WO2020124922A1 - 一种显示面板及其制作方法、显示装置 - Google Patents

一种显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2020124922A1
WO2020124922A1 PCT/CN2019/084521 CN2019084521W WO2020124922A1 WO 2020124922 A1 WO2020124922 A1 WO 2020124922A1 CN 2019084521 W CN2019084521 W CN 2019084521W WO 2020124922 A1 WO2020124922 A1 WO 2020124922A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
display panel
unit
substrate
layer
Prior art date
Application number
PCT/CN2019/084521
Other languages
English (en)
French (fr)
Inventor
龚文亮
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/604,268 priority Critical patent/US11165048B1/en
Publication of WO2020124922A1 publication Critical patent/WO2020124922A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present application relates to the field of display, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • Adding a polarizer to the display panel can reduce the reflectivity of the display panel to outside light under strong light, but it also has the following defects.
  • the polarizer will reduce the service life of the organic light-emitting materials in the OLED display panel; on the other hand, the polarizer is thicker and the material is brittle, which is not conducive to the development of dynamic bending display panels.
  • new materials, new technologies and new processes must be introduced to replace polarizers.
  • the above-mentioned problems can be solved by using the color film layer instead of the polarizer.
  • the display panel using color film technology can not only realize the thinning and thinning of the display panel, but also increase the light output of the display panel from 42% to 60%, which improves the contrast of the display panel.
  • the display panel using color film technology has a high reflectivity, which is not conducive to outdoor display.
  • the present application provides a display panel, a manufacturing method thereof, and a display device, to solve the problem of a high reflectivity of the display panel to the external environment light.
  • An embodiment of the present application provides a display panel, which includes a substrate and a color film layer disposed above the substrate;
  • the display panel includes a pixel opening area and a non-opening area disposed around the pixel opening area
  • the color film layer includes a first color resisting unit corresponding to the pixel opening area and corresponding to the non-opening
  • a second color resistive unit in the region the second color resistive unit includes a body and a nano-array structure disposed on the surface of the body for reducing light reflectivity.
  • the first color resistive unit includes at least a red color resistive unit, a green color resistive unit, and a blue color resistive unit
  • the second color resistive unit includes a black color resistive unit
  • any two of the red color resistive unit, the green color resistive unit and the blue color resistive unit are isolated by the black color resistive unit.
  • the body and the nanoarray structure are integrated.
  • the nanoarray structure includes a conical nanoarray structure.
  • the display panel further includes an organic light-emitting layer and an encapsulation layer;
  • the organic light-emitting layer is provided on the substrate, the encapsulation layer is provided on the organic light-emitting layer, and the color film layer is provided on the encapsulation layer.
  • the display panel further includes a liquid crystal layer between the substrate and the color film layer;
  • the color film layer further includes a substrate, and the first color resistive unit and the second color resistive unit are disposed on the surface of the substrate.
  • materials of the first color resist unit and the second color resist unit include photoresist.
  • An embodiment of the present application provides a display device including a display panel, the display panel including a substrate and a color film layer disposed above the substrate;
  • the display panel includes a pixel opening area and a non-opening area disposed around the pixel opening area
  • the color film layer includes a first color resisting unit corresponding to the pixel opening area and corresponding to the non-opening
  • a second color resistive unit in the region the second color resistive unit includes a body and a nano-array structure disposed on the surface of the body for reducing light reflectivity.
  • the first color resistive unit includes at least a red color resistive unit, a green color resistive unit, and a blue color resistive unit
  • the second color resistive unit includes a black color resistive unit
  • any two of the red color resistive unit, the green color resistive unit and the blue color resistive unit are isolated by the black color resistive unit.
  • the body and the nanoarray structure are integrated.
  • the nanoarray structure includes a conical nanoarray structure.
  • the display panel further includes an organic light-emitting layer and an encapsulation layer;
  • the organic light-emitting layer is provided on the substrate, the encapsulation layer is provided on the organic light-emitting layer, and the color film layer is provided on the encapsulation layer.
  • the display panel further includes a liquid crystal layer between the substrate and the color film layer;
  • the color film layer further includes a substrate, and the first color resistive unit and the second color resistive unit are disposed on the surface of the substrate.
  • materials of the first color resist unit and the second color resist unit include photoresist.
  • An embodiment of the present application provides a method for manufacturing a display panel.
  • the display panel includes a pixel opening area and a non-opening area disposed around the pixel opening area.
  • the method for manufacturing the display panel includes:
  • the second color resisting unit includes a body and a nano-array structure disposed on the surface of the body for reducing light reflectivity.
  • the step of forming a color resist layer above the substrate and forming a nanoarray pattern on the surface of the color resist layer includes: providing a template with a nanoarray pattern, through nanoimprinting The technology transfers the nano array pattern on the template to the color resist layer to form the nano array pattern on the surface of the color resist layer.
  • the step of patterning the color resist layer formed with the nanoarray pattern to form a second color resist unit corresponding to the non-opening area includes: The color resist layer with the nano-array pattern is exposed, etched, developed, and baked to pattern the color resist layer with the nano-array pattern.
  • the method further includes: forming a conical nano-array structure on the surface of the body.
  • the method further includes: forming an organic light-emitting layer on the substrate, forming an encapsulation layer on the organic light-emitting layer, and forming the color film layer on the encapsulation layer.
  • the method further includes: providing a substrate, and forming the first color resist unit and the second color resist unit on the surface of the substrate.
  • the present application provides a display panel, a method for manufacturing the same, and a display device.
  • a nano-array structure is prepared on the surface of the black color resistive unit in the color film layer, and the reflectance of the color film layer is reduced through the absorption and diffuse reflection of the nano-array structure. Furthermore, the contrast of the display panel is improved.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a conical nanostructure provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of light reflection by a nano-array structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a method for manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 7a-7c are schematic flowcharts of a method for manufacturing a display panel provided by an embodiment of the present application.
  • the present application provides a display panel and a manufacturing method thereof to solve the problem that the display panel has a high light reflectivity to the external environment.
  • FIG. 1 is a schematic structural diagram of a display panel 10 provided by a first embodiment of the present application.
  • a display panel 10 including a substrate 11 and a color film layer 12 disposed above the substrate 11.
  • the substrate 11 includes an array substrate including a substrate and a thin film transistor array disposed on the substrate, the thin film transistor array is used to control the display of pixels in the display panel 10 .
  • the display panel 10 includes a pixel opening area 10a and a non-opening area 10b disposed around the pixel opening area 10a.
  • the display panel 10 includes a display area and a non-display area provided around the display area.
  • a plurality of pixels for realizing the display function of the display panel 10 are provided in the display area, and there is a gap between adjacent pixels;
  • the area corresponding to the pixel is a pixel opening area 10a, and the area corresponding to the gap between the pixels is a non-opening area 10b.
  • the color film layer 12 includes a first color resistive unit 121 corresponding to the pixel opening region 10a and a second color resistive unit 122 corresponding to the non-opening region 10b.
  • the first color resisting unit 121 is used to filter the light output of the pixels into light of a predetermined chromaticity; the second color resisting unit 122 is used to absorb the light output between the pixels to prevent the neighboring pixels Light leakage occurs.
  • the second color resisting unit 122 includes a body 1221 and a nano-array structure 1222 disposed on the surface of the body 1221 for reducing light reflectivity.
  • a body 1221 When external light enters the display panel 10, multiple diffuse reflections occur at the nanoarray structure 1222, thereby increasing light absorption and consumption.
  • the present application reduces the reflectivity of the color film layer 12 through the synergistic effect of diffuse reflection and absorption, thereby improving the contrast of the display panel 10.
  • the body 1221 and the nanoarray structure 1222 are integrated.
  • Each pixel includes at least a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the first color resist unit 121 includes at least a red color resist unit, a green color resist unit, and a blue color resist unit
  • the second color resist unit 122 includes a black color resist unit.
  • the red color resistive unit corresponds to the red subpixel
  • the green color resistive unit corresponds to the green subpixel
  • the blue color resistive unit corresponds to the blue subpixel
  • any two of the red color resistive unit, the green color resistive unit and the blue color resistive unit are isolated by the black color resistive unit to prevent light leakage between adjacent pixels.
  • the first color resist unit 121 and the second color resist unit 122 are made of photoresist.
  • Nano Imprint Lithography is a technology that transfers the micro-nano structure on the template to the material to be processed with the aid of photoresist.
  • the nano-array structure 1222 is formed on the surface of the body 1221 by nano-imprint technology, and the nano-nano structure of the nano-array structure 1222 can be realized by using the nano-imprint technology.
  • Nanoimprint technology breaks through the difficulties of traditional photoresist in the process of feature size reduction, and has the characteristics of high resolution, low cost and high yield.
  • the rough surface is prone to diffuse reflection and appears dull and dull.
  • the application of the nanoarray structure 1222 can increase the roughness of the second color resisting unit 122.
  • the nano-array structure 1222 In order to improve the absorption and reflection of light by the nano-array structure 1222, the nano-array structure 1222 needs to be designed into a shape and structure that are easy to reflect light.
  • the nanoarray structure 1222 includes a conical nanoarray structure.
  • FIG. 4 is a schematic diagram of a conical nanostructure 1222a provided by a fourth embodiment of the present application.
  • the conical nanoarray structure 1222a is also called a pyramidal nanoarray structure.
  • FIG. 5 is a schematic diagram of the light reflected by the nano-array structure 1222 provided by the fifth embodiment of the present application.
  • the conical nano-array structure 1222a includes conical nano-structures 1222a arranged in an array.
  • the conical nanostructure 1222a can be simplified as an isosceles triangle when viewed from the side.
  • the ratio coefficient ⁇ can be obtained. The larger the value of ⁇ and the thinner the isosceles triangle, the more the number of reflections of light on the surface and the lower the reflectance.
  • the smaller the ⁇ value the more difficult the preparation of nanostructures. Therefore, it is necessary to synthesize technical cost and technical effect to optimize ⁇ value.
  • the shape of the nano-array structure 1222 is not limited to a conical shape, but may also be a semi-circular shape or other shapes that can increase diffuse reflection and absorption of light.
  • the structure of the color film layer 12 can be applied to one of a liquid crystal display panel and an organic light-emitting display panel, and both can improve the aperture ratio of the corresponding display panel 10.
  • FIG. 2 is a schematic structural diagram of a display panel 10 according to a second embodiment of the present application.
  • the display panel 10 further includes an organic light-emitting layer 13 and an encapsulation layer 14;
  • the organic light-emitting layer 13 is disposed on the substrate 11, and the organic light-emitting layer 13 includes an organic light-emitting material;
  • the encapsulation layer 14 is disposed on the organic light-emitting layer 13, and the encapsulation layer 14 is used to protect the organic light-emitting layer 13 from external water and oxygen;
  • the color film layer 12 is disposed on the encapsulation layer 14.
  • the color film layer 12 is used to filter the light emitted from the display panel 10.
  • FIG. 3 is a schematic structural diagram of a display panel 10 according to a third embodiment of the present application.
  • the display panel 10 further includes a liquid crystal layer 15 between the substrate 11 and the color film layer 12;
  • the color film layer 12 further includes a substrate, and the first color resist unit 121 and the second color resist unit 122 are disposed on the surface of the substrate.
  • the substrate 11 includes an array substrate, and the array substrate is disposed opposite to the color film layer 12.
  • an embodiment of the present application provides a display device including a display panel, the display panel including a substrate and a color film layer disposed above the substrate;
  • the display panel includes a pixel opening area and a non-opening area disposed around the pixel opening area
  • the color film layer includes a first color resisting unit corresponding to the pixel opening area and corresponding to the non-opening
  • a second color resistive unit in the region the second color resistive unit includes a body and a nano-array structure disposed on the surface of the body for reducing light reflectivity.
  • the first color resist unit includes at least a red color resist unit, a green color resist unit, and a blue color resist unit
  • the second color resist unit includes a black color resist unit
  • any two of the red color resistive unit, the green color resistive unit and the blue color resistive unit are isolated by the black color resistive unit.
  • the body and the nanoarray structure are integrally provided.
  • the nanoarray structure includes a conical nanoarray structure.
  • the display panel further includes an organic light-emitting layer and an encapsulation layer;
  • the organic light-emitting layer is provided on the substrate, the encapsulation layer is provided on the organic light-emitting layer, and the color film layer is provided on the encapsulation layer.
  • the display panel further includes a liquid crystal layer between the substrate and the color film layer;
  • the color film layer further includes a substrate, and the first color resistive unit and the second color resistive unit are disposed on the surface of the substrate.
  • materials of the first color resistive unit and the second color resistive unit include photoresist.
  • FIG. 6 is a schematic structural diagram of a method for manufacturing a display panel 10 according to a sixth embodiment of the present application.
  • the display panel 10 includes a pixel opening area 10a and a non-opening area 10b disposed around the pixel opening area 10a.
  • the display panel 10 includes a display area and a non-display area provided around the display area.
  • a plurality of pixels for implementing the display function of the display panel 10 are provided in the display area, and there is a gap between adjacent pixels;
  • the area corresponding to the pixel is a pixel opening area 10a, and the area corresponding to the gap between the pixels is a non-opening area 10b.
  • the manufacturing method of the display panel 10 includes:
  • step S10 providing a substrate 11
  • Step S20 forming a color resist layer above the substrate 11, and forming a nano array pattern on the surface of the color resist layer.
  • the step S20 specifically includes: providing a template with a nanoarray pattern, and transferring the nanoarray pattern on the template to the color resist layer by nanoimprinting technology, The surface of the color resist layer forms the nanoarray pattern.
  • the template is a metal template.
  • step S30 patterning the color resist layer formed with the nanoarray pattern to form a second color resist unit 122 corresponding to the non-opening region 10b;
  • the step S30 specifically includes: exposing, etching, developing, and baking the color resist layer formed with the nanoarray pattern to remove The color resist layer is patterned.
  • step S40 a first color resist unit 121 corresponding to the pixel opening region 10a is formed between adjacent second color resist units 122 to form a color film layer 12;
  • the second color resisting unit 122 includes a body 1221 and a nano-array structure 1222 disposed on the surface of the body 1221 for reducing light reflectivity.
  • the first color resisting unit 121 is used to filter the light output of the pixels into light with a predetermined chromaticity; the second color resisting unit 122 is used to absorb the light output between the pixels to prevent adjacent pixels Light leakage occurs between.
  • the second color resisting unit 122 includes a body 1221 and a nano-array structure 1222 disposed on the surface of the body 1221 for reducing light reflectivity.
  • a body 1221 When external light enters the display panel 10, multiple diffuse reflections occur at the nanoarray structure 1222, thereby increasing the absorption and consumption of light, and reducing the color film layer 12 through the synergistic effect of diffuse reflection and absorption The reflectance, in turn, improves the contrast of the display panel 10.
  • the body 1221 and the nanoarray structure 1222 are integrated.
  • the method further includes the step of forming a conical nanoarray structure on the surface of the body.
  • the nanoarray structure 1222 includes a conical nanoarray structure.
  • Each pixel includes at least a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the first color resist unit 121 includes at least a red color resist unit, a green color resist unit, and a blue color resist unit
  • the second color resist unit 122 includes a black color resist unit.
  • the red color resistive unit corresponds to the red subpixel
  • the green color resistive unit corresponds to the green subpixel
  • the blue color resistive unit corresponds to the blue subpixel
  • any two of the red color resistive unit, the green color resistive unit and the blue color resistive unit are separated by the black color resistive unit to prevent light leakage between adjacent pixels.
  • the first color resist unit 121 and the second color resist unit 122 are made of photoresist.
  • the structure of the color film layer 12 can be applied to one of the liquid crystal display panel 10 and the organic light-emitting display panel 10, and both can improve the aperture ratio of the display panel 10.
  • the manufacturing method of the display panel 10 further includes forming an organic light-emitting layer on the substrate, forming an encapsulation layer on the organic light-emitting layer, and forming the color film layer on the encapsulation layer The steps corresponding to the preparation of the organic light-emitting layer 13 and the encapsulation layer 14;
  • the organic light emitting layer 13 is formed on the substrate 11, and the organic light emitting layer 13 includes an organic light emitting material;
  • the encapsulation layer 14 is formed on the organic light-emitting layer 13, and the encapsulation layer 14 is used to protect the organic light-emitting layer 13 from external water and oxygen;
  • the color film layer 12 is formed on the encapsulation layer 14.
  • the color film layer 12 is used to filter the light emitted from the display panel 10.
  • the manufacturing method of the display panel 10 further includes the steps of providing a substrate and forming the first color resistive unit and the second color resistive unit on the surface of the substrate.
  • the display panel 10 further includes a liquid crystal layer 15 between the substrate 11 and the color film layer 12;
  • the color film layer 12 further includes a substrate, and the first color resist unit 121 and the second color resist unit 122 are formed on the surface of the substrate.
  • the substrate 11 includes an array substrate, and the array substrate is disposed opposite to the color film layer 12.
  • the present application provides a display panel, a method for manufacturing the same, and a display device.
  • a nano-array structure is prepared on the surface of the black color resistive unit in the color film layer. Reflectivity, thereby improving the contrast of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(10)及其制作方法、显示装置,在彩膜层(12)中黑色色阻单元(122)表面制备纳米阵列结构(1222),通过纳米阵列结构(1222)对光线的吸收和漫反射作用降低彩膜层(12)的反射率,进而提高显示面板(10)的对比度。

Description

一种显示面板及其制作方法、显示装置 技术领域
本申请涉及显示领域,特别涉及一种显示面板及其制作方法、显示装置。
背景技术
在显示面板中加入偏光片能够降低强光下显示面板对外界光线的反射率,但是也存在以下缺陷。一方面,偏光片会减少OLED显示面板中有机发光材料的使用寿命;另一个方面,偏光片厚度较大、材质脆,不利于动态弯折显示面板的开发。为了开发基于OLED显示技术的动态弯折产品,必须导入新材料、新技术以及新工艺代替偏光片。
在显示面板中,采用彩膜层替代偏光片的方式能够解决上述问题。使用彩膜技术的显示面板不仅能够实现显示面板的轻薄化,而且能够将显示面板的出光率从42%提高至60%,提高了显示面板的对比度。但是,使用彩膜技术的显示面板的反射率较高,不利于室外显示。
因此,目前亟需一种显示面板及其制作方法以解决上述问题。
技术问题
本申请提供了一种显示面板及其制作方法、显示装置,以解决显示面板对外界环境光反射率较高的问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供了一种显示面板,其包括基板以及设置于所述基板上方的彩膜层;
其中,所述显示面板包括像素开口区以及设置于所述像素开口区周围的非开口区,所述彩膜层包括对应于所述像素开口区的第一色阻单元以及对应于所述非开口区的第二色阻单元,所述第二色阻单元包括本体以及设置于所述本体表面用于降低光线反射率的纳米阵列结构。
在本申请的显示面板中,所述第一色阻单元至少包括红色色阻单元、绿色色阻单元和蓝色色阻单元,所述第二色阻单元包括黑色色阻单元;
其中,所述红色色阻单元、所述绿色色阻单元和所述蓝色色阻单元中的任意两者通过所述黑色色阻单元隔离。
在本申请的显示面板中,所述本体和所述纳米阵列结构一体化设置。
在本申请的显示面板中,所述纳米阵列结构包括圆锥状纳米阵列结构。
在本申请的显示面板中,所述显示面板还包括有机发光层和封装层;
其中,所述有机发光层设置在所述基板上,所述封装层设置在所述有机发光层上,所述彩膜层设置在所述封装层上。
在本申请的显示面板中,所述显示面板还包括位于所述基板和所述彩膜层之间的液晶层;
所述彩膜层还包括衬底,所述第一色阻单元和所述第二色阻单元设置在所述衬底表面。
在本申请的显示面板中,所述第一色阻单元和所述第二色阻单元的材料包括光刻胶。
本申请实施例提供了一种显示装置,其包括显示面板,所述显示面板包括基板以及设置于所述基板上方的彩膜层;
其中,所述显示面板包括像素开口区以及设置于所述像素开口区周围的非开口区,所述彩膜层包括对应于所述像素开口区的第一色阻单元以及对应于所述非开口区的第二色阻单元,所述第二色阻单元包括本体以及设置于所述本体表面用于降低光线反射率的纳米阵列结构。
在本申请的显示装置中,所述第一色阻单元至少包括红色色阻单元、绿色色阻单元和蓝色色阻单元,所述第二色阻单元包括黑色色阻单元;
其中,所述红色色阻单元、所述绿色色阻单元和所述蓝色色阻单元中的任意两者通过所述黑色色阻单元隔离。
在本申请的显示装置中,所述本体和所述纳米阵列结构一体化设置。
在本申请的显示装置中,所述纳米阵列结构包括圆锥状纳米阵列结构。
在本申请的显示装置中,所述显示面板还包括有机发光层和封装层;
其中,所述有机发光层设置在所述基板上,所述封装层设置在所述有机发光层上,所述彩膜层设置在所述封装层上。
在本申请的显示装置中,所述显示面板还包括位于所述基板和所述彩膜层之间的液晶层;
所述彩膜层还包括衬底,所述第一色阻单元和所述第二色阻单元设置在所述衬底表面。
在本申请的显示装置中,所述第一色阻单元和所述第二色阻单元的材料包括光刻胶。
本申请实施例提供了一种显示面板的制作方法,所述显示面板包括像素开口区以及设置于所述像素开口区周围的非开口区,所述显示面板的制作方法包括:
提供一基板;
在所述基板上方形成色阻层,并在所述色阻层的表面形成纳米阵列图案;
对形成有所述纳米阵列图案的所述色阻层进行图案化处理,以形成对应于所述非开口区的第二色阻单元;
在相邻所述第二色阻单元之间形成对应于所述像素开口区的第一色阻单元,以形成彩膜层;
其中,所述第二色阻单元包括本体以及设置于所述本体表面用于降低光线反射率的纳米阵列结构。
在本申请的制作方法中,所述在所述基板上方形成色阻层,并在所述色阻层的表面形成纳米阵列图案的步骤包括:提供一具有纳米阵列图案的模板,通过纳米压印技术将所述模板上的纳米阵列图案转印至所述色阻层,以在所述色阻层的表面形成所述纳米阵列图案。
在本申请的制作方法中,所述对形成有所述纳米阵列图案的所述色阻层进行图案化处理,以形成对应于所述非开口区的第二色阻单元的步骤包括:对形成有所述纳米阵列图案的所述色阻层进行曝光、刻蚀、显影和烘烤,以将形成有所述纳米阵列图案的所述色阻层图案化。
在本申请的制作方法中,还包括:在本体表面形成圆锥状纳米阵列结构。
在本申请的制作方法中,还包括:在所述基板上形成有机发光层,在所述有机发光层上形成封装层,在所述封装层上形成所述彩膜层。
在本申请的制作方法中,还包括:提供衬底,在所述衬底表面形成所述第一色阻单元和所述第二色阻单元。
有益效果
本申请提供一种显示面板及其制作方法、显示装置,在彩膜层中黑色色阻单元表面制备纳米阵列结构,通过纳米阵列结构对光线的吸收和漫反射作用降低彩膜层的反射率,进而提高显示面板的对比度。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示面板的结构示意图。
图2为本申请实施例提供的显示面板的结构示意图。
图3为本申请实施例提供的显示面板的结构示意图。
图4为本申请实施例提供的圆锥状纳米结构的示意图。
图5为本申请实施例提供的纳米阵列结构对光线反射的示意图。
图6为本申请实施例提供的显示面板制作方法的结构示意图。
图7a-7c为本申请实施例提供的显示面板制作方法的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请提供了一种显示面板及其制作方法,以解决显示面板对外界环境光反射率较高的问题。
请参阅图1,图1为本申请第一实施例提供的显示面板10的结构示意图。
根据本申请的一个方面,提供了一种显示面板10,包括基板11以及设置于所述基板11上方的彩膜层12。
在一种实施例中,所述基板11包括阵列基板,所述阵列基板包括基底以及设置在所述基底上的薄膜晶体管阵列,所述薄膜晶体管阵列用于控制所述显示面板10中像素的显示。
其中,所述显示面板10包括像素开口区10a以及设置于所述像素开口区10a周围的非开口区10b。
显示面板10包括显示区以及围绕所述显示区设置的非显示区,所述显示区内设置有多个用于实现显示面板10显示功能的像素,相邻所述像素之间存在空隙;
其中,所述像素所对应的区域为像素开口区10a,所述像素之间的空隙所对应的区域为非开口区10b。
在一种实施例中,所述彩膜层12包括对应于所述像素开口区10a的第一色阻单元121以及对应于所述非开口区10b的第二色阻单元122。
所述第一色阻单元121用以将所述像素的出光过滤为预定色度的光;所述第二色阻单元122用以将所述像素之间的出光吸收,防止相邻像素之间发生漏光。
所述第二色阻单元122包括本体1221以及设置于所述本体1221表面用于降低光线反射率的纳米阵列结构1222。当外界光线照入所述显示面板10时,在所述纳米阵列结构1222处发生多次漫反射,进而增加了光线的吸收和消耗。本申请通过漫反射和吸收的协同作用降低了彩膜层12的反射率,进而提高了显示面板10的对比度。
在一种实施例中,所述本体1221和所述纳米阵列结构1222一体化设置。
每个所述像素至少包括红色子像素、绿色子像素和蓝色子像素。
在一种实施例中,所述第一色阻单元121至少包括红色色阻单元、绿色色阻单元和蓝色色阻单元,所述第二色阻单元122包括黑色色阻单元。
所述红色色阻单元对应于所述红色子像素,所述绿色色阻单元对应于所述绿色子像素,所述蓝色色阻单元对应于所述蓝色子像素。
其中,所述红色色阻单元、所述绿色色阻单元和所述蓝色色阻单元中的任意两者通过所述黑色色阻单元隔离,以防止相邻所述像素之间发生漏光。
在一种实施例中,所述第一色阻单元121和所述第二色阻单元122的制备材料包括光刻胶。
纳米压印技术(Nano Imprint Lithography,简称NIL)是通过光刻胶辅助,将模板上的微纳结构转移到待加工材料上的技术。
其通常包括以下三个步骤:
1、模板的技工;
2、图样的转移;
3、衬底的加工。
在一种实施例中,所述纳米阵列结构1222通过纳米压印技术形成于所述本体1221表面,通过采用纳米压印技术能够实现纳米阵列结构1222的微纳结构。
纳米压印技术突破了传统光刻胶在特征尺寸减少过程中的难题,具有分辨率高、低成本和高产率的特点。
粗糙的表面容易发生漫反射而显得黯淡无光,本申请通过纳米阵列结构1222的设置能够提升第二色阻单元122的粗糙度。
为了提升所述纳米阵列结构1222对光线的吸收和反射,需将纳米阵列结构1222设计为易于光线反射的形状和结构。例如,所述纳米阵列结构1222包括圆锥状纳米阵列结构。
请参阅图4,图4为本申请第四实施例提供的圆锥状纳米结构1222a的示意图。
圆锥状纳米阵列结构1222a也称为金字塔状纳米阵列结构。
请参阅图5,图5为本申请第五实施例提供的纳米阵列结构1222对光线反射的示意图。
在一种实施例中,圆锥状纳米阵列结构1222a包括阵列排布的圆锥状纳米结构1222a。所述圆锥状纳米结构1222a从侧面看可以简化为等腰三角形。通过计算等腰三角形的高H与底面积S之比,可以得到其比值系数ρ。当ρ值越大,等腰三角形越细,那么光照射到表面的反射次数越多,反射率也越低。ρ值越小,纳米结构的制备也越困难。因此,必须综合技术成本以及技术效果,进行ρ值的优化。
在一种实施例中,所述纳米阵列结构1222的形状并不仅限于圆锥状,也可以为半圆体状等其它能够增加对光的漫反射和吸收的形状。
在一种实施例中,所述彩膜层12结构可应用于液晶显示面板和有机发光显示面板中的其中一者,均能够改善相对应的显示面板10的开口率。
请参阅图2,图2为本申请第二实施例提供的显示面板10的结构示意图。
在一种实施例中,所述显示面板10还包括有机发光层13和封装层14;
所述有机发光层13设置在所述基板11上,所述有机发光层13包括有机发光材料;
所述封装层14设置在所述有机发光层13上,所述封装层14用以保护所述有机发光层13免受外界水氧侵蚀;
所述彩膜层12设置在所述封装层14上,所述彩膜层12用以对所述显示面板10的出光进行过滤。
请参阅图3,图3为本申请第三实施例提供的显示面板10的结构示意图。
在一种实施例中,所述显示面板10还包括位于所述基板11和所述彩膜层12之间的液晶层15;
所述彩膜层12还包括衬底,所述第一色阻单元121和所述第二色阻单元122设置在所述衬底表面。
在一种实施例中,所述基板11包括阵列基板,所述阵列基板与所述彩膜层12相对设置。
在一种实施例中,本申请实施例提供了一种显示装置,其包括显示面板,所述显示面板包括基板以及设置于所述基板上方的彩膜层;
其中,所述显示面板包括像素开口区以及设置于所述像素开口区周围的非开口区,所述彩膜层包括对应于所述像素开口区的第一色阻单元以及对应于所述非开口区的第二色阻单元,所述第二色阻单元包括本体以及设置于所述本体表面用于降低光线反射率的纳米阵列结构。
在一种实施例中,在本申请的显示装置中,所述第一色阻单元至少包括红色色阻单元、绿色色阻单元和蓝色色阻单元,所述第二色阻单元包括黑色色阻单元;
其中,所述红色色阻单元、所述绿色色阻单元和所述蓝色色阻单元中的任意两者通过所述黑色色阻单元隔离。
在一种实施例中,在本申请的显示装置中,所述本体和所述纳米阵列结构一体化设置。
在一种实施例中,在本申请的显示装置中,所述纳米阵列结构包括圆锥状纳米阵列结构。
在一种实施例中,在本申请的显示装置中,所述显示面板还包括有机发光层和封装层;
其中,所述有机发光层设置在所述基板上,所述封装层设置在所述有机发光层上,所述彩膜层设置在所述封装层上。
在一种实施例中,在本申请的显示装置中,所述显示面板还包括位于所述基板和所述彩膜层之间的液晶层;
所述彩膜层还包括衬底,所述第一色阻单元和所述第二色阻单元设置在所述衬底表面。
在一种实施例中,在本申请的显示装置中,所述第一色阻单元和所述第二色阻单元的材料包括光刻胶。
请参阅图6,图6为本申请第六实施例提供的显示面板10制作方法的结构示意图。
根据本申请的又一个方面,提供了一种显示面板10的制作方法,所述显示面板10包括像素开口区10a以及设置于所述像素开口区10a周围的非开口区10b。
显示面板10包括显示区以及围绕所述显示区设置的非显示区,所述显示区内设置有多个用于实现显示面板10显示功能的像素,相邻所述像素之间存在空隙;
其中,所述像素所对应的区域为像素开口区10a,所述像素之间的空隙所对应的区域为非开口区10b。
所述显示面板10的制作方法包括:
请参阅图7a,步骤S10、提供一基板11;
步骤S20、在所述基板11上方形成色阻层,并在所述色阻层的表面形成纳米阵列图案。
在一种实施例中,所述步骤S20具体包括:提供一具有纳米阵列图案的模板,通过纳米压印技术将所述模板上的纳米阵列图案转印至所述色阻层,以在所述色阻层的表面形成所述纳米阵列图案。
在一种实施例中,所述模板为金属模板。
请参阅图7b,步骤S30、对形成有所述纳米阵列图案的所述色阻层进行图案化处理,以形成对应于所述非开口区10b的第二色阻单元122;
在一种实施例中,所述步骤S30具体包括:对形成有所述纳米阵列图案的所述色阻层进行曝光、刻蚀、显影和烘烤,以将形成有所述纳米阵列图案的所述色阻层图案化。
请参阅图7c,步骤S40、在相邻所述第二色阻单元122之间形成对应于所述像素开口区10a的第一色阻单元121,以形成彩膜层12;
其中,所述第二色阻单元122包括本体1221以及设置于所述本体1221表面用于降低光线反射率的纳米阵列结构1222。
所述第一色阻单元121用以将所述像素的出光过滤为预定色度的光;所述第二色阻单元122用以将所述像素之间的出光吸收,防止相邻所述像素之间发生漏光。
所述第二色阻单元122包括本体1221以及设置于所述本体1221表面用于降低光线反射率的纳米阵列结构1222。当外界光线照入所述显示面板10时,在所述纳米阵列结构1222处发生多次漫反射,进而增加了光线的吸收和消耗,通过漫反射和吸收的协同作用降低了彩膜层12的反射率,进而提高了显示面板10的对比度。
在一种实施例中,所述本体1221和所述纳米阵列结构1222一体化设置。
在一种实施例中,还包括:在本体表面形成圆锥状纳米阵列结构的步骤,此时,所述纳米阵列结构1222包括圆锥状纳米阵列结构。
每个所述像素至少包括红色子像素、绿色子像素和蓝色子像素。
在一种实施例中,所述第一色阻单元121至少包括红色色阻单元、绿色色阻单元和蓝色色阻单元,所述第二色阻单元122包括黑色色阻单元。
所述红色色阻单元对应于所述红色子像素,所述绿色色阻单元对应于所述绿色子像素,所述蓝色色阻单元对应于所述蓝色子像素。
其中,所述红色色阻单元、所述绿色色阻单元和所述蓝色色阻单元中的任意两者通过所述黑色色阻单元间隔,以防止相邻所述像素之间发生漏光。
在一种实施例中,所述第一色阻单元121和所述第二色阻单元122的制备材料包括光刻胶。
在一种实施例中,所述彩膜层12结构可应用于液晶显示面板10和有机发光显示面板10中的其中一者,均能够改善显示面板10的开口率。
在一种实施例中,所述显示面板10的制作方法还包括在所述基板上形成有机发光层,在所述有机发光层上形成封装层,在所述封装层上形成所述彩膜层的步骤,对应有机发光层13和封装层14的制备;
其中,所述有机发光层13形成在所述基板11上,所述有机发光层13包括有机发光材料;
所述封装层14形成在所述有机发光层13上,所述封装层14用以保护所述有机发光层13免受外界水氧侵蚀;
所述彩膜层12形成在所述封装层14上,所述彩膜层12用以对所述显示面板10的出光进行过滤。
在一种实施例中,所述显示面板10的制作方法还包括提供衬底,在所述衬底表面形成所述第一色阻单元和所述第二色阻单元的步骤。
在一种实施例中,所述显示面板10还包括位于所述基板11和所述彩膜层12之间的液晶层15;
所述彩膜层12还包括衬底,所述第一色阻单元121和所述第二色阻单元122形成在所述衬底表面。
在一种实施例中,所述基板11包括阵列基板,所述阵列基板与所述彩膜层12相对设置。
有益效果:本申请提供一种显示面板及其制作方法、显示装置,在彩膜层中黑色色阻单元表面制备纳米阵列结构,通过纳米阵列结构对光线的吸收和漫反射作用降低彩膜层的反射率,进而提高显示面板的对比度。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,其包括基板以及设置于所述基板上方的彩膜层;
    其中,所述显示面板包括像素开口区以及设置于所述像素开口区周围的非开口区,所述彩膜层包括对应于所述像素开口区的第一色阻单元以及对应于所述非开口区的第二色阻单元,所述第二色阻单元包括本体以及设置于所述本体表面用于降低光线反射率的纳米阵列结构。
  2. 根据权利要求1所述的显示面板,其中,所述第一色阻单元至少包括红色色阻单元、绿色色阻单元和蓝色色阻单元,所述第二色阻单元包括黑色色阻单元;
    其中,所述红色色阻单元、所述绿色色阻单元和所述蓝色色阻单元中的任意两者通过所述黑色色阻单元隔离。
  3. 根据权利要求1所述的显示面板,其中,所述本体和所述纳米阵列结构一体化设置。
  4. 根据权利要求1所述的显示面板,其中,所述纳米阵列结构包括圆锥状纳米阵列结构。
  5. 根据权利要求1所述的显示面板,其中,所述显示面板还包括有机发光层和封装层;
    其中,所述有机发光层设置在所述基板上,所述封装层设置在所述有机发光层上,所述彩膜层设置在所述封装层上。
  6. 根据权利要求1所述的显示面板,其中,所述显示面板还包括位于所述基板和所述彩膜层之间的液晶层;
    所述彩膜层还包括衬底,所述第一色阻单元和所述第二色阻单元设置在所述衬底表面。
  7. 根据权利要求1所述的显示面板,其中,所述第一色阻单元和所述第二色阻单元的材料包括光刻胶。
  8. 一种显示装置,其包括显示面板,所述显示面板包括基板以及设置于所述基板上方的彩膜层;
    其中,所述显示面板包括像素开口区以及设置于所述像素开口区周围的非开口区,所述彩膜层包括对应于所述像素开口区的第一色阻单元以及对应于所述非开口区的第二色阻单元,所述第二色阻单元包括本体以及设置于所述本体表面用于降低光线反射率的纳米阵列结构。
  9. 根据权利要求8所述的显示装置,其中,所述第一色阻单元至少包括红色色阻单元、绿色色阻单元和蓝色色阻单元,所述第二色阻单元包括黑色色阻单元;
    其中,所述红色色阻单元、所述绿色色阻单元和所述蓝色色阻单元中的任意两者通过所述黑色色阻单元隔离。
  10. 根据权利要求8所述的显示装置,其中,所述本体和所述纳米阵列结构一体化设置。
  11. 根据权利要求8所述的显示装置,其中,所述纳米阵列结构包括圆锥状纳米阵列结构。
  12. 根据权利要求8所述的显示装置,其中,所述显示面板还包括有机发光层和封装层;
    其中,所述有机发光层设置在所述基板上,所述封装层设置在所述有机发光层上,所述彩膜层设置在所述封装层上。
  13. 根据权利要求8所述的显示装置,其中,所述显示面板还包括位于所述基板和所述彩膜层之间的液晶层;
    所述彩膜层还包括衬底,所述第一色阻单元和所述第二色阻单元设置在所述衬底表面。
  14. 根据权利要求8所述的显示装置,其中,所述第一色阻单元和所述第二色阻单元的材料包括光刻胶。
  15. 一种显示面板的制作方法,所述显示面板包括像素开口区以及设置于所述像素开口区周围的非开口区,所述显示面板的制作方法包括:
    提供一基板;
    在所述基板上方形成色阻层,并在所述色阻层的表面形成纳米阵列图案;
    对形成有所述纳米阵列图案的所述色阻层进行图案化处理,以形成对应于所述非开口区的第二色阻单元;
    在相邻所述第二色阻单元之间形成对应于所述像素开口区的第一色阻单元,以形成彩膜层;
    其中,所述第二色阻单元包括本体以及设置于所述本体表面用于降低光线反射率的纳米阵列结构。
  16. 根据权利要求15所述的显示面板的制作方法,其中,所述在所述基板上方形成色阻层,并在所述色阻层的表面形成纳米阵列图案的步骤包括:提供一具有纳米阵列图案的模板,通过纳米压印技术将所述模板上的纳米阵列图案转印至所述色阻层,以在所述色阻层的表面形成所述纳米阵列图案。
  17. 根据权利要求15所述的显示面板的制作方法,其中,所述对形成有所述纳米阵列图案的所述色阻层进行图案化处理,以形成对应于所述非开口区的第二色阻单元的步骤包括:对形成有所述纳米阵列图案的所述色阻层进行曝光、刻蚀、显影和烘烤,以将形成有所述纳米阵列图案的所述色阻层图案化。
  18. 根据权利要求15所述的显示面板的制作方法,其中,还包括:在本体表面形成圆锥状纳米阵列结构。
  19. 根据权利要求15所述的显示面板的制作方法,其中,还包括:在所述基板上形成有机发光层,在所述有机发光层上形成封装层,在所述封装层上形成所述彩膜层。
  20. 根据权利要求15所述的显示面板的制作方法,其中,还包括:提供衬底,在所述衬底表面形成所述第一色阻单元和所述第二色阻单元。
PCT/CN2019/084521 2018-12-19 2019-04-26 一种显示面板及其制作方法、显示装置 WO2020124922A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/604,268 US11165048B1 (en) 2018-12-19 2019-04-26 Display panel, method of manufacturing same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811566684.6 2018-12-19
CN201811566684.6A CN109686764A (zh) 2018-12-19 2018-12-19 一种显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2020124922A1 true WO2020124922A1 (zh) 2020-06-25

Family

ID=66188505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084521 WO2020124922A1 (zh) 2018-12-19 2019-04-26 一种显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11165048B1 (zh)
CN (1) CN109686764A (zh)
WO (1) WO2020124922A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098231A (zh) * 2019-04-29 2019-08-06 武汉华星光电半导体显示技术有限公司 有机发光二极管显示屏及其制作方法
CN111864105A (zh) * 2020-07-09 2020-10-30 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN113629206A (zh) * 2021-07-20 2021-11-09 武汉华星光电半导体显示技术有限公司 显示面板和显示装置
CN113690390A (zh) * 2021-08-23 2021-11-23 京东方科技集团股份有限公司 显示面板及其制备方法、显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456710A (zh) * 2011-10-28 2012-05-16 昆山维信诺显示技术有限公司 Oled及其制作方法、透视性单向发光屏体和触摸屏
CN104597656A (zh) * 2015-02-13 2015-05-06 深圳市华星光电技术有限公司 彩膜基板、制造方法及液晶面板
CN105511154A (zh) * 2016-02-19 2016-04-20 京东方科技集团股份有限公司 显示基板及其制作方法
US20160306225A1 (en) * 2015-04-14 2016-10-20 Boe Technology Group Co., Ltd. Method for manufacturing display substrate, display substrate and display device
CN106324877A (zh) * 2016-10-20 2017-01-11 京东方科技集团股份有限公司 显示面板、显示面板制作方法及驱动方法、显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859856B (zh) * 2010-06-04 2016-06-15 清华大学 发光二极管
JP6302186B2 (ja) * 2012-08-01 2018-03-28 株式会社半導体エネルギー研究所 表示装置
CN103474453B (zh) * 2013-09-23 2016-09-21 京东方科技集团股份有限公司 电致发光装置及其制备方法
US20160161650A1 (en) * 2014-12-05 2016-06-09 Pixtronix, Inc. Displays with selective reflectors and color conversion material
KR102447049B1 (ko) * 2016-01-05 2022-09-27 삼성디스플레이 주식회사 대면적 미러 표시 장치 및 이의 제조 방법
DE102016109349A1 (de) * 2016-05-20 2017-11-23 Infineon Technologies Ag Chipgehäuse, verfahren zum bilden eines chipgehäuses und verfahren zum bilden eines elektrischen kontakts
CN106157818B (zh) * 2016-09-05 2022-06-24 京东方科技集团股份有限公司 一种柔性显示面板、其制作方法及显示装置
KR102711982B1 (ko) * 2016-11-30 2024-09-27 엘지디스플레이 주식회사 커버 윈도우 및 이를 포함하는 폴더블 표시장치
US11024775B2 (en) * 2017-10-17 2021-06-01 Lumileds Llc LED emitters with integrated nano-photonic structures to enhance EQE
KR102710728B1 (ko) * 2018-09-11 2024-09-27 삼성전자주식회사 광변조 소자와 그 동작방법 및 광변조 소자를 포함하는 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456710A (zh) * 2011-10-28 2012-05-16 昆山维信诺显示技术有限公司 Oled及其制作方法、透视性单向发光屏体和触摸屏
CN104597656A (zh) * 2015-02-13 2015-05-06 深圳市华星光电技术有限公司 彩膜基板、制造方法及液晶面板
US20160306225A1 (en) * 2015-04-14 2016-10-20 Boe Technology Group Co., Ltd. Method for manufacturing display substrate, display substrate and display device
CN105511154A (zh) * 2016-02-19 2016-04-20 京东方科技集团股份有限公司 显示基板及其制作方法
CN106324877A (zh) * 2016-10-20 2017-01-11 京东方科技集团股份有限公司 显示面板、显示面板制作方法及驱动方法、显示装置

Also Published As

Publication number Publication date
US20210336229A1 (en) 2021-10-28
US11165048B1 (en) 2021-11-02
CN109686764A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020124922A1 (zh) 一种显示面板及其制作方法、显示装置
CN104965333B (zh) Coa型液晶显示面板及其制作方法
US9891463B2 (en) Mask for forming color filter layer, method for fabricating color filter substrate, and color filter substrate
US11404511B2 (en) Organic light-emitting display panel including moth-eye anti-reflection layer, and manufacturing method thereof
WO2020172955A1 (zh) 一种oled显示面板及其制备方法
WO2018120463A1 (zh) 彩色滤光层基板的制造方法及其应用的液晶面板的制造方法
TW201329614A (zh) 大型相位移遮罩及大型相位移遮罩之製造方法
WO2016187987A1 (zh) 一种显示面板及其制作方法、显示装置
KR101550008B1 (ko) 레이저 간섭 리소그래피를 이용한 표면 플라즈모닉 컬러 필터의 제조 방법
WO2018176603A1 (zh) 光罩及其主动开关阵列基板的制造方法
WO2019128959A1 (zh) 液晶显示面板及其制作方法
WO2018228091A1 (zh) 黑矩阵及其制备方法和系统、显示基板和显示装置
WO2019214108A1 (zh) 一种显示面板的制作方法以及显示面板
US20120307171A1 (en) Pixel structure, lcd panel, and manufacturing method thereof
TWI286346B (en) Method of fabricating color filter substrate
WO2020037733A1 (zh) 一种阵列基板及其制造方法
CN105093818B (zh) 掩模图形的制造方法和掩模图形
EP3644120A1 (en) Photomask structure and method for manufacturing array substrate
WO2018201545A1 (zh) 光罩及其应用于主动开关阵列基板的制造方法
TWI375839B (en) Liquid crystal panel and method of making the same
KR101445844B1 (ko) 레이저 간섭 리소그래피를 이용한 표면 플라즈모닉 컬러 필터의 제조 방법
JP2006293228A (ja) 半透過型液晶表示装置用カラーフィルタおよびその製造方法
WO2016101356A1 (zh) Boa阵列基板的制作方法及boa阵列基板
US10948790B2 (en) Display panel manufacturing method and display panel
WO2020037741A1 (zh) Tft阵列基板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900631

Country of ref document: EP

Kind code of ref document: A1