WO2020122479A1 - 다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법 - Google Patents

다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법 Download PDF

Info

Publication number
WO2020122479A1
WO2020122479A1 PCT/KR2019/016679 KR2019016679W WO2020122479A1 WO 2020122479 A1 WO2020122479 A1 WO 2020122479A1 KR 2019016679 W KR2019016679 W KR 2019016679W WO 2020122479 A1 WO2020122479 A1 WO 2020122479A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroless plating
solution
plating
formula
integer
Prior art date
Application number
PCT/KR2019/016679
Other languages
English (en)
French (fr)
Inventor
한종인
손지은
야부즈자페르
홍영란
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US17/413,559 priority Critical patent/US11466369B2/en
Publication of WO2020122479A1 publication Critical patent/WO2020122479A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating

Definitions

  • the present invention relates to a plating solution for electroless plating and an electroless plating method for recovering a noble metal adsorbed on a porous porphyrin polymer, and more particularly, to a porous porphyrin molecule comprising a porous porphyrin polymer having high selectivity for a noble metal element.
  • the present invention relates to an electroless plating solution and electroless plating method for recovering adsorbed precious metals.
  • the method for recovering precious metals from electronic industrial waste can be divided into dry smelting using a melting method, wet smelting using leaching, and biological smelting as a method for adsorbing smelting using microorganisms.
  • solutions and industrial wastewater generated through wet smelting contain various types of precious metals, and studies have been conducted to selectively separate and recover various types of precious metals.
  • Silica, polymer, activated carbon, and microorganisms Adsorbents using a lamp have been utilized as a method for selective metal recovery. (Pyzynsk, Analytica Chimica Acta 741 (2012): 9-14)
  • the method for selectively recovering a noble metal using such an adsorbent is in a state where technology development for subsequent utilization of the noble metal is insufficient.
  • the technique for using the noble metal after desorption of the noble metal for reuse of the adsorbent or the technology considering the effect of such a desorption method on the adsorbent must be effectively realized by understanding the characteristics of each adsorbent.
  • the techniques for desorption methods for reuse have been mentioned for the noble metal adsorbents developed to date, the development of techniques for the use of the desorption solution is incomplete (Ramesh et al., Bioresource Technology 88 (2008): 3801- 3809, Tofan et al., Process Safety and Environmental Protection 106 (2017): 150-162).
  • an electrolyte containing a porous porphyrin polymer of Formula 1 capable of selectively adsorbing the precious metal element of Korean Patent Application No. 10-2017-0170184 filed by the inventor
  • precious metals selectively adsorbed to the polymer by using a non-cyanide bath without adding an additional desorption oxidizing agent and a plating reducing agent without using a highly toxic cyanide.
  • An object of the present invention is to provide a plating solution for electroless plating capable of recovering a precious metal selectively adsorbed to a porous porphyrin polymer.
  • Another object of the present invention is to provide an economically excellent electroless plating method capable of recovering a noble metal selectively adsorbed to a porous porphyrin polymer with excellent reduction efficiency.
  • the present invention is a porphyrin polymer represented by Formula 1 adsorbed by a noble metal; And an electrolyte solution in which at least one base electrolyte selected from the group consisting of thiourea, sulfite, and thiosulfate is dissolved in a solvent to desorb the noble metal. to provide.
  • n is an integer of 5,000 to 50,000
  • m is an integer of 5,000 to 50,000.
  • the present invention also provides an electroless plating method comprising the step of plating the plating solution for electroless plating on a substrate.
  • FIG. 1 is a graph showing the desorption efficiency of a noble metal using a non-cyanide leachate from a porous porphyrin polymer to which a noble metal is selectively adsorbed according to an embodiment of the present invention.
  • FIG. 2 is a view showing electroless plating on a substrate surface of a noble metal contained in a leach solution according to an embodiment of the present invention.
  • FIG 3 is a graph showing the recovery efficiency of a noble metal recovered by the electroless plating method according to an embodiment of the present invention, a diagram showing the recovery efficiency according to the temperature.
  • FIG. 4 is a view showing a precious metal that has been reduced and recovered in the form of a film on the surface of the substrate recovered in the embodiment of FIG. 3 according to an embodiment of the present invention.
  • FIG. 5 is a view showing a precious metal that has been reduced and recovered in the form of a film on the surface of the substrate recovered by the ENIG (Electroless nickel/immersion gold) method according to another embodiment of the present invention.
  • ENIG Electroless nickel/immersion gold
  • the ratio is not injected without additional desorption oxidizing agent and plating reducing agent without using highly toxic cyanide. It was confirmed that it is possible to recover a precious metal selectively adsorbed to the polymer with an improved reduction efficiency using a non-cyanide bath, and that the polymer can be reused even after the precious metal is desorbed.
  • the present invention in one aspect, a porphyrin polymer represented by Formula 1 adsorbed by a noble metal; And an electrolyte solution in which one or more base electrolytes selected from the group consisting of thiourea, sulfite, and thiosulfate are dissolved in a solvent to desorb the noble metal; to the plating solution for electroless plating comprising It is about.
  • n is an integer of 5,000 to 50,000
  • m is an integer of 5,000 to 50,000.
  • Formula 1 may be preferably Formula 1-1.
  • n is an integer of 5,000 to 50,000
  • m is an integer of 5,000 to 50,000
  • Genes, azo, amide, benzamide and triazine can be represented by formulas 3 to 7, respectively.
  • the porphyrin polymer according to the present invention may have Chemical Formula 2.
  • n is an integer of 5,000 to 50,000
  • m is an integer of 5,000 to 50,000.
  • Porphyrin polymer according to the present invention has a specific surface area of 300 to 1000 m 2 g -1 , and a pore size of 0 to 20 nm.
  • the porphyrin polymer according to the present invention is stable up to 330°C in an air and nitrogen atmosphere, and thus has thermal durability.
  • Porphyrin polymer of formula 1 according to the present invention is 5,10,15,20-tetrakis(4-nitrophenyl)-21H,23H-porphyrin(5,10,15,20-Tetrakis(4-nitro phenyl)-21H ,23H-porphyrin).
  • the 5,10,15,20-tetrakis(4-nitrophenyl)-21H,23H-porphyrin monomer is dissolved in 4-nitrobenzaldehyde in propionic acid, and then acetic anhydride (acetic It can be obtained by adding anhydride and pyrrole and reacting.
  • the electrolyte solution used as a leach solution for desorbing a noble metal element selectively adsorbed on a porous porphyrin polymer is a buffer solution of potassium phosphate (K 2 HPO 4 ) or sodium phosphate (Na 2 HPO 4 ) and/or sulfuric acid ( H 2 SO 4 ), hydrochloric acid (HCl) and nitric acid (HNO 3 ) may further include at least one acid solution selected from the group consisting of.
  • the ionic form of the noble metal adsorbed on the porous porphyrin polymer is leached from the leach solution in the form of an electrolyte and a ligand, and the electrolyte solution is sodium sulfite (Na 2 SO 3 ) and sodium thiosulfate (Na 2 S 2 ) using water as a solvent.
  • one or more electrolytes a concentration of about 0.01 to 0.5M
  • the urea CS(NH 2 ) 2
  • potassium phosphate K 2 HPO 4
  • sodium phosphate Na 2 HPO 4
  • the ligand to be combined with the noble metal is sulfite ion (SO 3 2- ), thiosulfate ion (S 2 O 3 2- ), thiosulfate-sulfite ion ((SO 3 )(S 2 O 3 ) 5- ), Or it can be the bio element (CS(NH 2 ) 2 ).
  • the precious metal is gold (Au), platinum (Pt), silver (Ag), palladium (Pd), rudenium (Ru), rhodium (Rh), iridium (Ir), copper (Cu) and rhenium (Re) ).
  • the present invention relates to an electroless plating method comprising the step of plating the plating solution for electroless plating on a substrate.
  • the present invention is an electroless plating method for the recovery of a noble metal selectively adsorbed to a porous porphyrin polymer, a metal desorption and a non-cyanide containing cyanide as a plating electrolyte and a porous porphyrin polymer adsorbed with a precious metal dispersed in the electrolyte, and It includes a substrate on which plating occurs.
  • the substrate is a group consisting of nickel (Ni), cobalt (Co), cadmium (Cd), chromium (Cr), iron (Fe), zinc (Zn), aluminum (Al), magnesium (Mg) and lithium (Li) Can be selected from one or more.
  • the porphyrin polymer from which noble metals are desorbed can be reused.
  • FIG. 1 is a graph showing the efficiency recovered by desorption of a precious metal selectively adsorbed on a porous porphyrin polymer according to an embodiment using a urea or a thiosulfate-sulfite mixed solution as a leach solution.
  • the thiourea and thiosulfate-sulphite mixture solution contains an acid solution and a buffer, respectively, for electrolyte safety in the leach solution.
  • it exhibits a high desorption rate without a strong oxidant required in a conventional metal leaching method, and exhibits a high recovery rate without the addition of a plating reducing agent.
  • the leach solution containing precious metal ions desorbed from the porous porphyrin polymer is directly provided as a plating electrolyte.
  • FIG. 2 shows electroless plating through reduction of a noble metal on a substrate surface according to an embodiment.
  • Precious metal ions present in a form bound with a ligand may be recovered in a film form by depositing on the surface by receiving an electron (e-) at the surface of the substrate to reduce the ionic form of the noble metal.
  • e- electron
  • electrons can be provided to reduce and deposit precious metal ions in the electrolyte to the surface.
  • efficient noble metal reduction occurs even without a reducing agent required in the existing electroless plating, and thus economic efficiency may be excellent.
  • the substrate metal is a metal having a large reduction power according to the redox potential, that is, nickel (Ni), cobalt (Co), cadmium (Cd), chromium (Cr), iron (Fe), zinc (Zn), aluminum (Al), magnesium (Mg), may include lithium (Li), but is not limited thereto.
  • the electroless plating method in the present invention can be adjusted in the temperature range from 80 °C to room temperature.
  • the electrolytic plating solution containing a porphyrin polymer represented by Chemical Formula 1 adsorbed with a noble metal and a leach solution for desorption of the noble metal is applied to the electroless plating method, and the porous porphyrin polymer is recovered and reused to recover and reuse. It has an excellent economic effect.
  • the electroless plating method in the present invention is applicable to the electroless nickel/immersion gold (ENIG) method, and shows the possibility of use in the electronic packaging industry.
  • ENIG electroless nickel/immersion gold
  • the porous porphyrin polymer comprises (a) preparation of 5,10,15,20-Tetrakis(4-nitrophenyl)-21H,23H-porphyrin, a monomer of the polymer, and (b) 5,10,15,20-Tetrakis(4- It is prepared by a two-step reaction to synthesize a porous polymer from nitrophenyl)-21H,23H-porphyrin.
  • TNPPH2 5,10,15,20-Tetrakis(4-nitrophenyl)-21H,23H-porphyrin
  • Monomer TNPPH2 was prepared by slightly altering the synthetic methods reported in the literature (Bettelheim, A., et al., Inorganic Chemistry 26.7 (1987): 1009-1017; Yuasa, Makoto, et al., Journal of the American Chemical Society 126.36 (2004): 11128-11129).
  • the porous porphyrin polymer is a polymer containing phenazine (Preparation Example 1), a precious metal adsorbed on the polymer is gold (Au), and a leaching solution is 0.1M sulfuric acid (H 2 SO 4 ) containing 0.1M of iodine (CS(CS) NH 2 ) 2 ) solution and 0.1 M sodium thiosulfate (Na 2 S 2 O 3 ) and 0.1 M sodium sulfite (Na 2 SO 3 ) mixed solution including 0.1 M sodium phosphate (Na 2 HPO 4 ) solution were used.
  • electroless plating was performed using the above gold-thiourea leach solution. Nickel was used as the substrate and the reaction area was 10 cm 2 , and the substrate was reacted with leach for 3 hours. 3 and 4, the gold in the leach solution is reduced on the substrate and can be recovered in the form of a film, and shows a recovery rate of about 93% at a reaction temperature of 50°C.
  • electroless plating was performed by using a gold-thiourea leach solution using the ENIG (Electroless nickel/immersion gold) method.
  • the copper substrate was reacted with a solution containing 25 g/L nickel sulfate (NiSO 4 ⁇ 6H 2 O) and 30 g/L sodium hypophosphite (Na 2 H 2 PO 2 ⁇ H 2 O) to obtain a nickel coating film.
  • a gold-siourea leach solution at 80° C. to generate an electroless gold plating reaction as shown in FIG. 5.
  • the present invention it is possible to recover precious metals selectively adsorbed to the polymer with improved reduction efficiency by using non-cyanide without injection of additional desorption oxidizing agents and plating reducing agents without using highly toxic cyanide. Even after desorption, it is possible to reuse the polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 다공성 포르피린 고분자에 선택적으로 흡착된 귀금속의 회수 방법에 관한 것으로, 추가적 산화제 없이 귀금속을 탈착, 침출시켜 이를 도금액으로 이용하여 추가적 환원제 없이 기판 표면에서 귀금속을 환원시켜 필름 형태로 회수할 수 있는 무전해 도금방법에 관한 것이다.

Description

다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법
본 발명은 다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법에 관한 것으로, 더욱 상세하게는 귀금속 금속 원소에 대하여 높은 선택성을 가진 다공성 포르피린 고분자를 포함하는 다공성 포르피린 분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법에 관한 것이다.
최근 전기전자산업의 발달에 따라 귀금속 함유 전자산업폐자원(e-waste)이 급격히 발생하고 있으며, 경제적 가치가 높은 이러한 귀금속 회수 기술 개발에 대한 관심이 급증하고 있다. 뿐만 아니라 도금 공정이나 전자산업 공정으로부터 배출되는 폐수에도 상당한 양의 귀금속이 포함되어 있어, 이러한 귀금속의 회수를 위한 기술 개발이 필요할 것으로 보이나, 폐수 내 귀금속의 경우 수질오염물질 배출 기준을 부합시키기 위하여 전통적으로 그 제거에만 초첨이 맞추어 기술이 개발된 실정이다.
전자산업폐기물로부터의 귀금속 회수 방법은 용융법을 이용한 건식 제련, 침출을 이용한 습식 제련과, 미생물을 이용한 흡착 제련 방법인 생물학적 제련으로 나눌 수 있다. 이 중 습식 제련을 통해 발생하는 용액과 산업 폐수에는 다양한 종류의 귀금속이 포함되어 있으며, 여러 종류의 귀금속을 선택적으로 분리, 회수할 수 있는 연구가 현재까지 진행되어왔으며, 실리카, 폴리머, 활성탄, 미생물 등을 이용한 흡착제를 선택적 금속 회수를 위한 방법으로 활용해왔다. (Pyzynsk, Analytica Chimica Acta 741 (2012): 9-14)
그러나 이러한 흡착제를 이용하여 귀금속을 선택적으로 회수하는 방법은 그 귀금속의 후속 활용법에 대한 기술 개발이 미비한 상태이다. 특히 흡착제 재사용을 위하여 귀금속을 다시 탈착 시킨 후 그 귀금속의 활용 방법에 대한 기술이나 그러한 탈착법이 흡착제에 미치는 영향을 고려한 기술은 각 흡착제 마다 그 특징을 이해하여 효과적으로 이루어져야 한다. 그러나 현재까지 개발된 귀금속 흡착제들은 재사용을 위한 탈착 방법에 대한 기술이 언급되어 있으나, 그 탈착액에 대한 활용법에 대한 기술 개발은 미비한 상태이다(Ramesh et al., Bioresource Technology 88 (2008): 3801-3809, Tofan et al., Process Safety and Environmental Protection 106 (2017): 150-162).
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 본 발명자에 의하여 출원된 대한민국 특허출원 제10-2017-0170184호의 귀금속 원소를 선택적으로 흡착할 수 있는 화학식 1의 다공성 포르피린 고분자를 함유하는 전해질을 무전해 도금방법에 이용할 경우 독성이 강한 시안화물(cyanide)을 사용하지 않으면서 추가적인 탈착 산화제 및 도금 환원제를 첨가하지 않고 비시안화물욕(non-cyanide bath)을 이용하여 고분자에 선택적으로 흡착된 귀금속을 향상된 환원 효율로 회수하는 것이 가능하며, 귀금속을 탈착한 후에도 고분자의 재사용이 가능한 것을 확인하고, 귀금속을 선택적으로 흡착시킬 수 있는 다공성 포르피린 고분자의 효율적인 재사용과 선택적으로 분리된 귀금속의 높은 활용성을 위하여 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 다공성 포르피린 고분자에 선택적으로 흡착된 귀금속을 회수할 수 있는 무전해 도금용 도금액을 제공하는데 있다.
본 발명의 다른 목적은 다공성 포르피린 고분자에 선택적으로 흡착된 귀금속을 우수한 환원 효율로 회수할 수 있는 경제적으로 우수한 무전해 도금방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 귀금속이 흡착된 화학식 1로 표시되는 포르피린 고분자; 및 씨오요소(thiourea), 아황산염(sulfite) 및 티오황산염(thiosulfate)으로 구성된 군에서 선택된 1종 이상의 베이스 전해질이 용매에 용해되어 있어 상기 귀금속을 탈착시키는 전해질 용액;을 포함하는 무전해 도금용 도금액을 제공한다.
[화학식 1]
Figure PCTKR2019016679-appb-I000001
화학식 1에서 n은 5,000~50,000의 정수이고, m은 5,000~50,000의 정수이다.
본 발명은 또한, 상기 무전해 도금용 도금액을 기판에 처리하여 도금시키는 단계를 포함하는 무전해 도금방법을 제공한다.
도 1은 본 발명의 실시예에 따른 귀금속이 선택적으로 흡착된 다공성 포르피린 고분자로부터 비시안화 침출액을 이용하여 귀금속 탈착 효율을 보여주는 그래프이다.
도 2는 본 발명의 실시예에 따른 침출액에 포함된 귀금속의 기판 표면에서의 무전해 도금을 나타내는 도면이다.
도 3은 본 발명의 실시예에 따른 무전해 도금법으로 회수된 귀금속의 회수 효율을 나타내는 그래프로, 온도에 따른 회수 효율을 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 도 3의 실시예에서 회수된 기판 표면에서의 필름 형태로 환원되어 회수된 귀금속을 나타낸 도면이다.
도 5는 본 발명의 다른 실시예에 따른 ENIG (Electroless nickel/immersion gold) 공법으로 회수된 기판 표면에서의 필름 형태로 환원되어 회수된 귀금속을 나타낸 도면이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 귀금속 원소를 선택적으로 흡착할 수 있는 화학식 1의 다공성 포르피린 고분자 함유 전해질을 무전해 도금법에 이용할 경우 독성이 강한 시안화물(cyanide)을 사용하지 않으면서 추가적인 탈착 산화제 및 도금 환원제의 주입 없이 비시안화물욕(non-cyanide bath)을 이용하여 고분자에 선택적으로 흡착된 귀금속을 향상된 환원 효율로 회수하는 것이 가능하며, 귀금속을 탈착한 후에도 고분자의 재사용이 가능하다는 것을 확인하였다.
따라서, 본 발명은 일 관점에서, 귀금속이 흡착된 화학식 1로 표시되는 포르피린 고분자; 및 씨오요소(thiourea), 아황산염(sulfite) 및 티오황산염(thiosulfate)으로 구성된 군에서 선택된 1종 이상의 베이스 전해질이 용매에 용해되어 있어 상기 귀금속을 탈착시키는 전해질 용액;을 포함하는 무전해 도금용 도금액에 관한 것이다.
[화학식 1]
Figure PCTKR2019016679-appb-I000002
화학식 1에서 n은 5,000~50,000의 정수이고, m은 5,000~50,000의 정수이다.
상기 화학식 1은 바람직하게는 화학식 1-1일 수 있다.
[화학식 1-1]
Figure PCTKR2019016679-appb-I000003
화학식 1-1에서 n은 5,000~50,000의 정수이고, m은 5,000~50,000의 정수이며,
Figure PCTKR2019016679-appb-I000004
는 포르피린을 연결하는 어떠한 화학적 연결기도 가능하며, 바람직하게는 페나진(phenazine), 아조(azo), 아미드(amide), 벤즈아미드(benzamide) 및 트리아진(triazine)으로 선택된 군에서 선택되며, 페나진, 아조, 아미드, 벤즈아미드 및 트리아진은 각각 화학식 3 내지 화학식 7로 나타낼 수 있다.
[화학식 3]
Figure PCTKR2019016679-appb-I000005
[화학식 4]
Figure PCTKR2019016679-appb-I000006
[화학식 5]
Figure PCTKR2019016679-appb-I000007
[화학식 6]
Figure PCTKR2019016679-appb-I000008
[화학식 7]
Figure PCTKR2019016679-appb-I000009
본 발명에 따른 포르피린 고분자는 화학식 2일 수 있다.
[화학식 2]
Figure PCTKR2019016679-appb-I000010
화학식 2에서 n은 5,000~50,000의 정수이고, m은 5,000~50,000의 정수이다.
본 발명에 의한 포르피린 고분자는 비표면적이 300~1000m2g-1이고, 기공크기가 0~20nm일 수 있다.
본 발명에 의한 포르피린 고분자는 공기 및 질소 분위기에서 330℃까지 안정하여 열적 내구성도 가질 수 있다.
본 발명에 의한 화학식 1의 포르피린 고분자는 5,10,15,20-테트라키스(4-니트로페닐)-21H,23H-포르피린(5,10,15,20-Tetrakis(4-nitro phenyl)-21H,23H-porphyrin) 단량체를 중합시켜 제조할 수 있다.
상기 5,10,15,20-테트라키스(4-니트로페닐)-21H,23H-포르피린 단량체는 4-나이트로벤즈알데히드(4-nitrobenzaldehyde)를 프로피온산(propionic acid)에 용해시킨 다음, 아세트산 무수물(acetic anhydride) 및 파이롤(pyrrole)을 첨가하고 반응시켜 수득될 수 있다.
상기 5,10,15,20-테트라키스(4-니트로페닐)-21H,23H-포르피린 단량체, p-페닐렌디아민(p-phenylenediamine) 및 염기를 수분이 제거된 N,N-디메틸포름아마이드(N,N-dimethylformamide)에 혼합하고 반응시키는 단계; 및 상기 반응물에 물을 첨가하여 얻은 침전물을 여과 및 건조하여 포르피린 고분자를 수득하는 단계를 포함할 수 있다.
본 발명에 있어서, 다공성 포르피린 고분자에 선택적으로 흡착된 귀금속 원소를 탈착시키는 침출액으로 사용되는 상기 전해질 용액은 인산칼륨(K2HPO4) 또는 인산나트륨(Na2HPO4)의 완충액 및/또는 황산(H2SO4), 염산(HCl) 및 질산(HNO3)으로 구성된 군에서 선택된 1종 이상의 산용액을 추가로 포함할 수 있다.
다공성 포르피린 고분자에 흡착된 이온 형태의 귀금속은 침출액 중 전해질과 리간드(ligand) 형태로 결합되어 침출되는데, 전해질 용액은 물을 용매로 하여 아황산나트륨(Na2SO3), 티오황산나트륨(Na2S2O3) 또는 씨오요소(CS(NH2)2) 중 하나 이상의 전해질(약 0.01~0.5M의 농도)을 포함하며, 침출액에 인산칼륨(K2HPO4), 또는 인산나트륨(Na2HPO4) 중 하나 이상의 완충액(buffer) 및/또는 황산(H2SO4), 염산(HCl) 또는 질산(HNO3) 중 하나 이상의 산용액을 포함할 수 있다.
본 발명에서 귀금속과 결합될 리간드는 아황산이온(SO3 2-), 티오황산이온(S2O3 2-), 티오황산-아황산이온((SO3)(S2O3)5-), 또는 씨오요소(CS(NH2)2)가 될 수 있다.
본 발명에서 상기 귀금속은 금(Au), 백금(Pt), 은(Ag), 팔라듐(Pd), 루데늄(Ru), 로듐(Rh), 이리듐(Ir), 구리(Cu) 및 레늄(Re)으로 구성된 군에서 선택될 수 있다.
본 발명은 다른 관점에서 상기 무전해 도금용 도금액을 기판에 처리하여 도금시키는 단계를 포함하는 무전해 도금방법에 관한 것이다.
본 발명은 다공성 포르피린 고분자에 선택적으로 흡착된 귀금속 회수를 위한 무전해 도금방법은 금속 탈착 및 도금 전해질로 시안화물을 포함하지 않는 비시안화물과 그 전해질에 분산되어있는 귀금속이 흡착된 다공성 포르피린 고분자 그리고 도금이 발생하는 기판(substrate)을 포함한다.
본 발명에 있어서, 상온에서 80℃의 온도에서 수행할 수 있다.
상기 기판은 니켈(Ni), 코발트(Co), 카드뮴(Cd), 크로뮴(Cr), 철(Fe), 아연(Zn), 알루미늄(Al), 마그네슘(Mg) 및 리튬(Li)으로 구성된 군에서 1종 이상 선택될 수 있다.
본 발명에 있어서, 귀금속을 탈착시킨 포르피린 고분자는 재사용할 수 있다.
도 1은 실시예에 따른 다공성 포르피린 고분자에 선택적으로 흡착된 귀금속을 씨오요소 또는 티오황산-아황산염 혼합액을 침출액으로 이용하여 탈착하여 회수한 효율을 보여주는 그래프이다. 씨오요소 및 티오황산-아황산염 혼합액은 침출액 내 전해질 안전성을 위하여 각각 산용액과 완충액을 포함한다. 다공성 포르피린 고분자로부터의 귀금속 탈착 과정에서는 기존의 금속 침출 방법에서 요구되는 강력한 산화제(oxidant) 없이 높은 탈착율을 나타내고, 도금 환원제 첨가 없이도 높은 회수율을 나타내 경제적으로 우수한 효과가 있다.
다공성 포르피린 고분자로부터 탈착된 귀금속 이온을 포함하고 있는 침출액은 바로 도금 전해질로 제공한다.
도 2는 실시예에 따른 기판 표면에서의 귀금속 환원을 통한 무전해 도금을 나타낸다.
리간드와 결합된 형태로 존재하는 귀금속 이온은 기판 표면에서 전자(e-)를 받아 이온 형태의 귀금속을 환원시켜 표면에 증착시켜(deposition) 필름 형태로 회수할 수 있다. 이때 기판 표면에서 기판 금속이 산화되는 과정에서 전자를 제공하여 전해질 내 귀금속 이온을 표면에 환원시켜 증착시킬 수 있다. 또한 기존의 무전해 도금에서 요구되는 환원제(reducing agent) 없이도 효율적인 귀금속 환원이 발생하며 이로 인해 경제성이 우수할 수 있다.
따라서 기판 금속은 산화환원 전위(Redox potential)에 따라 환원력이 큰 금속, 즉 니켈(Ni), 코발트(Co), 카드뮴(Cd), 크로뮴(Cr), 철(Fe), 아연(Zn), 알루미늄(Al), 마그네슘(Mg), 리튬(Li)을 포함할 수 있으나, 이에 한정되지 않는다.
도 3 및 도 4를 참조하면, 본 발명에서 무전해 도금방법은 온도를 상온에서 80℃ 범위에서 조절될 수 있다.
귀금속이 흡착된 화학식 1로 표시되는 포르피린 고분자와 상기 귀금속을 탈착시키는 침출액을 포함하는 무전해 도금용 도금액을 무전해 도금법에 적용하고, 상기 다공성 포르피린 고분자를 다시 회수하여 재사용(regeneration)함으로써 활용성 및 경제성이 우수한 효과가 있다.
도 5를 참조하면, 본 발명에서의 무전해 도금방법이 무전해 니켈/금 도금(Electroless nickel/immersion gold, ENIG) 공법에 적용 가능함을 보이면서 전자패키징 산업에서의 활용 가능성을 보여준다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
[실시예]
제조예 1: 다공성 포르피린 고분자의 합성
다공성의 포르피린 고분자는 (a) 고분자의 단량체인 5,10,15,20-Tetrakis(4-nitrophenyl)-21H,23H-porphyrin의 제조와 (b) 5,10,15,20-Tetrakis(4-nitrophenyl)-21H,23H-porphyrin으로부터 다공성의 고분자를 합성하는 두 단계 반응에 의해 제조된다.
5,10,15,20-Tetrakis(4-nitrophenyl)-21H,23H-porphyrin (이하 TNPPH2으로 명명)의 제조
단량체 TNPPH2는 문헌에 보고된 합성 방법을 약간 변경하여 제조되었다(Bettelheim, A., et al., Inorganic Chemistry 26.7 (1987): 1009-1017; Yuasa, Makoto, et al., Journal of the American Chemical Society 126.36 (2004): 11128-11129).
4-나이트로벤즈알데히드 (4-Nitrobenzaldehyde) 11.0 g을 300 mL의 프로피온산(propionic acid)에 용해시키고, 이 용액에 12.0 mL의 아세트산 무수물(acetic anhydride)을 주입하였다. 이 용액이 환류되는 지점까지 온도를 올려준 후 5.0 mL의 파이롤(pyrrole)을 용액에 천천히 주입하였다. 생성된 혼합물을 30분 동안 더 환류 온도에서 반응시킨 후 실내 온도까지 냉각될 때까지 기다렸다. 고체 생성물을 용액에서 여과하여 분리하고 실온에서 건조한 후 120℃의 진공 오븐에서 건조시켰다. 건조된 고체 생성물을 120 mL의 피리딘(pyridine) 용액에 넣고 혼합물을 교반하면서 환류 온도에서 끓였다. 1시간 후 혼합물이 실내 온도로 냉각될 때까지 기다린 후 침전물을 여과하고 아세톤(acetone)으로 헹군 용액이 어두운 색이 나오지 않을 때까지 씻어주었다. 얻어진 보라색의 생성물을 실내 온도에서 건조한 후 100℃의 진공 오븐에서 건조시켰다.
다공성 포르피린 고분자의 제조
1 g의 TNPPH2, 275 mg의 p-페닐렌디아민(p-phenylenediamine)과 710 mg의 수산화칼륨(potassium hydroxide)을 200 mL의 수분이 제거된 N,N-디메틸포름아마이드(N,N-dimethylformamide)에 넣었다. 상기 혼합 용액을 질소 분위기 하에서 1시간 동안 교반하였다. 혼합 용액의 온도를 150℃까지 올려주고 질소 분위기 하에서 반응을 24시간 동안 진행시켰다. 반응 후 혼합물의 온도가 실내 온도가 되면 1 L의 물을 넣어주었다. 혼합물을 1시간 동안 교반한 후, 침전물을 여과하고 건조시켰다. 얻어진 검정색의 침전물을 N,N-디메틸포름아마이드와 물로 각 1일 동안 속슬레 추출(soxhlet extraction)방법으로 정제하였다. 최종적으로 얻어진 수득물을 150℃의 진공 오븐에서 건조시켰다. 수율 약 75.85%로 검정색의 분말 형태의 생성물을 얻었다.
실시예 1
다공성 포르피린 고분자는 페나진을 포함하는 고분자(제조예 1), 고분자에 흡착된 귀금속은 금(Au) 그리고 침출액은 0.1M의 황산(H2SO4)이 포함된 0.1M의 씨오요소(CS(NH2)2) 용액과 완충액 0.1M 인산나트륨(Na2HPO4)을 포함한 0.1M 티오황산나트륨(Na2S2O3)과 0.1M 아황산나트륨(Na2SO3) 혼합 용액을 이용하였다. 금이 21.02% 흡착된 다공성 포르피린 고분자 50 mg을 각각 100 mL 의 씨오요소 및 티오황산-아황산 침출액에 분사시켜 침출액의 금 이온 농도 확인을 통해 시간에 따른 탈착 효율을 확인하였다. 도 1에 나타낸 바와 같이, 산용액이 포함된 씨오요소 침출액을 이용하였을 시 90% 이상의 금 탈착 효율을 보였다.
다공성 포르피린 고분자로부터 탈착된 금 이온의 무전해 도금 효율을 확인하기 위해 위의 금-씨오요소 침출액을 활용하여 무전해 도금을 수행하였다. 니켈을 기판(substrate)로 하고 반응 면적이 10cm2로 하여 3시간 동안 상기 기판을 침출액에 반응시켰다. 도 3 및 도 4에 나타낸 바와 같이, 침출액 내의 금이 기판에서 환원되어 필름 형태로 회수 가능하며 반응 온도 50℃에서 약 93% 정도의 회수율을 보였다.
무전해 도금 방법의 산업상 이용가능성을 확인하기 위하여 ENIG (Electroless nickel/immersion gold) 공법으로 금-씨오요소 침출액을 활용하여 무전해 도금을 수행하였다. 구리 기판(substrate)을 25g/L 황산니켈(NiSO6H2O) 및 30g/L 하이포아인산나트륨(Na2H2POH2O) 등이 포함된 용액에 반응시켜 니켈 코팅막을 얻어내었다. 상기 니켈 코팅된 구리 기판을 금-씨오요소 침출액에 80 ℃에서 침지(immersion)시켜 도 5에 나타낸 바와 같이 무전해 금도금 반응을 발생시켰다.
본 발명에 따르면, 독성이 강한 시안화물을 사용하지 않으면서 추가적인 탈착 산화제 및 도금 환원제의 주입 없이 비시안화물을 이용하여 고분자에 선택적으로 흡착된 귀금속을 향상된 환원 효율로 회수하는 것이 가능하며, 귀금속을 탈착한 후에도 고분자의 재사용이 가능한 효과가 있다.
또한 현재 전자패키징 산업에서 이용되고 있는 ENIG 공법으로의 활용가능성 역시 보였으며, 따라서 산업상 이용가능성이 크다고 할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (9)

1. 귀금속이 흡착된 화학식 1로 표시되는 포르피린 고분자; 및
씨오요소(thiourea), 아황산염(sulfite) 및 티오황산염(thiosulfate)으로 구성된 군에서 선택된 1종 이상의 베이스 전해질이 용매에 용해되어 있어 상기 귀금속을 탈착시키는 전해질 용액;을 포함하는 무전해 도금용 도금액.
[화학식 1]
Figure PCTKR2019016679-appb-I000011
화학식 1에서 n은 5,000~50,000의 정수이고, m은 5,000~50,000의 정수이다.
제1항에 있어서, 상기 포르피린 고분자는 화학식 1-1로 표시되는 것을 특징으로 하는 무전해 도금용 도금액.
[화학식 1-1]
Figure PCTKR2019016679-appb-I000012
화학식 1-1에서 n은 5,000~50,000의 정수이고, m은 5,000~50,000의 정수이며,
Figure PCTKR2019016679-appb-I000013
는 페나진(phenazine), 아조(azo), 아미드(amide), 벤즈아미드(benzamide) 및 트리아진(triazine)으로 구성된 군에서 선택된다.
제1항에 있어서, 상기 포르피린 고분자는 화학식 2로 표시되는 것을 특징으로 하는 무전해 도금용 도금액.
[화학식 2]
Figure PCTKR2019016679-appb-I000014
화학식 2에서 n은 5,000~50,000의 정수이고, m은 5,000~50,000의 정수이다.
제1항에 있어서, 상기 전해질 용액은 인산칼륨(K2HPO4) 또는 인산나트륨(Na2HPO4)의 완충액을 추가로 포함하는 무전해 도금용 도금액.
제1항에 있어서, 상기 전해질 용액은 황산(H2SO4), 염산(HCl) 및 질산(HNO3)으로 구성된 군에서 선택된 1종 이상의 산용액을 추가로 포함하는 무전해 도금용 도금액.
제1항에 있어서, 상기 귀금속은 금(Au), 백금(Pt), 은(Ag), 팔라듐(Pd), 루데늄(Ru), 로듐(Rh), 이리듐(Ir), 구리(Cu) 및 레늄(Re)으로 구성된 군에서 선택된 것을 특징으로 하는 무전해 도금용 도금액.
제1항 내지 제6항 중 어느 한 항의 무전해 도금용 도금액을 기판에 처리하여 도금시키는 단계를 포함하는 무전해 도금방법.
제7항에 있어서, 상온 내지 80℃의 온도에서 수행하는 것을 특징으로 하는 무전해 도금방법.
제7항에 있어서, 상기 기판은 니켈(Ni), 코발트(Co), 카드뮴(Cd), 크로뮴(Cr), 철(Fe), 아연(Zn), 알루미늄(Al), 마그네슘(Mg) 및 리튬(Li)으로 구성된 군에서 선택된 1종 이상의 금속인 것을 특징으로 하는 무전해 도금방법.
PCT/KR2019/016679 2018-12-14 2019-11-29 다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법 WO2020122479A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/413,559 US11466369B2 (en) 2018-12-14 2019-11-29 Electroless plating solution and electroless plating method for recovering precious metal adsorbed on porous porphyrin polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180162181A KR102019222B1 (ko) 2018-12-14 2018-12-14 다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법
KR10-2018-0162181 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020122479A1 true WO2020122479A1 (ko) 2020-06-18

Family

ID=67950039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016679 WO2020122479A1 (ko) 2018-12-14 2019-11-29 다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법

Country Status (3)

Country Link
US (1) US11466369B2 (ko)
KR (1) KR102019222B1 (ko)
WO (1) WO2020122479A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006643B1 (ko) * 1985-10-14 1991-08-29 가부시기가이샤 히다찌세이사꾸쇼 무전해 금 도금액
JP2007308761A (ja) * 2006-05-18 2007-11-29 Fujifilm Corp めっき処理方法、導電性金属膜およびその製造方法、並びに透光性電磁波シールド膜
KR101366183B1 (ko) * 2012-09-19 2014-02-24 한국과학기술원 3가 철-에틸렌디아민사아세트산을 이용하는 산화환원 연료전지 및 이를 이용한 일산화질소 분리방법
KR20160046172A (ko) * 2014-10-20 2016-04-28 한국과학기술원 알칼리성 황화이온 연료전지를 이용한 황화수소의 제거 및 전기생산방법
WO2017111092A1 (ja) * 2015-12-22 2017-06-29 株式会社ガルデリア 金属選択回収剤、金属回収方法、および、金属溶出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006643A (ko) 1989-09-29 1991-04-29 쳉 시웅 우 자동변속장치 및 방법
JP4482744B2 (ja) * 2001-02-23 2010-06-16 株式会社日立製作所 無電解銅めっき液、無電解銅めっき方法、配線板の製造方法
US20060246699A1 (en) * 2005-03-18 2006-11-02 Weidman Timothy W Process for electroless copper deposition on a ruthenium seed
US20090056994A1 (en) * 2007-08-31 2009-03-05 Kuhr Werner G Methods of Treating a Surface to Promote Metal Plating and Devices Formed
ES2684353T3 (es) * 2013-09-25 2018-10-02 Atotech Deutschland Gmbh Método para depositar una capa de siembra de cobre sobre una capa de barrera y baño de cobreado
KR102193582B1 (ko) 2017-12-12 2020-12-22 한국과학기술원 다공성 포르피린 고분자 및 이를 이용한 귀금속 원소의 회수 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006643B1 (ko) * 1985-10-14 1991-08-29 가부시기가이샤 히다찌세이사꾸쇼 무전해 금 도금액
JP2007308761A (ja) * 2006-05-18 2007-11-29 Fujifilm Corp めっき処理方法、導電性金属膜およびその製造方法、並びに透光性電磁波シールド膜
KR101366183B1 (ko) * 2012-09-19 2014-02-24 한국과학기술원 3가 철-에틸렌디아민사아세트산을 이용하는 산화환원 연료전지 및 이를 이용한 일산화질소 분리방법
KR20160046172A (ko) * 2014-10-20 2016-04-28 한국과학기술원 알칼리성 황화이온 연료전지를 이용한 황화수소의 제거 및 전기생산방법
WO2017111092A1 (ja) * 2015-12-22 2017-06-29 株式会社ガルデリア 金属選択回収剤、金属回収方法、および、金属溶出方法

Also Published As

Publication number Publication date
KR102019222B1 (ko) 2019-09-06
US20220056591A1 (en) 2022-02-24
US11466369B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
CN100567528C (zh) 一种从废钯碳催化剂中回收贵金属钯的方法
WO2013162118A1 (ko) 폐비철 슬래그를 활용한 폐휴대폰 인쇄회로기판 및 폐자동차 촉매로부터의 귀금속 농축 회수방법
KR960009172B1 (ko) 구리분말과 금속 염화물의 동시 제조방법
WO2021241944A1 (ko) 리튬이차전지의 폐전극소재로부터 탄산리튬을 이용한 유가금속의 회수 방법
CN109589952B (zh) 一种具环硫醇改性活性炭的制备方法及应用
KR102193582B1 (ko) 다공성 포르피린 고분자 및 이를 이용한 귀금속 원소의 회수 방법
EP2765208A1 (en) Palladium separating agent, method for producing same and use of same
CN101812591A (zh) 废电路板的金、铜、硫酸铜、氯化铜废液回收方法
WO2020122479A1 (ko) 다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 무전해 도금용 도금액 및 무전해 도금방법
WO2019117457A1 (ko) 다공성 포르피린 고분자 및 이를 이용한 귀금속 원소의 회수 방법
KR102019221B1 (ko) 다공성 포르피린 고분자에 흡착된 귀금속 회수를 위한 전기화학적 도금장치 및 도금방법
JP4417907B2 (ja) 使用済み触媒からのパラジウムの回収方法
CN116903767A (zh) 螯合树脂及其制备方法与用途
WO2018092954A1 (ko) 동합금 유래 금속의 회수방법
JP4862148B2 (ja) 金属の分離回収方法
WO2017030249A1 (ko) 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치
WO2014178586A1 (ko) 폐촉매의 침출용액으로부터 산 및 백금족 금속의 회수방법
CN106636648B (zh) 一种含金属废弃物的综合回收分离方法
WO2021172718A1 (ko) 바이오리칭과 흡착 연계를 이용한 금속 침출 방법
CA1328352C (en) Process for the removal of mercury from precious metal-cyanide liquors
KR100458325B1 (ko) 실란 화합물을 중형기공성 세라믹에 고정시킨 귀금속흡착제의 제조방법
CN105126789B (zh) 硫基聚偏氟乙烯膜吸附剂及制备方法和用于回收废水中金的方法
JPS585700B2 (ja) ヨウエキカラジユウキンゾク オヨビ ハクキンイガイノ センイキンゾクオジヨキヨスルホウホウ
KR102539654B1 (ko) 탄소나노튜브-나노흡착소재 기반 전극 및 이를 이용한 전기화학적 유가금속 회수장치
JP2014133227A (ja) 白金分離剤及び白金イオンの分離方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896042

Country of ref document: EP

Kind code of ref document: A1