WO2020124557A1 - 亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用 - Google Patents

亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2020124557A1
WO2020124557A1 PCT/CN2018/122682 CN2018122682W WO2020124557A1 WO 2020124557 A1 WO2020124557 A1 WO 2020124557A1 CN 2018122682 W CN2018122682 W CN 2018122682W WO 2020124557 A1 WO2020124557 A1 WO 2020124557A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
isopropyl
ethyl
bis
fluorophenyl
Prior art date
Application number
PCT/CN2018/122682
Other languages
English (en)
French (fr)
Inventor
徐涛
傅智盛
吴安洋
Original Assignee
杭州星庐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州星庐科技有限公司 filed Critical 杭州星庐科技有限公司
Publication of WO2020124557A1 publication Critical patent/WO2020124557A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/20Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups being part of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene

Definitions

  • the invention relates to vinylidene acenaphthene ⁇ -diimine nickel olefin catalyst and its preparation method and application, in particular to an asymmetric vinylidene acenaphthene ⁇ -diimine nickel catalyst and its preparation method and application, and the use of the same
  • the catalyst catalyzes the polymerization of ethylene or propylene to obtain polyethylene or polypropylene.
  • Polyolefin is a basic material related to national economy and people's death, and because of its excellent performance, variety, easy availability and low price, it is widely used in various fields such as industry, agriculture and national defense.
  • the development and application of new catalysts is one of the core driving forces for the progress and development of the polyolefin industry, and is the key to controlling the structure and performance of polyolefin materials.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, to provide a large-steric hindered asymmetric ( ⁇ -diimine) nickel olefin catalyst based on vinylidene acenaphthoquinone as a skeleton, its preparation method and application.
  • the asymmetric ( ⁇ -diimine) nickel olefin catalyst provided by the present invention has the general chemical structure as shown in formula (I):
  • R 1 is benzhydryl or bis(4-fluorophenyl)methyl
  • R 2 is benzhydryl, bis(4-fluorophenyl)methyl or methyl
  • R 3 is Methyl, ethyl, isopropyl, benzhydryl, bis(4-fluorophenyl)methyl, halogen, trifluoromethyl or methoxy
  • R 4 is methyl, ethyl or isopropyl
  • R 5 is methyl, ethyl or isopropyl
  • R 6 is hydrogen, methyl, ethyl or isopropyl
  • X is chlorine or bromine.
  • R 1 in formula (I) is benzhydryl or bis(4-fluorophenyl)methyl
  • R 2 is benzhydryl or bis(4-fluorophenyl)methyl
  • R 3 is Methyl, ethyl, isopropyl, benzhydryl, bis(4-fluorophenyl)methyl, halogen or methoxy
  • R 4 is methyl, ethyl or isopropyl
  • R 5 is methyl
  • R 6 is hydrogen or methyl
  • X is bromine.
  • R 1 is benzhydryl or bis(4-fluorophenyl)methyl
  • R 2 is benzhydryl, bis(4-fluorophenyl)methyl or methyl
  • R 3 is Methyl, ethyl, isopropyl
  • R 4 is methyl, ethyl or isopropyl
  • R 5 is methyl, ethyl or isopropyl
  • R 6 is hydrogen, methyl, ethyl or isopropyl.
  • R 1 is benzhydryl or bis(4-fluorophenyl)methyl
  • R 2 is benzhydryl or bis(4-fluorophenyl)methyl
  • R 3 Is methyl, ethyl, isopropyl
  • R 4 is methyl, ethyl or isopropyl
  • R 5 is methyl Group, ethyl or isopropyl
  • R 6 is hydrogen or methyl.
  • the ligand shown in (II) above is selected from any of the compounds shown in Table 1:
  • the invention also provides a method for preparing the above ligand compound, which comprises the following steps:
  • the solvent used in this step can be selected from at least one of toluene, acetonitrile, acetic acid and absolute ethanol, preferably toluene and acetonitrile;
  • the catalyst used in this step is selected from At least one of p-toluenesulfonic acid and acetic acid; the ratio of the catalyst, vinylidene acenaphthoquinone, aniline with a large hindered substituent and the solvent is 0.1-0.15mmol: 1-1.1mmol: 1.1-1.4mmol : 5-10ml, preferably 0.1mmol: 1mmol: 1.1mmol: 8ml, the reaction time in this step is 2-8 hours, preferably 3-6 hours.
  • the product is subjected to column chromatography on a silica gel column with a mixed solvent of methylene chloride and petroleum ether or a mixed solvent of petroleum ether and ethyl acetate as an eluent to obtain the product represented by formula (III).
  • the compound B1 undergoes a bromination reaction to obtain a compound B2: using B1 as a raw material, carbon tetrachloride as a solvent, benzoyl peroxide as an initiator, and N-bromosuccinimide (NBS) as a brominating agent, by The bromination reaction can give compound B2. Then, using compound B2 as a raw material, acetone as a solvent, and anhydrous potassium iodide as an initiator, vinylene acenaphthoquinone B3 can be obtained by elimination reaction.
  • NBS N-bromosuccinimide
  • the solvent used in this step can be selected from at least one of toluene, acetonitrile, acetic acid and absolute ethanol, preferably toluene and acetonitrile;
  • the catalyst used in this step is selected from At least one of p-toluenesulfonic acid and acetic acid; the ratio of the catalyst, the compound represented by formula (III), the aniline with a small steric substituent and the solvent is 0.2-0.5mmol:1-1.1mmol:1.1- 1.4mmol: 30-70ml, preferably 0.3mmol: 1mmol: 1.1mmol: 50ml, the reaction time in this step is 6-16 hours, preferably 8-12 hours.
  • the mixed solvent of the product dichloromethane and petroleum ether or the mixed solvent of petroleum ether and ethyl acetate is used as the eluent to perform column chromatography on a silica gel column to obtain the product represented by formula (II).
  • the invention also provides a method for preparing the catalyst represented by formula (I), which comprises the following steps: under an inert gas atmosphere, the compound represented by formula (II) and ethylene glycol dimethyl ether nickel dibromide, ethylene glycol
  • the catalyst of the present invention can be obtained by complexing one of dimethyl ether nickel dichloride or nickel dichloride hexahydrate.
  • X in the catalyst structural formula of the present invention is chlorine or bromine, which has no substantial effect on the polymerization effect, and X is selected as bromine in the embodiments of the present invention.
  • the compound represented by formula (II) may be selected from the ligands shown in Table 1, and the nickel-containing compound complexed with the ligand is selected from ethylene glycol dimethyl ether nickel dibromide (DME) NiBr 2
  • DME nickel-containing compound complexed with the ligand
  • the molar ratio of the ligand to (DME)NiBr 2 is 1:1-1.2, preferably 1:1.1; the solvent is dichloromethane, the reaction temperature is 15-35°C, preferably 25°C, and the reaction time is 8- 30 hours, preferably 16-24 hours.
  • X is bromine
  • the catalyst of the present invention can be selected from any one of Table 2:
  • the invention also provides a catalyst composition for catalyzing the polymerization of olefins.
  • the composition is composed of a catalyst represented by formula (I) and a co-catalyst selected from the group consisting of alkyl aluminum chloride, aluminum alkyl and aluminum At least one of the oxanes, the olefin is ethylene or propylene.
  • the aluminoxane is methylaluminoxane (MAO), modified methylaluminoxane (MMAO), ethylaluminoxane or isobutylaluminoxane;
  • the aluminum alkyl It is trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tri-n-hexyl aluminum, or tri-n-octyl aluminum;
  • the alkyl aluminum chloride is diethyl aluminum chloride, sesqui-monochlorodiethyl Aluminum or ethyl aluminum dichloride; from the perspective of the use effect and cost of the cocatalyst, alkyl aluminum chloride is preferred as the cocatalyst.
  • the molar ratio of metal aluminum in the aluminum alkyl chloride to metal nickel in the catalyst is referred to as aluminum nickel
  • the ratio of aluminum to nickel is in the range of 50-1000:1, preferably 100-800:1, more preferably 200-600:1, more preferably 400:1.
  • the invention also discloses the application of the catalyst shown in formula (I) in catalyzing the polymerization of ethylene and propylene to prepare polyethylene and polypropylene.
  • the beneficial effect of the present invention is that, without significantly increasing the steric hindrance of the side group substituents, by improving the ligand skeleton structure, it provides a ( ⁇ -diimine) with good thermal stability and polymerization activity Nickel olefin polymerization catalyst.
  • Example 2 Preparation A2: in toluene (150 mL) solution of 2,4-bis(diphenylmethyl)-6-methylaniline (8.8 g, 20 mmol) and vinylidene acenaphthoquinone (3.7 g, 18 mmol) Add p-toluenesulfonic acid (0.34g, 2mmol) and reflux for 6h. The solvent was removed, and the residue was subjected to silica gel column chromatography with a mixed solvent of dichloromethane and petroleum ether in a volume ratio of 2:1 to obtain A2 with a mass of 4.4 g and a yield of 39%.
  • Example 3 Preparation A3: In 2,4-bis(bis(4-fluorophenyl)methyl)-6-methylaniline (10.2g, 20mmol) and vinylidene acenaphthoquinone (3.7g, 18mmol) Toluene (150mL) solution was added p-toluenesulfonic acid (0.34g, 2mmol), and the reaction was refluxed for 10h. The solvent was removed, and the residue was subjected to silica gel column chromatography with a mixed solvent of dichloromethane and petroleum ether in a volume ratio of 2:1 to obtain A3 with a mass of 4.9 g and a yield of 39%.
  • Example 4 Preparation of L1: p-toluenesulfonic acid (0.086g, 0.5mmol) was added to a solution of 2,6-dimethylaniline (0.133g, 1.1mmol) and A1 (0.627g, 1mmol) in toluene (50ml) , Reflux for 12h. The solvent was removed, and the residue was subjected to silica gel column chromatography with a mixed solvent of petroleum ether and ethyl acetate in a volume ratio of 30:1 to obtain L1 with a mass of 0.33 g and a yield of 46%.
  • Example 5 Preparation of L2: p-toluenesulfonic acid (0.086g, 0.5mmol) was added to a solution of 2,6-diethylaniline (0.164g, 1.1mmol) and A1 (0.627g, 1mmol) in toluene (50ml) , Reflux for 12h. The solvent was removed, and the residue was subjected to silica gel column chromatography with a mixed solvent of petroleum ether and ethyl acetate in a volume ratio of 30:1 to obtain L2 with a mass of 0.36 g and a yield of 48%.
  • Example 6 Preparation of L3: p-toluenesulfonic acid (0.086g, 0.5mmol) was added to a solution of 2,6-diisopropylaniline (0.195g, 1.1mmol) and A1 (0.627g, 1mmol) in toluene (50ml) ), refluxing for 12h. The solvent was removed, and the residue was subjected to silica gel column chromatography with a mixed solvent with a volume ratio of petroleum ether and ethyl acetate of 30:1 to obtain L3 with a mass of 0.38 g and a yield of 49%.
  • Example 7 Preparation of L12: p-toluenesulfonic acid (0.086) was added to a solution of 2,6-diethyl-4-methylaniline (0.179g, 1.1mmol) and A2 (0.627g, 1mmol) in toluene (50ml) g, 0.5mmol), and refluxed for 12h. The solvent was removed, and the residue was subjected to silica gel column chromatography with a mixed solvent of petroleum ether and ethyl acetate in a volume ratio of 30:1 to obtain L12 with a mass of 0.48 g and a yield of 48%.
  • Example 8 Preparation of L20: p-toluenesulfonic acid (0.086) was added to a solution of 2,6-diethyl-4-methylaniline (0.179g, 1.1mmol) and A3 (0.7g, 1mmol) in toluene (50ml) g, 0.5mmol), and refluxed for 12h. The solvent was removed, and the residue was subjected to silica gel column chromatography with a mixed solvent of petroleum ether and ethyl acetate in a volume ratio of 30:1 to obtain L20 with a mass of 0.44 g and a yield of 52%.
  • Example 9 Preparation C1: Under a nitrogen atmosphere, dissolve L1 (0.146 g, 0.2 mmol) and (DME) NiBr 2 (0.062 g, 0.2 mmol) in 20 ml of dichloromethane and stir at room temperature for 24 hours. Dichloromethane was sucked dry, washed with ether 3 times, each time the amount of ether was 20ml, and then the ether was drained to obtain solid C1, 0.167g, yield 88%.
  • Example 10 Preparation C2: Under a nitrogen atmosphere, dissolve L2 (0.152 g, 0.2 mmol) and (DME) NiBr 2 (0.062 g, 0.2 mmol) in 20 ml of dichloromethane and stir at room temperature for 24 hours. Dichloromethane was sucked dry, washed with ether three times, each time the amount of ether was 20ml, and then the ether was drained to obtain solid C2, 0.178g, yield 91%.
  • Example 11 Preparation C3: Under a nitrogen atmosphere, dissolve L3 (0.157 g, 0.2 mmol) and (DME) NiBr 2 (0.062 g, 0.2 mmol) in 20 ml of dichloromethane, stir at room temperature for 24 hours, Dichloromethane was sucked dry, washed with ether 3 times, each time the amount of ether was 20ml, and then the ether was drained to obtain solid C3, 0.185g, yield 92%.
  • Example 12 Preparation C12: Under a nitrogen atmosphere, (, 0.2mmol 0.062g) was dissolved in L12 (0.154g, 0.2mmol) and (DME) NiBr 2 20ml of dichloromethane, stirred at room temperature for 24 hours, Dichloromethane was sucked dry, washed with ether 3 times, each time the amount of ether was 20ml, and then the ether was drained to obtain solid C12, 0.176g, yield 89%.
  • Example 13 Preparation C20: Under a nitrogen atmosphere, dissolve L20 (0.169 g, 0.2 mmol) and (DME) NiBr 2 (0.062 g, 0.2 mmol) in 20 ml of dichloromethane and stir at room temperature for 24 hours. Dichloromethane was drained and washed with ether three times, each time the amount of ether was 20ml, and then the ether was drained to obtain solid C20, 0.189g, yield 89%.
  • Example 14 The pressurized polymerization of ethylene is carried out under anhydrous and oxygen-free conditions.
  • the ethylene pressure was 1 MPa
  • the polymerization temperature was 60° C.
  • 1 L of heptane was introduced into a 2000 mL stainless steel reactor, and then 2.5 ml of a diethylaluminum chloride toluene solution with a promoter concentration of 2.0 mol/L was injected into it.
  • Example 15 C1 in Example 16 was replaced with C2, and other conditions were not changed. After the polymerization product was vacuum dried at 60°C to constant weight, 27.9 g of polymer was weighed. The catalytic activity was 5.58 ⁇ 10 6 gPE[mol(Ni)h] -1 , the weight average molecular weight of the polymerization product was 41.3 ⁇ 10 4 g/mol, and the polydispersity coefficient was 2.29.
  • Example 16 C1 in Example 16 was replaced with C3, the polymerization temperature was set at 20°C, and other conditions remained unchanged. After the polymerization product was vacuum dried at 60°C to constant weight, 45.1 g of polymer was weighed. The catalytic activity was 9.02 ⁇ 10 6 gPE[mol(Ni)h] -1 , the weight average molecular weight of the polymerization product was 97.1 ⁇ 10 4 g/mol, and the polydispersity coefficient was 2.35.
  • Example 17 Replace C1 in Example 16 with C12, the polymerization temperature is set to 80°C, and the cocatalyst is changed to 10 ml of MMAO toluene solution with a concentration of 3.0 mol/L. Other conditions remain unchanged, and the polymerization product is at 60°C After vacuum drying to constant weight, 28.9 g of polymer was weighed. The catalytic activity is 5.78 ⁇ 10 6 gPE[mol(Ni)h] -1 .
  • Example 18 C1 in Example 16 was replaced with C20, and other conditions were not changed. After the polymerization product was vacuum dried at 60°C to constant weight, 21.9 g of polymer was weighed. The catalytic activity was 4.38 ⁇ 10 6 gPE[mol(Ni)h] -1 , the weight average molecular weight of the polymerization product was 16.3 ⁇ 10 4 g/mol, and the polydispersity coefficient was 2.56.
  • Example 19 The polymerization temperature in Example 16 was adjusted to 70°C, and other conditions were not changed. After the polymerization product was vacuum dried at 60°C to constant weight, 19.4 g of polymer was weighed. The catalytic activity was 3.88 ⁇ 10 6 gPE[mol(Ni)h] -1 , the weight average molecular weight of the polymerization product was 15.6 ⁇ 10 4 g/mol, and the polydispersity coefficient was 2.46.
  • Example 15 Replace C2 in Example 15 with the same molar amount of F1, other conditions remain unchanged, the polymerization catalytic activity is 4.26 ⁇ 10 6 gPE[mol(Ni)h] -1 , and the weight average molecular weight of the polymerization product is 31.2 ⁇ 10 4 g /mol, the polydispersity coefficient is 2.27.
  • Example 3 The vinylene acenaphthoquinone (B3) in Example 3 was replaced with the same molar amount of acenaphthoquinone to prepare (2,4-bis(bis(4-fluorophenyl)methyl)-6-methylaniline) acenaphthene Ketone, code-named D2, yield: 51%.
  • Example 8 Replace A3 in Example 8 with the same molar amount of D2 to prepare 1-(2,6-diethyl-4-methylaniline)-2-(2,4-bis(bis(4-fluorophenyl ) Methyl)-6-methylaniline) acenaphthene, codenamed E2, yield 46%.
  • Example 19 The C20 in Example 19 was replaced with the same molar amount of F2. Other conditions remained unchanged, the polymerization catalytic activity was 2.41 ⁇ 10 6 gPE[mol(Ni)h] -1 , and the weight average molecular weight of the polymerization product was 9.6 ⁇ 10 4 g /mol, the polydispersity coefficient is 2.33.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种基于亚乙烯基苊醌为骨架的大位阻不对称(α-二亚胺)镍烯烃催化剂及其制备方法和应用。本发明的基于亚乙烯基苊醌为骨架的大位阻不对称(α-二亚胺)镍烯烃催化剂的结构式如式(Ⅰ)所示。其中R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基、双(4-氟苯基)甲基或甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素、三氟甲基或甲氧基,R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢、甲基、乙基或异丙基,X为氯或溴。该催化剂制备工艺简单,能在助催化剂的作用下催化乙烯聚合,表现出较好的热稳定性和聚合活性,具有良好的工业应用前景。

Description

亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用 技术领域
本发明涉及亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用,尤其涉及到一种亚乙烯基苊不对称α-二亚胺镍催化剂及其制备方法和应用,及使用该催化剂催化乙烯或丙烯聚合得到聚乙烯或聚丙烯的应用。
背景技术:
聚烯烃是关系国计民生的基础材料,并且由于其优异的性能、品种的多样,原料易得和价格低廉,使其广泛应用于工业、农业以及国防等各领域。新催化剂的开发和应用是推动聚烯烃产业进步和发展的核心动力之一,是控制聚烯烃材料的结构与性能的关键。
近几十年来,通过配位聚合获得功能化与差别化聚烯烃材料的研究得到了广泛的关注。1995年由杜邦公司资助的Brookhart研究小组发现含α-二亚胺配体的Ni(Ⅱ)和Pd(Ⅱ)金属络合物可在常压下催化乙烯聚合成高分子量聚合物,由此开发出新一代的后过渡金属催化剂(J.Am.Chem.Soc.,1995,117(23):6414-6415)。这类α-二亚胺镍烯烃催化剂的具体结构如式(Ⅳ)所示:
Figure PCTCN2018122682-appb-000001
到目前为止,大量的研究工作在保持二(芳基)α-二亚胺配体布局不变的情况下,对芳基的邻位基团(图中的R')和二亚胺骨架上的基团(图的R基团)进行了修饰。当R'从异丙基换成甲基时,所得聚合物的支化度和分子量都降低,并且拓扑结构更加线性。然而,这类催化剂的热稳定性差,即使当R'为大位阻的异丙基时,使用这类催化剂制备的聚乙烯分子量和催化剂活性都随温度的上升急剧下降。当聚合温度上升到高于60℃时,催化剂受热迅速分解而失活。Rieger(J.AM.CHEM.SOC.,2007,129,9182-9191)、Long(J.AM.CHEM.SOC.,2013,135,16316-16319;ACS Catalysis,2014,4,2501-2504)等人将R'由烷基 变成芳基或取代的芳基,所制备的催化剂热稳定性大幅度提高,当聚合温度高于60℃时,催化剂仍保持了良好的催化活性。不过,这种两侧苯胺取代基均为大体积取代基团的对称结构的催化剂,在制备催化剂的配体的时候,由于空间位阻大,配体的产率非常低,导致催化剂的合成成本居高不下;同时,大体积取代基团的R'阻碍了乙烯的快速插入,导致催化乙烯聚合时,催化剂的聚合活性不高,限制了它的工业化应用。
发明内容
本发明的目的是克服现有技术的不足,提供一种基于亚乙烯基苊醌为骨架的大位阻不对称(α-二亚胺)镍烯烃催化剂及其制备方法和应用。
本发明提供的不对称(α-二亚胺)镍烯烃催化剂,其化学结构通式如式(Ⅰ)所示:
Figure PCTCN2018122682-appb-000002
式(Ⅰ)中,R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基、双(4-氟苯基)甲基或甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素、三氟甲基或甲氧基,R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢、甲基、乙基或异丙基,X为氯或溴。式(Ⅰ)中所有苯胺取代基的选择是相互独立的。
优选的,式(Ⅰ)所述R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基或双(4-氟苯基)甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素或甲氧基,R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢或甲基,X为溴。
本发明提供的催化剂配体结构通式如式(Ⅱ)所示:
Figure PCTCN2018122682-appb-000003
式(Ⅱ)中,R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基、双(4-氟苯基)甲基或甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素、三氟甲基或甲氧基,R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢、甲基、乙基或异丙基。式(Ⅱ)中所有苯胺取代基的选择是相互独立的。
优选的,式(Ⅱ)中所述R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基或双(4-氟苯基)甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素或甲氧基,R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢或甲基。
更优选的,上述(Ⅱ)所示配体选自如表1所示化合物中的任意一种:
表1配体
Figure PCTCN2018122682-appb-000004
Figure PCTCN2018122682-appb-000005
本发明还提供一种制备上述配体化合物的方法,其包含以下步骤:
1)、亚乙烯基苊醌与带有大位阻取代基的苯胺通过酮胺缩合反应得到式(Ⅲ)所示化合物:
Figure PCTCN2018122682-appb-000006
该步反应采用的苯胺取代基可参照表1;该步反应采用的溶剂可选自甲苯、乙腈、乙酸和无水乙醇中的至少一种,优选甲苯和乙腈;该步反应采用的催化剂选自对甲苯磺酸和乙酸中的至少一种;所述催化剂、亚乙烯基苊醌、带大位阻取代基的苯胺与溶剂的用量比为0.1-0.15mmol:1-1.1mmol:1.1-1.4mmol:5-10ml,优选为0.1mmol:1mmol:1.1mmol:8ml,该步反应时间为2-8小时,优选3-6小时。产物用二氯甲烷和石油醚的混合溶剂或者石油醚与乙酸乙酯的混合溶剂为淋洗剂在硅胶柱中进行柱层析,得到式(Ⅲ)所示产物。
上述亚乙烯基苊醌可由以下路径合成得到:
Figure PCTCN2018122682-appb-000007
首先,化合物B1进行溴化反应得到化合物B2:以B1为原料,四氯化碳作溶剂,过氧化苯甲酰作引发剂,N-溴代琥珀酰亚胺(NBS)作溴化剂,通过溴化反应可以得到化合物B2。然后,以化合物B2为原料,丙酮作溶剂,无水碘化钾作引发 剂,通过消除反应可以得到亚乙烯基苊醌B3。
2)、式(Ⅲ)所示化合物与带有小位阻取代基的苯胺通过酮胺缩合反应得到式(Ⅱ)对应的化合物:
Figure PCTCN2018122682-appb-000008
该步反应采用的苯胺取代基可参照表1;该步反应采用的溶剂可选自甲苯、乙腈、乙酸和无水乙醇中的至少一种,优选甲苯和乙腈;该步反应采用的催化剂选自对甲苯磺酸和乙酸中的至少一种;所述催化剂、式(Ⅲ)所示化合物、带小位阻取代基的苯胺与溶剂的用量比为0.2-0.5mmol:1-1.1mmol:1.1-1.4mmol:30-70ml,优选为0.3mmol:1mmol:1.1mmol:50ml,该步反应时间为6-16小时,优选8-12小时。产物二氯甲烷和石油醚的混合溶剂或者石油醚与乙酸乙酯的混合溶剂为淋洗剂在硅胶柱进行柱层析,得到式(Ⅱ)所示产物。
本发明还提供一种式(Ⅰ)所示催化剂的制备方法,包含以下步骤:在惰性气体氛围下,将式(Ⅱ)所示化合物与乙二醇二甲醚二溴化镍、乙二醇二甲醚二氯化镍或六水合二氯化镍中的一种进行络合,即可得到本发明所述的催化剂。本发明催化剂结构式中的X为氯或溴,对于聚合效果无实质性影响,本发明实施例中选择X为溴。
优选的,在氮气氛围下,式(Ⅱ)所示化合物可选自表1所示配体,与配体络合的含镍化合物选择乙二醇二甲醚二溴化镍(DME)NiBr 2,所述配体与(DME)NiBr 2的摩尔比为1:1-1.2,优选1:1.1;所述溶剂为二氯甲烷,反应温度为15-35℃,优选25℃,反应时间8-30小时,优选16-24小时。当X为溴时,参照表1的配体方案,本发明的催化剂可选自表2中的任意一种:
表2催化剂
Figure PCTCN2018122682-appb-000009
Figure PCTCN2018122682-appb-000010
本发明还提供一种用于催化烯烃聚合的催化剂组合物,所述组合物由式(Ⅰ)所示催化剂与助催化剂组成,所述助催化剂选自氯化烷基铝、烷基铝和铝氧烷中的至少一种,所述烯烃为乙烯或丙烯。
上述催化剂组合物中,所述铝氧烷为甲基铝氧烷(MAO)、改性甲基铝氧烷(MMAO)、乙基铝氧烷或异丁基铝氧烷;所述烷基铝为三甲基铝、三乙基铝、三异丁基铝、三正己基铝或三正辛基铝;所述氯化烷基铝为氯化二乙基铝、倍半一氯二乙基铝或二氯化乙基铝;从助催化剂的使用效果和成本考虑,优选氯化烷基铝作为助催化剂,氯化烷基铝中的金属铝与催化剂中的金属镍的摩尔比简称铝镍比,铝镍比范围为50-1000:1,优选100-800:1,更优选200-600:1,更优选400:1。
本发明还公开了如式(Ⅰ)所示催化剂在催化乙烯、丙烯聚合,制备聚乙烯、聚丙烯中的应用。
本发明的有益效果在于,在不明显增加侧基取代基空间位阻的前提下,通过改进配体骨架结构,提供了一种具有良好的热稳定性和聚合活性的(α-二亚胺)镍烯烃聚合催化剂。
具体实施方式:
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。
本发明实施例中具体涉及的如化学结构式(Ⅰ)、(Ⅱ)、(Ⅲ)所示的化合物如表3所示:
表3
Figure PCTCN2018122682-appb-000011
实施例1、制备A1:
1)制备B2:
将B1(5g,24mmol)溶于250mL四氯化碳中,在N 2氛围下,在85℃回流30min,向溶液中加入13g(75mmol)N-溴代琥珀酰亚胺(NBS)和1g过氧化苯甲酰,继续在85℃下回流反应5h。反应结束后,趁热过滤,并用200mL热CCl 4洗涤,对于洗涤得到的混合物进行旋转蒸发,除去溶剂四氯化碳,得到黄色固体,为产物B2和NBS的混合物。用二氯甲烷为淋洗液进行柱层析纯化,一共得到产物B2的质量为5.53g,产率为63%。
2)制备B3:
将B2(5.5g,15mmol)在N 2氛围下溶于100mL丙酮中,然后向溶液中再加入22.5g(1.38mol)无水碘化钾,在60℃下回流4h。反应结束后,将混合物冷却,倒入硫代硫酸钠的水溶液中,混合物用氯仿萃取三次,再用去离子水洗涤三次,旋转蒸发后得到红色产物B3,产量为2.56g,产率为83%。
3)制备A1:
在2,6-二(二苯甲基)-4-甲基苯胺(8.8g,20mmol)和亚乙烯基苊醌(3.7g,18mmol)的甲苯(150mL)溶液中加入对甲苯磺酸(0.34g,2mmol),回流反应6h。去除溶剂,剩余物用二氯甲烷和石油醚的体积比为2:1的混合溶剂进行硅胶柱层析,得到A1的质量为4.2g,产率:37%。
实施例2、制备A2:在2,4-二(二苯甲基)-6-甲基苯胺(8.8g,20mmol)和亚乙烯基苊醌(3.7g,18mmol)的甲苯(150mL)溶液中加入对甲苯磺酸(0.34g,2mmol),回流反应6h。去除溶剂,剩余物用二氯甲烷和石油醚的体积比为2:1的混合溶剂进行硅胶柱层析,得到A2的质量为4.4g,产率:39%。
实施例3、制备A3:在2,4-双(双(4-氟苯基)甲基)-6-甲基苯胺(10.2g,20mmol)和亚乙烯基苊醌(3.7g,18mmol)的甲苯(150mL)溶液中加入对甲苯磺酸(0.34g,2mmol),回流反应10h。去除溶剂,剩余物用二氯甲烷和石油醚的体积比为2:1的混合溶剂进行硅胶柱层析,得到A3的质量为4.9g,产率:39%。
实施例4、制备L1:在2,6-二甲基苯胺(0.133g,1.1mmol)与A1(0.627g,1mmol)的甲苯(50ml)溶液中加入对甲苯磺酸(0.086g,0.5mmol),回流反应12h。去除溶剂,剩余物用石油醚与乙酸乙酯的体积比为30:1的混合溶剂进行硅胶柱层析,得到L1的质量为0.33g,产率:46%。
实施例5、制备L2:在2,6-二乙基苯胺(0.164g,1.1mmol)与A1(0.627g,1mmol)的甲苯(50ml)溶液中加入对甲苯磺酸(0.086g,0.5mmol),回流反应12h。去除溶剂,剩余物用石油醚与乙酸乙酯的体积比为30:1的混合溶剂进行硅胶柱层析,得到L2的质量为0.36g,产率:48%。
实施例6、制备L3:在2,6-二异丙基苯胺(0.195g,1.1mmol)与A1(0.627g,1mmol)的甲苯(50ml)溶液中加入对甲苯磺酸(0.086g,0.5mmol),回流反应12h。去除溶剂,剩余物用石油醚与乙酸乙酯的体积比为30:1的混合溶剂进行硅胶柱层析,得到L3的质量为0.38g,产率:49%。
实施例7、制备L12:在2,6-二乙基-4-甲基苯胺(0.179g,1.1mmol)与A2(0.627g,1mmol)的甲苯(50ml)溶液中加入对甲苯磺酸(0.086g,0.5mmol),回流反应12h。去除溶剂,剩余物用石油醚与乙酸乙酯的体积比为30:1的混合溶剂进行硅胶柱层析,得到L12的质量为0.48g,产率:48%。
实施例8、制备L20:在2,6-二乙基-4-甲基苯胺(0.179g,1.1mmol)与A3(0.7g,1mmol)的甲苯(50ml)溶液中加入对甲苯磺酸(0.086g,0.5mmol),回流反应12h。去除溶剂,剩余物用石油醚与乙酸乙酯的体积比为30:1的混合溶剂进行硅胶柱层析,得到L20的质量为0.44g,产率:52%。
实施例9、制备C1:在氮气氛围下,将L1(0.146g,0.2mmol)与(DME)NiBr 2(0.062g,0.2mmol)溶于20ml二氯甲烷中,在室温下搅拌24小时,将二氯甲烷抽干,用乙醚洗涤3次,每次乙醚用量为20ml,再将乙醚抽干得到固体C1,0.167g,产率88%。
实施例10、制备C2:在氮气氛围下,将L2(0.152g,0.2mmol)与(DME)NiBr 2(0.062g,0.2mmol)溶于20ml二氯甲烷中,在室温下搅拌24小时,将二氯甲烷抽干,用乙醚洗涤3次,每次乙醚用量为20ml,再将乙醚抽干得到固体C2,0.178g,产率91%。
实施例11、制备C3:在氮气氛围下,将L3(0.157g,0.2mmol)与(DME)NiBr 2(0.062g,0.2mmol)溶于20ml二氯甲烷中,在室温下搅拌24小时,将二氯甲烷抽干,用乙醚洗涤3次,每次乙醚用量为20ml,再将乙醚抽干得到固体C3,0.185g,产率92%。
实施例12、制备C12:在氮气氛围下,将L12(0.154g,0.2mmol)与(DME)NiBr 2(0.062g,0.2mmol)溶于20ml二氯甲烷中,在室温下搅拌24小时,将二氯甲烷抽干,用乙醚洗涤3次,每次乙醚用量为20ml,再将乙醚抽干得到固体C12,0.176g,产率89%。
实施例13、制备C20:在氮气氛围下,将L20(0.169g,0.2mmol)与(DME)NiBr 2(0.062g,0.2mmol)溶于20ml二氯甲烷中,在室温下搅拌24小时,将二氯甲烷抽干,用乙醚洗涤3次,每次乙醚用量为20ml,再将乙醚抽干得到固体C20,0.189g,产率89%。
以下实施例为催化乙烯聚合:
实施例14、乙烯加压聚合是在无水无氧条件下进行的。乙烯压力为1MPa,聚合温度为60℃,将1L庚烷导入2000mL的不锈钢反应釜中,随后向其中注入2.5ml浓度为2.0mol/L的助催化剂氯化二乙基铝甲苯溶液。用10mL甲苯溶液溶解10μmol主催化剂C1,将其注入,将乙烯加压至1MPa,搅拌,反应半小时后,将聚合物溶液倒入酸化的乙醇溶液中进行沉降,过滤聚合物,然后用酸化乙醇洗涤数次,在60℃下真空干燥至恒重后称量得25.7g聚合物。催化活性为5.14×10 6gPE[mol(Ni)h] -1,聚合产物重均分子量为35.6×10 4g/mol,多分散系数为2.33。
实施例15、将实施例16中的C1替换为C2,其他条件不变,将聚合产物在60℃下真空干燥至恒重后称量得27.9g聚合物。催化活性为5.58×10 6gPE[mol(Ni)h] -1,聚合产物重均分子量为41.3×10 4g/mol,多分散系数为2.29。
实施例16、将实施例16中的C1替换为C3,聚合温度设为20℃,其他条件不变,将聚合产物在60℃下真空干燥至恒重后称量得45.1g聚合物。催化活性为9.02×10 6gPE[mol(Ni)h] -1,聚合产物重均分子量为97.1×10 4g/mol,多分散系数为2.35。
实施例17、将实施例16中的C1替换为C12,聚合温度设为80℃,助催化剂改为10ml浓度为3.0mol/L的MMAO甲苯溶液,其他条件不变,将聚合产物在60℃下真空干燥至恒重后称量得28.9g聚合物。催化活性为5.78×10 6gPE[mol(Ni)h] -1
实施例18、将实施例16中的C1替换为C20,其他条件不变,将聚合产物在60℃下真空干燥至恒重后称量得21.9g聚合物。催化活性为4.38×10 6gPE[mol(Ni)h] -1,聚合产物重均分子量为16.3×10 4g/mol,多分散系数为2.56。
实施例19、将实施例16中的聚合温度调整为70℃,其他条件不变,将聚合产物在60℃下真空干燥至恒重后称量得19.4g聚合物。催化活性为3.88×10 6gPE[mol(Ni)h] -1,聚合产物重均分子量为15.6×10 4g/mol,多分散系数为2.46。
比较例1
将实施例1第3步中的亚乙烯基苊醌(B3)替换为相同摩尔量的苊醌,制备(2,6-二(二苯甲基)-4-甲基苯胺)苊酮,代号为D1,产率:32%。
比较例2
将实施例5中的A1替换为相同摩尔量的D1,制备1-(2,6-二乙基苯胺)-2-(2,6-二(二苯甲基)-4-甲基苯胺)苊,代号为E1,产率为34%。
比较例3
将实施例10中的L2替换为相同摩尔量的E1,制备(1-(2,6-二乙基苯胺)-2-(2,6-二(二苯甲基)-4-甲基苯胺)苊)合溴化镍,代号为F1,产率为85%。
比较例4
将实施例15中的C2替换为相同摩尔量的F1,其他条件不变,聚合催化活性为4.26×10 6gPE[mol(Ni)h] -1,聚合产物重均分子量为31.2×10 4g/mol,多分散系数为2.27。
比较例5
将实施例3中的亚乙烯基苊醌(B3)替换为相同摩尔量的苊醌,制备(2,4-二(双(4-氟苯基)甲基)-6-甲基苯胺)苊酮,代号为D2,产率:51%。
比较例6
将实施例8中的A3替换为相同摩尔量的D2,制备1-(2,6-二乙基-4-甲基苯胺)-2-(2,4-二(双(4-氟苯基)甲基)-6-甲基苯胺)苊,代号为E2,产率为46%。
比较例7
将实施例13中的L20替换为相同摩尔量的E2,制备(1-(2,6-二乙基-4-甲基苯 胺)-2-(2,4-二(双(4-氟苯基)甲基)-6-甲基苯胺)苊)合溴化镍,代号为F2,产率为83%。
比较例8
将实施例19中的C20替换为相同摩尔量的F2,其他条件不变,聚合催化活性为2.41×10 6gPE[mol(Ni)h] -1,聚合产物重均分子量为9.6×10 4g/mol,多分散系数为2.33。

Claims (8)

  1. 式(Ⅰ)所示(α-二亚胺)镍催化剂:
    Figure PCTCN2018122682-appb-100001
    式(Ⅰ)中,R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基、双(4-氟苯基)甲基或甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素、三氟甲基或甲氧基,R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢、甲基、乙基或异丙基,X为氯或溴。
  2. 根据权利要求1所述的催化剂,其特征在于:所述R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基或双(4-氟苯基)甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素或甲氧基,R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢或甲基,X为溴。
  3. 式(Ⅱ)所示化合物:
    Figure PCTCN2018122682-appb-100002
    式(Ⅱ)中,R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基、双(4-氟苯基)甲基或甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素、三氟甲基或甲氧基,R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢、甲基、乙基或异丙基。
  4. 一种制备权利要求3所述的式(Ⅱ)对应的化合物的方法,其包含以下步骤:1)、亚乙烯基苊醌的合成路径:
    Figure PCTCN2018122682-appb-100003
    首先,化合物B1进行溴化反应得到化合物B2;以B1为原料,四氯化碳作溶剂,过氧化苯甲酰作引发剂,N-溴代琥珀酰亚胺(NBS)作溴化剂,通过溴化反应可以得到化合物B2;然后,以化合物B2为原料,丙酮作溶剂,无水碘化钾作引发剂,通过消除反应得到亚乙烯基苊醌B3;
    2)、亚乙烯基苊醌与带有大位阻取代基的苯胺通过酮胺缩合反应得到式(Ⅲ)所示化合物:
    Figure PCTCN2018122682-appb-100004
    其中R 1为二苯甲基或双(4-氟苯基)甲基,R 2为二苯甲基、双(4-氟苯基)甲基或甲基,R 3为甲基、乙基、异丙基、二苯甲基、双(4-氟苯基)甲基、卤素、三氟甲基或甲氧基;
    3)、式(Ⅲ)所示化合物与带有小位阻取代基的苯胺通过酮胺缩合反应得到所述式(Ⅱ)对应的化合物:
    Figure PCTCN2018122682-appb-100005
    其中R 4为甲基、乙基或异丙基,R 5为甲基、乙基或异丙基,R 6为氢、甲基、乙基或异丙基。
  5. 一种制备权利要求1或2所述催化剂的方法,包含以下步骤:在惰性气体氛围下,将权利要求3所述化合物与乙二醇二甲醚二溴化镍、乙二醇二甲醚二氯化镍或六水合二氯化镍中的一种进行络合,即可得到权利要求1或2所述的催化剂。
  6. 一种用于催化烯烃聚合的催化剂组合物,其特征在于,包含权利要求1或2所述的主催化剂与助催化剂,其中,所述助催化剂选自氯化烷基铝、烷基铝和铝氧烷中的至少一种,所述烯烃为乙烯或丙烯。
  7. 一种聚乙烯,其特征在于,所述聚乙烯通过权利要求6所述的催化剂组合物催化乙烯聚合得到。
  8. 一种聚丙烯,其特征在于,所述聚丙烯通过权利要求6所述的催化剂组合物催化丙烯聚合得到。
PCT/CN2018/122682 2017-12-25 2018-12-21 亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用 WO2020124557A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201711418311 2017-12-25
CN201811567401.X 2018-12-20
CN201811567401.XA CN109957051B (zh) 2017-12-25 2018-12-20 亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020124557A1 true WO2020124557A1 (zh) 2020-06-25

Family

ID=67023337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122682 WO2020124557A1 (zh) 2017-12-25 2018-12-21 亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109957051B (zh)
WO (1) WO2020124557A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957051B (zh) * 2017-12-25 2022-03-08 杭州星庐科技有限公司 亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用
CN110317149B (zh) * 2019-07-31 2022-08-09 安徽大学 大位阻柔性二亚胺配体、基于其的二亚胺镍和钯配合物及其催化应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827312A (zh) * 2012-08-03 2012-12-19 浙江大学 亚乙基苊(α-二亚胺)镍烯烃催化剂及其制备方法与应用
CN104877054A (zh) * 2015-05-22 2015-09-02 浙江大学 一种端羟基功能化的超支化聚乙烯及其制备方法
CN108003259A (zh) * 2016-10-27 2018-05-08 浙江大学 亚乙烯基苊(α-二亚胺)镍烯烃催化剂、制备方法及应用
CN108864343A (zh) * 2017-05-10 2018-11-23 浙江大学 一种双核(α-二亚胺)镍/钯烯烃催化剂、制备与应用
CN109957051A (zh) * 2017-12-25 2019-07-02 杭州星庐科技有限公司 亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926962A (zh) * 2015-05-15 2015-09-23 浙江大学 亚乙基苊(α-二亚胺)镍配合物/烷基氯化铝组合催化剂
CN113429502B (zh) * 2021-03-17 2022-09-09 浙江大学 一种改进的(α-二亚胺)镍催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827312A (zh) * 2012-08-03 2012-12-19 浙江大学 亚乙基苊(α-二亚胺)镍烯烃催化剂及其制备方法与应用
CN104877054A (zh) * 2015-05-22 2015-09-02 浙江大学 一种端羟基功能化的超支化聚乙烯及其制备方法
CN108003259A (zh) * 2016-10-27 2018-05-08 浙江大学 亚乙烯基苊(α-二亚胺)镍烯烃催化剂、制备方法及应用
CN108864343A (zh) * 2017-05-10 2018-11-23 浙江大学 一种双核(α-二亚胺)镍/钯烯烃催化剂、制备与应用
CN109957051A (zh) * 2017-12-25 2019-07-02 杭州星庐科技有限公司 亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, FENG ET AL.: "Highly Resilient Polyethylene Elastomers Prepared Using α-diimine Nickel Catalyst with Highly Conjugated Backbone", APPLIED ORGANOMETALLIC CHEMISTRY, vol. 32, no. 12, 27 September 2018 (2018-09-27), XP055715625 *

Also Published As

Publication number Publication date
CN109957051A (zh) 2019-07-02
CN109957051B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN108003259B (zh) 亚乙烯基苊(α-二亚胺)镍烯烃催化剂、制备方法及应用
CN105294778B (zh) 一种镍基配合物及其制备方法和应用
CN109957049B (zh) 不对称(α-二亚胺)镍烯烃催化剂及其制备方法和应用
WO2012122854A1 (zh) 不对称α二亚胺镍配合物催化剂及其制备方法与应用
US6825296B2 (en) Catalyst component for olefin polymerization
CN111960964A (zh) 一类氟取代α-二亚胺配体、镍催化剂及其制备方法与应用
CN105482000A (zh) 一种烯烃聚合催化剂及其制备和应用方法
WO2020124557A1 (zh) 亚乙烯基苊α-二亚胺镍烯烃催化剂及其制备方法和应用
WO2022133843A1 (zh) 共价有机框架材料、催化剂、其制备方法及应用
CN109956979B (zh) 耐热不对称α-二亚胺镍烯烃催化剂及其制备方法和应用
CN109956980B (zh) 亚乙基苊不对称α-二亚胺镍催化剂及其制备方法和应用
CN108864327B (zh) 5,6-二甲基苊(α-二亚胺)镍烯烃催化剂及其制备与应用
CN102050840B (zh) 含萘环的α-二亚胺镍(Ⅱ)配合物及其制备和应用
CN107602734B (zh) 一种含钯催化剂、其制备方法、由其制得的组合物及应用
WO2020124556A1 (zh) 不对称(α-二亚胺)镍烯烃催化剂及其制备方法和应用
JP5595059B2 (ja) 有機金属ポリオレフィン触媒成分
EA018925B1 (ru) Постметаллоценовые комплексы на основе бис-(нафтокси)пиридиновых и бис-(нафтокси)тиофеновых лигандов для полимеризации этилена и альфа-олефинов
JP4658335B2 (ja) 不飽和化合物重合用有機金属触媒
CN109956978B (zh) 基于菲醌的不对称α-二亚胺镍催化剂及其制备方法和应用
EP1994040A1 (en) Polymerisation of ethylene and alpha-olefins with phosphino-iminophenol complexes
KR100961079B1 (ko) 올레핀 중합용 촉매 및 이를 이용한 올레핀의 중합방법
CN110483587B (zh) 大位阻酮亚胺镍催化剂及其配体化合物、制备方法和应用
BRPI0911473A2 (pt) complexos metálicos de naftóxi-imina bidentada e tridentada esterilmente distribuídos
CN101274940B (zh) 桥联β-二亚胺类锆化合物及其制备方法和应用
Pang et al. Synthesis and characterization of bis (guanidinate) zirconium complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943703

Country of ref document: EP

Kind code of ref document: A1