WO2020124592A1 - 车辆及其升降装置 - Google Patents

车辆及其升降装置 Download PDF

Info

Publication number
WO2020124592A1
WO2020124592A1 PCT/CN2018/122829 CN2018122829W WO2020124592A1 WO 2020124592 A1 WO2020124592 A1 WO 2020124592A1 CN 2018122829 W CN2018122829 W CN 2018122829W WO 2020124592 A1 WO2020124592 A1 WO 2020124592A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
suspension
chassis
hinged
lifting
Prior art date
Application number
PCT/CN2018/122829
Other languages
English (en)
French (fr)
Inventor
包玉奇
任冠男
刘玉洪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880032198.8A priority Critical patent/CN110770053B/zh
Priority to PCT/CN2018/122829 priority patent/WO2020124592A1/zh
Publication of WO2020124592A1 publication Critical patent/WO2020124592A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/20Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load

Definitions

  • the invention relates to a vehicle and its lifting device, and belongs to the technical field of image shooting auxiliary equipment.
  • a gimbal equipped with a gimbal and a camera will be used for remote shooting and first-angle driving to shoot a special angle of view.
  • Existing gimbals generally connect the chassis and the wheel axles of the wheel sets together, so that the chassis can be driven to rotate by driving the wheel set to adjust the center of gravity of the gimbal, so as to reduce the possibility of the tipping of the gimbal .
  • this method of rotating the chassis to move up and down cannot achieve self-locking, and the force may sometimes be unbalanced.
  • embodiments of the present invention provide a vehicle and its lifting device.
  • a lifting device for connecting a suspension mechanism and a chassis of a vehicle including: a multi-link mechanism and a deformation driving mechanism; the first end of the multi-link mechanism is used for The chassis is articulated, and the second end of the multi-link mechanism is used to articulate with the suspension mechanism; the deformation driving mechanism is drive-connected with the multi-link mechanism to drive the multi-link mechanism to drive the chassis move up and down.
  • a vehicle including: a chassis, a plurality of suspension mechanisms, a plurality of wheel sets, and a lifting device; a plurality of the wheel sets are respectively disposed on opposite sides of the chassis; the wheels
  • the group includes: a wheel axle and a wheel sleeved on the wheel axle, each wheel axle is rotatably connected with its corresponding suspension mechanism, and the suspension mechanism is connected to the chassis through the lifting device;
  • the lifting device includes: Multi-link mechanism and deformation drive mechanism; the first end of the multi-link mechanism is hinged to the chassis, the second end of the multi-link mechanism is hinged to the suspension mechanism; the deformation drive mechanism is connected to the The multi-link mechanism is drive-connected to drive the multi-link mechanism to drive the chassis to move up and down.
  • the lifting device by providing a lifting device for connecting the suspension mechanism and the chassis, the lifting device can be used to lift the chassis, thereby adjusting the center of gravity of the vehicle, so that the vehicle can move at a high speed according to actual needs , Low-speed sports, climbing or other scenes to change the height of the chassis as needed.
  • the lifting device adopts the multi-link mechanism driven by the deformation driving mechanism, the multi-link mechanism can be self-locked in the whole process of movement through the rational design of the multi-link mechanism, thereby improving the vehicle deformation process Security.
  • FIG. 1 is a schematic diagram of a first modification of a vehicle provided by an embodiment of the present invention
  • Figure 2 is a top view of Figure 1;
  • FIG. 3 is a schematic structural diagram of a wheel set and a lifting device when the lifting device is in the first position according to an embodiment of the present invention
  • Figure 4 is a top view of Figure 3;
  • FIG. 5 is a cross-sectional view taken along line A-A in FIG. 4;
  • FIG. 6 is a schematic structural diagram of a wheel set and a lifting device when the lifting device is in the second position according to an embodiment of the present invention
  • FIG. 7 is a top view of FIG. 6;
  • FIG. 8 is a cross-sectional view taken along line B-B in FIG. 7;
  • FIG. 9 is a schematic diagram of a second modification of the vehicle provided by an embodiment of the present invention.
  • FIG. 10 is a plan view of FIG. 9;
  • FIG. 11 is a front view of a suspension mechanism and a wheel set provided by an embodiment of the present invention.
  • 12a to 12b are explosion diagrams of FIG. 11 at different viewing angles
  • 14a to 14c are schematic diagrams of the state when the suspension mechanism provided by the embodiment of the present invention is rotated to different positions.
  • FIG. 1 is a schematic diagram of a first variant of a vehicle 10 provided by this embodiment
  • FIG. 2 is a top view of FIG. 1.
  • the vehicle 10 provided by this embodiment includes a chassis 100, a plurality of suspension mechanisms 300, a plurality of wheel sets 400 disposed under the chassis 100, and a lifting device 200.
  • a plurality of wheel sets 400 are respectively disposed on opposite sides of the chassis 100.
  • FIG. 1 and FIG. 2 illustrate a scheme in which four wheel sets 400 are arranged on the left and right sides of the chassis 100, respectively.
  • there may be more or fewer wheel sets 400 for example, two wheel sets 400, three wheel sets 400, or six wheel sets 400.
  • the even number of wheel sets 400 can be divided on opposite sides of the chassis 100, and the other wheel set 400 can be arranged on one of the other sides.
  • the wheel sets 400 may be arranged in a regular triangle or isosceles triangle.
  • Each wheel set 400 includes a wheel axle (not shown in the figure) and a wheel 401 sleeved on the wheel axle.
  • the wheel 401 is rotated to drive the vehicle 10 forward, backward, or turn.
  • the wheel shaft is rotatably connected to its corresponding suspension mechanism 300, which is then connected to the chassis 100 via the lifting device 200.
  • the chassis 100 can be raised and lowered by the lifting device 200, that is, the height of the chassis 100 relative to the ground can be adjusted by the lifting device 200, so as to adjust the center of gravity of the vehicle 10, thereby improving the running time of the vehicle 10 Stability to prevent the vehicle 10 from rolling over.
  • the lifting device 200 can drive the chassis 100 to move in the vertical direction, can also drive the chassis 100 to tilt, or can also drive the chassis 100 to move along a curve.
  • the specific motion track can be designed according to actual needs. In this embodiment There are no special restrictions on it.
  • the chassis 100 may be a rectangular, circular, or any other suitable plate-like, block-like, or frame-like structure.
  • a stamped steel plate may be used as the chassis 100; in other examples, in order to make the vehicle 10 lighter, a chassis 100 that is molded into a block using plastic may also be used.
  • the combination of metal and plastic can also be used to achieve a balance between light weight and structural strength.
  • the chassis 100 may include an upper mounting plate 110 and a lower mounting plate 120 disposed oppositely, and a receiving cavity is formed between the upper mounting plate 110 and the lower mounting plate 120 to accommodate the lifting device Part of 200.
  • various peripherals may be installed on the chassis 100.
  • an image acquisition device such as a camera 30 or a video camera may be installed on the chassis 100.
  • a gimbal 20 (including but not limited to a single-axis gimbal, a dual-axis gimbal, and a three-axis gimbal) can be installed on the chassis 100, and then an image acquisition device such as a camera 30 or a video camera can be installed on the gimbal 20 In order to enhance the stability when shooting, to avoid shaking or distortion of the shooting screen.
  • a ball launching device capable of launching bullets may be installed on the chassis 100.
  • the marble launching device can also be installed on the gimbal 20 described above, so as to improve the stability of the marble launching device, thereby improving the shooting accuracy.
  • the suspension mechanism 300 of the wheel set 400 includes two longitudinal beams 311 respectively disposed on the outside and inside of the wheel 401, and is located between and fixed to the two longitudinal beams 311.
  • the cross beam 312, that is, the shape of all or part of the suspension mechanism 300 provided in this embodiment is U-shaped, which is reversed above the wheel 401 in FIGS. 1 and 2.
  • the bottom ends of the two longitudinal beams 311 may be provided with shaft holes for the axle to pass through, so that the wheels 401 sleeved on the axle can rotate relative to the suspension mechanism 300 to drive the vehicle 10 forward, backward, and turn.
  • the wheels 401 may be configured as Mecanum wheels to allow the vehicle 10 to move more flexibly on the ground.
  • the suspension mechanism 300 includes the above-mentioned beam 312, the lifting device 200 may be hinged with the beam 312.
  • the suspension mechanism 300 is not limited to the above-mentioned structural form.
  • the suspension mechanism 300 may have only one longitudinal beam 311, and the lifting device 200 is hinged with the one longitudinal beam 311.
  • the U-shaped suspension mechanism 300 shown in FIGS. 1 and 2 will be used as an example to describe the solution of this embodiment, but this should not be regarded as a specific limitation on the technical solution. The simple replacement on the basis still belongs to the protection scope of this embodiment.
  • the lifting device 200 may be an air cylinder, a linear motor, or the like.
  • the lifting device 200 when the lifting device 200 is a cylinder, the cylinder barrel of the cylinder may be fixed on the beam 312 of the suspension mechanism 300, and the piston rod of the cylinder is fixed to the bottom surface of the chassis 100 to support the chassis 100. In this way, when the height of the chassis 100 needs to be adjusted, the piston can be driven to move.
  • the lifting device 200 is a linear motor
  • the stator of the linear motor can be fixed on the beam 312 of the suspension mechanism 300, and the output shaft of the linear motor is fixed on the bottom surface of the chassis 100 to support the chassis 100.
  • the lifting device 200 may also be other separate parts or a combination of multiple separate parts, as long as it can drive the chassis 100 to move vertically.
  • the specific use of the lifting device 200 is not limited. What kind of structure. However, in order to enable those skilled in the art to better understand the technical content of this embodiment, the following will exemplarily introduce some alternative structures of the lifting device 200.
  • FIG. 3 is a schematic structural view of the wheel set and the lifting device 200 when the lifting device is in the first position provided by the embodiment;
  • FIG. 4 is a top view of FIG. 3;
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 4;
  • FIG. 6 is the embodiment Provided is a schematic structural view of the wheel set and the lifting device when the lifting device is in the second position;
  • FIG. 7 is a top view of FIG. 6;
  • FIG. 8 is a cross-sectional view taken along line BB in FIG.
  • the lifting device 200 includes a multi-link mechanism and a deformation driving mechanism.
  • the first end of the multi-link mechanism is used to articulate with the chassis 100 (please refer to FIGS. 1 and 2 ), and the second end is used to articulate with the beam 312 of the suspension mechanism 300.
  • the left end of the multi-link mechanism is hinged with the beam 312, and the right end of the multi-link mechanism is hinged with the chassis 100.
  • the deformation drive mechanism is connected to the multi-link mechanism by transmission, so that the mutual position between the links in the multi-link mechanism can be changed by the drive of the deformation drive mechanism, thereby driving the chassis 100 hinged with the multi-link mechanism to move vertically , And then change the center of gravity of the vehicle 10.
  • the deformation driving mechanism may be a manual device, such as one of the handwheels fixed in one of the multi-link mechanisms.
  • the deformation driving mechanism may also be an electric device mounted on the suspension mechanism 300 or the chassis 100, such as a chassis lifting driving motor 240 (see the detailed description below).
  • the multi-link mechanism connecting the chassis 100 and the suspension mechanism 300 is provided, and the deformation drive mechanism is used to drive the multi-link mechanism to change the relative position of the links of the multi-link mechanism, which can facilitate Adjust the height of the chassis 100 relative to the ground to prevent the vehicle 10 from rolling over. It is easy to understand that when the vehicle 10 needs to run at a high speed, or when the vehicle 10 rides on a high object, the height of the chassis 100 can be reduced by the lifting device 200 provided between the chassis 100 and the suspension mechanism 300 in order to improve the smooth running of the vehicle 10 Sex.
  • the multi-link mechanism includes: a push rod 210, a rocker arm 220 and a lifting arm 230.
  • the first end of the push rod 210 is used to articulate with the beam 312
  • the second end of the push rod 210 is hinged with the first end of the rocker arm 220
  • the second end of the rocker arm 220 is hinged with the first end of the lift arm 230
  • the second end of the lifting arm 230 is hinged with the chassis 100.
  • the bottom end of the push rod 210 is hinged with the right end of the beam 312
  • the top end of the push rod 210 is hinged with the left end of the rocker arm 220
  • the right end of the rocker arm 220 is hinged with the left end of the lifting arm 230.
  • the right end of the arm 230 is hinged with the chassis 100. It is easy to understand that by configuring the lengths of the push rod 210, the rocker arm 220, and the lift arm 230 to an appropriate ratio, the trajectory of the chassis 100 relative to the ground can be controlled, that is, in some examples, the push rod 210, rocker
  • the arm 220 and the elevating arm 230 are designed to have suitable lengths to vertically lift the chassis 100.
  • a deformation driving mechanism may be provided on the chassis 100.
  • the deformation driving mechanism includes: a chassis elevating driving motor 240, an upper support arm 261, and a lead screw 250.
  • the first end of the upper support arm 261 is hinged with the first end of the multi-link mechanism, the second end of the upper support arm 261 is fixed to the nut 252 of the screw 250, and the screw 251 of the screw 250 is used to drive the screw
  • the nut 252 of the screw 250 moves, and the nut 252 of the lead screw 250 drives the movement of the upper support arm 261, so that the movement of the upper support arm 261 drives the movement of the multi-link mechanism, thereby realizing the lifting and lowering of the chassis 100.
  • the chassis lifting drive motor 240 is fixed to the chassis 100, the screw 251 of the screw 250 is fixed to the output shaft of the chassis lifting drive motor 240, for example, welded together; the nut 252 of the screw 250 is connected to the top
  • the bottom end of the support arm 261 is fixed, and the top end of the upper support arm 261 is hinged with the lifting arm 230.
  • the chassis lifting drive motor 240 is started, and the output shaft of the chassis lifting drive motor 240 drives the screw 251 of the screw 250 to rotate, and the screw nut 252 sleeved on the screw 251 moves to the left along the axis of the screw 251 Or linear movement to the right, which will drive the upper support arm 261 to linear movement to the left or right.
  • FIG. 3 illustrates a state where the chassis 100 is at a high position relative to the ground
  • FIG. 6 illustrates a state where the chassis 100 is at a low position relative to the ground.
  • the screw rod and the upper support arm 261 of this embodiment are not necessary structures, as long as they are properly configured, in some implementable modes, these two structures can be omitted completely, and the lifting arm is directly driven by the chassis lifting drive motor 240 230 can be turned.
  • the reason why the screw 250 and the upper support arm 261 are provided in this embodiment is to consider the compact structure and the driving of the chassis lifting drive motor 240, that is, the low power motor can be used to drive the multi-connector by setting the screw 250 and the upper support arm 261.
  • the lever mechanism moves, and the overall volume of the lifting device 200 can also be reduced, that is, there is no need to configure a link with an excessively long length, which is beneficial to the compactness of the lifting device 200 and the vehicle 10.
  • the chassis lifting drive motor 240 is also an unnecessary structure.
  • the screw 251 of the screw 250 may be driven to rotate through a gear structure, a link structure, or any other suitable structure, thereby driving the nut 252 Do linear motion.
  • a handle is provided on one end of the screw 251 to drive the screw 251 to rotate by driving the handle to rotate.
  • the deformation driving mechanism may be disposed on the beam 312 of the suspension mechanism 300, and the deformation driving mechanism may also include a chassis lifting driving motor 240.
  • the output shaft of the chassis lifting drive motor 240 is inserted into the mounting hole provided by the push rod 210, and the output shaft is fixed with the push rod 210, so that the push rod 210 is driven to rotate through the output shaft, thereby driving the rocker arm 220 and lifting The arm 230 moves, thereby driving the chassis 100 connected to the lifting arm 230 to move relative to the ground, so as to change the height of the chassis 100 relative to the ground.
  • the lead screw 250 and the upper support arm 261 may also be provided as in the above example, so that the torque of the motor is transmitted to the push rod 210 through the lead screw 250 and the upper support arm 261 to realize the drive including the push rod 210, the multi-link mechanism including the rocker arm 220 and the elevating arm 230 moves, thereby driving the purpose of raising and lowering the chassis 100.
  • the chassis lifting drive motor 240, the lead screw, and the upper support arm 261 reference may be made to the above example and FIGS. 3 to 8, which will not be repeated here.
  • the lifting device 200 may further include a vibration damping mechanism 500, the first end of the vibration damping mechanism 500 is hinged with the rocker arm 220, and the vibration damping mechanism 500 The second end is fixed to the chassis 100.
  • the bottom end of the push rod 210 is hinged with the beam 312, and the top end of the push rod 210 is hinged with the left end of the elevating arm 230 and the left end of the vibration damping mechanism 500, respectively;
  • the lifting arm 230 is hinged to the top end of the upper support arm 261, and the upper support arm 261 is fixed to the screw nut 252.
  • the damping mechanism 500 may be any suitable damping mechanism 500 including a damping spring.
  • the technical solution will be exemplarily described below with a damping spring.
  • the rocker arm 220 may be configured in a triangular structure, and the push rod 210, the elevating arm 230, and the damping spring are respectively hinged at three vertices of the triangular structure.
  • the top end of the push rod 210 is hinged to the left vertex of the triangular rocker arm 220, and the left end of the elevating arm 230 is hinged to the lower vertex of the triangular rocker arm 220.
  • the left end of the damping spring is connected to the triangular rocker
  • the right vertex of the arm 220 is hinged.
  • the rocker arm 220 By setting the rocker arm 220 into a triangular structure, then the push rod 210, the elevating arm 230, and the damping spring are respectively hinged at the three vertices of the triangular rocker arm 220, so that when the multi-link mechanism moves, that is, when When the chassis 100 is raised and lowered, the vibration-damping spring can always be at a relatively good working angle, so that its vibration-damping performance is not substantially reduced.
  • the above multi-link mechanism further includes a suspension 270.
  • the first end of the suspension 270 is hinged with the suspension mechanism 300, for example, the first end of the suspension 270 is hinged with the beam 312.
  • the deformation driving mechanism further includes a lower support arm 262 whose first end is hinged with the second end of the suspension 270, and the second end of the lower support arm 262 is fixed with the nut 252 of the screw 250. Taking FIG.
  • the left end of the suspension 270 is hinged with the beam 312
  • the right end of the suspension 270 is hinged with the bottom of the lower support arm 262
  • the top of the lower support arm 262 is fixed to the nut 252 of the screw 250.
  • the second end of the suspension 270 may also be directly or indirectly hinged with the multi-link mechanism, whereby the suspension 270, the multi-link mechanism, and part of the suspension mechanism form a polygonal structure, To increase the support for the chassis.
  • the output shaft of the chassis lifting drive motor 240 drives the screw 251 of the screw 250 to rotate, and accordingly, the nut 252 sleeved on the screw 251 is driven to the left or right Do linear motion. Since the nut 252 moves linearly to the left or to the right, the lower support arm 262 fixed to the nut 252 also moves linearly to the left or right, which in turn drives the suspension 270 hinged to the lower support arm 262 to rotate .
  • the suspension 270 includes: a first connection arm 271, a suspension upper arm 272, a second connection arm 273, and a suspension lower arm 274.
  • the first connecting arm 271 is fixed to the suspension mechanism 300, for example, the first connecting arm 271 is fixed to the longitudinal beam 311 located inside the wheel 401, or the first connecting arm 271 is fixed to the inner side of the crossbeam 312.
  • the second connecting arm 273 is fixed to the chassis 100, which may be directly fixed or indirectly fixed.
  • the first end of the suspension upper arm 272 is hinged with the top end of the first connecting arm 271, and the second end of the suspension upper arm 272 is hinged with the top end of the second connecting arm 273.
  • first end of the lower arm 274 of the suspension is hinged with the bottom end of the first connecting arm 271
  • second end of the lower arm 274 of the suspension is hinged with the bottom end of the second connecting arm 273.
  • first end of the lower support arm 262 is also hinged with the second connecting arm 273, for example, the first end of the lower support arm 262 is hinged with the second end of the second connecting arm 273.
  • the first connecting arm 271 is fixed to the inner side of the cross member 312. Of course, it may also extend downward to the position of the longitudinal member 311 located inside the wheel 401.
  • the second connecting arm 273 is fixed on the chassis 100 and is disposed relative to the first connecting arm 271.
  • the left end of the suspension upper arm 272 is hinged with the top end of the first connecting arm 271, and the right end of the suspension upper arm 272 is hinged with the top end of the second connecting arm 273.
  • the left end of the suspension lower arm 274 is hinged with the bottom end of the first connecting arm 271, and the right end of the suspension lower arm 274 is hinged with the bottom end of the second connecting arm 273.
  • the support capacity for the chassis 100 can be improved, and the stability of the suspension 270 during movement can be enhanced, thereby improving the stability of the chassis 100 when it is raised and lowered.
  • the first connecting arm 271, the upper suspension arm 272, the second connecting arm 273, and the lower suspension arm 274 may be combined into a parallelogram structure.
  • the angle between the suspension upper arm 272 and the suspension lower arm 274 and the horizontal plane will change accordingly.
  • the first connecting arm 271 and a part of the suspension mechanism 300 are integrally formed as one piece. Specifically, the first connecting arm 271 and the cross member 312 or the longitudinal member 311 located inside the wheel 401 may be integrally formed.
  • the first connecting arm 271 and the beam 312 of the suspension mechanism 300 are an integrally formed integral piece, the left end of the push rod 210 is not only hinged with the beam 312 of the suspension mechanism 300, but also simultaneously The top end of a connecting arm 271 is hinged.
  • the left end of the push rod 210 may also be hinged with the beam 312 and the top of the first connecting arm 271.
  • the lifting device 200 further includes a bottom plate 275 and a support frame 276.
  • the supporting frame 276 and the second connecting arm 273 are fixed on the bottom plate 275, and the supporting frame 276 is located on the side of the second connecting arm 273 away from the first connecting arm 271, and the chassis lifting drive motor 240 is installed on the supporting frame 276.
  • the chassis lifting drive motor 240 and the fixing with the chassis 100 are facilitated.
  • the lifting device 200 further includes an articulated arm 277 fixed on the bottom plate 275, the articulated arm 277 is disposed between the second connecting arm 273 and the support frame 276, and the articulated arm 277
  • the top of the is hinged with the second end of the lifting arm 230 described above.
  • a vertically upward articulated arm 277 is provided above the bottom plate 275, and the top end of the articulated arm 277 is articulated with the right end of the extended lifting arm 230.
  • the upper support arm 261 can also be hinged with the right end of the lifting arm 230, but in some examples, as shown in FIGS.
  • the first end of the upper support arm 261 can be hinged at Between the first end of the elevating arm 230 and the second end of the elevating arm 230, and the hinge point of the upper support arm 261 and the elevating arm 230 is close to the second end of the elevating arm 230, so as to save the driving force, so that low power can be used ⁇ chassis up and down drive motor 240. Specifically, taking FIG.
  • the right end of the elevating arm 230 is hinged with the top end of the articulated arm 277
  • the upper support arm 261 is located on the left side of the articulated arm 277
  • the articulated arm 277 is articulated with the elevating arm 230
  • the point is located between the left and right ends of the lift arm 230, and the hinge point is closer to the right end of the lift arm 230. Since the fulcrum is closer to the motive force, the chassis lift drive motor 240 can drive a heavier-weight object with a small torque. It can be seen from the above that by reasonably arranging the fulcrums, the chassis lifting drive motor 240 only needs to output a small force to pry large-quality objects, which can further improve the stability.
  • the second connecting arm 273, the support frame 276, the hinge arm 277, and the bottom plate 275 may be integrally formed to form an integral piece to increase strength. Moreover, whether it is the second connecting arm 273, the supporting frame 276, the articulating arm 277 and the bottom plate 275 of the integrated structure, it is all partly arranged, or partly divided, all or part of them can be accommodated in the above relative arrangement The accommodation space formed by the upper mounting plate 110 and the lower mounting plate 120.
  • the vehicle 10 further includes a running drive mechanism and a steering drive mechanism.
  • the traveling drive mechanism may include a traveling drive motor (not shown in the figure) connected to the wheel shaft for driving the axle to drive the wheels 401 to rotate, so as to realize forward, backward, or steering of the vehicle 10;
  • the steering drive mechanism may It includes a wheel angle adjusting motor 610 that is drivingly connected to the suspension mechanism 300 for selectively driving the suspension mechanism 300 to rotate to drive the wheel 401 to rotate around the direction of gravity.
  • the rotation axis of the walking drive mechanism passes through the center axis of the wheel 401, and the rotation axis of the steering drive mechanism is substantially perpendicular to the center axis of the wheel body 21, that is, the rotation axis of the steering drive mechanism is substantially perpendicular to the walking drive The axis of rotation of the mechanism.
  • one or more of the running driving motor, the wheel angle adjusting motor 610 and the chassis lifting driving motor 240 described above and the suspension lifting driving motor described below may be brushless motors in this example , Brush motor or other types of motors.
  • a mounting seat is provided on the cross beam 312, and a wheel angle adjusting motor 610 of the steering mechanism is installed on the mount, and the The output shaft of the wheel angle adjusting motor 610 is vertically penetrated in the shaft hole of the motor base to drive the beam 312 to rotate.
  • the output shaft of the wheel angle adjustment motor 610 will drive the crossbeam 312 to rotate around the direction of gravity, that is, rotate along the dotted line in FIG. 5, and then drive and pass through the two The wheel set 400 in the shaft hole of the longitudinal beam 311 rotates around the dotted line.
  • the steering mechanism may further include other transmission mechanisms, such as a gear train drivingly connected to the wheel angle adjustment motor 610.
  • the push rod 210, rocker arm 220, lifting arm 230, upper support arm 261, lower support arm 262, first connection arm 271, suspension upper arm 272, suspension lower arm 274, second connection arm described above 273 and the articulated arm 277 do not limit the specific structure, for example, it can be a rod or a plate-shaped member.
  • the first variant of the vehicle 10 provided by this embodiment generally relies on the lifting device 200 used to connect the suspension mechanism 300 and the chassis 100, and the lifting device 200 can be used to lift the chassis 100.
  • the lifting device 200 adopts a multi-link mechanism driven by a deformation driving mechanism, the multi-link mechanism can be self-locked in the entire process of movement through a reasonable design of the multi-link mechanism, thereby improving the vehicle 10 Safety during deformation.
  • FIG. 9 is a schematic diagram of a second modification of the vehicle provided by this embodiment
  • FIG. 10 is a top view of FIG. 9.
  • a method for changing the center of gravity of the vehicle 10 is provided. From the following detailed description, those skilled in the art may find that this method generally drives the suspension mechanism 300 along the center parallel to the wheels 401. The axis of rotation is achieved with respect to the wheel 401 rotating.
  • FIG. 11 is a front view of the suspension mechanism and the wheel set provided in this embodiment
  • FIGS. 12a to 12b are explosion views of FIG. 11 at different viewing angles
  • FIG. 13 is a partial explosion view when the suspension mechanism is rotated to another position.
  • the suspension mechanism 300 includes a first portion 330 and a second portion 340 that are relatively rotatable, and a locking portion for locking the first portion 330 and the second portion 340; wherein,
  • the first part 330 may be the above-mentioned mounting seat fixed on the crossbeam 312, the first part 330 is drivingly connected to the wheel angle adjustment motor 610;
  • the second part 340 is fixed to the chassis 100 or articulated with the above lifting device 200, for example ,
  • the second part 340 can be articulated with the above multi-link mechanism, and the second part 340 is also rotatably connected to the first part 330 through the rotating shaft 350, so that it can be adjusted by rotating the first part 330 around the rotating shaft 350
  • the angle between the first part 330 and the bottom surface, that is, the height of the chassis 100 relative to the ground is adjusted, as shown in FIGS. 11 and 13.
  • the first part 330 is provided with a first shaft hole 332 through which the rotating shaft 350 passes
  • the second part 340 is provided with a second shaft hole 342 through which the rotating shaft 350 passes.
  • the rotating shaft 350 sequentially passes through the second shaft hole 342 and After the first shaft hole 332, the first part 330 and the second part 340 may be connected together.
  • the first part 330 can be driven to rotate around the rotating shaft 350 to adjust the height of the chassis 100.
  • the first part 330 and the second part 340 can be locked by the locking part It is ensured that the relative positions of the first part 330 and the second part 340 do not change.
  • the locking portion may include a first ratchet surface 331 provided on the first portion 330, and a second ratchet surface 331 provided on the second portion 340 to cooperate with the first ratchet surface 331 Ratchet surface 341.
  • first ratchet surface 331 and the second ratchet surface 341 When the first ratchet surface 331 and the second ratchet surface 341 are engaged, the first portion 330 and the second portion 340 will not rotate relative to each other.
  • the locking of the positions of the first part 330 and the second part 340 is achieved by providing mutually matching ratchet structures on the first part 330 and the second part 340, and the length of the rotating shaft 350 should generally be equal to or slightly larger than the first shaft hole The sum of the depth of 332 and the depth of the second shaft hole 342. It can be understood that the length of the rotating shaft 350 should not exceed the sum of the depth of the first shaft hole 332, the depth of the second shaft hole 342, and the height of the ratchet teeth on the first ratchet surface 331.
  • FIGS. 14a to 14c are schematic diagrams of the state when the suspension mechanism provided by this embodiment is rotated to different positions.
  • a part of the rotating shaft 350 is drawn out to disengage the first ratchet surface 331 and the second ratchet surface 341, and then the rotating shaft 350 can be circumvented Rotate the first part 330 so that the first part 330 rotates from the first position of FIG. 14a through the second position of FIG. 14b to the third position of FIG. 14c, and then meshes the first ratchet surface 331 and the second ratchet surface 341 together Finally, push the shaft 350 inwards to lock the positions of the first part 330 and the second part 340.
  • the suspension mechanism 300 can also be changed from the third position shown in FIG. 14c to the first position shown in FIG. 14a.
  • the screw 251 is used as the rotating shaft 350.
  • the locking portion includes a first internal thread provided in the first shaft hole 332, a second internal thread provided in the second shaft hole 342, and a first internal thread and a second internal thread provided on the screw 251, respectively Cooperating first external thread and second external thread.
  • first part 330 and the second part 340 need to be locked, pass the screw 251 through the second shaft hole 342 and the first shaft hole 332 in sequence, and extend into the first shaft hole 332 by a suitable length to make the screw 251
  • the first external thread is connected with the first internal thread in the first shaft hole 332, and at the same time, the second external thread on the screw 251 and the second internal thread in the second shaft hole 342 are also threaded, so that The first part 330 and the second part 340 are fixedly connected together by a screw 251.
  • the second shaft hole 342 may not be provided with the second internal thread, and correspondingly, the screw 251 is also not provided with the second external thread.
  • the head of the screw 251 can press the second part 340 on the first part 330 , The relative position of the first part 330 and the second part 340 can also be locked.
  • the screw 251 needs to be loosened, and the operation is relatively simple and convenient.
  • the rotating shaft 350 may be arranged in a tight fit with the first shaft hole 332 and the second shaft hole 342, so that when the rotating shaft 350 passes through the second shaft hole 342 and the first shaft hole 332 in sequence, The first part 330 and the second part 340 can be fixedly connected together.
  • the head of the rotating shaft 350 has a rib extending in the radial direction, and when the rotating shaft 350 sequentially passes through the second shaft hole 342 and the first shaft hole 332, the rib can press the second portion 340 When it is tight on the first part 330, the rotating shaft 350 may not be arranged in a tight fit with the second shaft hole 342.
  • the wheel shaft of the wheel set 400 may use a hollow shaft (that is, the wheel shaft is hollow), and a mounting beam with a suspension lifting drive motor is penetrated in the hollow shaft, the mounting beam and at least one longitudinal beam 311 fixed.
  • a suspension lifting drive motor (that is, the second part of the suspension mechanism) is installed on the mounting beam, the suspension lifting drive motor is accommodated in a hollow shaft, and the output shaft of the suspension lifting drive motor is directed toward one of the longitudinal beams 311 It extends and is drivingly connected to the longitudinal beam 311.
  • the suspension hoist drive motor When the suspension hoist drive motor is started, its output shaft can drive the suspension mechanism 300 to rotate about an axis parallel to the hollow shaft, thereby adjusting the height of the suspension mechanism 300, that is, the suspension mechanism can be converted from at least high to low and Switching from the low position to the high position, the height of the chassis 100 is adjusted during the lifting of the suspension mechanism 300.
  • the longitudinal beam is used as the first part of the suspension mechanism or some structures of the first part in this example, in other examples, other alternative structures may also be used as the first part of the suspension mechanism.
  • the second part of the suspension mechanism is not limited to include only the suspension lifting drive motor, it may also include other structures, such as an auxiliary transmission structure.
  • a through hole may be formed in the longitudinal beam 311, and the diameter of the through hole near the outer portion is smaller than the diameter of the through hole near the inner portion, and the output shaft of the suspension lifting drive motor is installed through the first bearing
  • the hollow shaft is installed at the portion near the inner side of the through hole through the second bearing.
  • the locking portion between the first portion 330 and the second portion 340 may be replaced with a slip ring structure equipped with a rotating electrical connection
  • the The slip ring structure can be driven by a driving device.
  • the rotation angle between the first part 330 and the second part 340 needs to be adjusted, it can be achieved by controlling the relative rotation of the slip ring structure.
  • the slip ring structure includes a relatively rotatable inner ring and outer ring, and the inner ring and outer ring can ensure electrical contact whether in a stationary state or a rotating state. The existing technology will not be repeated here.
  • the outer ring is fixedly connected to one of the first part 330 and the second part 340, and correspondingly, the inner ring is fixedly connected to the other one of the first part 330 and the second part 340.
  • the above fixed connection It can be a direct fixed connection or an indirect fixed connection through an intermediate component.
  • auxiliary transmission structures such as a link structure and a rack and pinion structure, can be added to assist in completing the conversion of the angle between the first part 330 and the second part 340.
  • whether to provide the driving force itself may be used as a lock for the first part and the second part.
  • the above-mentioned suspension lifting drive motor itself can be used as a locking part for locking the first part and the second part.
  • the above two variants can be used alone or in combination.
  • the vehicle chassis has at least two different heights, and the center of gravity of the vehicle can be in two different positions; when the above two deformation methods are used in combination, the vehicle chassis can at least There are four heights so that the center of gravity of the vehicle can be in at least four different positions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种升降装置(200)以及具有该装置的车辆(10)。升降装置(200)用于连接车辆(10)的悬挂机构(300)和底盘(100),包括:多连杆机构以及变形驱动机构。多连杆机构的第一端与底盘(100)铰接,多连杆机构的第二端与悬挂机构(300)铰接。变形驱动机构与多连杆机构传动连接,用于驱动多连杆机构带动底盘(100)上下移动。通过该升降装置(200)可以对底盘(100)进行升降以调整车辆(10)的重心,使得车辆(10)能够根据实际需要在高速运动、低速运动、爬坡或者其他场景下根据需要改变底盘的高度。

Description

车辆及其升降装置 技术领域
本发明涉及一种车辆及其升降装置,属于图像拍摄辅助设备技术领域。
背景技术
在电影行业或者摄影爱好者的拍摄中,会使用到搭载有云台和相机的云台车进行遥控拍摄和第一视角驾驶,以拍摄特殊视角的画面。现有的云台车一般是将底盘和轮对的轮轴转动连接在一起,从而可以通过驱动轮组旋转来带动底盘升降来调整云台车整体的重心,以降低云台车倾翻的可能性。然而,由于底盘上安装的云台和相机等设备的重量都很大,这种通过转动方式来驱动底盘上下移动的方式无法实现自锁,受力有时候会出现不平衡的情况。
发明内容
为了解决现有技术中存在的上述或其他潜在问题,本发明实施例提供一种车辆及其升降装置。
根据本发明的一些实施例,提供一种升降装置,用于连接车辆的悬挂机构和底盘,包括:多连杆机构以及变形驱动机构;所述多连杆机构的第一端用于与所述底盘铰接,所述多连杆机构的第二端用于与所述悬挂机构铰接;所述变形驱动机构与所述多连杆机构传动连接,用于驱动所述多连杆机构带动所述底盘上下移动。
根据本发明的一些实施例,提供一种车辆,包括:底盘、多个悬挂机构、多个轮组以及升降装置;多个所述轮组分别设置在所述底盘相对的两侧;所述轮组包括:轮轴、以及套设在所述轮轴上的车轮,每个轮轴均与其对应的悬挂机构转动连接,所述悬挂机构通过所述升降装置与所述底盘连接;所述升降装置,包括:多连杆机构以及变形驱动机构;所述多连杆机构的第一端与所述底盘铰接,所述多连杆机构的第二端与所述悬挂机构铰接;所述变形 驱动机构与所述多连杆机构传动连接,用于驱动所述多连杆机构带动所述底盘上下移动。
根据本发明实施例的技术方案,通过设置用来连接悬挂机构和底盘的升降装置,可以由该升降装置来实现对底盘的升降,从而调整车辆的重心,以便使得车辆能够根据实际需要在高速运动、低速运动、爬坡或者其他场景下根据需要改变底盘的高度。而且,由于升降装置采用了由变形驱动机构驱动的多连杆机构,故可以通过对多连杆机构的合理设计来实现多连杆机构在运动的全过程均能够自锁,从而提高车辆变形过程中的安全性。
本发明的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
通过参照附图的以下详细描述,本发明实施例的上述和其他目的、特征和优点将变得更容易理解。在附图中,将以示例以及非限制性的方式对本发明的多个实施例进行说明,其中:
图1为本发明实施例提供车辆的第一种变形方式示意图;
图2为图1的俯视图;
图3为本发明实施例提供的当升降装置位于第一位置时轮组与升降装置的结构示意图;
图4为图3的俯视图;
图5为图4中A-A向的剖视图;
图6为本发明实施例提供的当升降装置位于第二位置时轮组与升降装置的结构示意图;
图7为图6的俯视图;
图8为图7中B-B向的剖视图;
图9为本发明实施例提供的车辆的第二种变形方式的示意图;
图10为图9的俯视图;
图11为本发明实施例提供的悬挂机构与轮组的正视图;
图12a至图12b为图11在不同视角下的爆炸图;
图13为当悬挂机构转动到另一位置时的局部爆炸图;
图14a至图14c为本发明实施例提供的悬挂机构转动到不同位置时的状态示意图。
其中:
10-车辆;20-云台;30-相机;100-底盘;110-上安装板;120-下安装板;200-升降装置;210-推杆;220-摇臂;230-升降臂;240-底盘升降驱动电机;250-丝杠;251-螺杆;252-螺母;261-上支撑臂;262-下支撑臂;270-悬架;271-第一连接臂;272-悬架上臂;273-第二连接臂;274-悬架下臂;275-底板;276-支撑架;277-铰接臂;300-悬挂机构;311-纵梁;312-横梁;330-第一部分;331-第一棘齿面;332-第一轴孔;340-第二部分;341-第二棘齿面;342-第二轴孔;350-转轴;400-轮组;401-车轮;500-减振机构;610-车轮角度调整电机。
具体实施方式
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
图1为本实施例提供的第一种车辆10变形方式的示意图,图2为图1的俯视图。如图1和图2所示,本实施例提供的车辆10,包括:底盘100、多个悬挂机构300、设置在底盘100下方的多个轮组400、以及升降装置200。其中,多个轮组400分别设置在底盘100相对的两侧,例如图1和图2示意了四个轮组400分设在底盘100左侧和右侧的方案。当然,在其他一些示例中,也可以由更多或者更少的轮组400,例如两个轮组400、三个轮组400或者六个轮组400。容易理解,当车辆10设置有奇数个轮组 400时,可以将偶数个轮组400分设在底盘100相对的两侧,将其他一个轮组400设置在另外两侧中的其中一侧。例如,当设置三个轮组400时,可以按照正三角形或者等腰三角形的方式来布局轮组400。
每一个轮组400均包括:轮轴(图中未示出)以及套设在该轮轴上的车轮401,通过车轮401的转动,以便驱动车辆10前进、后退或者转向等。在本实施例中,轮轴转动连接在其对应的悬挂机构300上,该悬挂机构300再通过升降装置200与底盘100连接。同时,本实施例大体上来讲是可以通过该升降装置200来升降底盘100,也即通过升降装置200来调整底盘100相对于地面的高度,以便调整车辆10的重心,从而提高车辆10运行时的稳定性,避免车辆10发生侧翻。应当理解,升降装置200可以驱动底盘100沿竖直方向运动,也可以驱动底盘100倾斜运动,或者还可以驱动底盘100沿着曲线运动,具体的运动轨迹可以根据实际需要进行设计,在本实施例中对其不做特殊的限制。
在本实施例中,底盘100可以是矩形、圆形或者其他任意合适形状的板状、块状或者框架状结构。例如,在某些示例中,可以采用冲压的钢板作为底盘100;在另一些示例中,为了使车辆10更轻,也可以采用使用塑料经过模塑制成块状的底盘100。当然,在另一些示例中,也可以采用金属和塑料结合的方式在轻量化和结构强度上面取得平衡。在其他一些示例中,如图1所示,底盘100可以包括相对设置的上安装板110和下安装板120,在上安装板110和下安装板120之间形成有容纳腔,以便容纳升降装置200的一部分。
可选地,为了拓展车辆10的功能,在底盘100上可以安装各种各样的外设。例如,当需要使用车辆10进行拍摄时,可以在底盘100上安装图像获取设备,例如相机30或者摄像机。在一些示例中,可以在底盘100上安装云台20(包括但不限于单轴云台、双轴云台和三轴云台),然后将相机30或者摄像机等图像获取设备安装在云台20上,以便增强拍摄时的稳定性,避免拍摄画面晃动或者失真等。又如,当需要使用车辆10进行竞技比赛时,可以在底盘100上安装能够发射子弹(比如PP弹)的弹珠发射设备。在一些示例中,弹珠发射设备同样可以安装在上文所述的云台 20上,以便提高弹珠发射设备的稳定性,从而提高射击精度。
如图1和图2所示,轮组400的悬挂机构300包括分别设置在车轮401外侧和内侧的两个纵梁311、以及位于两个纵梁311之间并与这两个纵梁311固定的横梁312,也即,本实施例提供的悬挂机构300的全部或者一部分的形状为U形,其在图1和图2中倒扣于车轮401的上方。两个纵梁311的底端可以开设有供轮轴穿过的轴孔,从而套设在轮轴上的车轮401可以相对于该悬挂机构300转动,以便驱动车辆10前进、后退和转向等。在某些示例中,可以将车轮401配置成麦克纳姆轮,以便使得车辆10可以在地面上更灵活的运动。容易理解,当悬挂机构300包括有上述横梁312时,则升降装置200可以与横梁312铰接在一起。当然,悬挂机构300并不限于是上述结构形式,例如,在某些示例中,悬挂机构300也可以仅具有一个纵梁311,升降装置200则与这一个纵梁311铰接在一起。为了描述简单方便,在下文中将以图1和图2中示出的U形悬挂机构300为例对本实施例的方案进行描述,但这不应被视为是对技术方案的具体限制,在其基础上的简单替换依然属于本实施例的保护范围。
在本实施例中,升降装置200可以是气缸,直线电机等。例如,当升降装置200是气缸时,该气缸的缸筒可以固定在悬挂机构300的横梁312上,该气缸的活塞杆与底盘100的底面固定以支撑底盘100。以此,当需要调整底盘100的高度时,通过驱动活塞运动即可。同理,当升降装置200是直线电机时,同样的,可以将直线电机的定子固定在悬挂机构300的横梁312上,直线电机的输出轴则固定在底盘100的底面以支撑底盘100。当然,升降装置200也可以是其他单独的零件或者由多个单独零件组合而成的组件,只需要其能够驱动底盘100竖直运动即可,在本实施例中,不限制升降装置200具体采用何种结构形式。不过,为了使本领域技术人员更好的理解本实施例的技术内容,下文将示例性的介绍一些可供选择的升降装置200的结构。
图3为实施例提供的当升降装置位于第一位置时轮组与升降装置200的结构示意图;图4为图3的俯视图;图5为图4中A-A向的剖视图;图6为本实施例提供的当升降装置位于第二位置时轮组与升降装置的结构示 意图;图7为图6的俯视图;图8为图7中B-B向的剖视图。
如图3至图8所示,在一些示例中,升降装置200包括:多连杆机构以及变形驱动机构。其中,多连杆机构的第一端用于与底盘100铰接(请参考图1和图2),其第二端用于与悬挂机构300的横梁312铰接。以图3为例,多连杆机构的左端与横梁312铰接,该多连杆机构的右端则与底盘100铰接。变形驱动机构与多连杆机构传动连接,从而可以通过变形驱动机构的驱动来改变多连杆机构中的连杆之间的相互位置,从而带动与该多连杆机构铰接的底盘100竖直运动,继而实现对车辆10重心的改变。在一些示例中,变形驱动机构可以是手动装置,例如固定在多连杆机构中的其中一根或的手轮。当然,在另一些示例中,该变形驱动机构也可以是安装在悬挂机构300上或者底盘100上的电动装置,例如底盘升降驱动电机240(参见下文的详细描述)。
基于上述可知,本实施例通过设置连接底盘100和悬挂机构300的多连杆机构,并通过变形驱动机构来驱动多连杆机构运动以改变多连杆机构的连杆的相对位置,从而可以方便的调整底盘100相对于地面的高度,避免车辆10侧翻。容易理解,当车辆10需要高速运行,或者车辆10搭乘的物体较高时,通过设置在底盘100和悬挂机构300之间的升降装置200可以将底盘100的高度降低,以便提高车辆10运行的平稳性。
具体的,如图3至图8所示,多连杆机构包括:推杆210、摇臂220和升降臂230。其中,推杆210的第一端用于与横梁312铰接,推杆210的第二端与摇臂220的第一端铰接,摇臂220的第二端则与升降臂230的第一端铰接,该升降臂230的第二端与底盘100铰接。以图3为例,推杆210的底端与横梁312的右端铰接,该推杆210的顶端与摇臂220的左端铰接,该摇臂220的右端则与升降臂230的左端铰接,该升降臂230的右端与底盘100铰接。容易理解,通过将推杆210、摇臂220和升降臂230的长度配置成合适的比例,可以控制底盘100相对地面运动的轨迹,也即,在某些示例中,可以将推杆210、摇臂220和升降臂230设计成合适的长度来使得底盘100垂直升降。
在某些示例中,可以将变形驱动机构设置在底盘100上,该变形驱动机 构包括:底盘升降驱动电机240、上支撑臂261以及丝杠250。其中,上支撑臂261的第一端与多连杆机构的第一端铰接,该上支撑臂261的第二端与丝杠250的螺母252固定,丝杠250的螺杆251用于驱动丝杠250的螺母252运动,丝杠250的螺母252则带动上支撑臂261运动,由此,上支撑臂261的运动带动多连杆机构运动,从而实现底盘100的升降。以图3和图5为例,底盘升降驱动电机240固定在底盘100上,丝杠250的螺杆251与底盘升降驱动电机240的输出轴固定,例如焊接在一起;丝杠250的螺母252与上支撑臂261的底端固定,该上支撑臂261的顶端则与升降臂230铰接在一起。
在工作时,启动底盘升降驱动电机240,该底盘升降驱动电机240的输出轴带动丝杠250的螺杆251旋转,套设在螺杆251上的丝杆的螺母252则沿着螺杆251的轴线向左或者向右做直线运动,这样就会带动上支撑臂261向左或者向右做直线运动。由于上支撑臂261的顶端与升降臂230铰接,则升降臂230也就会在上支撑臂261的带动下转动,进而会带动摇臂220和推杆210运动,在多个力的合成作用下,底盘100也就相对于地面移动,以此实现改变底盘100相对于地面的高度的目的。具体可以参见图3和图6的示意,其中图3示意了底盘100相对于地面处于高位时的状态,图6示意了底盘100相对于地面处于低位的状态。
应当理解,本实施例的丝杆以及上支撑臂261并不是必须具备的结构,只要配置得当,在一些可实现方式中,完全可以省略这两个结构,由底盘升降驱动电机240直接驱动升降臂230转动即可。本实施例之所以设置丝杠250和上支撑臂261是考虑到结构紧凑以及底盘升降驱动电机240传动等因素,也即,通过设置丝杠250和上支撑臂261可以使用小功率电机驱动多连杆机构运动,而且,还可以将升降装置200的整体体积缩小,也即,无需配置长度过长的连杆,从而有利于升降装置200和车辆10的紧凑化。同理,底盘升降驱动电机240也是非必须的结构,在某些示例中,也可以通过诸如齿轮结构、连杆结构或者其他任意合适的结构来驱动丝杠250的螺杆251转动,从而带动螺母252做直线运动。当然,在某些示例中,甚至可以通过手动的方式,例如在螺杆251的一端设置手柄,以便通过驱动手柄转动来带动螺杆251转动。
在另一些示例中,可以将变形驱动机构设置在悬挂机构300的横梁312上,该变形驱动机构同样也可以包括底盘升降驱动电机240。具体的,底盘升降驱动电机240的输出轴穿设在推杆210所开设的安装孔内,并且输出轴与推杆210固定,以便通过输出轴带动推杆210转动,从而带动摇臂220和升降臂230运动,进而带动与升降臂230连接的底盘100相对于地面运动,以改变底盘100的相对于地面的高度。当然,在本示例中,也可以如上述示例似的设置丝杠250和上支撑臂261,从而通过丝杠250和上支撑臂261将电机的扭矩传递给推杆210,以实现驱动包括推杆210、摇臂220和升降臂230在内的多连杆机构运动,从而带动底盘100升降的目的。具体如何配置底盘升降驱动电机240、丝杆和上支撑臂261,可参考上述示例以及图3至图8,在此不再赘述。
进一步,如图1至图8所示,在某些示例中,升降装置200还可以包括有减振机构500,该减振机构500的第一端与摇臂220铰接,该减振机构500的第二端与底盘100固定。以图3为例,推杆210的底端与横梁312铰接,推杆210的顶端则分别与升降臂230的左端以及减振机构500的左端铰接;升降臂230再与变形驱动机构传动连接,例如,升降臂230与上支撑臂261的顶端铰接,该上支撑臂261与丝杠的螺母252固定,由于丝杠的螺杆251与底盘升降电机240的输出轴固定,从而该上支撑臂261就通过丝杠与底盘升降驱动电机240传动连接;减振机构500的右端则与底盘100固定。在本示例中,减振机构500可以是包括减振弹簧在内的任意合适的减振机构500。为了描述方便,下文将以减振弹簧对技术方案进行示例性地描述。
进一步,如图3至图8所示,在一些示例中,摇臂220可以被设置成三角形的结构,推杆210、升降臂230以及减振弹簧分别铰接在三角形结构的三个顶点处。以图3为例,推杆210的顶端与三角形状的摇臂220的左顶点铰接,升降臂230的左端则与三角形状的摇臂220的下顶点铰接,减振弹簧左端与三角形状的摇臂220的右顶点铰接。通过将摇臂220设置成三角形的结构,然后将推杆210、升降臂230以及减振弹簧分别铰接在该三角形摇臂220的三个顶点处,从而当多连杆机构运动,也即,当底盘100升降的时候,减振弹簧可以始终处于比较好的工作角度,从而基本不会降低其减振性能。
进一步,继续参阅图3至图8,为了提高对于底盘100的支撑力,在一些可选的示例中,上述多连杆机构还包括有悬架270。该悬架270的第一端与悬挂机构300铰接,例如,将悬架270的第一端与横梁312铰接。变形驱动机构还包括下支撑臂262,该下支撑臂262的第一端与悬架270的第二端铰接,且下支撑臂262的第二端则与丝杠250的螺母252固定。以图3为例,悬架270的左端与横梁312铰接,悬架270的右端与下支撑臂262的底端铰接,下支撑臂262的顶端与丝杠250的螺母252固定。应当理解,在某些示例中,悬架270的第二端也可以直接或者间接与多连杆机构铰接,由此,悬架270、多连杆机构以及悬挂机构的一部分组成了一个多边形结构,以增加对底盘的支撑力。
具体的,当底盘升降驱动电机240启动后,该底盘升降驱动电机240的输出轴带动丝杠250的螺杆251转动,相应的,就会驱动套设在螺杆251上的螺母252向左或者向右做直线运动。由于螺母252往左或者往右直线运动,则与螺母252固定的下支撑臂262也就相应的往左或者往右做直线运动,进而就会带动与该下支撑臂262铰接的悬架270转动。
继续参阅图3至图8,在某些示例中,悬架270包括:第一连接臂271、悬架上臂272、第二连接臂273、以及悬架下臂274。其中,第一连接臂271与悬挂机构300固定,例如,该第一连接臂271与位于车轮401内侧的纵梁311固定,或者该第一连接臂271与横梁312的内侧面固定。第二连接臂273与底盘100固定,其可以是直接固定或者间接固定。悬架上臂272的第一端与第一连接臂271的顶端铰接,该悬架上臂272的第二端与第二连接臂273的顶端铰接。同理的,悬架下臂274的第一端与第一连接臂271的底端铰接,该悬架下臂274的第二端与第二连接臂273的底端铰接。而且,下支撑臂262的第一端还与该第二连接臂273铰接,例如,下支撑臂262的第一端与第二连接臂273的第二端铰接。
具体来说,以图3为例,第一连接臂271固定于横梁312的内侧面,当然,其也可以往下延伸至位于车轮401内侧的纵梁311的位置。第二连接臂273则固定在底盘100上,并相对于第一连接臂271设置。悬架上臂272的左端与第一连接臂271的顶端铰接,该悬架上臂272的右端与第二 连接臂273的顶端铰接。悬架下臂274的左端则与第一连接臂271的底端铰接,该悬架下臂274的右端则与第二连接臂273的底端铰接。
通过将悬架270设置成四连杆机构,可以提高对于底盘100的支撑能力,而且还可以增强悬架270运动时的稳定性,从而提高底盘100升降时的平稳度。
可选地,如图3至图8所示,在一些具体的示例中,可以将第一连接臂271、悬架上臂272、第二连接臂273和悬架下臂274组合成平行四边形结构。明显的,当悬架270被变形驱动机构驱动而运动时,悬架上臂272、悬架下臂274与水平面之间的夹角会相应改变。
继续参考图3至图8,在某些示例中,第一连接臂271与悬挂机构300的其中一部分为一体成形的一体件。具体的,可以将第一连接臂271和横梁312或者位于车轮401内侧的纵梁311一体成形。继续参考图3,可以看到,由于第一连接臂271与悬挂机构300的横梁312为一体成形的一体件,则推杆210的左端不仅与悬挂机构300的横梁312铰接,而且还同时与第一连接臂271的顶端铰接。当然,在其他一些示例中,当第一连接臂271和横梁312为独立设置的两个部件时,推杆210的左端同样可以既与横梁312铰接,又与第一连接臂271的顶端铰接。
进一步,继续参考图3至图8,在某些示例中,升降装置200还包括:底板275以及支撑架276。其中,支撑架276和第二连接臂273固定在底板275上,且该支撑架276位于第二连接臂273远离第一连接臂271的一侧,底盘升降驱动电机240安装在支撑架276上。通过设置底板275和支撑架276,有利于底盘升降驱动电机240的安装以及与底盘100的固定。
可选地,如图3至图8所示,升降装置200还包括有固定在底板275上的铰接臂277,该铰接臂277设置在第二连接臂273和支撑架276之间,铰接臂277的顶端与上文中描述到的升降臂230的第二端铰接。具体而言,以图3为例,在底板275上方设置竖直向上的铰接臂277,该铰接臂277的顶端与延伸而来的升降臂230的右端铰接在一起。在本示例中,上支撑臂261同样可以与升降臂230的右端铰接在一起,但在某些示例中的,如图3至图8所示,可以将上支撑臂261的第一端铰接在升降臂230的第一端 和升降臂230的第二端之间,且该上支撑臂261与升降臂230的铰接点靠近升降臂230的第二端,以便节省驱动力,从而可以使用小功率的底盘升降驱动电机240。具体而言,以图3为例,就是将升降臂230的右端与铰接臂277的顶端铰接在一起,上支撑臂261位于铰接臂277的左侧,并且该铰接臂277与升降臂230的铰接点位于升降臂230的左端和右端之间,并且该铰接点更靠近升降臂230的右端,由于支点离原动力比较近,从而底盘升降驱动电机240可以用小扭矩来带动更大重量的物体运动。由上可见,通过合理布置支点,底盘升降驱动电机240只需要输出很小的力就可以撬动较大质量的物体,可以进一步提升平稳性。
进一步,如图3至图8所示,在某些示例中,可以将第二连接臂273、支撑架276、铰接臂277和底板275通过一体成型来形成一体件以提高强度。而且,无论是一体结构的第二连接臂273、支撑架276、铰接臂277和底板275,还是全部分体设置,抑或是部分分体设置,均可以将他们全部或者部分容纳在上述相对设置的上安装板110和下安装板120所形成的容纳空间内。
进一步,如图1至图8所示,车辆10还包括有走行驱动机构和转向驱动机构。例如,该走行驱动机构可以包括与轮轴传动连接的走行驱动电机(图中未示出),用于驱动轮轴带动车轮401转动,以实现车辆10的前进、后退或者转向等;转向驱动机构则可以包括与悬挂机构300传动连接的车轮角度调整电机610,用于选择性地驱动悬挂机构300转动,以带动车轮401绕重力方向旋转。容易理解,行走驱动机构的转动轴线通过车轮401的中心轴线,转向驱动机构的转动轴线大致垂直于所述轮体21的中心轴线,也即是说,转向驱动机构的转动轴线大致垂直于行走驱动机构的转动轴线。
需要说明的是,本示例中的走行驱动电机、车轮角度调整电机610以及上文中描述到的底盘升降驱动电机240和下文将要描述到的悬挂升降驱动电机中的一个或者多个可以是无刷电机、有刷电机或者其他类型的电机。
具体的,以上述包括横梁312和相对设置的两个纵梁311的悬挂机构300为例:在横梁312上设置有安装座,转向机构的车轮角度调整电机610安装在该安装座上,并且该车轮角度调整电机610的输出轴垂直穿设在电 机座的轴孔内以驱动横梁312转动。基于此,当启动车轮角度调整电机610之后,该车轮角度调整电机610的输出轴就会带动横梁312绕重力方向旋转,也即,沿着图5中虚线旋转,继而带动与穿设在两个纵梁311轴孔内的轮组400绕着虚线转动。容易理解,在某些示例中,转向机构还可以包括其他传动机构,例如与车轮角度调整电机610传动连接的齿轮系。
此外,上文中所描述的推杆210、摇臂220、升降臂230、上支撑臂261、下支撑臂262、第一连接臂271、悬架上臂272、悬架下臂274、第二连接臂273以及铰接臂277不限制具体的结构形式,例如可以是杆件或者也可以是板状部件。
根据上文的描述可知,本实施例提供的车辆10的第一种变形方式总体上依靠的是用来连接悬挂机构300和底盘100的升降装置200,通过该升降装置200可以实现底盘100的升降,从而调整车辆10的重心,以便使得车辆10能够根据实际需要在高速运动、低速运动、爬坡或者其他场景下根据需要改变底盘100的高度。而且,由于升降装置200采用了由变形驱动机构驱动的多连杆机构,故可以通过对多连杆机构的合理设计来实现多连杆机构在运动的全过程均能够自锁,从而提高车辆10变形过程中的安全性。
图9为本实施例提供的车辆的第二种变形方式的示意图,图10为图9的俯视图。下面参照图9和图10再提供一种改变车辆10的重心的方式,从下文的详细描述中本领域技术人员可以发现,这种方式总体上时通过驱动悬挂机构300沿着平行于车轮401中心轴线的转动轴线相对于车轮401转动来实现的。
图11为本实施例提供的悬挂机构与轮组的正视图,图12a至图12b为图11在不同视角下的爆炸图,图13为当悬挂机构转动到另一位置时的局部爆炸图。
请参照图11至图13,在某些示例中,悬挂机构300包括可相对转动的第一部分330和第二部分340,以及用于锁定该第一部分330和第二部分340的锁定部分;其中,第一部分330可以是上文中安装在固定在横梁312上的安装座,该第一部分330与车轮角度调整电机610传动连接;第 二部分340与底盘100固定或者与上文中的升降装置200铰接,例如,该第二部分340可以与上文中的多连杆机构铰接,并且,该第二部分340还通过转轴350与第一部分330转动连接,从而可以通过将第一部分330绕转轴350转动的方式来调整第一部分330与底面之间的角度,也即,调整底盘100相对于地面的高度,参见图11和图13所示。
具体的,第一部分330开设有供转轴350穿过的第一轴孔332,第二部分340开设有供转轴350穿过的第二轴孔342,当转轴350依次穿过第二轴孔342和第一轴孔332后,可以将第一部分330和第二部分340连接在一起。工作时,驱动第一部分330绕着转轴350转动即可实现对底盘100高度的调节,当第一部分330绕转轴350旋转到合适角度时,通过锁定部分将第一部分330和第二部分340锁定即可保证第一部分330和第二部分340的相对位置不发生变化。
以图12b为例,在某些示例中,锁定部分可以包括在第一部分330设置的第一棘齿面331,以及在第二部分340设置的与该第一棘齿面331相互配合的第二棘齿面341。当第一棘齿面331和第二棘齿面341啮合时,第一部分330和第二部分340不会发生相对的转动。容易理解,通过在上述第一部分330和第二部分340设置相互配合的棘齿结构来实现对第一部分330和第二部分340位置的锁定,转轴350的长度一般应该等于或者稍大于第一轴孔332的深度和第二轴孔342的深度之和。可以理解,转轴350的长度最大不应超过第一轴孔332的深度、第二轴孔342的深度以及第一棘齿面331上棘齿的高度之和。
图14a至图14c为本实施例提供的悬挂机构转动到不同位置时的状态示意图。如图14a至图14c所示,当需要调整底盘100的高度时,将转轴350往外抽出一部分,以便使第一棘齿面331和第二棘齿面341脱离啮合,然后就可以绕着转轴350旋转第一部分330,使得第一部分330从图14a的第一位置经过图14b的第二位置转动到图14c的第三位置,接着将第一棘齿面331和第二棘齿面341啮合在一起,最后将转轴350往里推,即可将第一部分330和第二部分340的位置锁定。当然,按照上述操作方式,也可以将悬挂机构300从图14c所示的第三位置变换到图14a所示的第一 位置。
当然,在其他一些示例中,并使用螺杆251作为转轴350。锁定部分则包括在第一轴孔332内设置的第一内螺纹,在第二轴孔342内设置的第二内螺纹,以及在螺杆251上设置的分别与第一内螺纹和第二内螺纹配合的第一外螺纹和第二外螺纹。当需要锁紧第一部分330和第二部分340时,将螺杆251依次穿过第二轴孔342和第一轴孔332,并往第一轴孔332内伸入合适长度,以使螺杆251上的第一外螺纹与第一轴孔332内的第一内螺纹螺纹连接,与此同时,螺杆251上的第二外螺纹与第二轴孔342内的第二内螺纹也螺纹连接,从而使得第一部分330、第二部分340通过螺杆251固定连接在一起。当需要调整底盘100的高度时,只需要拧松螺杆251,就可以驱动第一部分330相对于螺杆251旋转,从而使得与第二部分340连接的底盘100相对于地面的高度发生变化,实现调整车辆10重心的目的。
容易理解,第二轴孔342在某些可选的方式中也可以不设置第二内螺纹,相应的,螺杆251上也不设置第二外螺纹。此时,只需要螺杆251依次穿过第二轴孔342和第一轴孔332并与第一内螺纹螺纹连接时,该螺杆251的头部能够将第二部分340压紧在第一部分330上,也可实现对第一部分330和第二部分340相对位置的锁定。当需要旋转第一部分330时,只需要拧松螺杆251即可,操作相对简单方便。
在另外一些示例中,也可以将转轴350与第一轴孔332以及第二轴孔342设置成紧配合的方式,以便当转轴350依次穿过第二轴孔342和第一轴孔332时,能够将第一部分330和第二部分340固定连接在一起。同理的,当转轴350的头部具有沿径向方向延伸的挡边,且当该转轴350依次穿过第二轴孔342和第一轴孔332之后该挡边能够将第二部分340压紧在第一部分330上时,转轴350也可以不与第二轴孔342设置成紧配合的方式。
虽然,图11至图14示出的是通过手动对悬挂机构300的位置进行改变,但是,应当理解,其也可以通过自动的方式来实现。例如,在一些示例中,轮组400的轮轴可以使用空心轴(也即该轮轴为中空的),在空心 轴内穿设有悬挂升降驱动电机的安装梁,该安装梁与至少一根纵梁311固定。在安装梁上安装有悬挂升降驱动电机(也即悬挂机构的第二部分),该悬挂升降驱动电机容纳在空心轴内,并且该悬挂升降驱动电机的输出轴往其中一根纵梁311的方向延伸并与该纵梁311传动连接。当悬挂升降驱动电机启动时,其输出轴可以带动悬挂机构300绕着平行于空心轴的轴线旋转,从而实现对悬挂机构300的高度的调整,也即可以将悬挂机构至少从高位转换到低位以及从低位转换到高位,在悬挂机构300升降的过程中也就实现了对底盘100高度的调整。虽然在本示例中以纵梁作为悬挂机构的第一部分或者第一部分的一些结构,但是,在其他示例中,也可以采用其他可替换的结构作为悬挂机构的第一部分。而且,悬挂机构的第二部分也不限于只包括悬挂升降驱动电机,其也可以包括其他结构,例如,辅助传动结构。
具体的,在某些示例中,可以在纵梁311上开设通孔,且该通孔靠近外侧部分的直径小于该通孔靠近内侧部分的直径,悬挂升降驱动电机的输出轴通过第一轴承安装于通孔靠近外侧的部分,空心轴则通过第二轴承安装于通孔靠近内侧的部分。应当理解,根据实际设计的不同,第一轴承和第二轴承可以同轴设置也可以不同轴设置。
在其他实施方式中,为实现以自动的方式实现车辆的第二种变形方式,可以将上述第一部分330和第二部分340之间的锁定部分替换为装设转动电连接的滑环结构,该滑环结构可以由驱动装置驱动,当需要调整第一部分330和第二部分340之间的转动角度时,可通过控制滑环结构的相对转动实现。例如,在某些示例中,滑环结构包括可相对转动的内环和外环,且该内环和外环无论在静止状态还是转动状态均能保证电接触,具体保证电接触的方式可以参照现有技术,在此不再赘述。容易理解,在安装时,外环与第一部分330和第二部分340的其中一个固定连接,相应的,内环则与第一部分330和第二部分340的另外一个固定连接,当然,上述固定连接可以是直接固定连接,也可以是通过中间部件间接固定连接。
进一步的,还可以增设其他辅助传动结构,例如连杆结构、齿轮齿条结构等辅助完成第一部分330和第二部分340之间角度的转换。
此外,当通过施加驱动力以改变悬挂机构300的位置的示例中,是否提供驱动力本身就可以作为对第一部分和第二部分的锁紧。例如,上述悬挂升降驱动电机本身就可以作为用于锁紧第一部分和第二部分的锁定部分。
应当理解,上述两种变形方式可以单独使用也可以组合使用。明显的,当上述两种变形方式单独使用时,车辆的底盘至少有两种不同的高度,车辆的重心可以处于两个不同的位置;当上述两种变形方式组合使用时,车辆的底盘至少可以有四种高度,从而车辆的重心可以至少处于四个不同的位置。
最后,尽管已经在这些实施例的上下文中描述了与本技术的某些实施例相关联的优点,但是其他实施例也可以包括这样的优点,并且并非所有实施例都详细描述了本发明的所有优点,由实施例中的技术特征所客观带来的优点均应视为本发明区别于现有技术的优点,均属于本发明的保护范围。

Claims (41)

  1. 一种升降装置,用于连接车辆的悬挂机构和底盘,其特征在于,包括:多连杆机构以及变形驱动机构;
    所述多连杆机构的第一端用于与所述底盘铰接,所述多连杆机构的第二端用于与所述悬挂机构铰接;
    所述变形驱动机构与所述多连杆机构传动连接,用于驱动所述多连杆机构带动所述底盘上下移动。
  2. 根据权利要求1所述的升降装置,其特征在于,所述多连杆机构包括:推杆、摇臂和升降臂,所述推杆的第一端用于与所述悬挂机构铰接,所述推杆的第二端与所述摇臂的第一端铰接,所述摇臂的第二端与所述升降臂的第一端铰接,所述升降臂的第二端用于与所述底盘铰接。
  3. 根据权利要求2所述的升降装置,其特征在于,还包括:减振机构,所述减振机构的第一端与所述摇臂铰接,所述减振机构的第二端用于与所述底盘固定。
  4. 根据权利要求3所述的升降装置,其特征在于,所述摇臂为三角形结构,所述推杆的第二端、所述升降臂的第一端以及所述减振机构的第一端分别铰接在所述三角形结构的三个顶点。
  5. 根据权利要求2至4任一项所述的升降装置,其特征在于,所述变形驱动机构包括固定在所述悬挂机构上的底盘升降驱动电机,用于驱动所述推杆转动。
  6. 根据权利要求2至4任一项所述的升降装置,其特征在于,所述变形驱动机构包括固定在所述底盘上的底盘升降驱动电机,用于驱动所述升降臂转动。
  7. 根据权利要求1所述的升降装置,其特征在于,所述变形驱动机构包括:上支撑臂以及丝杠;所述上支撑臂的第一端与所述多连杆机构的第一端铰接,所述上支撑臂的第二端与所述丝杠的螺母固定,所述丝杠的螺杆驱动所述丝杠的螺母运动,所述丝杠的螺母带动所述上支撑臂运动,所述上支撑臂的运动带动所述多连杆机构运动。
  8. 根据权利要求7所述的升降装置,其特征在于,所述多连杆机构还包括悬架,所述悬架的第一端用于所述悬挂机构铰接;
    所述变形驱动机构还包括下支撑臂,所述下支撑臂的第一端与所述悬架的第二端铰接,所述下支撑臂的第二端与所述丝杠的螺母固定。
  9. 根据权利要求8所述的升降装置,其特征在于,所述悬架包括:悬架上臂、悬架下臂、第一连接臂以及第二连接臂;
    所述第一连接臂用于与所述悬挂机构固定,所述第二连接臂用于与所述底盘固定;
    所述悬架上臂的第一端与所述第一连接臂的顶端铰接,所述悬架上臂的第二端与所述第二连接臂的顶端铰接;
    所述悬架下臂的第一端与所述第一连接臂的底端铰接,所述悬架下臂的第二端与所述第二连接臂的底端铰接;
    所述下支撑臂的第一端与所述第二连接臂铰接。
  10. 根据权利要求9所述的升降装置,其特征在于,所述悬架上臂、悬架下臂、第一连接臂以及第二连接臂形成平行四边形结构。
  11. 根据权利要求9所述的升降装置,其特征在于,所述第一连接臂与所述悬挂机构的其中一部分为一体成形的一体件。
  12. 根据权利要求9所述的升降装置,其特征在于,所述多连杆机构包括推杆,所述推杆的第一端用于与所述悬挂机构铰接,所述推杆的第一端同时与所述第一连接臂的顶端铰接。
  13. 根据权利要求11所述的升降装置,其特征在于,所述下支撑臂的第一端与所述第二连接臂的第二端铰接。
  14. 根据权利要求9至13任一项所述的升降装置,其特征在于,还包括:底板以及支撑架;所述支撑架和所述第二连接臂固定在所述底板上,且所述支撑架位于所述第二连接臂远离所述第一连接臂的一侧,所述支撑架用于安装底盘升降驱动电机。
  15. 根据权利要求14所述的升降装置,其特征在于,还包括铰接臂,所述铰接臂设置在所述第二连接臂和支撑架之间、并且所述铰接臂固定在所述底板上;升降臂的第二端与所述铰接臂铰接。
  16. 根据权利要求15所述的升降装置,其特征在于,所述上支撑臂的第一端铰接在所述升降臂的第一端和所述升降臂的第二端之间,且所述上支撑臂与所述升降臂的铰接点靠近所述升降臂的第二端。
  17. 根据权利要求15所述的升降装置,其特征在于,所述第二连接臂、支撑架、铰接臂以及底板为一体成型的一体件。
  18. 一种车辆,其特征在于,包括:底盘、多个悬挂机构、多个轮组以及升降装置;多个所述轮组分别设置在所述底盘相对的两侧;所述轮组包括:轮轴、以及套设在所述轮轴上的车轮,每个轮轴均与其对应的悬挂机构转动连接,所述悬挂机构通过所述升降装置与所述底盘连接;
    所述升降装置,包括:多连杆机构以及变形驱动机构;
    所述多连杆机构的第一端与所述底盘铰接,所述多连杆机构的第二端与所述悬挂机构铰接;
    所述变形驱动机构与所述多连杆机构传动连接,用于驱动所述多连杆机构带动所述底盘上下移动。
  19. 根据权利要求18所述的车辆,其特征在于,所述多连杆机构包括:推杆、摇臂和升降臂,所述推杆的第一端用于与所述悬挂机构铰接,所述推杆的第二端与所述摇臂的第一端铰接,所述摇臂的第二端与所述升降臂的第一端铰接,所述升降臂的第二端用于与所述底盘铰接。
  20. 根据权利要求19所述的车辆,其特征在于,还包括:减振机构,所述减振机构的第一端与所述摇臂铰接,所述减振机构的第二端用于与所述底盘固定。
  21. 根据权利要求20所述的车辆,其特征在于,所述摇臂为三角形结构,所述推杆的第二端、所述升降臂的第一端以及所述减振机构的第一端分别铰接在所述三角形结构的三个顶点。
  22. 根据权利要求19至21任一项所述的车辆,其特征在于,所述变形驱动机构包括固定在所述悬挂机构上的底盘升降驱动电机,用于驱动所述推杆转动。
  23. 根据权利要求19至21任一项所述的车辆,其特征在于,所述变形驱动机构包括固定在所述底盘上的底盘升降驱动电机,用于驱动所述升降臂转动。
  24. 根据权利要求18所述的车辆,其特征在于,所述变形驱动机构包括:上支撑臂以及丝杠;所述上支撑臂的第一端与所述多连杆机构的第一端铰接,所述上支撑臂的第二端与所述丝杠的螺母固定,所述丝杠的螺杆驱动所述丝 杠的螺母运动,所述丝杠的螺母带动所述上支撑臂运动,所述上支撑臂的运动带动所述多连杆机构运动。
  25. 根据权利要求24所述的车辆,其特征在于,所述多连杆机构还包括悬架,所述悬架的第一端用于所述悬挂机构铰接;
    所述变形驱动机构还包括下支撑臂,所述下支撑臂的第一端与所述悬架的第二端铰接,所述下支撑臂的第二端与所述丝杠的螺母固定。
  26. 根据权利要求25所述的车辆,其特征在于,所述悬架包括:悬架上臂、悬架下臂、第一连接臂以及第二连接臂;
    所述第一连接臂用于与所述悬挂机构固定,所述第二连接臂用于与所述底盘固定;
    所述悬架上臂的第一端与所述第一连接臂的顶端铰接,所述悬架上臂的第二端与所述第二连接臂的顶端铰接;
    所述悬架下臂的第一端与所述第一连接臂的底端铰接,所述悬架下臂的第二端与所述第二连接臂的底端铰接;
    所述下支撑臂的第一端与所述第二连接臂铰接。
  27. 根据权利要求26所述的车辆,其特征在于,所述悬架上臂、悬架下臂、第一连接臂以及第二连接臂形成平行四边形结构。
  28. 根据权利要求26所述的车辆,其特征在于,所述第一连接臂与所述悬挂机构的其中一部分为一体成形的一体件。
  29. 根据权利要求26所述的车辆,其特征在于,所述多连杆机构包括推杆,所述推杆的第一端用于与所述悬挂机构铰接,所述推杆的第一端同时与所述第一连接臂的顶端铰接。
  30. 根据权利要求28所述的车辆,其特征在于,所述下支撑臂的第一端与所述第二连接臂的第二端铰接。
  31. 根据权利要求26至30任一项所述的车辆,其特征在于,还包括:底板以及支撑架;所述支撑架和所述第二连接臂固定在所述底板上,且所述支撑架位于所述第二连接臂远离所述第一连接臂的一侧,所述支撑架用于安装底盘升降驱动电机。
  32. 根据权利要求31所述的车辆,其特征在于,还包括铰接臂,所述铰接臂设置在所述第二连接臂和支撑架之间、并且所述铰接臂固定在所述底板 上;升降臂的第二端与所述铰接臂铰接。
  33. 根据权利要求32所述的车辆,其特征在于,所述上支撑臂的第一端铰接在所述升降臂的第一端和所述升降臂的第二端之间,且所述上支撑臂与所述升降臂的铰接点靠近所述升降臂的第二端。
  34. 根据权利要求32所述的车辆,其特征在于,所述第二连接臂、支撑架、铰接臂以及底板为一体成型的一体件。
  35. 根据权利要求18所述的车辆,其特征在于,所述轮组为四个。
  36. 根据权利要求18所述的车辆,其特征在于,所述车轮为麦克纳姆轮。
  37. 根据权利要求18所述的车辆,其特征在于,所述轮组还包括:走行驱动机构;
    所述走行驱动机构与所述轮轴传动连接,用于驱动所述轮轴带动所述车轮转动。
  38. 根据权利要求37所述的车辆,其特征在于,还包括转向机构,所述转向机构与所述悬挂机构传动连接,用于选择性地驱动所述悬挂机构转动,以带动所述车轮绕垂直于所述轮轴的转动轴线转动。
  39. 根据权利要求38所述的车辆,其特征在于,所述悬挂机构包括:横梁以及两根纵梁;所述两根纵梁分别设置在所述车轮的内侧和外侧,且两根所述纵梁与所述轮轴转动连接;所述横梁设置在两根所述纵梁之间并与两根所述纵梁固定;所述转向机构与所述横梁传动连接;所述升降装置与所述横梁铰接。
  40. 根据权利要求18、35至39任一项所述的车辆,其特征在于,所述底盘上安装有云台。
  41. 根据权利要求18、35至39任一项所述的车辆,其特征在于,所述底盘包括相对设置的上安装板和下安装板,所述升降装置的一部分容纳在所述上安装板和下安装板所形成的容纳空间内。
PCT/CN2018/122829 2018-12-21 2018-12-21 车辆及其升降装置 WO2020124592A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880032198.8A CN110770053B (zh) 2018-12-21 2018-12-21 车辆及其升降装置
PCT/CN2018/122829 WO2020124592A1 (zh) 2018-12-21 2018-12-21 车辆及其升降装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122829 WO2020124592A1 (zh) 2018-12-21 2018-12-21 车辆及其升降装置

Publications (1)

Publication Number Publication Date
WO2020124592A1 true WO2020124592A1 (zh) 2020-06-25

Family

ID=69328567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122829 WO2020124592A1 (zh) 2018-12-21 2018-12-21 车辆及其升降装置

Country Status (2)

Country Link
CN (1) CN110770053B (zh)
WO (1) WO2020124592A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124019A (zh) * 2020-10-26 2020-12-25 北京中油龙硕信息技术有限公司 行走履带收放结构及收放方法
CN113320347A (zh) * 2021-06-16 2021-08-31 深圳市海柔创新科技有限公司 机器人及机器人悬挂系统的调节方法
CN115320301A (zh) * 2022-07-21 2022-11-11 武汉数字化设计与制造创新中心有限公司 一种自适应曲面的爬壁机器人悬挂机构及爬壁机器人
CN115489610A (zh) * 2021-06-17 2022-12-20 北京有竹居网络技术有限公司 底盘组件和机器人

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301310B (zh) * 2020-03-03 2021-03-02 河南工学院 提高车辆nvh性能的车身用减振降噪装置
WO2021250696A1 (en) * 2020-06-10 2021-12-16 Mahindra & Mahindra Limited An all-terrain utility vehicle and methods thereof
CN113119674A (zh) * 2021-05-27 2021-07-16 湖南星邦智能装备股份有限公司 一种可升降底盘和高空作业车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537684B1 (fr) * 2011-06-23 2014-05-14 Haulotte Group Demi-essieu, et véhicule comprenant au moins un tel demi-essieu
CN104057837A (zh) * 2013-03-22 2014-09-24 中国人民解放军装甲兵工程学院 一种轻型电驱动无人地面平台
CN105856997A (zh) * 2016-05-13 2016-08-17 江苏大学 一种独立悬架及应用该悬架抬升底盘的汽车安全控制系统和方法
CN106828663A (zh) * 2017-02-23 2017-06-13 青岛霍博智能设备有限公司 一种无线联动式全方位行走升降平台运输车
CN206485156U (zh) * 2017-01-19 2017-09-12 大连浦州航空科技有限公司 两栖车的前悬架
CN207151125U (zh) * 2017-07-28 2018-03-30 天津农学院 一种适用于复杂地形的农业施肥施药车
CN108438091A (zh) * 2018-03-19 2018-08-24 单淑梅 一种防侧倾勘探机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537684B1 (fr) * 2011-06-23 2014-05-14 Haulotte Group Demi-essieu, et véhicule comprenant au moins un tel demi-essieu
CN104057837A (zh) * 2013-03-22 2014-09-24 中国人民解放军装甲兵工程学院 一种轻型电驱动无人地面平台
CN105856997A (zh) * 2016-05-13 2016-08-17 江苏大学 一种独立悬架及应用该悬架抬升底盘的汽车安全控制系统和方法
CN206485156U (zh) * 2017-01-19 2017-09-12 大连浦州航空科技有限公司 两栖车的前悬架
CN106828663A (zh) * 2017-02-23 2017-06-13 青岛霍博智能设备有限公司 一种无线联动式全方位行走升降平台运输车
CN207151125U (zh) * 2017-07-28 2018-03-30 天津农学院 一种适用于复杂地形的农业施肥施药车
CN108438091A (zh) * 2018-03-19 2018-08-24 单淑梅 一种防侧倾勘探机器人

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124019A (zh) * 2020-10-26 2020-12-25 北京中油龙硕信息技术有限公司 行走履带收放结构及收放方法
CN113320347A (zh) * 2021-06-16 2021-08-31 深圳市海柔创新科技有限公司 机器人及机器人悬挂系统的调节方法
CN113320347B (zh) * 2021-06-16 2023-03-14 深圳市海柔创新科技有限公司 机器人及机器人悬挂系统的调节方法
CN115489610A (zh) * 2021-06-17 2022-12-20 北京有竹居网络技术有限公司 底盘组件和机器人
CN115320301A (zh) * 2022-07-21 2022-11-11 武汉数字化设计与制造创新中心有限公司 一种自适应曲面的爬壁机器人悬挂机构及爬壁机器人
CN115320301B (zh) * 2022-07-21 2024-05-24 武汉数字化设计与制造创新中心有限公司 一种自适应曲面的爬壁机器人悬挂机构及爬壁机器人

Also Published As

Publication number Publication date
CN110770053A (zh) 2020-02-07
CN110770053B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2020124592A1 (zh) 车辆及其升降装置
CN209756679U (zh) 悬挂机构、升降装置以及车辆
WO2020124593A1 (zh) 悬挂机构、升降装置以及车辆
CN110834686B (zh) 一种运输机器人垂直攀爬台阶的方法
CN108356814A (zh) 一种巡检机器人
CN105216611A (zh) 可控的差动平衡装置及具有其的移动平台
CN112208673A (zh) 一种全向运动机器人
CN210502532U (zh) 一种车顶全方位监控平台
CN209351608U (zh) 一种多功能无人机挂载装置
CN209756678U (zh) 车辆及其升降装置
CN106627832A (zh) 四轮全向转动巡检机器人底盘
JP7252371B2 (ja) 差動駆動装置及び無人搬送車
CN110239637B (zh) 一种轮履可切换全向移动底盘
CN103192896A (zh) 起跳角度可调的轮式跳跃机器人的弹跳机构
CN110965820B (zh) 一种舞台表演用平面自由运动车转台
CN111365562A (zh) 适应多管径的管道检测机器人
CN207028744U (zh) 用于行走装置的悬挂机构和具有其的行走机器人
JP2017047996A (ja) 無人搬送車のリフター装置およびこれを備える無人搬送車
CN112937909B (zh) 一种用于路面支撑自适应的飞机整机移载四轮牵引车
CN109466679A (zh) 一种双驱动的无人自行车
CN210093386U (zh) 一种车顶一体化全方位监控平台
JP2006256437A (ja) 軌道走行可能な作業車両のガイド輪昇降機構
CN203112434U (zh) 一种电动搬运车
CN212601862U (zh) 一种轮式运输机器人
CN209942297U (zh) 移动式升降舞台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943956

Country of ref document: EP

Kind code of ref document: A1