicles can send PRS and C-PRS signals to each other, and provide each other with their PRS and C through a direct link between the vehicles (sidelink) -PRS configuration information.
  • Each vehicle can exchange the obtained positioning measurement values with each other.
  • Each vehicle can estimate itself through all the information obtained, including the measurement values obtained by measuring the PRS and C-PRS of the base station, the measurement values obtained by measuring the GNSS signal, and the measurement values provided by the various positioning sensors of the vehicle itself, etc. As shown in steps 11 and 12. At the same time, you can also share your location information with other vehicles.
  • the reliability and positioning performance of the 5G NR PRS and C-PRS IoV cooperative navigation and positioning system can be further enhanced.
  • the vehicle reports the positioning measurement value to the positioning server, and the positioning server calculates the positioning position, which specifically includes the following steps.
  • Step 1301 The base station sends PRS and C-PRS configuration information to vehicle A;
  • Step 1302 The base station sends PRS and C-PRS configuration information to vehicle B;
  • Step 1303 Vehicle A and vehicle B exchange PRS and C-PRS configuration information with each other;
  • Step 1304 The base station sends PRS and C-PRS reference signals to vehicle A;
  • Step 1305 the base station sends PRS and C-PRS reference signals to vehicle B;
  • Step 1307 Vehicle B sends PRS and C-PRS reference signals to vehicle A;
  • Step 1308 Vehicle A measures the PRS and C-PRS reference signals sent by the base station and vehicle B, simultaneously measures the GNSS signal, and obtains various measurement values through various positioning sensors of the vehicle itself;
  • Step 1309 Vehicle B measures the PRS and C-PRS reference signals sent by the base station and vehicle A, simultaneously measures the GNSS signal, and obtains various measurement values through various positioning sensors of the vehicle itself;
  • Step 1310 The vehicle A reports the measurement value obtained by the vehicle A in step 8 to the positioning server;
  • Step 1311 Vehicle B reports the measurement value obtained by Vehicle B in Step 9 to the positioning server;
  • Step 1312 The positioning server further calculates the position of the vehicle (A, B) based on the measurement values reported by the vehicles A and B in steps 10 and 11.
  • a certain vehicle B fails to receive a sufficient number of PRSs sent by the base station to determine the absolute position of the vehicle (the right-hand vehicle in FIG. 14), then pass the other vehicle A (the left-hand vehicle in FIG. 14 and assume that The absolute position of a vehicle A has been obtained through the PRS sent by a sufficient number of base stations it received) exchange PRS reference signals (steps 1206 and 1207 in Example 2.1) and PRS positioning information (step 1210 in Example 2.1) with each other It is also possible for the vehicle B to obtain meter-level positioning accuracy or higher relative position accuracy through cooperative positioning.
  • Vehicle positioning through PRS and C-PRS sent by the 3GPP wireless communication network itself can work when the GNSS satellite signal is weak or cannot be received;
  • GNSS users generally cannot adjust the GNSS configuration and signal transmission as needed.
  • operators can also adjust and configure the number of senders that send PRS and C-PRS signals as needed , Location, launch frequency, etc., to improve positioning performance;
  • the time for positioning information exchange and positioning measurement can be reduced to a few milliseconds or less;
  • the Internet of Vehicles collaborative navigation and positioning system based on 5G, NR, PRS and C-PRS can provide higher positioning accuracy than related-technical navigation and positioning systems.
  • the vehicle accurately calculates the relative distance, relative position, or relative distance of the vehicle by measuring the PRS or C-PRS reference signals sent by the vehicles 3.
  • the change in relative position does not necessarily depend entirely on the PRS or C-PRS reference signal sent by the base station. It is especially suitable for the functions of rapid tracking and monitoring of surrounding vehicle movements, prediction and avoiding traffic accidents required for vehicle automatic driving.
  • the device for implementing the above method is further provided below.
  • FIG. 15 is a structural diagram of a first vehicle provided by an embodiment of the present disclosure.
  • the user terminal includes: a transceiver 1510, a memory 1520, a processor 1500, and stored in the memory A computer program that can run on the processor on 1520, where:
  • the transceiver 1510 is configured to measure the positioning reference signal PRS and the carrier phase reference signal C-PRS sent by multiple positioning reference devices to obtain multiple PRS measurement results and multiple C-PRS measurement results.
  • Positioning reference equipment includes network-side equipment and other vehicles;
  • the processor 1500 is configured to read a program in a memory and perform the following process: perform a positioning operation according to the multiple PRS measurement results and multiple C-PRS measurement results;
  • the positioning operation includes: sending the plurality of PRS measurement results and the plurality of C-PRS measurement results to the positioning server, and receiving the plurality of PRS measurement results and the plurality of C- returned from the positioning server The positioning information of the first vehicle determined by the PRS measurement result; or
  • the positioning operation includes: the first vehicle determining positioning information of the first vehicle according to the plurality of PRS measurement results and the plurality of C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the change in the relative distance between the first vehicle and other vehicles Information, the relative position of the first vehicle relative to other vehicles, and the change information of the relative position of the first vehicle relative to other vehicles.
  • the transceiver 1510 can be used to receive and send data under the control of the processor 1500.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1500 and various circuits of the memory represented by the memory 1520 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1510 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the processor 1500 is responsible for managing the bus architecture and general processing, and the memory 1520 may store data used by the processor 1500 when performing operations.
  • the memory 1520 is not limited to the user terminal, and the memory 1520 and the processor 1500 may be separated and located in different geographic locations.
  • the processor 1500 is further configured to obtain PRS configuration information and C-PRS configuration information of the multiple positioning reference devices, and the PRS configuration information and C-PRS configuration information both include frequency configuration information and time Configuration information
  • the transceiver 1510 is further configured to measure the PRS sent by the multiple positioning reference devices according to the PRS configuration information of the multiple positioning reference devices, and according to the C-PRS of the multiple positioning reference devices Configuration information to measure the C-PRS sent by the multiple positioning reference devices.
  • each positioning reference device is configured with a fixed frequency resource to send the C-PRS, or each positioning reference device is configured with a different frequency at different times to send the C-PRS.
  • the transceiver 1510 is also used to perform at least one of the following actions:
  • the transceiver 1510 is also used to measure the GNSS signal sent by the Global Navigation Satellite System GNSS to obtain the GNSS signal measurement result;
  • the processor 1500 is further configured to obtain positioning measurement results measured by a positioning sensor set by itself; and, based on the multiple PRS measurement results, multiple C-PRS measurement results, the GNSS signal measurement results, and the Position the measurement result and perform the positioning operation.
  • the PRS measurement result includes: at least one of a reference signal arrival time difference (reference signal time difference (RSTD) and a reference signal received power RSRP;
  • RSTD reference signal arrival time difference
  • RSRP reference signal received power
  • the C-PRS measurement result includes: C-PRS carrier phase C-PRS-CP measurement value.
  • the transceiver 1510 is further configured to send a report message to the positioning server, where the report message includes the multiple PRS measurement results and information elements used to report the C-PRS measurement results, where The information element includes the C-PRS measurement result of each C-PRS.
  • the information element further includes: at least one of a cell identifier corresponding to each C-PRS, a C-PRS index, a reference time during measurement, and a quality indication of a carrier measurement value.
  • first vehicle in this embodiment may be the first vehicle of any implementation manner in the method embodiment in the embodiment of the present disclosure, and any implementation of the first vehicle in the method embodiment in the embodiment of the present disclosure may be It is achieved by the above-mentioned first vehicle in this embodiment, and the same beneficial effects are achieved, which will not be repeated here.
  • FIG. 16 is a structural diagram of a network-side device provided by an embodiment of the present disclosure.
  • the network-side device includes: a transceiver 1610, a memory 1620, a processor 1600, and stored in the A computer program on the memory 1620 that can run on the processor, where:
  • the transceiver 1610 is configured to send PRS and C-PRS to the first vehicle, so that the first vehicle measures the PRS to obtain a PRS measurement result, and measures the C-PRS to obtain C-PRS measurement results;
  • the PRS measurement result and the C-PRS measurement result are used for positioning information of the first vehicle, and the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, The relative distance between the first vehicle and other vehicles, the change information of the relative distance between the first vehicle and other vehicles, the relative position of the first vehicle relative to other vehicles, the relative position of the first vehicle relative to other vehicles Change of location information.
  • the transceiver 1610 can be used to receive and send data under the control of the processor 1600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1600 and various circuits of the memory represented by the memory 1620 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1610 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 1600 is responsible for managing the bus architecture and general processing, and the memory 1620 may store data used by the processor 1600 in performing operations.
  • the memory 1620 is not limited to only the network-side device, and the memory 1620 and the processor 1600 can be separated in different geographic locations.
  • the processor 1600 is configured to read a program in the memory and perform the following process: obtain GNSS signal quality information of the first vehicle, where the GNSS signal quality information includes satellites that can be received by the first vehicle The number of signals and satellite signal reception quality; according to the GNSS signal quality information of the first vehicle, determine the transmission parameters for sending the PRS and C-PRS to the first vehicle, the transmission parameters including transmission frequency and transmission power And the frequency of transmission, where the higher quality GNSS signal quality information corresponds to the transmission parameters of the lower transmission level;
  • the transceiver 1610 is further configured to send the PRS and C-PRS to the first vehicle according to the sending parameters.
  • the processor 1600 is further configured to receive the GNSS signal measurement result of the global navigation satellite system of the first vehicle through the transceiver; the network-side device determines the measurement result according to the GNSS signal measurement result of the first vehicle GNSS signal quality information of the first vehicle; or, request the GNSS signal quality information of the first vehicle from the positioning server through the transceiver, and receive the GNSS signal quality information of the first vehicle returned by the positioning server.
  • different network side devices send C-PRS to the first vehicle through different frequency resources.
  • the transceiver 1610 is further configured to send PRS configuration information and C-PRS configuration information to the first vehicle, where the PRS configuration information and C-PRS configuration information both include frequency configuration information and time configuration information .
  • each network side device is configured with a fixed frequency resource to send C-PRS, or each network side device is configured with different frequencies at different times to send C-PRS.
  • the transceiver 1610 is further configured to: the network-side device continuously sends C-PRS to the first vehicle; or, periodically sends C-PRS to the first vehicle; or, The first vehicle sends C-PRS.
  • the above network-side device in this embodiment may be a network-side device in any implementation manner in the method embodiment in the embodiment of the present disclosure, and any implementation of the network-side device in the method embodiment in the present disclosure embodiment may be It is achieved by the above network-side device in this embodiment, and the same beneficial effects are achieved, which will not be repeated here.
  • FIG. 17 is a structural diagram of another positioning server provided by an embodiment of the present disclosure.
  • the positioning server includes: a transceiver 1710, a memory 1720, a processor 1700, and stored in the memory A computer program that can run on the processor on 1720, where:
  • the transceiver 1710 is configured to receive a PRS measurement result of a positioning reference signal PRS sent by a plurality of positioning reference devices sent by a first vehicle.
  • the plurality of positioning reference devices include a network-side device and other vehicles; and, the receiving station The C-PRS measurement result of the carrier phase reference signal C-PRS sent by the multiple positioning reference devices and sent by the first vehicle;
  • the processor 1700 is configured to read a program in a memory and perform the following process: determine positioning information of the first vehicle according to the multiple PRS measurement results and multiple C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the relative distance between the first vehicle and other vehicles Change information of the first vehicle, relative position of the first vehicle relative to other vehicles, change information of the relative position of the first vehicle relative to other vehicles.
  • the transceiver 1710 may be used to receive and send data under the control of the processor 1700.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 1700 and various circuits of the memory represented by the memory 1720 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1710 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 1700 is responsible for managing the bus architecture and general processing, and the memory 1720 may store data used by the processor 1700 when performing operations.
  • the storage 1720 is not limited to the positioning server, and the storage 1720 and the processor 1700 can be separated in different geographic locations.
  • the transceiver 1710 is further configured to send positioning information of the first vehicle to the first vehicle.
  • the transceiver 1710 is also used to send the positioning information of the first vehicle to the other vehicles.
  • the transceiver 1710 is further configured to receive a GNSS signal measurement result and a positioning measurement result sent by the first vehicle, where the positioning measurement result is a positioning result measured by a positioning sensor of the first vehicle itself ;
  • the processor 1700 is further configured to determine positioning information of the first vehicle according to the multiple PRS measurement results, multiple C-PRS measurement results, the GNSS signal measurement results, and the positioning measurement results.
  • the transceiver 1710 is further configured to receive a request message sent by the network-side device to request GNSS signal quality information of the first vehicle, and send the first vehicle to the network-side device GNSS signal quality information.
  • the above-mentioned positioning server in this embodiment may be a positioning server in any implementation manner in the method embodiment in the embodiment of the present disclosure, and any implementation manner of the positioning server in the method embodiment in the present disclosure embodiment may be used in this implementation.
  • the above-mentioned positioning server in the example is implemented and the same beneficial effects are achieved, which will not be repeated here.
  • another first vehicle 1800 provided by an embodiment of the present disclosure includes:
  • the measuring unit 1801 is configured to measure the positioning reference signal PRS and the carrier phase reference signal C-PRS sent by multiple positioning reference devices to obtain multiple PRS measurement results and multiple C-PRS measurement results, and the multiple positioning references Equipment includes network-side equipment and other vehicles;
  • the positioning operation unit 1802 is configured to perform positioning operations according to the multiple PRS measurement results and the multiple C-PRS measurement results;
  • the positioning operation includes: sending the plurality of PRS measurement results and the plurality of C-PRS measurement results to the positioning server, and receiving the plurality of PRS measurement results and the plurality of C- returned from the positioning server The positioning information of the first vehicle determined by the PRS measurement result; or
  • the positioning operation includes: the first vehicle determining positioning information of the first vehicle according to the plurality of PRS measurement results and the plurality of C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the change in the relative distance between the first vehicle and other vehicles Information, the relative position of the first vehicle relative to other vehicles, and the change information of the relative position of the first vehicle relative to other vehicles.
  • the measurement unit 1801 is further configured to obtain PRS configuration information and C-PRS configuration information of the multiple positioning reference devices, and the PRS configuration information and C-PRS configuration information both include frequency configuration information and time Configuration information; and, according to the PRS configuration information of the multiple positioning reference devices, measure the PRS sent by the multiple positioning reference devices, and, based on the C-PRS configuration information of the multiple positioning reference devices, The C-PRS sent by the multiple positioning reference devices is measured.
  • each positioning reference device is configured with a fixed frequency resource to send the C-PRS, or each positioning reference device is configured with a different frequency at different times to send the C-PRS.
  • the first vehicle 1800 further includes:
  • the interaction unit is used to perform at least one of the following actions:
  • the measurement unit 1801 is also used to measure the GNSS signal sent by the Global Navigation Satellite System GNSS to obtain a GNSS signal measurement result;
  • the positioning operation unit 1802 is further configured to obtain positioning measurement results measured by a positioning sensor set by itself; and, based on the multiple PRS measurement results, multiple C-PRS measurement results, the GNSS signal measurement results, and all Performing the positioning operation according to the positioning measurement result.
  • the PRS measurement result includes: at least one of a reference signal arrival time difference RSTD and a reference signal received power RSRP;
  • the C-PRS measurement result includes: C-PRS carrier phase C-PRS-CP measurement value.
  • the interaction unit is further configured to send a report message to the positioning server, where the report message includes the multiple PRS measurement results and information elements used to report the C-PRS measurement results, where the The information element includes the C-PRS measurement result of each C-PRS.
  • the information element further includes: at least one of a cell identifier corresponding to each C-PRS, a C-PRS index, a reference time during measurement, and a quality indication of a carrier measurement value.
  • another network-side device 1900 provided by an embodiment of the present disclosure includes:
  • the transceiver unit 1901 is configured to send PRS and C-PRS to the first vehicle, so that the first vehicle measures the PRS to obtain a PRS measurement result, and measures the C-PRS to obtain a C- PRS measurement results;
  • the PRS measurement result and the C-PRS measurement result are used for positioning information of the first vehicle, and the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, The relative distance between the first vehicle and other vehicles, the change information of the relative distance between the first vehicle and other vehicles, the relative position of the first vehicle relative to other vehicles, the relative position of the first vehicle relative to other vehicles Change of location information.
  • the network-side device 1900 further includes:
  • the parameter determination unit is used to obtain GNSS signal quality information of the first vehicle, the GNSS signal quality information includes the number of satellite signals that the first vehicle can receive and the satellite signal reception quality; according to the GNSS of the first vehicle Signal quality information, determining the transmission parameters for transmitting the PRS and C-PRS to the first vehicle, the transmission parameters including a transmission frequency, a transmission power, and a transmission frequency, wherein a higher quality GNSS signal quality information corresponds to Transmission parameters for lower transmission levels;
  • the transceiver unit 1901 is further configured to send the PRS and C-PRS to the first vehicle according to the sending parameter.
  • the transceiving unit 1901 is further configured to receive the GNSS signal measurement result of the global navigation satellite system of the first vehicle; according to the GNSS signal measurement result of the first vehicle, determine the GNSS signal quality information of the first vehicle Or, request the GNSS signal quality information of the first vehicle from the positioning server through the transceiver, and receive the GNSS signal quality information of the first vehicle returned by the positioning server.
  • different network side devices send C-PRS to the first vehicle through different frequency resources.
  • the transceiver unit 1901 is further configured to send PRS configuration information and C-PRS configuration information to the first vehicle, where the PRS configuration information and C-PRS configuration information both include frequency configuration information and time configuration information .
  • each network side device is configured with a fixed frequency resource to send C-PRS, or each network side device is configured with different frequencies at different times to send C-PRS.
  • the transceiver unit 1901 is further configured to: the network-side device continuously sends C-PRS to the first vehicle; or, periodically sends C-PRS to the first vehicle; or, The first vehicle sends C-PRS.
  • another positioning server 2000 provided by an embodiment of the present disclosure includes:
  • the transceiver unit 2001 is configured to receive a PRS measurement result of a positioning reference signal PRS sent by a plurality of positioning reference devices sent by a first vehicle, where the plurality of positioning reference devices include a network-side device and other vehicles; and, receive the first A C-PRS measurement result of a carrier phase reference signal C-PRS sent by the multiple positioning reference devices sent by a vehicle;
  • a positioning unit 2002 configured to determine positioning information of the first vehicle according to the multiple PRS measurement results and the multiple C-PRS measurement results;
  • the positioning information of the first vehicle includes at least one of the following information: the position of the first vehicle, the relative distance between the first vehicle and other vehicles, and the relative distance between the first vehicle and other vehicles Change information of the first vehicle, relative position of the first vehicle relative to other vehicles, change information of the relative position of the first vehicle relative to other vehicles.
  • the transceiver 2001 is also used to send positioning information of the first vehicle to the first vehicle.
  • the transceiver 2001 is also used to send the positioning information of the first vehicle to the other vehicles.
  • the transceiver 2001 is further configured to receive a GNSS signal measurement result and a positioning measurement result sent by the first vehicle, where the positioning measurement result is a positioning result measured by a positioning sensor of the first vehicle itself ;
  • the processor 2001 is further configured to determine positioning information of the first vehicle based on the multiple PRS measurement results, multiple C-PRS measurement results, the GNSS signal measurement results, and the positioning measurement results.
  • the transceiver 2001 is further configured to receive a request message sent by the network-side device to request GNSS signal quality information of the first vehicle, and send the first vehicle to the network-side device GNSS signal quality information.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the steps in the positioning method on the user terminal side provided by the embodiment of the present disclosure, or the program is processed When the device is executed, the steps in the positioning method on the positioning reference device side provided by the embodiments of the present disclosure are implemented, or when the program is executed by the processor, the steps in the positioning method on the positioning server side provided by the embodiments of the present disclosure are implemented.
  • the disclosed method and device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some elements can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
  • the above software functional unit is stored in a storage medium, and includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disc, etc., which can store program codes Medium.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the related technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as U disk, mobile hard disk, ROM, RAM, magnetic disk, or optical disk.
  • the program can be stored in a computer-readable storage medium. When executed, it may include the processes of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processor, DSP), digital signal processing device (DSP Device, DSPD), programmable Logic Device (Programmable Logic Device, PLD), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device digital signal processing device
  • DPD digital signal processing device
  • PLD programmable Logic Device
  • Field Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种定位方法和相关设备,其中,所述定位方法包括:第一车辆对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作。

Description

定位方法和相关设备
相关申请的交叉引用
本申请主张在2018年12月19日在中国提交的中国专利申请号No.201811558107.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种定位方法和相关设备。
背景技术
相关技术的车辆导航定位主要是基于全球导航卫星系统(Global Navigation Satellite System,GNSS)。GNSS的一般定位精度在几米左右,并不能满足第五代移动通信技术(5 th generation,5G)新空口(new radio,NR)车联网系统对导航定位系统的精度需求,例如车辆自动驾驶功能。使用实时动态差分技术的GNSS导航定位系统能大大地提高车辆导航定位系统的定位精度,有可能将定位误差减少到分米甚至厘米级别。但该系统存在两个重要问题:第一,GNSS在许多情况下无法正常工作。例如在市区环境中,GNSS就可能因为GNSS信号被建筑物挡住无法正常工作。由于用户既无法根据环境需要来增加导航卫星的数量、也不能根据环境需要来调整卫星信号传输频率或增加卫星信号的传输功率,GNSS的这个固有问题无法通过GNSS本身解决。实时动态差分技术的GNSS导航定位系统的第二个问题是需要从差分服务器获取差分校正信息。差分校正信息的延迟一般要几秒左右或甚至更长。因此,仅依靠GNSS难以满足未来的5G车联网系统对导航定位系统在定位精度、可用性(availability)、可靠性以及定位时间延迟方面的要求。
为了弥补GNSS的固有缺陷,一种可能的方法是将GNSS与其它车辆导航传感器,如惯性传感器(inertial measurement unit,IMU)、激光雷达、光学传感器等,组合在一起,如图1所示。但是,车辆组合导航定位系统一般只能在丢失GNSS信号后的短时间内,保持一定的定位精度。
如图1所示的相关技术的车辆组合导航定位系统存在如下缺点。当GNSS 因信号问题不能正常工作时,以GNSS为主的车辆组合导航定位系统仅能在较短时间内保持一定的精度,而无法在较长时间内保持高精度。此外,各种车辆导航传感器存在有各自的局限,例如:天气条件(如雾,雪和雨)对激光雷达和光学传感器的测量有教大的影响;性能好的IMU能在丢失GNSS信号问题后继续保持导航精度的时间长些,但价格昂贵,而价格低的IMU测量误差较大,在丢失GNSS信号问题后继续保持导航精度的时间短。于是,相关技术的车辆导航定位系统尚不能满足未来的车联网系统对导航定位系统的高精度、高可用性、高可靠性、低时延和低成本的要求。
发明内容
本公开实施例提供一种定位方法和相关设备,为车联网系统提供精确和可靠的定位信息。
本公开实施例提供了一种定位方法,包括:
第一车辆对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息;
所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供了另一种定位方法,包括:
网络侧设备向第一车辆发送PRS和C-PRS,以使所述第一车辆对所述 PRS进行测量,得到PRS测量结果,以及,对所述C-PRS进行测量,得到C-PRS测量结果;
其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供了另一种定位方法,包括:
定位服务器接收第一车辆发送的对多个定位参考设备发送的定位参考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
所述定位服务器接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
所述定位服务器根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供了一种第一车辆,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述收发机,用于对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
所述处理器,用于读取存储器中的程序,执行下列过程:根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个 C-PRS测量结果确定所述第一车辆的定位信息;
所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供了一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述收发机,用于向第一车辆发送PRS和C-PRS,以使所述第一车辆对所述PRS进行测量,得到PRS测量结果,以及,对所述C-PRS进行测量,得到C-PRS测量结果;
其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供了一种定位服务器包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述收发机,用于接收第一车辆发送的对多个定位参考设备发送的定位参考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;以及,接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
所述处理器,用于读取存储器中的程序,执行下列过程:根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供了另一种第一车辆,包括:
测量单元,用于对多个定位参考设备发送的定位参考信号PRS和载波相 位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
定位操作单元,用于根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息;
所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供了另一种网络侧设备,包括:
收发单元,用于向第一车辆发送PRS和C-PRS,以使所述第一车辆对所述PRS进行测量,得到PRS测量结果,以及,对所述C-PRS进行测量,得到C-PRS测量结果;
其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供了另一种定位服务器,包括:
收发单元,用于接收第一车辆发送的对多个定位参考设备发送的定位参考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;以及,接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
定位单元,用于根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例提供的第一车辆侧的定位方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的网络侧设备的定位方法中的步骤,或者,该程序被处理器执行时实现本公开实施例提供的定位服务器侧的定位方法中的步骤。
本公开实施例的以上方法及装置,至少具有以下优点:
a)通过5G NR系统自身发送的PRS和C-PRS进行车辆定位,可在GNSS卫星信号弱或接收不到时工作。运营商还可根据需要来调整和配置发送PRS和C-PRS信号的发送端数量、位置和发射频率等,避免发生类似于GNSS因接收信号弱而无法工作的问题;
b)运营商可根据需要,通过调整发送PRS的配置,减少TOA/TDOA测量误差,使得搜索载波相位测量中的整数模糊度更加容易;
c)由于在正常工作的环境下,在5G NR的接收端的信号功率远远大于GNSS信号到达地面的信号功率,相比GNSS,锁定5G NR载波信号更容易、更快速;而且若发生相位失锁,也能快速地恢复相位锁定;
d)利用5G NR无线通信系统的大带宽、高数据速率的特点,可将用于定位信息交流和定位测量的时间减少到几个毫秒或更短。
附图说明
图1是本公开实施例中的一种车辆组合导航定位系统示意图;
图2是本公开实施例提供的用于发送C-RPS的子载波分布及频谱示意图;
图3是本公开实施例可应用的网络结构示意图;
图4是本公开实施例可应用的一种场景示意图;
图5是本公开实施例可应用的另一种场景示意图;
图6是本公开实施例提供的一种定位方法的示意图;
图7是本公开实施例提供的另一种定位方法的示意图;
图8是本公开实施例提供的又一种定位方法的流程图;
图9是本公开实施例提供的示例1的导航定位系统示意图;
图10是本公开实施例提供的示例1的场景示意图;
图11是本公开实施例提供的示例2的场景示意图;
图12是本公开实施例提供的示例2.1的场景示意图;
图13是本公开实施例提供的示例2.2的场景示意图;
图14是本公开实施例提供的示例2.3的场景示意图;
图15是本公开实施例提供的一种第一车辆的结构图;
图16是本公开实施例提供的一种网络侧设备的结构图;
图17是本公开实施例提供的一种定位服务器的结构图。
图18是本公开实施例提供的另一种第一车辆的结构图;
图19是本公开实施例提供的另一种网络侧设备的结构图;
图20是本公开实施例提供的另一种定位服务器的结构图。
具体实施方式
第3代合作伙伴计划(3rd Generation Partnership Project,3GPP)于2018年发布了5G NR无线通信系统的第一阶段标准(Release 15)。5G NR系统具有许多有助于提高位置信息准确度的特性,例如,大带宽,大型天线阵列等等。3GPP也已开始下一阶段(release-16)5G NR定位标准研究项目(study item,SI),然而该SI将室外水平定位精度定在10米的范围,远不能满足车辆导航定位系统的定位精度要求。于是,如何充分利用5G NR系统的特性来为未来的车联网系统提供精确和可靠的定位信息是一个值得研究和解决的问题。
首先,对本公开实施例中涉及的相关信号进行说明。
本公开实施例中,用5G NR定位参考信号(positioning reference signal,PRS)表示所有可用定位的5G NR参考信号,具体可以包括:协议已规定的5G NR上行链路参考信号,例如探测参考信号(sounding reference signal,SRS);下行链路参考信号,例如同步参考信号(synchronization signal)和信道状态指示参考信号(channel state indication reference signal,CSI-RS),自定义的5G  NR定位参考信号,以及协议将来可能新规定的5G NR定位设计的参考信号等。网络可以为参与车辆定位而发送5G PRS的发送端(包括基站或车辆)配置用于发送PRS的时间和频率资源。车联网中的用户终端通常为车辆,当然本文所述方法也可以应用于其他终端(如手机)。
本公开实施例中还提供了一种5G NR中的载波相位参考信号(Carrier Phase Reference signals,C-PRS)。具体的,C-PRS信号可以是正弦载波相位参考信号(sinusoidal carrier phase reference signal,SPRS)(本文中也将SPRS称作纯正弦载波信号),也可以是携带数据的载波信号。当C-PRS信号是纯正弦载波信号时,信号本身所占的带宽将非常的小。于是,用于定位的纯正弦载波信号的载波频率之间的子载波间隔(SCS c)可以被配置为比数据通信的子载波间隔(SCS d)小得多,如图2所示。
用于定位的纯正弦载波信号的载波频率之间的子载波间隔主要考虑的是发射机的频率误差和多普勒偏移。这取决于的车辆的速度和载波频率。例如,假设发射机的频率误差小于0.05ppm,车辆的速度小于450公里/小时,载波频率小于6GHz,则纯正弦信号的载波频率之间的子载波间隔SCS c可以设置小于3kHz,远远小5G NR数据通信的所用的子载波间隔15kHz/30kHz。由于C-PRS占用的子载波的SCS小于目标载波中数据通信的SCS,从而可以节约载波的频率资源。另外,本公开实施例中,多个设备(包括基站和车辆)发送的C-PRS占用的子载波可以位于所述目标载波的边缘或者保护带。
C-PRS的发送可以在载波的边缘或载波的保护带进行,如图2(a)所示。由于载波相位定位信号是纯正弦信号,因此定位信号对相邻载波信号造成信道间频谱可以忽略,如图2(b)所示。另外,由于C-PRS可以在载波边缘或载波的保护频带以非常小的子载波间隔进行发送,因此只需要非常小或甚至不占用数据通信载波资源。由于C-PRS可以在载波边缘或载波的保护频带以非常小的子载波间隔进行发送,因此只需要非常小或甚至不占用数据通信载波资源,节约频率资源。
在车辆接收端,接收机可以根据所提供的各相邻小区的C-PRS配置,来测量来自各相邻小区的C-PRS并生成载波相位测量值。由于C-PRS是时域中的简单的正弦信号,从而可用许多相关技术的载波相位跟踪的技术来获得载 波相位测量。一般来说,接收机需要实现载波锁相环(phase lock loop,PLL)来测量载波相位。而且,在通信和导航接收机中已广泛使用PLL,这样采用PLL进行测量不会增加用户终端的测量成本。
另外,相关技术的PLL的基本原理是通过在接收机内部生成被测量信号的重复值并将该重复值的相位与被测量信号的相位同步来实现。相关技术的PLL由三个基本组成部分组成:一个相位检测器,负责提供输出测量结果,与待补偿的载波误差成比例;一个环路滤波器,它是一个窄带的低通滤波器,可以平滑由相位检测器输出的噪声引起的变化;最后是数字实现的数字控制振荡器(numerically controlled oscillator,NCO)或模拟压控振荡器(voltage controlled oscillator,VCO),用于基于环路滤波器输出施加的校正生成本地复制载波。当然,本公开实施例中,为了确保载波相位测量的性能,也可以采用更先进的PLL结构来提供更稳健的载波相位测量,对此本公开实施例不作限定。
本公开实施例中,当PLL锁定输入C-PRS信号时,接收机内部重复信号的相位即是PLL的输出。这时,来自小区i的C-PRS的在时间k的C-PRS测量结果(也可以称作载波相位测量结果)φ i(k)可以表示如下:
λφ i(k)=r i(k)+λ*N i+w i
其中,r i(k)是从UE到小区i的距离;λ是C-PRS的波长,N i是在定位计算期间需要求解的整周模糊度(integer ambiguity);w i是载波相位测量误差。载波相位测量误差主要受到多路径影响。
本公开实施例中,通过监测来自相邻基站或车辆发送的C-PRS得到载波相位测量结果之后,接收端(具体可以各个车辆)可将载波相位测量值(CP)以及其他定位测量(例如TOA/TDOA/RSRP)合在一起计算接收端的定位信息。例如,通过测量多个定位参考设备(如位置信息已知的基站)发送的C-PRS得到多个φ i(k),从而可以计算出车辆与各定位参考设备的之间的距离、整周模糊度和载波相位测量误差等参数,进而可以高精确地确定出车辆的位置。
需要说明的是,本公开实施例中,并不限定通过上述公式对车辆进行定位,因为,当车辆的位置固定后,对SPRS测量的测量结果也是固定的,那么,通过这种关系就可以确定车辆的位置,例如:还可以通过SPRS的测量 结果与位置的其他关系对车辆进行定位。又例如,车辆可以基于其他定位测量(例如TOA/TDOA/RSRP)的定位结果,与基于参考信号(PRS、C-PRS)获得的定位结果进行加权处理,得到车辆的定位信息。
另外,本公开实施例中,接收端也可将定位测量值上报给定位服务器,而由定位服务器根据PRS和C-PRS配置信息和车辆提供的定位测量值,利用各种相关技术的定位算法来高精度地确定车辆的定位信息。对于,车辆导航定位系统,接收端可以将载波相位环路保持到锁定状态,以提供载波相位测量而不必担心功耗问题。
具体的,本公开实施例中在时间资源上,发送C-PRS的资源配置可采用多种方式:
1)配置连续发送C-PRS。在这种配置下,发送端可以在配置的单个频率或多个频率下连续不中断地发送C-PRS;
2)配置定期发送C-PRS。在这种配置下,发送端可以在配置的单个频率或多个频率下,根据配置的发送周期,时间偏移,和开启/关闭的持续时间长短来发送C-PRS;
3)根据需求配置C-PRS。在这种配置下,该小区可以根据某个定位需求来开始或停止发送C-PRS。定位需求可能来定位服务器或基站或某个车辆.
在频率资源上,发送C-PRS的资源配置也可采用多种方式:
1)配置固定的特定频率来发送C-PRS;
2)用跳频模式在不同的时间里配置不同的频率来发送C-PRS。跳频模式配置方法又可有多种,例如,跳频模式可以取决于C-PRS的发送时间,发送端标识(identifier,ID)和网络配置发送C-PRS的带宽等等。
网络可以通过定位服务器或基站为车辆接收端提供C-PRS配置信息。为了减少对用户终端的调整,上述C-PRS配置信息可以通过直接扩展当前的3GPP长期演进(long term evolution,LTE)定位协议(LTE positioning protocol,LPP)(TS 36.355)和定位协议A(LPPa)提供给某个车辆接收端。例如:在LTE定位协议(LPP)和定位协议A(LPPa)中用于配置C-PRS配置信息的消息中添加C-PRS配置信息,从而可以减少车辆定位流程上的调整,以及还可以避免通过额外的信令来传输C-PRS配置信息,以节约传输开销。当然, 该实施方式中,车辆也可以获取到PRS配置信息,其中,PRS配置信息可以参见当前的3GPP LTE定位协议(LPP)(TS 36.355)和/或定位协议A(LPPa),此处不作限定,另外,本公开实施例中,对PRS的测量也可以参见当前的3GPP LTE定位协议(LPP)(TS 36.355)和/或定位协议A(LPPa),此处不作详细说明。
该实施方式中,通过上述C-PRS配置信息可以是在对应的时间,在对应的频率资源上测量相应的C-PRS,以提高C-PRS测量的准确度,且还可以避免用户终端盲测量C-PRS而带来的功耗浪费。
另外,本公开实施例中,C-PRS配置信息也可以通过各小区广播的形式提供给车辆接收端。C-PRS配置信息通常至少包括用于车辆接收端载波相位定位的各相邻小区的C-PRS发送的频率和时间资源配置。C-PRS配置相关的信息还可以包括各小区的发送天线的位置,以便车辆接收端自己利用测量值来定位。
其中,上述C-PRS配置信息可以是由定位服务器或者基站统一发送的,或者也可以是每个基站发送各自的SPRS配置信息等,对此不作限定。当然,还可以获取到PRS配置信息,这样可以根据该PRS配置信息对PRS进行测量。其中,PRS配置信息和SPRS配置信息可以是通过同一消息获取的,也可以是通过不同的方式分别获取的PRS配置信息和SPRS配置信息,对此本公开实施例不作限定。
请参见图3,图3是本公开实施例可应用的网络结构示意图,如图1所示,包括用户终端(User Equipment,UE)11、多个定位参考设备12和定位服务器13,其中,用户终端11可以是车辆、手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。定位参考设备12可以是网络侧设备,例如:基站,该基站可以是宏站、LTE基站(evolved Node B,eNB)、5G NR NB等;或者网络侧设备也可以是小站,如低功率节点(low power node,LPN)、微微(pico)、毫微微(femto)等小站,或者网络侧设备可以接入点(access point, AP);基站也可以是中央单元(central unit,CU)与其管理是和控制的多个传输接收点(Transmission Reception Point,TRP)共同组成的网络节点。或者,上述定位参考设备12可以是除用户终端11之外的其他用户终端,例如:用户终端11和其他用户终端为车辆用户终端,这样可以实现本公开实施例中应用于车联网(Vehicle to X,V2X)车辆协作定位系统。另外,应用于V2X车辆协作定位系统中,多定位参考设备12中有些定位参考设备12可以是除用户终端11之外的其他用户终端,而另一些定位参考设备12可以是网络侧设备,当然,也可以是全部定位参考设备12均是除用户终端11之外的其他用户终端或者网络侧设备,对此本公开实施例不作限定。需要说明的是,在本公开实施例中并不限定定位参考设备12的具体类型。另外,车辆用户终端可以是车载通信设备,或者可以是位于车辆内部的用户终端(例如:手机)等等,对此本公开实施例不作限定。而上述定位服务器13可以是服务器设备,或者上述定位服务器可以是放置无线通信系统的某一个网络侧设备(例如:基站),当然,在一些情况下,上述定位服务器13可以是与某一个定位参考设备12为同一个设备。需要说明的是,在本公开实施例中并不限定定位服务器13的具体类型。
本公开实施例可以应用于无线通信系统中的用户终端的定位,例如:如图4所示,用户终端对多个小区的网络侧设备发送的PRS和C-PRS进行测量,以实现定位。又例如:如图5所示,一个车辆用户终端对小区的网络侧设备和另一车辆发送的PRS和C-PRS进行测量,以实现定位。
本公开实施例提供了一种基于5G NR参考信号的车辆导航定位系统,可以将基于5G NR参考信号的车辆导航定位系统与GNSS和其它导航定位系统结合在一起,构成车俩组合导航定位系统和车联网协作导航定位系统,为5G NR的车联网系统提供超精度、高可用性、高可靠性、低时延和低成本的定位功能。
本公开实施例还提供了一种基于5G NR无线电通信系统定位参考信号(positioning reference signals,PRS)以及载波相位参考信号(carrier phase reference signals,C-PRS,也可以称作载波相位测量参考信号)的车辆组合导航定位系统。在本公开实施例中,5G NR无线电通信系统定位参考信号(PRS) 代表所有可用于定位的5G NR参考信号,包括协议已规定的5G NR上行链路和下行链路参考信号、自定义的5G NR定位参考信号、以及协议将来可能新规定的5G NR定位设计的参考信号等。5G NR载波相位测量参考信号(C-PRS)代表所有可用于获得5G NR载波相位的参考信号,包括本公开实施例描述的5G NR载波相位参考信号等。
在该系统里,参考信号的发送端(发送端可以是基站和/或车辆)可以同时发送5G NR PRS和5G NR C-PRS。接收端(车辆)通过测量5G NR PRS获得相关技术的定位测量值,例如定位参考信号到达时间(time of arrival,TOA)或定位参考信号的到达时间差(time difference of arrival,TDOA),定位参考信号的接收功率强度(reference signal received power,RSRP),定位参考信号的到达角度(angle of arrival,AOA)等。与此同时,接收端(车辆)通过测量5G NR C-PRS获得载波相位(carrier phase,CP)。载波相位测量值代表接收的NR载波参考信号与接收机内部产生的载波信号之间的相位差。
通过监测来自相邻多个基站或车辆发送的5G NR PRS/C-PRS得到各种定位测量值(TOA/TDOA/AOA/RSRP/CP等)之后,接收端(车辆)可将这些定位测量值组合在一起计算接收端(车辆)的位置。接收端也可将这些定位测量值上报给定位服务器,而由定位服务器根据PRS和C-PRS配置信息和UE提供的定位测量值,利用各种相关技术的定位算法来高精度地确定UE的位置。
TOA/TDOA的测量误差与5G NR PRS信号的设计和配置(例如信号传输频率、周期、带宽等)和接收信号质量(例如信干噪比(signal to interference and noise ratio,SINR)等直接相关。利用5G NR的高载波频率和大带宽等特性,可以实现将TOA/TDOA的测量误差控制到几米甚至更小的范围内。这样的精度已满足一般的点对点路线导航的性能要求。但由于未来的车联网系统需要更精确的定位信息来支持车联网系统的各种功能,例如是车辆自动驾驶功能。仅利用5G NR PRS将不能满足这些需求。
利用GNSS载波相位测量值能获得厘米级精度,其主要原因是载波相位的测量误差很小,仅为载波波长的10%左右。例如,当载波频率为2.0GHz时,载波波长为15cm,载波相位测量误差仅在1~2厘米范围。同样的道理, 若5G NR引入C-PRS,则利用NR C-PRS所测量的载波相位的测量误差也将在1~2厘米范围内。在5G NR里引入载波相位测量的有利条件之一是在5G NR正常工作状态下,5G NR的接收信号功率远远大于GNSS的接收信号功率。例如,北斗中地球轨道(medium earth orbit,MEO)信号和全球定位系统(global positioning system,GPS)L1信号的设计指标里,卫星信号到达地面接收机的功率在整个载波频率带宽里只有-128.5dBm,而5G NR在一般正常工作的环境下,接收端的参考信号功率在15kHz带宽里就通常就不小于-100dBm。由于5G NR的接收参考信号功率远远大于GNSS到达地面接收机的功率,5G NR接收机能够比GNSS更容易、更快地锁定波相位参考信号以提供载波相位测量值。并且,如果发生相位失锁时,5G NR接收机能比GNSS接收机更快地恢复相位锁定。
利用载波相位测量值进行定位的主要困难是载波相位测量值里包含了一个载波波长整数倍的未知数,通常称为整数模糊度(Integer Ambiguity)。在利用载波相位测量值来定位时,要首先知道整数模糊度。于是,如何得到载波相位测量值中的整数模糊度,是利用载波相位测量值定位的关键之一。与在GNSS里采用载波相位测量定位比较,在5G NR里采用载波相位测量定位的有利条件之一是可利用5G NR高载波频率、大带宽等特性,将TOA/TDOA的测量误差控制到几米或甚至更小的范围,帮助快速搜索整数模糊度。而在GNSS里,则不能通过调整GNSS的发送参数来达到这个目的。
本公开实施例中,基于5G NR PRS和C-PRS车辆导航定位系统的基本过程如下:
a)PRS/C-PRS的发送端(基站和/或车辆)通过5G NR网络为PRS/C-PRS的接收端(车辆)提供相关的PRS和C-PRS配置信息,包括PRS的发送传输周期、时频资源、发送功率;C-PRS的发送频率和功率;发送天线的位置等;如果需要车辆进行定位估计算法得到定位结果时,车辆还需要获得各个基站的绝对位置。
b)PRS/C-PRS的发送端(基站和/或车辆)在所配置的时频资源上发送PRS和C-PRS;
c)接收端(车辆)根据发送端提供的PRS/C-PRS配置信息测量PRS和 C-PRS以获得定位测量值。定位测量值可包括参考信号的到达时间(TOA)或到达时间差(TDOA)、参考信号的接收功率强度(reference signal received power,RSRP)、参考信号的到达角度(angle of arrival,AOA),载波相位测量值(carrier phase,CP)等。
d)接收端(车辆)根据PRS和C-PRS配置信息和定位测量值(TOA/TDOA,AOA,RSRP,CP)来高精度地计算出本车辆的绝对或相对位置。若其它定位服务需要该车辆的定位信息,接收端可将定位结果上报给由5G NR定位服务器(Location Management Function,LMF),或将定位测量值上报给LMF,由LMF来计算出车辆的位置。
本公开实施例利用基于5G NR PRS和C-PRS的车辆定位法的优点至少有:
a)通过5G NR系统自身发送的PRS和C-PRS进行车辆定位,可在GNSS卫星信号弱或接收不到时工作。运营商还可根据需要来调整和配置发送PRS和C-PRS信号的发送端数量、位置和发射频率等,避免发生类似于GNSS因接收信号弱而无法工作的问题;
b)运营商可根据需要,通过调整发送PRS的配置,减少TOA/TDOA测量误差,使得搜索载波相位测量中的整数模糊度更加容易;
c)由于在正常工作的环境下,在5G NR的接收端的信号功率远远大于GNSS信号到达地面的信号功率,相比GNSS,锁定5G NR载波信号更容易、更快速;而且若发生相位失锁,也能快速地恢复相位锁定;
d)利用5G NR无线通信系统的大带宽、高数据速率的特点,可将用于定位信息交流和定位测量的时间减少到几个毫秒或更短。
下面将从各个设备处分别介绍本公开实施例的定位方法。
请参见图6,图6是本公开实施例提供的一种定位方法的流程图,如图6所示,包括以下步骤:
601、第一车辆对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
602、所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息;
所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
本公开实施例中,上述多个定位参考设备可以包括小区的网络侧设备(如基站)和其他车辆设备。本公开实施例中,上述多个定位参考设备可以是指两个或者两个以上的定位参考设备,例如:可以是根据需求来确定,对此本公开实施例不作限定。
而对PRS进行测量可以是测量每个PRS的到达时间差或者接收功率等等参数。
本公开实施例中,C-PRS可以是用于载波相位定位的正弦载波定位参考信号,另外,C-PRS为正弦载波信号(或者也可以称作纯正弦载波信号),且多个定位参考设备发送C-PRS可以是在不同的频率资源上发送,例如:相邻不同小区的网络侧设备可以在不同的子载波中发送C-PRS。这样车辆可以测量到不同C-PRS的相位信息。
本公开实施例中,由于根据测量多个定位参考设备发送的PRS和C-PRS,从而可以根据得到测量结果确定第一车辆的定位信息。另外,由于载波相位测量值的测量误差可到厘米级或更小,这样通过上述步骤可以实现利用载波信号相位测量值并结合利用PRS的定位方法,能高精度地确定第一车辆的定位信息。
需要说明的是,上述方法通过3GPP无线通讯网络自身发送载波相位参考信号,根据测量的PRS测量结果和C-PRS测量结果进行定位操作,由于这种方法通过3GPP无线通讯网络自身发送载波参考信号,从而可在全球导航卫星系统(Global navigation satellite system,GNSS)卫星信号弱或接收不到 时工作,利用3GPP的C-PRS测量结果(载波信号相位测量值)并结合PRS测量结果进行定位,从而可以能够高精度地确定第一车辆的定位信息。其中,使用PRS测量结果进行定位为本领域技术人员公知的定位方法,本公开实施中例中,可以将C-PRS测量结果结合采用PRS测量结果进行定位的定位方法结合实现,以进一步第一车辆的定位精确度。
需要说明的是,本公开实施例中,对根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息的实施方式不作限定,因为,当第一车辆得到上述多个定位参考设备发送的PRS和C-PRS的测量结果后,本领域技术人员,通过各种数学求解方式,可以得到第一车辆的定位信息,例如:可以利用各种相关技术的定位算法(例如:LTE定位协议(LPP或者LPPa),确定上述第一车辆的定位信息。可选的,第一车辆或者定位服务器还可以根据PRS和C-PRS的测量结果,并结合多个定位参考设备的发送天线的位置信息对第一车辆进行定位,以得到精确度更高的位置信息。
可选的,对C-PRS进行测量,可以是测量接收到的载波参考信号与在接收机内部产生的载波信号之间的相位之差来获得的载波相位测量值。
作为一种可选的实施方式,所述第一车辆对所述多个定位参考设备发送的C-PRS进行测量,得到多个C-PRS测量结果,包括:
所述第一车辆在多个不同的频率资源对所述多个定位参考设备发送的C-PRS进行测量,得到多个C-PRS测量结果,其中,不同定位参考设备使用不同频率资源发送C-PRS。
该实施方式中,可以实现不同定位参考设备使用不同的频率资源发送C-PRS,例如:不同定位参考设备在不同的子载波中发送C-PRS,这样可以第一车辆可以测量不同的C-PRS的测量结果,以提高第一车辆定位的准确度。
具体的,本公开实施例中,所述第一车辆可以获取所述多个定位参考设备的PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息;然后,在上述步骤601中,所述第一车辆进一步根据所述多个定位参考设备的PRS配置信息,对所述多个定位参考设备发送的PRS进行测量,以及,根据所述多个定位参考设备的C-PRS配置信息,对所述多个定位参考设备发送的C-PRS进行测量。
可选的,该实施方式中,所述方法还包括:
所述第一车辆获取所述多个定位参考设备的C-PRS配置信息,每个定位参考设备的C-PRS配置信息包括该定位参考设备发送C-PRS的频率配置信息和时间配置信息;
所述第一车辆在多个不同的频率资源对所述多个定位参考设备发送的C-PRS进行测量,得到多个C-PRS测量结果,包括:
所述第一车辆根据所述多个定位参考设备的C-PRS配置信息,对所述多个定位参考设备发送的C-PRS进行测量,得到多个C-PRS测量结果。
可选的,上述实施方式中,每个定位参考设备配置固定的频率资源发送C-PRS,或者,每个定位参考设备在不同的时间配置不同的频率来发送C-PRS。
其中,每个定位参考设备发送C-PRS的频率资源可以是预配置或预定义载波频率,例如:每个小区在预配置或预定义载波频率发送用于载波相位定位的C-PRS。
其中,上述在不同的时间配置不同的频率来发送C-PRS可以是采用跳频模式在不同的时间对每个小区配置不同的频率来发送C-PRS。其中,跳频模式配置方法可以有多种,例如,跳频模式可以取决于C-PRS的发送时间、小区ID和网络配置发送C-PRS的带宽等等。
该实施方式中,可以实现灵活配置各定位参考设备发送C-PRS的频率资源。
作为一种可选的实施方式,所述第一车辆对所述多个定位参考设备发送的C-PRS进行测量,得到多个C-PRS测量结果,包括:
所述第一车辆对所述多个定位参考设备连续发送的C-PRS进行测量,得到多个C-PRS测量结果;或者
所述第一车辆对所述多个定位参考设备定期发送的C-PRS进行测量,得到多个C-PRS测量结果;或者
所述第一车辆对所述多个定位参考设备按需发送的C-PRS进行测量,得到多个C-PRS测量结果。
该实施方式中,可以实现网络将为参与载波相位定位的各小区(小区的定位参考设备)配置用于发送C-PRS的时间,具体可以按照多种方式为某个 小区(小区的定位参考设备)配置C-PRS发送的时间。例如:
配置连续发送C-PRS,在这种配置下,该小区的定位参考设备可以在配置的单个频率或多个频率下连续不中断地发送C-PRS;
配置定期发送C-PRS,在这种配置下,该小区的定位参考设备可以在配置的单个频率或多个频率下,根据配置的发送周期、时间偏移或者开启(或者关闭的持续时间长短来发送C-PRS;
配置根据需要来开始或停止发送C-PRS,在这种配置下,该小区的定位参考设备可以根据某个定位需求来开始或停止发送C-PRS,定位需求可以来自定位服务器或车辆或基站。
该实施方式中,可以根据需求灵活配置定位参考设备发送C-PRS,以提高系统的灵活性。
作为一种可选的实施方式,所述PRS测量结果可以包括:RSTD和RSRP中的至少一项;
所述C-PRS测量结果包括:C-PRS-CP测量值。
该实施方式中,可以实现测量定位参考设备发送的PRS的RSTD和RSRP中的至少一项,以及测量定位参考设备发送的C-PRS的C-PRS-CP测量值。由于C-PRS-CP测量值的测量误差可到厘米级或更小,这样测量C-PRS-CP测量值并结合RSTD和RSRP中的至少一项,从而可以进一步提高车辆定位的精度。
作为一种可选的实施方式,所述多个定位参考设备发送的C-PRS占用的子载波的子载波间隔(subcarrier spacing,SCS)小于目标载波中数据通信的SCS,所述目标载波包括所述多个定位参考设备发送的C-PRS占用的子载波。
作一种可选的实施方式,所述向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,包括:
向所述定位服务器发送上报消息,所述上报消息包括所述多个PRS测量结果和用于报告C-PRS测量结果的信息元素,其中,所述信息元素包括每个C-PRS的C-PRS测量结果。
其中,上述上报消息可以是当前定位协议中定义的用于上报PRS测量结果的上报消息,例如:该实施方式中,可以将C-PRS测量结果(例如:C-PRS-CP 测量值)以及其他定位测量(例如RSTD和RSRP中的至少一项)一起上报给网络的定位服务器或基站用于车辆高精度定位。上报的方式可通过直接扩展当前的3GPP LTE定位协议(LPP)(TS 36.355)和定位协议A(LPPa),在上报PRS测量结果的上报消息中加入用于报告C-PRS测量结果的信息元素(information element,IE)。
该实施方式中,由于多个PRS测量结果和多个C-PRS测量结果通过同一消息上报,从而可以直接在当前定位协议定义的上报PRS测量结果的上报消息添加上述信息元素,从而可以减少对车辆的定位流程的调整,以及避免增加额外的消息,以节约车辆的功耗和成本。
可选的,该实施方式中,所述信息元素还包括:每个C-PRS对应的小区标识、C-PRS索引、测量时的参考时间和载波测量值的质量指示中的至少一项。
该实施方式中,可以实现向定位服务器上报多个PRS测量结果和多个C-PRS测量结果,以及每个C-PRS对应的小区标识、C-PRS索引、测量时的参考时间和载波测量值的质量指示中的至少一项,从而可以进一步提高车辆的定位精度。例如:在用于报告C-PRS测量结果(例如:C-PRS载波相位测量)的LPP/LPPa信息元素包括小区ID、C-PRS索引、测量时的参考时间、测量的C-PRS测量结果(例如:载波相位值)以及载波测量值的质量指标。这样定准服务器或者第一车辆得到PRS测量结果(例如:RSTD和RSRP中的至少一项)和C-PRS测量结果(例如:C-PRS-CP)后,可以根据PRS和C-PRS配置信息和第一车辆提供的定位测量值,利用各种相关技术的定位算法来高精度地确定第一车辆的位置。另外,第一车辆也可以结合有各小区的发送天线的位置信息,第一车辆利用测量值进行定位。
作为一种可选的实施方式,所述方法还包括如下至少一项:
所述第一车辆与其他车辆交换各自测量的多个PRS测量结果和多个C-PRS测量结果;
所述第一车辆与其他车辆交换各自定位的定位信息;
所述第一车辆向其他车辆发送PRS和C-PRS;
所述第一车辆与其他车辆交换各自的PRS配置信息和C-PRS配置信息。
其中,上述其他车辆可以是除方法应用于第一车辆之外的车辆。
该实施方式中,若上述第一车辆接收到其他车辆测量的多个PRS测量结果和多个C-PRS测量结果,这样第一车辆在进行定位时,可以将自己测量的PRS测量结果和C-PRS测量结果结合其他车辆测量的多个PRS测量结果和多个C-PRS测量结果一起进行定位,从而可以提高车辆定位的精确度。
另外,若接收到其他车辆定位的定位信息,那么,第一车辆在定位时,可以结合这些定位信息,从而可以提高车辆定位的精确度。
另外,该实施方式中,还可以实现向其他车辆发送PRS和C-PRS,这样其他车辆可以测量该PRS和C-PRS以实现定位。
另外,若获取到其他车辆的PRS配置信息和C-PRS配置信息,从而可以根据这些PRS配置信息和C-PRS配置信息对其他车辆发送的PRS和C-PRS进行测量,从而提高测量的准确度。
需要说明的是,实施方式中,可以应用于V2X车辆协作定位系统,也可以应用于其他场景,例如:其他网络信号比较差的场景等等,对此本公开实施例不作限定。另外,该实施方式中,还可以实现根据至少一个网络侧设备和至少一个车辆用户终端发送的PRS和C-PRS进行定位,以及实现V2X车辆协作定位系统。
为提高定位的精确度和可靠性,本公开实施例在上述方法中,第一车辆还可以对全球导航卫星系统GNSS发送的GNSS信号进行测量,得到GNSS信号测量结果;以及,所述第一车辆获取自身设置的定位传感器测量得到的定位测量结果。然后,在上述步骤602中,所述第一车辆进一步根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,进行所述定位操作,例如,向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息。
可选的,在GNSS信号质量满足预定条件(如信号质量满足预定门限,能够接收到的卫星信号的数量满足预定数量等)的情况下,基于GNSS可以 获得较好的定位结果。在在GNSS信号质量不满足预定条件的情况下,可以基于多个PRS测量结果、多个C-PRS测量结果以及所述定位测量结果进行定位,以获得较好的定位结果。并且,本公开实施例还可以对以上各种方式下获得的定位结果进行加权处理,以获得加权后的结果,各个定位结果的加权值与该定位结果的可信度正相关。需要说明的是,本公开实施例对此不做具体限定。
可选的,本公开实施例中,第一车辆向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,具体可以是向所述定位服务器发送上报消息,所述上报消息包括所述多个PRS测量结果和用于报告C-PRS测量结果的信息元素,其中,所述信息元素包括每个C-PRS的C-PRS测量结果。进一步的,所述信息元素还可以包括:每个C-PRS对应的小区标识、C-PRS索引、测量时的参考时间和载波测量值的质量指示中的至少一项。
需要说明的是,本公开实施例中介绍的多种可选的实施方式彼此可以相互结合实现,也可以单独实现,对此本公开实施例不作限定。
请参见图7,图7是本公开实施例提供的另一种定位方法的流程图,应用于网络侧设备(如基站),如图7所示,包括以下步骤:
701、网络侧设备向第一车辆发送PRS和C-PRS,以使所述第一车辆对所述PRS进行测量,得到PRS测量结果,以及,对所述C-PRS进行测量,得到C-PRS测量结果;
其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
这里,网络侧设备在发送所述C-PRS时,可以按照以下任一方式发送:
1)所述网络侧设备连续向所述第一车辆发送C-PRS;
2)所述网络侧设备定期向所述第一车辆发送C-PRS;
3)所述网络侧设备按需向所述第一车辆发送C-PRS。
进一步的,本公开实施例中,在发送所述PRS或C-PRS之前,所述网络 侧设备还可以获取所述第一车辆的GNSS信号质量信息,所述GNSS信号质量信息包括第一车辆能够接收到的卫星信号的数量以及卫星信号接收质量;然后,所述网络侧设备根据所述第一车辆的GNSS信号质量信息,确定向所述第一车辆发送所述PRS和C-PRS的发送参数,所述发送参数包括发射频率、发射功率以及发射频次,其中,较优质量的GNSS信号质量信息,对应于较低发送等级的发送参数。可选的,所述网络侧设备可以根据所述发送参数,向所述第一车辆发送所述PRS和C-PRS。
这里,GNSS信号质量信息的优劣可以通过接收到的GNSS信号的数量以及信号质量指标(如接收信号功率等)进行评价。较高等级的发送参数对应于较高的发射频次,较高的发送功率和较宽的发射频率等中的至少一种,较低等级的发送参数对应于较低的发射频次,较低的发送功率和较窄的发射频率等中的至少一种。
通过以上方式,本公开实施例可以在GNSS无法提供高精度定位信息的环境下,调整配置发送PRS和C-PRS信号的发送端数量、位置、发射频率、发射功率等,以保证车辆导航定位系统性能。例如,在车辆能有效接收GNSS信号的地方,减少或不发送5G NR载波信号相位定位参考信号以节约系统资源;而在GNSS信号弱或无法接收到GNSS信号的地方,增加发送5G NR载波信号相位定位参考信号的频率或增加发射信号功率,以保证车辆导航定位系统的性能。
这里,网络侧设备可以通过以下方式的一种或多种,获取所述第一车辆的GNSS信号质量信息:
1)所述网络侧设备接收第一车辆的全球导航卫星系统GNSS信号测量结果;所述网络侧设备根据所述第一车辆的GNSS信号测量结果,确定所述第一车辆的GNSS信号质量信息;
2)所述网络侧设备向定位服务器请求所述第一车辆的GNSS信号质量信息,以及,接收定位服务器返回的所述第一车辆的GNSS信号质量信息。
本公开实施例中,不同的网络侧设备可以通过不同的频率资源向第一车辆发送C-PRS。每个网络侧设备可以配置固定的频率资源发送C-PRS,或者,每个网络侧设备在不同的时间配置不同的频率来发送C-PRS。
为了简化终端接收参考信号的处理,本公开实施例中,所述网络侧设备还可以向所述第一车辆发送PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息。
请参见图8,图8是本公开实施例提供的另一种定位方法的流程图,应用于定位服务器侧,如图8所示,包括以下步骤:
801、定位服务器接收第一车辆发送的对多个定位参考设备发送的定位参考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
802、所述定位服务器接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
803、所述定位服务器根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
需要说明的是,上述步骤801和802之间并无严格的时间顺序关系,可以同时执行或任意一个步骤在前执行,另一个在后执行。
本公开实施例中,在上述步骤803之后,所述定位服务器还可以向所述第一车辆发送所述第一车辆的定位信息,和/或,向所述其他车辆发送所述第一车辆的定位信息。
本公开实施例中,所述定位服务器在步骤803之前,还可以接收所述第一车辆发送的GNSS信号测量结果以及定位测量结果,所述定位测量结果为所述第一车辆自身的定位传感器测量得到的定位结果。然后,在步骤803中,所述定位服务器进一步根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,确定所述第一车辆的定位信息。
进一步的,所述定位服务器还可以接收网络侧设备发送的用于请求所述第一车辆的GNSS信号质量信息的请求消息,以及,向所述网络侧设备发送 所述第一车辆的GNSS信号质量信息,以便于网络侧设备根据所述第一车辆的GNSS信号质量信息,确定向所述第一车辆发送所述PRS和C-PRS的发送参数。
以上分别从车辆、网络侧设备(基站)和定位服务器侧描述了本公开实施例的方法。为更好的理解本公开实施例的定位方法,下面将结合若干具体示例作进一步的说明。
示例1:
该示例1以如图9所示的单个车辆的导航定位系统进行说明。具体的,该示例1将基于5G NR PRS和C-PRS的车辆定位方法与相关技术的各种车辆定位方法相结合,可以为车联网系统提供更精确和更可靠的定位信息。
示例1所给出的基于5G NR定位技术的车辆组合导航定位系统,其工作方式如下:当一个车辆未能接收到GNSS卫星信号,或者未能从足够数量的GNSS卫星接收到信号而无法高精度确定车辆的绝对位置时,通过结合基站发送的定位参考信号所得的测量值和车辆自身的定位传感器所提供的测量值,高精度地确定车辆的绝对位置。
如图10所示,如果一个车辆接收到足够数量的基站发送的PRS,就可以高精度确定车辆的绝对位置。通过5G NR的无线通信系统特性(例如,高频、大带宽、具有大量天线元件的天线阵),可望获得米级的绝对位置定位精度。如果一个车辆接收到从足够数量基站发送的PRS和C-PRS,可以利用相关技术的观察到达时间差(observed time difference of arrival,OTDOA)定位技术、到达角(angle of arrival,AOA)+定时提前(timing advance,TA)/RSRP定位技术或者载波相位定位技术,在解整数模糊度后,就可以超精度确定车辆的绝对位置,达到厘米级的定位精度。
另外,运营商可根据需要,在GNSS无法提供高精度定位信息的环境下,调整配置发送PRS和C-PRS信号的发送端数量、位置、发射频率、发射功率等,以保证车辆导航定位系统性能。例如,在车辆能有效接收GNSS信号的地方,减少或不发送5G NR载波信号相位定位参考信号以节约系统资源;而在GNSS信号弱或无法接收到GNSS信号的地方,增加发送5G NR载波信号相位定位参考信号的频率或增加发射信号功率,以保证车辆导航定位系统的 性能。
示例2:
该示例2以多个车辆之间相互协作的导航定位系统进行说明。需要指出的是,在基于5G NR PRS和C-PRS的车联网协作导航定位系统中,车辆通过测量车辆相互之间发送的PRS或C-PRS参考信号而精确地计算得到车辆的相对距离、相对位置,或相对距离、相对位置的变化,并不一定完全依赖于基站发送的PRS或C-PRS参考信号。
例如,如图11所示,假设车辆B测量来自车辆A的C-PRS参考信号,车辆B的接收机的PLL已锁定车辆A的C-PRS信号,且在时间k和k+1时,车辆B测量来自车辆A的C-PRS的载波相位观测值
Figure PCTCN2019119902-appb-000001
Figure PCTCN2019119902-appb-000002
载波相位观测值
Figure PCTCN2019119902-appb-000003
Figure PCTCN2019119902-appb-000004
与设车辆A与车辆B之间的距离
Figure PCTCN2019119902-appb-000005
Figure PCTCN2019119902-appb-000006
有如下关系:
Figure PCTCN2019119902-appb-000007
Figure PCTCN2019119902-appb-000008
在上式中,N是载波相位观测值
Figure PCTCN2019119902-appb-000009
Figure PCTCN2019119902-appb-000010
的整周模糊度;w k和w k+1是载波相位测量误差。于是,在时间k和k+1之间,车辆A与车辆B相对距离的变化可直接通过载波相位观测值
Figure PCTCN2019119902-appb-000011
Figure PCTCN2019119902-appb-000012
得到,而不需求解整数模糊度N:
Figure PCTCN2019119902-appb-000013
又例如,假设车辆A采用多个天线传输PRS和C-PRS参考信号以及车辆B采用多个天线测量来自车辆A的PRS和C-PRS参考信号,且车辆B的接收机的PLL已锁定车辆A的C-PRS信号(图11中假设车辆A采用双天线传输PRS和C-PRS参考信号以及车辆B采用双天线测量来自车辆A的PRS和C-PRS参考信号,且车辆B的接收机的PLL已锁定车辆A的C-PRS信号)。在时间k和k+1时,车辆B的天线B1和B2测量来自车辆A的天线A1和A2的C-PRS的两组载波相位观测值
Figure PCTCN2019119902-appb-000014
Figure PCTCN2019119902-appb-000015
载波相位观测值与车辆A天线与车辆B天线之间的距离
Figure PCTCN2019119902-appb-000016
Figure PCTCN2019119902-appb-000017
有如下关系:
Figure PCTCN2019119902-appb-000018
在上式中,N是载波相位观测值的整周模糊度。于是,在时间k和k+1之间,车辆A与车辆B相对位置坐标的变化可通过载波相位观测值的变化,即
Figure PCTCN2019119902-appb-000019
得到,而不需求解整数模糊度N。图11中以车辆A作为参考坐标系。车辆B的天线B1和B2相对车辆A作为参考坐标系在时间k的位置坐标
Figure PCTCN2019119902-appb-000020
到时间k+1的位置坐标
Figure PCTCN2019119902-appb-000021
的变化也能通过载波相位观测值
Figure PCTCN2019119902-appb-000022
Figure PCTCN2019119902-appb-000023
得到,而不需求解整数模糊度N。
这尤其适合于车辆自动驾驶所需要的快速跟踪和监控周围车辆移动、预测和避免交通意外的功能。因此,基于5G NR PRS和C-PRS的车联网协作导航定位系统能够提供比相关技术的导航定位系统更高的定位精度。
图12和图13分别给出车辆进行定位位置计算和定位服务器计算得到定位位置的两种示例。
示例2.1:
如图12所示,车辆进行定位位置计算,包含如下个步骤。
步骤1201、基站向车辆A发送PRS和C-PRS配置信息(包括基站的实际位置信息);
步骤1202、基站向车辆B发送PRS和C-PRS配置信息(包括基站的实际位置信息);
步骤1203、车辆A和车辆B之间相互交换PRS和C-PRS配置信息;
步骤1204、基站向车辆A发送PRS和C-PRS参考信号;
步骤1205、基站向车辆B发送PRS和C-PRS参考信号;
步骤1206、车辆A向车辆B发送PRS和C-PRS参考信号;
步骤1207、车辆B向车辆A发送PRS和C-PRS参考信号;
步骤1208、车辆A通过测量基站和车辆B发送的PRS和C-PRS参考信号,同时测量GNSS信号,以及通过车辆本身各种定位传感器获取各种测量值;
步骤1209、车辆B通过测量基站和车辆A发送的测量PRS和C-PRS参考信号,同时测量GNSS信号,以及通过车辆本身各种定位传感器获取各种测量值;
步骤1210、车辆A和车辆B之间相互交换所获取的测量值;
步骤1211、车辆A基于步骤8和步骤10得到的所获取的测量值计算车辆(A,B)的位置。步骤11中对车辆(A,B)位置的计算可能有多种情况,一方面取决于车辆A对定位的具体需求,另一方面决于车辆A所到的测量值。例如,车辆A可以只计算车辆A自己的位置,也可以根据具体的应用要求计算车辆B的位置、AB间的相对位置、AB间的相对距离、AB间的相对位置的变化、AB间的相对距离的变化等。车辆A应使用所有测量值以获得最佳定位性能。
步骤1212、车辆B基于步骤9和步骤10得到的所获取的测量值计算车辆(A,B)的位置;
步骤1213、车辆A与车辆B可相互交换所计算车辆(A,B)的位置,以便相互监测定位的可靠性;
步骤1214、车辆A向定位服务器上报本车辆所计算的车辆A和车辆B的位置信息;
步骤1215、车辆B向定位服务器上报本车辆所计算的车辆A和车辆B的供车辆位置信息。
在示例2.1中,车辆除了接收基站发送的PRS和C-PRS信号之外,车辆之间可相互发送PRS和C-PRS信号,并通过车辆之间的直接链接(sidelink)相互提供其PRS和C-PRS配置信息。每个车辆相互之间可交换获得的定位测量值。每个车辆可通过得到的所有信息,包括自来测量基站的PRS和C-PRS所得的测量值,测量GNSS信号所得的测量值,车辆本身各种定位传感器所提供的测量值等,来估计自己的位置,如步骤11和12所示。同时,也可与其它车辆分享自己的定位信息。此外,通过安装多个车辆天线,或大型的天线阵,还可以进一步增强5G NR PRS和C-PRS的车联网协作导航定位系统的可靠性、定位性能。
示例2.2:
如图13所示,车辆上报定位测量值给定位服务器,由定位服务器计算得到定位位置,具体包含如下步骤。
步骤1301、基站向车辆A发送PRS和C-PRS配置信息;
步骤1302、基站向车辆B发送PRS和C-PRS配置信息;
步骤1303、车辆A和车辆B之间相互交换PRS和C-PRS配置信息;
步骤1304、基站向车辆A发送PRS和C-PRS参考信号;
步骤1305、基站向车辆B发送PRS和C-PRS参考信号;
步骤1306、车辆A向车辆B发送PRS和C-PRS参考信号;
步骤1307、车辆B向车辆A发送PRS和C-PRS参考信号;
步骤1308、车辆A通过测量基站和车辆B发送的PRS和C-PRS参考信号,同时测量GNSS信号,以及通过车辆本身各种定位传感器获取各种测量值;
步骤1309、车辆B通过测量基站和车辆A发送的测量PRS和C-PRS参考信号,同时测量GNSS信号,以及通过车辆本身各种定位传感器获取各种测量值;
步骤1310、车辆A向定位服务器上报本步骤8中车辆A所获取的测量值;
步骤1311、车辆B向定位服务器上报本步骤9中车辆B所获取的测量值;
步骤1312、定位服务器基于步骤10和步骤11中车辆A和B上报的测量值,进一步计算车辆(A,B)的位置。
示例2.3
该示例2.3的过程类似于示例2.1,差异之处在于如图14所示。
1)若某个车辆B未能接收到足够数量基站发送的PRS来确定车辆的绝对位置(图14中右侧车辆),则通过与其它车辆A(图14中左侧车辆,且假设其中的一个车辆A的绝对位置已通过其接收到的足够数量基站发送的PRS而得到)相互之间交换PRS参考信号(示例2.1中的步骤1206和1207)和PRS定位信息(示例2.1中的步骤1210),该车辆B也有可能通过协作定位而获得米级定位精度或更高的相对位置精度。
2)若某个车辆B未能接收到足够数量基站发送的PRS和C-PRS来精确地确定车辆的绝对位置,则通过与其它车辆A(假设其中的一个车辆A的绝对位置已经通过其接收到的足够数量基站发送的PRS和C-PRS而精确地知道) 相互之间交换PRS、C-PRS参考信号(示例2.1中的步骤1206和1207)和PRS、C-PRS定位信息(示例2.1中的步骤1210),该车辆B也有可能通过协作定位而获得厘米级的绝对位置定位精度。车辆B能否通过协作定位而获得厘米级的绝对位置定位精度取决于车辆B可得到的测量值类型、测量值的数量,测量值的精度等因素。
以上对本公开实施例的定位方法进行了详细说明,可以看出,与相关技术的GNSS为核心的车辆组合导航定位系统相比,本公开实施例提出的基于5G NR参考信号的车辆组合导航定位系统的优点有:
1)通过3GPP无线通讯网络自身发送的PRS和C-PRS进行车辆定位,可在GNSS卫星信号弱或接收不到时工作;
2)对于GNSS系统,GNSS用户一般不能根据需要来调整GNSS的配置和信号发送。而对基于5G NR PRS和C-PRS的车辆定位和携带5G NR PRS和C-PRS的车辆组合导航定位系统,运营商还可根据需要来调整和配置发送PRS和C-PRS信号的发送端数量、位置、发射频率等,提高定位性能;
3)通过调整发送PRS的配置,减少TOA/TDOA测量误差,使得5G NR搜索载波相位测量中的整数模糊度比GNSS搜索载波相位测量中的整数模糊度更加容易;
4)由于在正常工作的环境下,在5G NR的接收端的信号功率远远大于GNSS信号到达地面的信号功率,相比GNSS,锁定5G NR载波信号更容易、更快速;而且若发生相位失锁,也能快速地恢复相位锁定;
5)利用5G NR无线通信系统的大带宽、高数据速率的特点,可将用于定位信息交流和定位测量的时间减少到几个毫秒或更短;
6)基于5G NR PRS和C-PRS的车联网协作导航定位系统能够提供比相关技术的导航定位系统更高的定位精度。在基于5G NR PRS和C-PRS的车联网协作导航定位系统中,车辆通过测量车辆相互之间发送的PRS或C-PRS参考信号而精确地计算得到车辆的相对距离、相对位置,或相对距离、相对位置的变化,并不一定完全依赖于基站发送的PRS或C-PRS参考信号。尤其适合于车辆自动驾驶所需要的快速跟踪和监控周围车辆移动、预测和避免交通意外的功能。
基于以上实施例提供的定位方法,下面进一步提供了实施上述方法的设备。
请参考图15,图15是本公开实施例提供的一种第一车辆的结构图,如图15所示,该用户终端包括:收发机1510、存储器1520、处理器1500及存储在所述存储器1520上并可在所述处理器上运行的计算机程序,其中:
所述收发机1510,用于对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
所述处理器1500,用于读取存储器中的程序,执行下列过程:根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息;
所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
其中,收发机1510,可以用于在处理器1500的控制下接收和发送数据。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1500代表的一个或多个处理器和存储器1520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1500负责管理总线架构和通常的处理,存储器1520可以存储处理器1500在执行操作时所使用的数据。
需要说明的是,存储器1520并不限定只在用户终端上,可以将存储器 1520和处理器1500分离处于不同的地理位置。
可选的,所述处理器1500,还用于获取所述多个定位参考设备的PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息;
所述收发机1510,还用于根据所述多个定位参考设备的PRS配置信息,对所述多个定位参考设备发送的PRS进行测量,以及,根据所述多个定位参考设备的C-PRS配置信息,对所述多个定位参考设备发送的C-PRS进行测量。
可选的,每个定位参考设备配置固定的频率资源发送C-PRS,或者,每个定位参考设备在不同的时间配置不同的频率来发送C-PRS。
可选的,所述收发机1510,还用于执行如下动作中的至少一项:
与所述其他车辆交换各自测量的多个PRS测量结果和多个C-PRS测量结果;
与所述其他车辆交换各自定位的定位信息;
向所述其他车辆发送PRS和C-PRS;
与所述其他车辆交换各自的PRS配置信息和C-PRS配置信息。
可选的,所述收发机1510,还用于对全球导航卫星系统GNSS发送的GNSS信号进行测量,得到GNSS信号测量结果;
所述处理器1500,还用于获取自身设置的定位传感器测量得到的定位测量结果;以及,根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,进行所述定位操作。
可选的,所述PRS测量结果包括:参考信号到达时间差(reference signal time difference,RSTD)和参考信号接收功率RSRP中的至少一项;
所述C-PRS测量结果包括:C-PRS的载波相位C-PRS-CP测量值。
可选的,所述收发机1510,还用于向所述定位服务器发送上报消息,所述上报消息包括所述多个PRS测量结果和用于报告C-PRS测量结果的信息元素,其中,所述信息元素包括每个C-PRS的C-PRS测量结果。
可选的,所述信息元素还包括:每个C-PRS对应的小区标识、C-PRS索引、测量时的参考时间和载波测量值的质量指示中的至少一项。
需要说明的是,本实施例中上述第一车辆可以是本公开实施例中方法实 施例中任意实施方式的第一车辆,本公开实施例中方法实施例中第一车辆的任意实施方式都可以被本实施例中的上述第一车辆所实现,以及达到相同的有益效果,此处不再赘述。
请参考图16,图16是本公开实施例提供的一种网络侧设备的结构图,如图16所示,该网络侧设备包括:收发机1610、存储器1620、处理器1600及存储在所述存储器1620上并可在所述处理器上运行的计算机程序,其中:
所述收发机1610,用于向第一车辆发送PRS和C-PRS,以使所述第一车辆对所述PRS进行测量,得到PRS测量结果,以及,对所述C-PRS进行测量,得到C-PRS测量结果;
其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
其中,收发机1610,可以用于在处理器1600的控制下接收和发送数据。
在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1600代表的一个或多个处理器和存储器1620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1600负责管理总线架构和通常的处理,存储器1620可以存储处理器1600在执行操作时所使用的数据。
需要说明的是,存储器1620并不限定只在网络侧设备上,可以将存储器1620和处理器1600分离处于不同的地理位置。
可选的,所述处理器1600,用于读取存储器中的程序,执行下列过程:获取所述第一车辆的GNSS信号质量信息,所述GNSS信号质量信息包括第一车辆能够接收到的卫星信号的数量以及卫星信号接收质量;根据所述第一车辆的GNSS信号质量信息,确定向所述第一车辆发送所述PRS和C-PRS 的发送参数,所述发送参数包括发射频率、发射功率以及发射频次,其中,较优质量的GNSS信号质量信息,对应于较低发送等级的发送参数;
所述收发机1610,还用于根据所述发送参数,向所述第一车辆发送所述PRS和C-PRS。
可选的,所述处理器1600,还用于通过收发机接收第一车辆的全球导航卫星系统GNSS信号测量结果;所述网络侧设备根据所述第一车辆的GNSS信号测量结果,确定所述第一车辆的GNSS信号质量信息;或者,通过收发机向定位服务器请求所述第一车辆的GNSS信号质量信息,以及,接收定位服务器返回的所述第一车辆的GNSS信号质量信息。
可选的,不同的网络侧设备通过不同的频率资源向第一车辆发送C-PRS。
可选的,所述收发机1610,还用于向所述第一车辆发送PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息。
可选的,每个网络侧设备配置固定的频率资源发送C-PRS,或者,每个网络侧设备在不同的时间配置不同的频率来发送C-PRS。
可选的,所述收发机1610,还用于:所述网络侧设备连续向所述第一车辆发送C-PRS;或者,定期向所述第一车辆发送C-PRS;或者,按需向所述第一车辆发送C-PRS。
需要说明的是,本实施例中上述网络侧设备可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
请参考图17,图17是本公开实施例提供的另一种定位服务器的结构图,如图17所示,该定位服务器包括:收发机1710、存储器1720、处理器1700及存储在所述存储器1720上并可在所述处理器上运行的计算机程序,其中:
所述收发机1710,用于接收第一车辆发送的对多个定位参考设备发送的定位参考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;以及,接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
所述处理器1700,用于读取存储器中的程序,执行下列过程:根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
其中,收发机1710,可以用于在处理器1700的控制下接收和发送数据。
在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1700代表的一个或多个处理器和存储器1720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1700负责管理总线架构和通常的处理,存储器1720可以存储处理器1700在执行操作时所使用的数据。
需要说明的是,存储器1720并不限定只在定位服务器上,可以将存储器1720和处理器1700分离处于不同的地理位置。
可选的,所述收发机1710,还用于向所述第一车辆发送所述第一车辆的定位信息。
可选的,所述收发机1710,还用于向所述其他车辆发送所述第一车辆的定位信息。
可选的,所述收发机1710,还用于接收所述第一车辆发送的GNSS信号测量结果以及定位测量结果,所述定位测量结果为所述第一车辆自身的定位传感器测量得到的定位结果;
所述处理器1700,还用于根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,确定所述第一车辆的定位信息。
可选的,所述收发机1710,还用于接收网络侧设备发送的用于请求所述第一车辆的GNSS信号质量信息的请求消息,以及,向所述网络侧设备发送 所述第一车辆的GNSS信号质量信息。
需要说明的是,本实施例中上述定位服务器可以是本公开实施例中方法实施例中任意实施方式的定位服务器,本公开实施例中方法实施例中定位服务器的任意实施方式都可以被本实施例中的上述定位服务器所实现,以及达到相同的有益效果,此处不再赘述。
请参照图18,本公开实施例提供的另一种第一车辆1800,包括:
测量单元1801,用于对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
定位操作单元1802,用于根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息;
所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
可选的,所述测量单元1801,还用于获取所述多个定位参考设备的PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息;以及,根据所述多个定位参考设备的PRS配置信息,对所述多个定位参考设备发送的PRS进行测量,以及,根据所述多个定位参考设备的C-PRS配置信息,对所述多个定位参考设备发送的C-PRS进行测量。
可选的,每个定位参考设备配置固定的频率资源发送C-PRS,或者,每个定位参考设备在不同的时间配置不同的频率来发送C-PRS。
可选的,所述第一车辆1800,还包括:
交互单元,用于执行如下动作中的至少一项:
与所述其他车辆交换各自测量的多个PRS测量结果和多个C-PRS测量结果;
与所述其他车辆交换各自定位的定位信息;
向所述其他车辆发送PRS和C-PRS;
与所述其他车辆交换各自的PRS配置信息和C-PRS配置信息。
可选的,所述测量单元1801,还用于对全球导航卫星系统GNSS发送的GNSS信号进行测量,得到GNSS信号测量结果;
所述定位操作单元1802,还用于获取自身设置的定位传感器测量得到的定位测量结果;以及,根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,进行所述定位操作。
可选的,所述PRS测量结果包括:参考信号到达时间差RSTD和参考信号接收功率RSRP中的至少一项;
所述C-PRS测量结果包括:C-PRS的载波相位C-PRS-CP测量值。
可选的,所述交互单元,还用于向所述定位服务器发送上报消息,所述上报消息包括所述多个PRS测量结果和用于报告C-PRS测量结果的信息元素,其中,所述信息元素包括每个C-PRS的C-PRS测量结果。
可选的,所述信息元素还包括:每个C-PRS对应的小区标识、C-PRS索引、测量时的参考时间和载波测量值的质量指示中的至少一项。
请参照图19,本公开实施例提供的另一种网络侧设备1900,包括:
收发单元1901,用于向第一车辆发送PRS和C-PRS,以使所述第一车辆对所述PRS进行测量,得到PRS测量结果,以及,对所述C-PRS进行测量,得到C-PRS测量结果;
其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
可选的,所述网络侧设备1900还包括:
参数确定单元,用于获取所述第一车辆的GNSS信号质量信息,所述GNSS信号质量信息包括第一车辆能够接收到的卫星信号的数量以及卫星信号接收质量;根据所述第一车辆的GNSS信号质量信息,确定向所述第一车辆发送所述PRS和C-PRS的发送参数,所述发送参数包括发射频率、发射功率以及发射频次,其中,较优质量的GNSS信号质量信息,对应于较低发送等级的发送参数;
所述收发单元1901,还用于根据所述发送参数,向所述第一车辆发送所述PRS和C-PRS。
可选的,所述收发单元1901,还用于接收第一车辆的全球导航卫星系统GNSS信号测量结果;根据所述第一车辆的GNSS信号测量结果,确定所述第一车辆的GNSS信号质量信息;或者,通过收发机向定位服务器请求所述第一车辆的GNSS信号质量信息,以及,接收定位服务器返回的所述第一车辆的GNSS信号质量信息。
可选的,不同的网络侧设备通过不同的频率资源向第一车辆发送C-PRS。
可选的,所述收发单元1901,还用于向所述第一车辆发送PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息。
可选的,每个网络侧设备配置固定的频率资源发送C-PRS,或者,每个网络侧设备在不同的时间配置不同的频率来发送C-PRS。
可选的,所述收发单元1901,还用于:所述网络侧设备连续向所述第一车辆发送C-PRS;或者,定期向所述第一车辆发送C-PRS;或者,按需向所述第一车辆发送C-PRS。
请参照图20,本公开实施例提供的另一种定位服务器2000,包括:
收发单元2001,用于接收第一车辆发送的对多个定位参考设备发送的定位参考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;以及,接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
定位单元2002,用于根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
可选的,所述收发机2001,还用于向所述第一车辆发送所述第一车辆的定位信息。
可选的,所述收发机2001,还用于向所述其他车辆发送所述第一车辆的定位信息。
可选的,所述收发机2001,还用于接收所述第一车辆发送的GNSS信号测量结果以及定位测量结果,所述定位测量结果为所述第一车辆自身的定位传感器测量得到的定位结果;
所述处理器2001,还用于根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,确定所述第一车辆的定位信息。
可选的,所述收发机2001,还用于接收网络侧设备发送的用于请求所述第一车辆的GNSS信号质量信息的请求消息,以及,向所述网络侧设备发送所述第一车辆的GNSS信号质量信息。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例提供的用户终端侧的定位方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的定位参考设备侧的定位方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的定位服务器侧的定位方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些要素可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储 介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (44)

  1. 一种车辆定位方法,包括:
    第一车辆对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
    所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
    其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
    所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息;
    所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  2. 如权利要求1所述的方法,还包括:
    所述第一车辆获取所述多个定位参考设备的PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息;
    所述对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量的步骤,包括:
    所述第一车辆根据所述多个定位参考设备的PRS配置信息,对所述多个定位参考设备发送的PRS进行测量,以及,根据所述多个定位参考设备的C-PRS配置信息,对所述多个定位参考设备发送的C-PRS进行测量。
  3. 如权利要求1所述的方法,其中,每个定位参考设备配置固定的频率资源发送C-PRS,或者,每个定位参考设备在不同的时间配置不同的频率来发送C-PRS。
  4. 如权利要求1至3中任一项所述的方法,还包括如下至少一项:
    所述第一车辆与所述其他车辆交换各自测量的多个PRS测量结果和多个C-PRS测量结果;
    所述第一车辆与所述其他车辆交换各自定位的定位信息;
    所述第一车辆向所述其他车辆发送PRS和C-PRS;
    所述第一车辆与所述其他车辆交换各自的PRS配置信息和C-PRS配置信息。
  5. 如权利要求1所述的方法,还包括:
    所述第一车辆对全球导航卫星系统GNSS发送的GNSS信号进行测量,得到GNSS信号测量结果;
    所述第一车辆获取自身设置的定位传感器测量得到的定位测量结果;
    所述根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作的步骤,包括:
    所述第一车辆根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,进行所述定位操作。
  6. 如权利要求1、2、3或5所述的方法,其中,所述PRS测量结果包括:参考信号到达时间差RSTD和参考信号接收功率RSRP中的至少一项;
    所述C-PRS测量结果包括:C-PRS的载波相位C-PRS-CP测量值。
  7. 如权利要求1、2、3或5所述的方法,其中,所述向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,包括:
    向所述定位服务器发送上报消息,所述上报消息包括所述多个PRS测量结果和用于报告C-PRS测量结果的信息元素,其中,所述信息元素包括每个C-PRS的C-PRS测量结果。
  8. 如权利要求7所述的方法,其中,所述信息元素还包括:每个C-PRS对应的小区标识、C-PRS索引、测量时的参考时间和载波测量值的质量指示中的至少一项。
  9. 一种车辆定位方法,包括:
    网络侧设备向第一车辆发送定位参考信号PRS和载波相位参考信号C-PRS,以使所述第一车辆对所述PRS进行测量,得到PRS测量结果,以及, 对所述C-PRS进行测量,得到C-PRS测量结果;
    其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  10. 如权利要求9所述的方法,其中,在发送所述PRS或C-PRS之前,所述方法还包括:
    所述网络侧设备获取所述第一车辆的全球导航卫星系统GNSS信号质量信息,所述GNSS信号质量信息包括第一车辆能够接收到的卫星信号的数量以及卫星信号接收质量;
    所述网络侧设备根据所述第一车辆的GNSS信号质量信息,确定向所述第一车辆发送所述PRS和C-PRS的发送参数,所述发送参数包括发射频率、发射功率以及发射频次,其中,较优质量的GNSS信号质量信息,对应于较低发送等级的发送参数。
  11. 如权利要求10所述的方法,其中,所述获取所述第一车辆的GNSS信号质量信息,包括:
    所述网络侧设备接收第一车辆的GNSS信号测量结果;所述网络侧设备根据所述第一车辆的GNSS信号测量结果,确定所述第一车辆的GNSS信号质量信息;或者,
    所述网络侧设备向定位服务器请求所述第一车辆的GNSS信号质量信息,以及,接收定位服务器返回的所述第一车辆的GNSS信号质量信息。
  12. 如权利要求9所述的方法,其中,不同的网络侧设备通过不同的频率资源向第一车辆发送C-PRS。
  13. 如权利要求12所述的方法,还包括:
    所述网络侧设备向所述第一车辆发送PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息。
  14. 如权利要求9至13中任一项所述的方法,其中,每个网络侧设备配置固定的频率资源发送C-PRS,或者,每个网络侧设备在不同的时间配置不 同的频率来发送C-PRS。
  15. 如权利要求9所述的方法,其中,所述C-PRS的发送,包括:
    所述网络侧设备连续向所述第一车辆发送C-PRS;或者
    所述网络侧设备定期向所述第一车辆发送C-PRS;或者
    所述网络侧设备按需向所述第一车辆发送C-PRS。
  16. 一种车辆定位方法,包括:
    定位服务器接收第一车辆发送的对多个定位参考设备发送的定位参考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
    所述定位服务器接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
    所述定位服务器根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
    其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  17. 如权利要求16所述的方法,还包括:
    所述定位服务器向所述第一车辆发送所述第一车辆的定位信息。
  18. 如权利要求16或17所述的方法,还包括:
    所述定位服务器向所述其他车辆发送所述第一车辆的定位信息。
  19. 如权利要求16至18中任一项所述的方法,还包括:
    所述定位服务器接收所述第一车辆发送的全球导航卫星系统GNSS信号测量结果以及定位测量结果,所述定位测量结果为所述第一车辆自身的定位传感器测量得到的定位结果;
    所述根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息的步骤,包括:
    所述定位服务器根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,确定所述第一车辆的定位信息。
  20. 如权利要求19所述的方法,还包括:
    所述定位服务器接收网络侧设备发送的用于请求所述第一车辆的GNSS信号质量信息的请求消息,以及,向所述网络侧设备发送所述第一车辆的GNSS信号质量信息。
  21. 一种第一车辆,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
    所述收发机,用于对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
    所述处理器,用于读取存储器中的程序,执行下列过程:根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
    其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
    所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息;
    所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  22. 如权利要求21所述的第一车辆,其中,
    所述处理器,还用于获取所述多个定位参考设备的PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息;
    所述收发机,还用于根据所述多个定位参考设备的PRS配置信息,对所述多个定位参考设备发送的PRS进行测量,以及,根据所述多个定位参考设备的C-PRS配置信息,对所述多个定位参考设备发送的C-PRS进行测量。
  23. 如权利要求21所述的第一车辆,其中,每个定位参考设备配置固定的频率资源发送C-PRS,或者,每个定位参考设备在不同的时间配置不同的 频率来发送C-PRS。
  24. 如权利要求21至23中任一项所述的第一车辆,其中,
    所述收发机,还用于执行如下动作中的至少一项:
    与所述其他车辆交换各自测量的多个PRS测量结果和多个C-PRS测量结果;
    与所述其他车辆交换各自定位的定位信息;
    向所述其他车辆发送PRS和C-PRS;
    与所述其他车辆交换各自的PRS配置信息和C-PRS配置信息。
  25. 如权利要求21所述的第一车辆,其中,
    所述收发机,还用于对全球导航卫星系统GNSS发送的GNSS信号进行测量,得到GNSS信号测量结果;
    所述处理器,还用于获取自身设置的定位传感器测量得到的定位测量结果;以及,根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,进行所述定位操作。
  26. 如权利要求21、22、23或25所述的第一车辆,其中,所述PRS测量结果包括:参考信号到达时间差RSTD和参考信号接收功率RSRP中的至少一项;
    所述C-PRS测量结果包括:C-PRS的载波相位C-PRS-CP测量值。
  27. 如权利要求21、22、23或25所述的第一车辆,其中,
    所述收发机,还用于向所述定位服务器发送上报消息,所述上报消息包括所述多个PRS测量结果和用于报告C-PRS测量结果的信息元素,其中,所述信息元素包括每个C-PRS的C-PRS测量结果。
  28. 如权利要求27所述的第一车辆,其中,所述信息元素还包括:每个C-PRS对应的小区标识、C-PRS索引、测量时的参考时间和载波测量值的质量指示中的至少一项。
  29. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
    所述收发机,用于向第一车辆发送定位参考信号PRS和载波相位参考信号C-PRS,以使所述第一车辆对所述PRS进行测量,得到PRS测量结果,以 及,对所述C-PRS进行测量,得到C-PRS测量结果;
    其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  30. 如权利要求29所述的网络侧设备,其中,
    所述处理器,用于读取存储器中的程序,执行下列过程:获取所述第一车辆的全球导航卫星系统GNSS信号质量信息,所述GNSS信号质量信息包括第一车辆能够接收到的卫星信号的数量以及卫星信号接收质量;根据所述第一车辆的GNSS信号质量信息,确定向所述第一车辆发送所述PRS和C-PRS的发送参数,所述发送参数包括发射频率、发射功率以及发射频次,其中,较优质量的GNSS信号质量信息,对应于较低发送等级的发送参数;
    所述收发机,还用于根据所述发送参数,向所述第一车辆发送所述PRS和C-PRS。
  31. 如权利要求30所述的网络侧设备,其中,
    所述处理器,还用于通过收发机接收第一车辆的GNSS信号测量结果;根据所述第一车辆的GNSS信号测量结果,确定所述第一车辆的GNSS信号质量信息;或者,通过收发机向定位服务器请求所述第一车辆的GNSS信号质量信息,以及,接收定位服务器返回的所述第一车辆的GNSS信号质量信息。
  32. 如权利要求29所述的网络侧设备,其中,不同的网络侧设备通过不同的频率资源向第一车辆发送C-PRS。
  33. 如权利要求32所述的网络侧设备,其中,
    所述收发机,还用于向所述第一车辆发送PRS配置信息和C-PRS配置信息,所述PRS配置信息和C-PRS配置信息均包括频率配置信息和时间配置信息。
  34. 如权利要求29至33中任一项所述的网络侧设备,其中,每个网络侧设备配置固定的频率资源发送C-PRS,或者,每个网络侧设备在不同的时 间配置不同的频率来发送C-PRS。
  35. 如权利要求29所述的网络侧设备,其中,
    所述收发机,还用于:所述网络侧设备连续向所述第一车辆发送C-PRS;或者,定期向所述第一车辆发送C-PRS;或者,按需向所述第一车辆发送C-PRS。
  36. 一种定位服务器,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
    所述收发机,用于接收第一车辆发送的对多个定位参考设备发送的定位参考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;以及,接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
    所述处理器,用于读取存储器中的程序,执行下列过程:根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
    其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  37. 如权利要求36所述的定位服务器,其中,
    所述收发机,还用于向所述第一车辆发送所述第一车辆的定位信息。
  38. 如权利要求36或37所述的定位服务器,其中,
    所述收发机,还用于向所述其他车辆发送所述第一车辆的定位信息。
  39. 如权利要求36至38中任一项所述的定位服务器,其中,
    所述收发机,还用于接收所述第一车辆发送的全球导航卫星系统GNSS信号测量结果以及定位测量结果,所述定位测量结果为所述第一车辆自身的定位传感器测量得到的定位结果;
    所述处理器,还用于根据所述多个PRS测量结果、多个C-PRS测量结果、所述GNSS信号测量结果以及所述定位测量结果,确定所述第一车辆的定位信息。
  40. 如权利要求39所述的定位服务器,其中,
    所述收发机,还用于接收网络侧设备发送的用于请求所述第一车辆的GNSS信号质量信息的请求消息,以及,向所述网络侧设备发送所述第一车辆的GNSS信号质量信息。
  41. 一种第一车辆,包括:
    测量单元,用于对多个定位参考设备发送的定位参考信号PRS和载波相位参考信号C-PRS进行测量,得到多个PRS测量结果和多个C-PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;
    定位操作单元,用于根据所述多个PRS测量结果和多个C-PRS测量结果进行定位操作;
    其中,所述定位操作包括:向定位服务器发送所述多个PRS测量结果和多个C-PRS测量结果,以及,接收所述定位服务器返回的根据所述多个PRS测量结果和多个C-PRS测量结果所确定的所述第一车辆的定位信息;或者
    所述定位操作包括:所述第一车辆根据所述多个PRS测量结果和多个C-PRS测量结果确定所述第一车辆的定位信息;
    所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  42. 一种网络侧设备,包括:
    收发单元,用于向第一车辆发送定位参考信号PRS和载波相位参考信号C-PRS,以使所述第一车辆对所述PRS进行测量,得到PRS测量结果,以及,对所述C-PRS进行测量,得到C-PRS测量结果;
    其中,所述PRS测量结果和C-PRS测量结果用于所述第一车辆的定位信息,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  43. 一种定位服务器,包括:
    收发单元,用于接收第一车辆发送的对多个定位参考设备发送的定位参 考信号PRS的PRS测量结果,所述多个定位参考设备包括网络侧设备和其他车辆;以及,接收所述第一车辆发送的对所述多个定位参考设备发送的载波相位参考信号C-PRS的C-PRS测量结果;
    定位单元,用于根据所述多个PRS测量结果和多个C-PRS测量结果,确定所述第一车辆的定位信息;
    其中,所述第一车辆的定位信息包括以下信息中的至少一种:所述第一车辆的位置,所述第一车辆与其他车辆的相对距离,所述第一车辆与其他车辆的相对距离的变化信息,所述第一车辆相对于其他车辆的相对位置,所述第一车辆相对于其他车辆的相对位置的变化信息。
  44. 一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如权利要求1至20中任一项所述的定位方法。
PCT/CN2019/119902 2018-12-19 2019-11-21 定位方法和相关设备 WO2020125310A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/415,678 US11921226B2 (en) 2018-12-19 2019-11-21 Positioning method and device
EP19900568.7A EP3902292A4 (en) 2018-12-19 2019-11-21 POSITIONING METHOD AND RELATED DEVICE
JP2021536011A JP2022514430A (ja) 2018-12-19 2019-11-21 測位方法及び関連機器
KR1020217020998A KR20210097784A (ko) 2018-12-19 2019-11-21 포지셔닝 방법 및 관련 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811558107.2A CN111343579B (zh) 2018-12-19 2018-12-19 一种定位方法和相关设备
CN201811558107.2 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020125310A1 true WO2020125310A1 (zh) 2020-06-25

Family

ID=71100212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119902 WO2020125310A1 (zh) 2018-12-19 2019-11-21 定位方法和相关设备

Country Status (7)

Country Link
US (1) US11921226B2 (zh)
EP (1) EP3902292A4 (zh)
JP (1) JP2022514430A (zh)
KR (1) KR20210097784A (zh)
CN (1) CN111343579B (zh)
TW (1) TWI721710B (zh)
WO (1) WO2020125310A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333819A (zh) * 2020-11-05 2021-02-05 京信通信系统(中国)有限公司 设备定位方法、装置、计算机设备和存储介质
CN112394383A (zh) * 2020-10-23 2021-02-23 北京邮电大学 一种卫星与5g基站组合定位方法及装置
WO2022034483A3 (en) * 2020-08-10 2022-04-21 Lenovo (Singapore) Pte. Ltd. Sidelink timing-based positioning
WO2022120817A1 (en) * 2020-12-11 2022-06-16 Nokia Shanghai Bell Co., Ltd. Coordinated positioning via sidelink resource
WO2022155000A1 (en) * 2021-01-17 2022-07-21 Qualcomm Incorporated Facilitating time- aligned measurements for user equipments (ues) and base stations for positioning
WO2022163748A1 (ja) * 2021-01-29 2022-08-04 Agc株式会社 情報処理システム及び自動運転支援方法
WO2022182431A1 (en) * 2021-02-26 2022-09-01 Qualcomm Incorporated Positioning system to leverage map data collected by user equipment
CN115119139A (zh) * 2021-03-18 2022-09-27 大唐移动通信设备有限公司 定位方法、装置、终端及存储介质
WO2023048088A1 (ja) * 2021-09-22 2023-03-30 株式会社デンソー 通信装置及び通信方法
WO2023095803A1 (ja) * 2021-11-24 2023-06-01 三菱電機株式会社 通信システム
CN116210255A (zh) * 2020-08-03 2023-06-02 上海诺基亚贝尔股份有限公司 设备定位中无效参考设备的标识
JP2023532291A (ja) * 2020-06-24 2023-07-27 大唐移▲動▼通信▲設▼▲備▼有限公司 情報指示方法、装置及び通信装置
EP4319202A4 (en) * 2021-03-26 2024-09-11 Datang mobile communications equipment co ltd METHOD AND DEVICE FOR RELATIVE POSITIONING AND READABLE STORAGE MEDIUM

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220020815A (ko) * 2019-06-13 2022-02-21 엘지전자 주식회사 Nr v2x에서 서버 단말의 prs 전송에 기반한 사이드링크 포지셔닝
CN114430814A (zh) * 2019-09-27 2022-05-03 诺基亚技术有限公司 用于用户设备定位的方法、装置和计算机程序
KR20220114575A (ko) * 2020-01-07 2022-08-17 엘지전자 주식회사 사이드링크 기반의 측위를 수행하는 방법 및 장치
CN114051200B (zh) * 2020-07-24 2023-04-18 大唐移动通信设备有限公司 终端定位方法、lmf、终端和存储介质
US11856591B2 (en) * 2020-07-30 2023-12-26 Qualcomm Incorporated Inter-frequency sounding reference signal for positioning during a measurement period
US11582584B2 (en) 2020-08-12 2023-02-14 Shanghai Langbo Communication Technology Company Limiied Method and device in communication nodes for wireless communication
CN114080020A (zh) * 2020-08-12 2022-02-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20220124458A1 (en) * 2020-10-15 2022-04-21 Qualcomm Incorporated Prs reports with distributed antenna system
CN112533142A (zh) * 2020-10-29 2021-03-19 瑞驰博方(北京)科技有限公司 车辆定位方法、装置、计算机设备和存储介质
CN114466448B (zh) * 2020-11-10 2023-04-11 大唐移动通信设备有限公司 定位方法、装置及处理器可读存储介质
CN112203223B (zh) * 2020-12-02 2021-03-02 北京大唐高鸿数据网络技术有限公司 一种位置确定方法、装置及车联网设备
WO2022126496A1 (en) * 2020-12-17 2022-06-23 Nokia Shanghai Bell Co., Ltd. Retransmission of sidelink positioning reference signal
US11496914B2 (en) * 2021-02-24 2022-11-08 Qualcomm Incorporated Combined distributed ranging sessions including common devices
CN115134739A (zh) * 2021-03-17 2022-09-30 维沃移动通信有限公司 定位方法、装置、通信设备及网络侧设备
CN115175302B (zh) * 2021-04-01 2024-10-11 大唐移动通信设备有限公司 信息传输方法、定位处理方法、装置、终端及网络设备
CN112995899B (zh) * 2021-05-08 2021-08-10 北京大唐高鸿数据网络技术有限公司 车路协同定位方法、装置、车载定位系统及路侧设备
CN115529661A (zh) * 2021-06-25 2022-12-27 维沃移动通信有限公司 定位处理方法、定位参考信号发送方法、装置及设备
US12089111B2 (en) * 2021-08-11 2024-09-10 Qualcomm Incorporated Relative location anchor group and local coordinate system
US11451955B2 (en) * 2021-09-01 2022-09-20 Autonomous Roadway Intelligence, Llc V2X and vehicle localization by local map exchange in 5G or 6G
CN116320991A (zh) * 2021-12-21 2023-06-23 华为技术有限公司 定位方法及装置、存储介质、程序产品
WO2023134913A1 (en) * 2022-01-13 2023-07-20 Nokia Technologies Oy Method for downlink and uplink carrier phase integer ambiguity confirmation
CN116634353A (zh) * 2022-02-11 2023-08-22 华为技术有限公司 定位方法及装置
CN116667980A (zh) * 2022-02-18 2023-08-29 北京三星通信技术研究有限公司 通信系统中的接收端、发射端执行的方法及设备
US20240179675A1 (en) * 2022-02-28 2024-05-30 Lg Electronics Inc. A method and device for performing high layer procedure for sl positioning
CN117280248A (zh) * 2022-04-21 2023-12-22 北京小米移动软件有限公司 测量结果接收、发送方法和装置
CN116980101A (zh) * 2022-04-24 2023-10-31 北京三星通信技术研究有限公司 通信系统中的接收端、发射端执行的方法及设备
CN117322094A (zh) * 2022-04-27 2023-12-29 北京小米移动软件有限公司 定位方法、装置、设备及存储介质
WO2023209912A1 (ja) * 2022-04-27 2023-11-02 株式会社Nttドコモ 端末、及び基地局
CN115128652A (zh) * 2022-05-28 2022-09-30 北京远思久维科技有限公司 一种基于5g载波相位的定位方法
WO2023248314A1 (ja) * 2022-06-20 2023-12-28 日本電信電話株式会社 制御装置、制御方法及びプログラム
US20240048309A1 (en) * 2022-07-19 2024-02-08 Samsung Electronics Co., Ltd. Method and apparatus for round-trip carrier-phase operation
WO2024016297A1 (en) * 2022-07-22 2024-01-25 Apple Inc. Carrier phase positioning measurements
WO2024033799A1 (en) * 2022-08-10 2024-02-15 Lenovo (Singapore) Pte. Ltd. Integer ambiguity resolution for carrier phase-based positioning
WO2024033195A1 (en) * 2022-08-11 2024-02-15 Sony Group Corporation Carrier phase positioning technique
WO2024035049A1 (ko) * 2022-08-11 2024-02-15 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024071806A1 (ko) * 2022-09-29 2024-04-04 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN115767415A (zh) * 2022-10-26 2023-03-07 华为技术有限公司 发送与接收信息的方法及通信装置
CN115877428A (zh) * 2023-01-06 2023-03-31 北京度位科技有限公司 载波相位整周模糊度固定方法及系统、可读存储介质
WO2024113503A1 (en) * 2023-02-17 2024-06-06 Zte Corporation Systems and methods for carrier phase positioning

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120165053A1 (en) * 2009-09-09 2012-06-28 Pantech Co., Ltd. Method and apparatus for transceiving a signal in a communication system
CN103179662A (zh) * 2013-03-29 2013-06-26 北京邮电大学 定位方法、基站和用户设备
CN104302003A (zh) * 2014-11-04 2015-01-21 北京易道游网络技术有限公司 用户终端定位的方法及装置
US20150198696A1 (en) * 2012-08-20 2015-07-16 Huawei Technologies Co., Ltd. Method for terminal positioning, base station and user equipment
CN104881951A (zh) * 2015-05-04 2015-09-02 中山智芯电子科技有限公司 一种行为跟踪系统
CN106143538A (zh) * 2016-07-06 2016-11-23 兰州交通大学 一种利用双移动台的基于lte‑r的列车定位方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245967A1 (en) 2001-03-29 2002-10-02 Société Européenne des Satellites S.A. Ranging system for determining ranging information of a spacecraft
CN103458446B (zh) * 2012-06-01 2016-05-25 华为技术有限公司 一种解决测量冲突的方法及装置
WO2014056172A1 (zh) 2012-10-08 2014-04-17 华为技术有限公司 定位方法和装置
US9713117B2 (en) 2014-09-25 2017-07-18 Intel Corporation Device-to-device assisted positioning in wireless cellular technologies
CN106211312B (zh) 2015-04-30 2020-06-26 索尼公司 无线通信系统中的电子设备和无线通信方法
US9992653B2 (en) * 2015-09-08 2018-06-05 Qualcomm Incorporated E911 positioning via background signal tracking
US10555297B2 (en) * 2016-03-31 2020-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission timing control
AR109331A1 (es) * 2016-08-12 2018-11-21 Ericsson Telefon Ab L M Control de puntos de transmisión de referencia para mediciones rstd
US20180317111A1 (en) * 2017-04-30 2018-11-01 Qualcomm Incorporated Caching positioning measurement reports
CN108037483A (zh) * 2017-12-07 2018-05-15 北京搜狐新媒体信息技术有限公司 一种车辆定位方法、装置和车载电台系统
KR102307426B1 (ko) * 2018-01-19 2021-09-29 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 포지셔닝 방법 및 관련 기기
CN112166575B (zh) * 2018-11-02 2023-09-26 Lg电子株式会社 发送和接收定位参考信号的方法及其设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120165053A1 (en) * 2009-09-09 2012-06-28 Pantech Co., Ltd. Method and apparatus for transceiving a signal in a communication system
US20150198696A1 (en) * 2012-08-20 2015-07-16 Huawei Technologies Co., Ltd. Method for terminal positioning, base station and user equipment
CN103179662A (zh) * 2013-03-29 2013-06-26 北京邮电大学 定位方法、基站和用户设备
CN104302003A (zh) * 2014-11-04 2015-01-21 北京易道游网络技术有限公司 用户终端定位的方法及装置
CN104881951A (zh) * 2015-05-04 2015-09-02 中山智芯电子科技有限公司 一种行为跟踪系统
CN106143538A (zh) * 2016-07-06 2016-11-23 兰州交通大学 一种利用双移动台的基于lte‑r的列车定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "On Demand Transmission of PRS for NR", 3GPP DRAFT; R2-1817902_(ON DEMAND PRS), vol. RAN WG2, 12 November 2018 (2018-11-12), Spokane, USA, pages 1 - 27, XP051557415 *
See also references of EP3902292A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023532291A (ja) * 2020-06-24 2023-07-27 大唐移▲動▼通信▲設▼▲備▼有限公司 情報指示方法、装置及び通信装置
CN116210255A (zh) * 2020-08-03 2023-06-02 上海诺基亚贝尔股份有限公司 设备定位中无效参考设备的标识
WO2022034483A3 (en) * 2020-08-10 2022-04-21 Lenovo (Singapore) Pte. Ltd. Sidelink timing-based positioning
CN112394383A (zh) * 2020-10-23 2021-02-23 北京邮电大学 一种卫星与5g基站组合定位方法及装置
CN112394383B (zh) * 2020-10-23 2023-09-15 北京邮电大学 一种卫星与5g基站组合定位方法及装置
CN112333819A (zh) * 2020-11-05 2021-02-05 京信通信系统(中国)有限公司 设备定位方法、装置、计算机设备和存储介质
WO2022120817A1 (en) * 2020-12-11 2022-06-16 Nokia Shanghai Bell Co., Ltd. Coordinated positioning via sidelink resource
WO2022155000A1 (en) * 2021-01-17 2022-07-21 Qualcomm Incorporated Facilitating time- aligned measurements for user equipments (ues) and base stations for positioning
WO2022163748A1 (ja) * 2021-01-29 2022-08-04 Agc株式会社 情報処理システム及び自動運転支援方法
US11558160B2 (en) 2021-02-26 2023-01-17 Qualcomm Incorporated Positioning system to leverage map data collected by user equipment
WO2022182431A1 (en) * 2021-02-26 2022-09-01 Qualcomm Incorporated Positioning system to leverage map data collected by user equipment
US11991109B2 (en) 2021-02-26 2024-05-21 Qualcomm Incorporated Positioning system to leverage map data collected by user equipment
CN115119139A (zh) * 2021-03-18 2022-09-27 大唐移动通信设备有限公司 定位方法、装置、终端及存储介质
EP4319202A4 (en) * 2021-03-26 2024-09-11 Datang mobile communications equipment co ltd METHOD AND DEVICE FOR RELATIVE POSITIONING AND READABLE STORAGE MEDIUM
WO2023048088A1 (ja) * 2021-09-22 2023-03-30 株式会社デンソー 通信装置及び通信方法
WO2023095803A1 (ja) * 2021-11-24 2023-06-01 三菱電機株式会社 通信システム

Also Published As

Publication number Publication date
US20220043099A1 (en) 2022-02-10
EP3902292A1 (en) 2021-10-27
KR20210097784A (ko) 2021-08-09
EP3902292A4 (en) 2022-02-16
TW202106057A (zh) 2021-02-01
CN111343579B (zh) 2021-08-06
JP2022514430A (ja) 2022-02-10
CN111343579A (zh) 2020-06-26
US11921226B2 (en) 2024-03-05
TWI721710B (zh) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2020125310A1 (zh) 定位方法和相关设备
US11353542B2 (en) Positioning method and positioning device
KR20230079378A (ko) Ue 포지셔닝을 위한 prs 측정을 리포트하기 위한 앵커 선택
US11553310B2 (en) Aggregated positioning signal processing management
US20230370230A1 (en) Aggregation of positioning signal and supplemental signal
KR102669986B1 (ko) 포지셔닝을 위한 신호 타이밍 에러 그룹 업데이트들
TW202215803A (zh) 參考信號配置和管理
CN114095855A (zh) 一种定位方法及装置
US12058713B2 (en) Muting configuration for tracking reference signal for positioning
WO2022191941A1 (en) Communication system radar signaling
US11812404B2 (en) Reference carrier phase for positioning reference signals
US20240284328A1 (en) Low-power radio reference signal signaling
US20240276362A1 (en) Cross-radio configuration for positioning and sensing
US20240297760A1 (en) Positioning processes for reduced capability devices
WO2023141004A1 (en) Radio frequency sensing using positioning reference signals (prs)
KR20240038719A (ko) 포지셔닝 신호들을 측정하기 위한 측정 갭들
CN118830205A (zh) 发信号通知用于定位的路径选择模式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217020998

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019900568

Country of ref document: EP

Effective date: 20210719