WO2020125286A1 - 一种反应/混合/热交换管及反应器 - Google Patents

一种反应/混合/热交换管及反应器 Download PDF

Info

Publication number
WO2020125286A1
WO2020125286A1 PCT/CN2019/118506 CN2019118506W WO2020125286A1 WO 2020125286 A1 WO2020125286 A1 WO 2020125286A1 CN 2019118506 W CN2019118506 W CN 2019118506W WO 2020125286 A1 WO2020125286 A1 WO 2020125286A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
reaction
mixing
heat exchange
outer tube
Prior art date
Application number
PCT/CN2019/118506
Other languages
English (en)
French (fr)
Inventor
张苏明
Original Assignee
青岛钛钽铌锆连续化反应器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛钛钽铌锆连续化反应器有限公司 filed Critical 青岛钛钽铌锆连续化反应器有限公司
Priority to EP19899855.1A priority Critical patent/EP3901549B1/en
Priority to JP2021555623A priority patent/JP2022517147A/ja
Publication of WO2020125286A1 publication Critical patent/WO2020125286A1/zh
Priority to US17/350,046 priority patent/US20210310743A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4321Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00263Preventing explosion of the chemical mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • B01J2219/00792One or more tube-shaped elements
    • B01J2219/00797Concentric tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0052Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0059Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for petrochemical plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the invention relates to the industrial fields of petrochemical industry, fine chemical industry, pharmaceutical preparations, food and beverage, in particular to a reaction/mixing/heat exchange reaction tube and reactor.
  • Figure 1 is a schematic diagram of a micro-channel reaction unit made of Corning's special glass and silicon carbide material: the channel in the figure is etched or engraved by two pieces of material that are not in contact with each other, and the depth is about tens of microns.
  • the fluid enters the heart-shaped structure from the inlet, and is separated into two channels after impacting on the half-moon arc-shaped structure. Each side surrounds the heart-shaped structure and enters the bottom mixing chamber of the heart-shaped structure.
  • the separated two channels of fluid mix again here, forming Squeeze all the way into the next heart-shaped structure, and start again and again, during which two adjacent heart-shaped structures may be connected in series or in parallel, depending on the process requirements.
  • static tube reactors which are widely used at home and abroad, are filled with various diameters, regular or irregular fillers in various diameter tubes, so as to cause strong turbulence when the fluid flows in the tube, thereby enhancing the reaction of the fluid , Mixed action.
  • turbulent flow can not satisfy the effect of forcibly combining fluid molecules with each other in an extremely restricted space, but can only relatively increase the chance of combining with each other. The effectiveness of the two cannot be the same.
  • micro channels in principle at home and abroad to achieve continuous production of large flow and large tonnage products.
  • the main reason is that the micro structure and material unique to the micro reaction, and the manufacturing process determine its research and development. 2.
  • the manufacturing cost is high, and most of them can not adapt to the working conditions of high temperature, high pressure and the fluid contains solid crystals, powder components, etc., and it is impossible to double the output by simply connecting multiple machines in parallel. Therefore, the micro-reactor is expensive to manufacture and has a complicated structure. It is a difficult problem to realize the industrialization of large flux and large tonnage at present.
  • the present invention aims to solve the above problems, and provides a reaction/mixing/heat exchange reaction tube, the structure of which allows each component fluid to undergo extrusion, diffusion, mixing, twisting, re-extrusion, etc. in the first fluid circulation channel Repeated process to achieve the strengthening effect of rapid reaction/mixing between fluid molecules, and the required exchange heat is instantaneously exchanged through the wall of the outer tube and the wall of the inner tube with the heat exchange medium flowing in the shell and the inner cavity of the inner tube. It can control the process conditions such as temperature and pressure very accurately, and has a high safety factor. It is especially suitable for the application of chemical reaction/homogeneous mixing process with strong exotherm, high temperature, high pressure, high toxicity, and explosion hazard. It is easy to produce and has low operating costs.
  • the technical solutions adopted are as follows:
  • a double-chamber reaction/mixing/heat exchange tube is characterized by comprising: an outer tube and an inner tube, the inner tube is passed through the outer tube, and the outer tube has a plurality of first indented parts, so The first indented portion forms a plurality of first narrow flow channels in the inner cavity section of the outer tube, and a first fluid circulation channel is formed between the inner wall surface of the outer tube and the outer wall surface of the inner tube.
  • the inner tube has a plurality of second indented portions, and the second indented portions enable the inner cavity section of the inner tube to form a plurality of second narrow flow channels.
  • the first indented portion and the second indented portion have a one-to-one correspondence with each other.
  • the length of the inner tube is longer than that of the outer tube, and the two ends of the inner tube respectively extend from the two ends of the outer tube.
  • the torsional transition is a trumpet-shaped smooth transition.
  • each of the first indented portion and the second indented portion is composed of two symmetrically arranged indented regions.
  • a reaction/mixing/heat exchanger including a shell, a tube plate and a head, characterized in that it also includes the above-mentioned double-chamber reaction/mixing/heat exchange reaction tube, and the installation of the double-chamber reaction/mixing/heat exchange reaction tube
  • the first fluid circulation channel is the tube side for the first fluid to participate in the reaction/mixing/heat exchange
  • the outer tube is the shell side, and the shell side and the inner cavity of the inner tube are used for the heat exchange medium to flow .
  • each component fluid undergoes repeated processes such as extrusion, diffusion, mixing, twisting, and re-extrusion in the first fluid circulation channel, to achieve the strengthening effect of rapid reaction/mixing between fluid molecules, and the heat exchange required
  • the heat exchange medium flowing through the shell of the outer tube and the wall of the inner tube and the shell side and the inner cavity of the inner tube are instantaneously exchanged, and the process conditions such as temperature and pressure can be controlled very accurately.
  • High safety factor especially suitable for chemical reaction/homogeneous mixed process application with strong exotherm, high temperature, high pressure, highly toxic and explosive hazard. Easy to produce and low operating cost.
  • Figure 1 It is a schematic diagram of the internal unit of Corning Micro Reactor
  • Figure 2 Schematic diagram of the three-dimensional structure of the double-chamber reaction/mixing/heat exchange tube according to the present invention
  • FIG. 3 Schematic diagram of the cross-sectional structure at A in Figure 2;
  • Figure 4 Structure diagram after removing the inner tube in Figure 3;
  • Figure 5 Structure diagram after removing the outer tube in Figure 3;
  • Figure 6 Schematic diagram of the cross-sectional structure at B in Figure 2;
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; but directly connected, or indirectly connected through an intermediary.
  • connection should be understood in specific situations.
  • a dual-chamber reaction/mixing/heat exchange tube of this embodiment is characterized by comprising: an outer tube 1 and an inner tube 2, the inner tube 2 is threaded on the outer tube 1
  • the outer tube 1 there are a plurality of first indented portions 10, the first indented portion 10 makes the inner cavity section of the outer tube 1 form a plurality of first narrow flow channels 11, the outer tube 1
  • a first fluid circulation channel 12 is formed between the inner wall surface and the outer wall surface of the inner tube 2
  • the inner tube 2 has a plurality of second indented portions 20, the second indented portions 20 make the inner cavity of the inner tube 2
  • the cross section forms several second narrow flow channels 21.
  • the diameter of the outer tube 1 and the inner tube 2 can be selected according to the purpose and use. When industrial production is required, a large diameter can be used to meet the requirements of industrial production for large output and large tonnage. When laboratory application is required, a small diameter can be used Meet the requirements of the experiment for precision.
  • the positions of the first indented portion 10 and the second indented portion 20 are in one-to-one correspondence.
  • One way to achieve this is to insert the inner tube 2 of circular cross-section into the outer tube 1 of round shape, and then use a squeeze chuck to sequentially clamp a part of the outer tube 1 along the length of the outer tube 1
  • the flattened portion on 1 is the first indented portion 10.
  • the inner wall of the flattened portion of the outer tube 1 will contact the outer wall surface of the inner tube 2 and continue to apply force to flatten the inner tube 2 It will also be flattened.
  • the flattened part of the inner tube 2 is the second indented portion 20.
  • the first indented portion 10 and the second indented portion 20 appear successively and have the same position Therefore, the first indented portion 10 and the second indented portion 20 are in a one-to-one relationship, so that since the first indented portion 10 and the second indented portion 20 also realize that the inner tube 2 is restricted to the outer tube 1
  • the cross-sectional areas of the first fluid circulation channels 12 (each along the length of the outer tube) sandwiched between the outer tube 1 and the inner tube 2 need not be the same, but may be uneven and irregular status. This method is simple and feasible, and the processing cost is low.
  • the torsion angle can be any angle, preferably non-zero degrees. It should be noted that each torsion angle (such as the torsion angle between different adjacent first indentations 10) may be the same or may be inconsistent Erratic. Since the second indented portion 20 is consistent with the first indented portion 10, the torsional angles on the inner tube are the same as the torsional angles on the outer tube. This structure will cause the first fluid in the first fluid circulation channel 12 to form a violent turbulent flow, thereby quickly conducting heat energy, and can accurately control the optimal temperature required by the process.
  • the inner diameter of the outer tube and the outer diameter of the inner tube are selected separately according to the needs of the process fluid to leave an optimal gap.
  • the outer tube and the inner tube have several continuous or discontinuous indentations at different angles at the same axis position.
  • the indentation makes the inner wall of the outer tube and the outer wall of the inner tube form a first fluid circulation channel 12 in which irregular materials can continuously flow, and the indentation formed on the inner tube makes the inner cavity of the inner tube A similarly irregular second narrow flow channel 21 is formed.
  • the heat exchange medium flowing through the outer wall of the outer tube and the inner wall of the inner tube simultaneously flows through the first fluid circulation channel 12 between the inner wall of the outer tube and the outer wall of the inner tube
  • the materials undergo double (cross-flow) heat exchange. Since the inner tube and the outer tube are only telescoped, there is no fixed support in the tube, so when the fluid quickly passes through its irregular cavity, it will form a small high-frequency vibration and radial displacement, making the fluid more strongly Turbulent.
  • a dual-chamber reaction/mixing/heat exchange tube of this embodiment is characterized in that it includes: an outer tube 1 and an inner tube 2, and the inner tube 2 is worn on the outer tube 1
  • the outer tube 1 there are a plurality of first indented portions 10, the first indented portion 10 makes the inner cavity section of the outer tube 1 form a plurality of first narrow flow channels 11, the outer tube 1
  • a first fluid circulation channel 12 is formed between the inner wall surface and the outer wall surface of the inner tube 2
  • the inner tube 2 has a plurality of second indented portions 20, the second indented portions 20 make the inner cavity of the inner tube 2
  • a plurality of second narrow flow channels 21 are formed in the cross section, and the positions of the first indented portion 10 and the second indented portion 20 are in one-to-one correspondence.
  • each of the first indented portion 10 and the second indented portion 20 is composed of two symmetrically disposed indented regions 100.
  • the length of the inner tube 2 is longer than that of the outer tube 1. Two ends of the inner tube 2 protrude from both ends of the outer tube 1. According to the different uses of the reaction/mixing/heat exchange tube and the requirements of the fluid process and scale, the cross-sectional size of the first narrow flow channel 11 can be selected differently.
  • a reaction/mixing/heat exchanger including a shell, a tube plate and a head, characterized in that it also includes the above-mentioned double-chamber reaction/mixing/heat exchange reaction tube, and the installation of the double-chamber reaction/mixing/heat exchange reaction tube
  • the first fluid circulation channel 12 is the tube side for the first fluid to participate in the reaction/mixing/heat exchange;
  • the outer tube 1 is the shell side, and the shell side and the inner cavity of the inner tube 2 are provided for replacement
  • the hot medium flows.
  • the first fluid molecules that need to participate in the reaction/mixing/heat exchange are forcibly squeezed and combined at the first narrow flow channel 11.
  • the first fluid When passing through the torsional transition, the first fluid is released, mixed, twisted, and then enters the next first narrow
  • the flow channel 11 is squeezed again, and the strengthening effect is repeated, which is better than the effect of a single flow channel that is similar to the flat flow.
  • the heat generated or required during it passes through the wall of the outer tube 1 and the wall of the inner tube 2 and the shell side And the heat exchange medium flowing in the inner cavity of the inner tube 2 is instantaneously exchanged.
  • the heat exchange efficiency is much higher than that of the common tube and tube heat exchangers common in the field at present, and it is also higher than that of Corning (the glass itself has a low heat transfer coefficient) sandwich sandwich heat transfer coefficient.
  • the Corning reactor can only realize a strong exothermic reaction with an annual flow rate of 2000 cubic meters for some products, while the reactor proposed by the present invention can realize a continuous reaction of high-pressure, strong exothermic and endothermic fluid with an annual output of one million tons product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Geometry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明涉及一种反应/混合/热交换反应管及反应器。双腔反应/混合/热交换管包括:外管与内管,内管(同轴)穿装于外管中,外管上具有若干个第一压陷部,所述第一压陷部使得外管的内腔截面形成若干个第一狭流通道,外管的内壁面与内管的外壁面之间形成第一流体流通通道,内管上具有若干个第二压陷部,第二压陷部使得内管的内腔截面形成若干个第二狭流通道。它的结构使得流体分子间反应/混合得到强化,所需交换的热量交换效率大大提高,可十分精确地控制温度、压力等工艺条件,安全系数高,易于生产,运营成本低。

Description

一种反应/混合/热交换管及反应器 技术领域
本发明涉及石油化工、精细化工、制药制剂、食品饮料等工业领域,尤其是一种反应/混合/热交换反应管及反应器。
背景技术
石油化工、精细化工、制药制剂、食品饮料等工业制造领域,经常要用到均质、非均质流体的物理混合或化学反应的工艺过程,而这种物理混合和化学反应通常伴随着强烈地温度变化(大多为瞬间放热),控制不好就会造成火灾、爆炸等灾难性后果。近年来,国内外逐渐兴起利用微型通道反应器实现流体分子间或亚分子间的混合或化学反应,而且这些微反应器种类愈见繁多。由于这些微米级、亚毫米级的微型通道同时具备的强大换热能力,从实验室层面,较好的解决了许多过去难以实现的化学反应,将过去需要数小时甚至数十小时才能完成的化学反应在毫秒、秒、分时内得以完成。
如图1是美国康宁公司特种玻璃和碳化硅材质的微型通道反应单元示意图:图中通道是由两片材料接触不平面蚀刻或雕刻而成,深度约为数十微米。流体从入口进入心形结构,冲击到半月弧形结构后被分离为两路,各从心形结构两侧环绕进入心形结构的底部混合腔,分离的两路流体在此再度混合,合为一路挤压进入下一个心形结构,周而复始,期间相邻两个心形结构或可串联,或可并联,视工艺要求而定。同时反应所需交换热能由夹持在两面的热交换体夹层迅速传导,传导面积相比釜式容器反应器夹套或盘管换热器的要大得多。但是此种反应器由于结构本身所限,目前仅能承担1.8MPa压强以下,年通量2000立方液体流量工艺要求。
国内外另一种反应、混合方式是根据工艺及流量需要,使用不同直径金属毛细管结构的微反应器,在某些行业中也取得了较好的效果。但是毛细管的直径不不管取多少,它的剖面就是圆形,较小的直径可 以使流体分子在内管空间受限,也会起到一定的反应/混合效果,但总体是一种平推流自混合效果。而在流体流动时,靠近管壁与同时在管中央流动的流体通过不管壁与外界的热交热效果一是相差很大的。这种金属毛细管结构,由于可以选择较厚管壁,所以也可以做到高压、超高压条件下使用。
另外现在被国内外广泛使用的静态管式反应器,是在各种直径管内充填有不同规格,规则或不规则的填料,以此使流体在管内流动时产生强烈的湍流,借以强化流体的反应、混合作用。但是湍流满足不了流体分子间在极度受限的空间内彼此强迫结合的效应,而只能相对增加彼此结合的机会。二者效能不能同日而语。
不管使用何种结构方式,目前国内外利用微型通道有原理实现大流量、大吨位产品连续化工业生产的实例极少,主要原因是微反应特有的微细结构和材质、制造工艺决定了它的研发、制造成本较高,且大多无法适应高温、高压和流体内含有固体结晶、粉末成分等工况,无法通过单纯的多机并联来实现产量的倍增。因此,微反应器造价昂贵,结构复杂,实现大通量、大吨位工业化是一个目前难以解决的问题。
发明内容
本发明旨在解决上述问题,提供了一种反应/混合/热交换反应管,它的结构使得各组分流体在第一流体流通通道内经历挤压、扩散、混合、扭转、再挤压等反复过程,达到流体分子间迅速反应/混合的强化效果,所需交换热量则通过外管的壁体及内管的壁体与壳程及内管的内腔中流动的换热介质瞬间交换,可十分精确地控制温度、压力等工艺条件,安全系数高,特别适合于强烈放热的、高温、高压、剧毒、具有爆炸危险的化学反应/均质混合工艺应用。易于生产,运营成本低,其采用的技术方案如下:
一种双腔反应/混合/热交换管,其特征在于,包括:外管和内管,所述内管穿装于外管中,所述外管上具有若干个第一压陷部,所述第一压陷部使得外管的内腔截面形成若干个第一狭流通道,所述外管的内壁面与内管的外壁面之间形成第一流体流通通道。
在上述技术方案基础上,所述内管上具有若干个第二压陷部,所述第二压陷部使得内管的内腔截面形成若干个第二狭流通道。
在上述技术方案基础上,所述第一压陷部与第二压陷部位置一一对应。
在上述技术方案基础上,相邻第一压陷部之间具有扭转夹角,相邻第二压陷部之间具有扭转夹角。
在上述技术方案基础上,所述内管长度长于外管,所述内管的两端分别自外管的两端伸出。
在上述技术方案基础上,相邻第一压陷部之间扭转过渡,相邻第二压陷部之间扭转过渡,扭转过渡处为喇叭状圆滑过渡。
在上述技术方案基础上,每个第一压陷部及第二压陷部均由两个对称设置的压陷区组成。
一种反应/混合/热交换器,包括壳体、管板和封头,其特征在于:还包括上述的双腔反应/混合/热交换反应管,双腔反应/混合/热交换反应管安装在管板上,其中第一流体流通通道为管程,供参与反应/混合/热交换的第一流体流动;外管外为壳程,其中壳程及内管的内腔供换热介质流动。
本发明具有如下优点:各组分流体在第一流体流通通道内经历挤压、扩散、混合、扭转、再挤压等反复过程,达到流体分子间迅速反应/混合的强化效果,所需交换热量则通过外管的壁体及内管的壁体与壳程及内管的内腔中流动的换热介质瞬间交换,可十分精确地控制温度、压力等工艺条件。安全系数高,特别适合于强烈放热的、高温、 高压、剧毒、具有爆炸危险的化学反应/均质混合工艺应用。易于生产,运营成本低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一种实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1:是美国康宁微反应器内部单元示意图;
图2:本发明所述的双腔反应/混合/热交换管的立体结构示意图;
图3:图2中A处的横截面结构示意图;
图4:图3中去除内管后的结构示意图;
图5:图3中去除外管后的结构示意图;
图6:图2中B处的横截面结构示意图;
图7:实施例3所述双腔反应/混合/热交换管端部处的局部剖面结构示意图;
具体实施方式
下面结合附图和实例对本发明作进一步说明:
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“内”、“外”等指示的方位均是基于说明书附图所示的方位进行定义的,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
实施例1
如图2至图6所示,本实施例的一种双腔反应/混合/热交换管,其特征在于,包括:外管1和内管2,所述内管2穿装于外管1中,所述外管1上具有若干个第一压陷部10,所述第一压陷部10使得外管1的内腔截面形成若干个第一狭流通道11,所述外管1的内壁面与内管2的外壁面之间形成第一流体流通通道12,所述内管2上具有若干个第二压陷部20,所述第二压陷部20使得内管2的内腔截面形成若干个第二狭流通道21。外管1及内管2的直径可根据目的和用途进行选择,当需要工业生产时,采用大直径可满足工业生产对大产量、大吨位的要求,当需要实验室应用时,采用小直径可满足实验对精准化的要求。
实施例2
如图2至图6所示,在实施例1的基础上,优选的,所述第一压陷部10与第二压陷部20位置一一对应。加工时的一种实现方式是将截面为圆形的内管2穿入圆形的外管1中后,利用挤压夹头沿外管1长度方向依次夹扁外管1的一部分,外管1上所夹扁的部分即为第一压陷部10,在夹扁过程中,外管1夹扁部分的内壁体会抵触于内管2的外壁面上,继续施力夹扁,内管2也会随之被夹扁,内管2被夹扁的部分即为第二压陷部20,由于第一压陷部10和第二压陷部20是先后出现的并具有位置上的一致性,故第一压陷部10与第二压陷部 20是一一对应的关系,如此由于第一压陷部10和第二压陷部20也实现了内管2被限位于外管1中,需要说明的是外管1与内管2之间所夹的第一流体流通通道12各处(沿外管长度方向的各位)的横截面面积无需是一样的,可以是不均匀无规律的状态。此种方法,简单可行,加工成本低。
进一步,相邻第一压陷部10之间具有扭转夹角,相邻第二压陷部20之间具有扭转夹角。扭转夹角可为任意角度,以非0度为宜,需要说明的是各扭转夹角(如不同相邻第一压陷部10之间的扭转夹角)可以是一致的,也可以是不一致无规律的。由于第二压陷部20与第一压陷部10具有一致性,故内管上的各扭转夹角与外管上的各扭转夹角情况相同。这种结构会使第一流体流通通道12内第一流体形成剧烈湍流,从而迅速传导热能,可以精确控制工艺所需的最佳温度。
外管的内径与内管的外径根据工艺流体需要分别选择,以留有最佳间隙,外管与内管在轴线相同位置上具有若干个不同角度、连续的或非连续的压陷部,压陷部使得外管的内壁与内管的外壁之间形成一个不规则的物料可连续流动的第一流体流通通道12,而内管上形成的压陷部,使得内管的内腔体中形成类似地不规则第二狭流通道21,使用时,流经外管外壁与内管内壁中的换热介质同时对流经外管内壁与内管外壁之间的第一流体流通通道12中的物料进行双重(错流)热交换。由于内管与外管之间仅是套叠关系,管中无固定支撑件,所以流体快速通过其不规则的腔体时会形成细微的高频震动与径向位移,使流体产生更强烈地湍流。
实施例3
如图3至图7所示,本实施例的一种双腔反应/混合/热交换管,其特征在于,包括:外管1和内管2,所述内管2穿装于外管1中,所述外管1上具有若干个第一压陷部10,所述第一压陷部10使得外管1的内腔截面形成若干个第一狭流通道11,所述外管1的内壁面与 内管2的外壁面之间形成第一流体流通通道12,所述内管2上具有若干个第二压陷部20,所述第二压陷部20使得内管2的内腔截面形成若干个第二狭流通道21,所述第一压陷部10与第二压陷部20位置一一对应。相邻第一压陷部10之间具有扭转夹角,相邻第二压陷部20之间具有扭转夹角。进一步,相邻第一压陷部10之间扭转过渡,相邻第二压陷部20之间扭转过渡,扭转过渡处自然形成喇叭状圆滑过渡,如此不会出现死角。
再进一步,每个第一压陷部10及第二压陷部20均由两个对称设置的压陷区100组成。
如图7所示,为了便于安装所述内管2长度长于外管1,所述内管2的两端分别自外管1的两端伸出。根据反应/混合/热交换管不同用途和流体工艺、规模要求,第一狭流通道11的截面大小可有不同的选择。
一种反应/混合/热交换器,包括壳体、管板和封头,其特征在于:还包括上述的双腔反应/混合/热交换反应管,双腔反应/混合/热交换反应管安装在管板上,其中第一流体流通通道12为管程,供参与反应/混合/热交换的第一流体流动;外管1外为壳程,其中壳程及内管2的内腔供换热介质流动。需要参与反应/混合/热交换的第一流体分子在第一狭流通道11处被强制挤压结合,通过扭转过渡处时,第一流体被释放、混合、扭转,然后进入下一个第一狭流通道11再次被挤压,周而复始的强化效果,比近似于平推流的单流道效果为好,其间产生或需求的热量通过外管1的壁体及内管2的壁体与壳程及内管2的内腔中流动的换热介质瞬间交换。热交换效能比目前本领域常见的普通管式、列管式换热器要高得多,比康宁(玻璃本身换热系数就不高)夹板三明治式换热系数也要高。例如,康宁反应器目前仅能实现部分产品年流量2000立方的强放热反应,而本发明提出的反应器能够实现年产百万吨级的高压、强烈放热、吸热的流体连续化反应产品。
上面以举例方式对本发明进行了说明,但本发明不限于上述具体实施例,凡基于本发明所做的任何改动或变型均属于本发明要求保护的范围。

Claims (8)

  1. 一种双腔反应/混合/热交换管,其特征在于,包括:外管(1)和内管(2),所述内管(2)穿装于外管(1)中,所述外管(1)上具有若干个第一压陷部(10),所述第一压陷部(10)使得外管(1)的内腔截面形成若干个第一狭流通道(11),所述外管(1)的内壁面与内管(2)的外壁面之间形成第一流体流通通道(12)。
  2. 根据权利要求1所述的一种双腔反应/混合/热交换管,其特征在于:所述内管(2)上具有若干个第二压陷部(20),所述第二压陷部(20)使得内管(2)的内腔截面形成若干个第二狭流通道(21)。
  3. 根据权利要求2所述的一种双腔反应/混合/热交换管,其特征在于:所述第一压陷部(10)与第二压陷部(20)位置一一对应。
  4. 根据权利要求3所述的一种双腔反应/混合/热交换反应管,其特征在于:相邻第一压陷部(10)之间具有扭转夹角,相邻第二压陷部(20)之间具有扭转夹角。
  5. 根据权利要求4所述的一种双腔反应/混合/热交换反应管,其特征在于:相邻第一压陷部(10)之间扭转过渡,相邻第二压陷部(20)之间扭转过渡,扭转过渡处为喇叭状圆滑过渡。
  6. 根据权利要求4所述的一种双腔反应/混合/热交换反应管,其特征在于:每个第一压陷部(10)及第二压陷部(20)均由两个对称设置的压陷区(100)组成。
  7. 根据权利要求4所述的一种双腔反应/混合/热交换反应管,其特征在于:所述内管(2)长度长于外管(1),所述内管(2)的两端分别自外管(1)的两端伸出。
  8. 一种反应/混合/热交换器,包括壳体、管板和封头,其特征在于:还包括如权利要求1至7任意一项所述的双腔反应/混合/热交换反应管,双腔反应/混合/热交换反应管安装在管板上,其中第一流体流通通道(12)为管程,供参与反应/混合/热交换的第一流体流动;外管(1)外为壳程,其中壳程及内管(2)的内腔供换热介质流动。
PCT/CN2019/118506 2018-12-17 2019-11-14 一种反应/混合/热交换管及反应器 WO2020125286A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19899855.1A EP3901549B1 (en) 2018-12-17 2019-11-14 Heat exchange tube and heat exchanger
JP2021555623A JP2022517147A (ja) 2018-12-17 2019-11-14 反応・混合・熱交換管及び反応器
US17/350,046 US20210310743A1 (en) 2018-12-17 2021-06-17 Reaction tube/mixing tube/heat exchange tube and reactor/mixer/heat exchanger comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811607047.9A CN109520354B (zh) 2018-12-17 2018-12-17 一种反应/混合/热交换管及反应器
CN201811607047.9 2018-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/350,046 Continuation-In-Part US20210310743A1 (en) 2018-12-17 2021-06-17 Reaction tube/mixing tube/heat exchange tube and reactor/mixer/heat exchanger comprising the same

Publications (1)

Publication Number Publication Date
WO2020125286A1 true WO2020125286A1 (zh) 2020-06-25

Family

ID=65797462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118506 WO2020125286A1 (zh) 2018-12-17 2019-11-14 一种反应/混合/热交换管及反应器

Country Status (5)

Country Link
US (1) US20210310743A1 (zh)
EP (1) EP3901549B1 (zh)
JP (1) JP2022517147A (zh)
CN (1) CN109520354B (zh)
WO (1) WO2020125286A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520354B (zh) * 2018-12-17 2021-11-30 青岛钛钽铌锆连续化反应器有限公司 一种反应/混合/热交换管及反应器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358749A (en) 1966-07-22 1967-12-19 Dow Chemical Co Interfacial surface generator and method of preparation thereof
JPS5749795B2 (zh) * 1975-05-01 1982-10-23
JPH1038491A (ja) * 1996-07-23 1998-02-13 Toyo Radiator Co Ltd 二重管型熱交換器
CN1506647A (zh) * 2002-12-10 2004-06-23 ���µ�����ҵ��ʽ���� 双层管式热交换器
JP2009092269A (ja) * 2007-10-04 2009-04-30 Denso Corp 二重管式熱交換器
JP2011133141A (ja) * 2009-12-22 2011-07-07 Kazuo Taka 加熱管及び調理機
CN203100496U (zh) * 2013-02-22 2013-07-31 郑州大学 套管式换热器
US20160377349A1 (en) 2014-01-09 2016-12-29 Intergas Heating Assets B.V. Heat exchanger, method for forming thereof and use thereof
CN106895716A (zh) * 2010-08-18 2017-06-27 韩昂系统有限公司 套管式热交换器和制造该套管式热交换器的方法
CN109520354A (zh) * 2018-12-17 2019-03-26 青岛钛钽铌锆连续化反应器有限公司 一种反应/混合/热交换管及反应器
CN209978688U (zh) * 2018-12-17 2020-01-21 青岛钛钽铌锆连续化反应器有限公司 一种双腔反应管及反应器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1922838A (en) * 1931-05-14 1933-08-15 Modine Mfg Co Heat exchange device
GB1340913A (en) * 1972-01-27 1973-12-19 British Industrial Plastics Tubular elements
JPS5749795A (en) * 1980-09-09 1982-03-23 Kichisaburo Nagahara Double heat exchange helical tube
DE3205213C2 (de) * 1982-02-13 1985-08-22 Kronos Titan-Gmbh, 5090 Leverkusen Vorrichtung zum Kühlen heißer Gas-TiO↓2↓-Suspensionen aus der Titandioxidherstellung durch Dampfphasenoxidation von Titantetrachlorid
JP3100051B2 (ja) * 1990-02-19 2000-10-16 株式会社ノリタケカンパニーリミテド 熱交換用管体及び熱交換器
AU5014293A (en) * 1992-08-28 1994-03-29 Turbocom, Inc. Method and apparatus for mixing fluids
JP4437217B2 (ja) * 2000-04-12 2010-03-24 株式会社フロンティアエンジニアリング 流動性食品材料の連続冷却/加熱装置
JP4221260B2 (ja) * 2003-08-29 2009-02-12 株式会社ティラド 熱交換器及びその製造方法
JP2005164210A (ja) * 2003-11-28 2005-06-23 Yoshida Kikai Kogyo Kk 熱交換器並びに該機器に使用する多重管及びその製造方法
FR2953917B1 (fr) * 2009-12-10 2012-01-20 Hutchinson Echangeur thermique interne pour circuit de climatisation de vehicule automobile et un tel circuit
WO2014167506A1 (en) * 2013-04-10 2014-10-16 Council Of Scientific & Industrial Research Flow reactor with pinched pipe sections for mixing and heat transfer
JP2015102265A (ja) * 2013-11-22 2015-06-04 シーアイ化成株式会社 熱交換器用伝熱管
PL232196B1 (pl) * 2015-07-05 2019-05-31 Aic Spolka Akcyjna Kondensacyjny wymiennik ciepła

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358749A (en) 1966-07-22 1967-12-19 Dow Chemical Co Interfacial surface generator and method of preparation thereof
JPS5749795B2 (zh) * 1975-05-01 1982-10-23
JPH1038491A (ja) * 1996-07-23 1998-02-13 Toyo Radiator Co Ltd 二重管型熱交換器
CN1506647A (zh) * 2002-12-10 2004-06-23 ���µ�����ҵ��ʽ���� 双层管式热交换器
JP2009092269A (ja) * 2007-10-04 2009-04-30 Denso Corp 二重管式熱交換器
JP2011133141A (ja) * 2009-12-22 2011-07-07 Kazuo Taka 加熱管及び調理機
CN106895716A (zh) * 2010-08-18 2017-06-27 韩昂系统有限公司 套管式热交换器和制造该套管式热交换器的方法
CN203100496U (zh) * 2013-02-22 2013-07-31 郑州大学 套管式换热器
US20160377349A1 (en) 2014-01-09 2016-12-29 Intergas Heating Assets B.V. Heat exchanger, method for forming thereof and use thereof
CN109520354A (zh) * 2018-12-17 2019-03-26 青岛钛钽铌锆连续化反应器有限公司 一种反应/混合/热交换管及反应器
CN209978688U (zh) * 2018-12-17 2020-01-21 青岛钛钽铌锆连续化反应器有限公司 一种双腔反应管及反应器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3901549A4

Also Published As

Publication number Publication date
CN109520354A (zh) 2019-03-26
US20210310743A1 (en) 2021-10-07
EP3901549A1 (en) 2021-10-27
CN109520354B (zh) 2021-11-30
JP2022517147A (ja) 2022-03-04
EP3901549B1 (en) 2023-12-27
EP3901549A4 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
Anxionnaz et al. Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art
EP1679115A1 (en) High performance microreactor
Schubert et al. Microstructure devices for applications in thermal and chemical process engineering
US7507387B2 (en) Microreactor
CA2646863C (en) Micro-reactor system
JP4840916B2 (ja) 高温高圧マイクロミキサー
CN106390882B (zh) 一种微反应单元及微反应器
JP2005046651A (ja) マイクロリアクターを用いた反応方法
CN108212046B (zh) 一种蜂窝型通道微反应器
JP2011508657A (ja) プロセス強化マイクロ流体装置
JP2011504221A (ja) マイクロ流体の自励発振ミキサおよび装置ならびにその使用方法
EP2113558B1 (en) Microreactor
WO2020125286A1 (zh) 一种反应/混合/热交换管及反应器
CN211436155U (zh) 一种微反应器
CN211487612U (zh) 一种无压烧结碳化硅反应器
Haase et al. Gas–liquid flow regime prediction in Minichannels: a dimensionless, universally applicable approach
CN103418321B (zh) 通道流速均布的层叠型微通道反应器
CN114225858A (zh) 一种套管结构微反应器及应用
CN209978688U (zh) 一种双腔反应管及反应器
JP5004444B2 (ja) マイクロリアクタ
CN211463116U (zh) 预混装置及带有预混装置的管式微反应器
CN111437782A (zh) 一种微反应通道、反应基板以及微通道反应器
CN109425252B (zh) 一种多功能狭缝流体微型通道反应混合热交换单元
CN115253747A (zh) 静态混合换热器及其制备方法、应用
JP4491728B2 (ja) マイクロミキサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019899855

Country of ref document: EP

Effective date: 20210719