WO2020116999A1 - 히알루론산 가교물, 히알루론산 수화 겔 및 이들의 제조방법 - Google Patents

히알루론산 가교물, 히알루론산 수화 겔 및 이들의 제조방법 Download PDF

Info

Publication number
WO2020116999A1
WO2020116999A1 PCT/KR2019/017210 KR2019017210W WO2020116999A1 WO 2020116999 A1 WO2020116999 A1 WO 2020116999A1 KR 2019017210 W KR2019017210 W KR 2019017210W WO 2020116999 A1 WO2020116999 A1 WO 2020116999A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
crosslinked
gel
aqueous solution
ethanol
Prior art date
Application number
PCT/KR2019/017210
Other languages
English (en)
French (fr)
Inventor
김수진
김세권
신충렬
박효승
김용우
이백호
김준영
Original Assignee
한미약품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미약품 주식회사 filed Critical 한미약품 주식회사
Priority to US17/311,070 priority Critical patent/US12090248B2/en
Priority to JP2021532294A priority patent/JP7555924B2/ja
Priority to CN201980081130.3A priority patent/CN113166434B/zh
Priority claimed from KR1020190161388A external-priority patent/KR102400586B1/ko
Publication of WO2020116999A1 publication Critical patent/WO2020116999A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Definitions

  • the present invention relates to a hyaluronic acid crosslinked product, a hyaluronic acid hydration gel, and a method for preparing the same.
  • Hyaluronic acid is a biopolymer material in which repeating units composed of N-acetyl-D-glucosamine and D-glucuronic acid are linearly connected, and the placenta of an animal, free solution of the eye, synovial fluid of a joint, or chicken It is known to exist a lot in crests.
  • hyaluronic acid is known to be produced by fermentation by microorganisms of the genus Streptococcus (eg Streptococcus equi , Streptococcus zooepidemecus ) or Staphylococcus.
  • Synvisc-one® a hyaluronic acid cross-linked injection that lasts for 6 months with only one dose in the United States This is commercially available.
  • Synvisc-one® It contains a crosslinked product of hyaluronic acid obtained by extracting hyaluronic acid from chicken clumps with a formalin-containing aqueous solution, and the protein linked to hyaluronic acid is weakly crosslinked by formalin and has low viscoelasticity (Patent Document 1).
  • the weakly cross-linked hyaluronic acid is additionally cross-linked by a cross-linking agent divinyl sulfone (DVS) to be combined with a hyaluronic acid cross-linked product having increased viscoelasticity, and a complex hyaluronic acid cross-linked product suitable for application to the joint cavity of a human body (Synvisc -one® ).
  • a cross-linking agent divinyl sulfone DVS
  • a complex hyaluronic acid cross-linked product suitable for application to the joint cavity of a human body
  • the conventional cross-linked hyaluronic acid in the case of the conventional cross-linked hyaluronic acid, it cannot be filtered, so it takes a lot of effort to remove foreign substances contained in the gel, and a large amount of washing buffer is required for washing the cross-linking agent.
  • the conventional hyaluronic acid crosslinked product has many problems in uniformity of quality due to high variation in rheological properties such as viscoelasticity of the hyaluronic acid prepared for each batch. Therefore, the quality control was not easy, and a complicated process was required for mass production and was expensive.
  • Patent Document 1 U.S. Patent Registration Publication 4,713,448
  • Patent Document 2 Korean Patent Publication No. 10-2017-0090965
  • One aspect of the present invention relates to a method for producing a crosslinked product of hyaluronic acid in powder form that is economical and optimized for mass production.
  • Another aspect of the present invention relates to a cross-linked hyaluronic acid powder that is economical and optimized for mass production.
  • Another aspect of the present invention relates to a method for producing a crosslinked hyaluronic acid hydration gel having excellent rheological properties and excellent quality uniformity.
  • Another aspect of the present invention relates to a crosslinked hyaluronic acid hydration gel having excellent rheological properties and excellent quality uniformity.
  • the present invention provides a method for producing a crosslinked product of hyaluronic acid in powder form that is economical and optimized for mass production.
  • the crosslinking reaction is 10 to 40°C, such as 25 to 35°C, by adding a crosslinking agent to an aqueous solution containing hyaluronic acid, a salt thereof or a mixture thereof, for 2 to 8 hours, such as 4 to 6 hours During, it may be a crosslinking reaction while stirring at 50 to 350 rpm, for example 150 to 350 rpm, such as 250 rpm.
  • the injection rate of the ethanol may be 20 mL/min to 1000 mL/min.
  • the volume change rate of ethanol relative to the total volume of the mixed liquid during the addition of ethanol to the aqueous solution may be 0.5% (v/v)/min to 35% (v/v)/min.
  • the aqueous solution may include a crosslinking agent in an amount of 10 ⁇ l to 500 ⁇ l with respect to 1 g of hyaluronic acid, a salt thereof, or a mixture thereof.
  • the volume ratio of the aqueous solution and ethanol added to the aqueous solution may be 1: 1 to 10.
  • a step of crosslinking the aqueous solution containing hyaluronic acid particles may be further included.
  • the step may be a step of continuing the crosslinking reaction by the crosslinking agent added in the aqueous solution.
  • the aqueous solution containing the particles of hyaluronic acid may react in the aqueous solution and further cross-link with the remaining cross-linking agent.
  • the additional cross-linking reaction may be to cross-link the aqueous solution containing the particles of hyaluronic acid at 15 to 30° C., such as 25° C. for up to 24 hours at 50 to 350 rpm, such as 250 rpm.
  • the stirring rate in the additional crosslinking reaction can be the same as the stirring rate in the crosslinking reaction before ethanol is added.
  • the obtained crosslinked hyaluronic acid containing ethanol or ethanol may further include the step of washing with a solution.
  • the powdered hyaluronic acid crosslinked product may have a particle size distribution of D90 of 80 ⁇ m or less.
  • the powdered hyaluronic acid crosslinked product may exhibit a particle size distribution of 2.5 ⁇ m to 6 ⁇ m D10, 8 ⁇ m to 20 ⁇ m D50 and 25 ⁇ m to 80 ⁇ m D90.
  • the present invention provides a cross-linked hyaluronic acid powder prepared by the above methods.
  • the hyaluronic acid crosslinked product exhibits viscoelasticity similar to that of commercial products such as Synvisc-one®, and exhibits an equal or higher stability, and an equal or higher degree of crosslinking strain (Modification, MoD).
  • the hyaluronic acid crosslinked product is a pendant hyaluronic acid (HA) or a pendant crosslinking strain (%), a crosslinking crosslinking strain (%), a crosslink MoD (%) than Synvisc-one®, And an increase in the total crosslinking strain (total MoD) (%).
  • the analysis of the degree of modification (MoD) of hyaluronic acid (HA) may use an HPLC system.
  • polysaccharide (HA) a repeating structure of glucuronic acid and N-acetyl-D-glucosamine
  • HA polysaccharide
  • hyaluronidase a repeating structure of glucuronic acid and N-acetyl-D-glucosamine
  • the modified HA and unmodified HA can be distinguished by relative comparison of chromatogram difference and strain.
  • hyaluronic acid HA
  • hyaluronic acid degrading enzyme hyaluronidase obtained from Streptomyces hyalurolyticus
  • Dionex CarboPac PA100 Thermo Scientific HPLC column was used for UV.
  • the saccharide unit degraded at absorbance 232 nm can be measured.
  • hyaluronic acid When hyaluronic acid is completely degraded by a degrading enzyme, it becomes a tetramer and a hexamer, and the cross-linked hyaluronic acid is slightly larger than a tetramer and a hexamer, and more oligomers, etc. It can be separated to show chromatograms.
  • the strain (MoD) can be obtained by the area of each chromatogram, and the peaks of the oligomers above 8-mer (Octamer) can be divided by the cross-linking cross-linking strain (crosslink MoD) (%), and the main peaks of the tetramer and hexamer are The peaks of oligomers smaller than the octamer can be classified as a pendant crosslinking strain (%), and the sum of the two can be used as a total crosslinking strain (total MoD) (%).
  • Hyaluronic acid cross-linked products may show an increase in the degree of cross-linking strain (Degree of Modification, MoD) (%) as the cross-linking reaction occurs, and hyaluronic acid prepared by excessive cross-linking reaction is a structure that cannot absorb sufficient water. Can be.
  • the hyaluronic acid crosslinked product may exhibit a total degree of crosslinking strain of 0.1% to 10% (%).
  • the crosslinked product of hyaluronic acid that satisfies the crosslinking strain has a structure capable of absorbing sufficient water, and may exhibit a viscoelastic value capable of exhibiting sufficient hydration.
  • the present invention provides a method for producing a crosslinked hyaluronic acid hydration gel having excellent rheological properties and excellent quality uniformity.
  • ethanol When the ethanol is added to the aqueous solution in the above method of the present invention, ethanol may be added at a rate of 20 mL/min to 1000 mL/min.
  • the rate of change in the volume concentration of ethanol relative to the total volume of the mixed solution may be 0.5% (v/v)/min to 35% (v/v)/min.
  • the hydrating step may be a step of adding the crosslinked product of hyaluronic acid to the powder or a solution containing water.
  • the cross-linked hyaluronic acid may be added in an amount of 5 mg to 15 mg per 1 mL of water or a solution containing water.
  • the crosslinked hyaluronic acid hydration gel may have a particle size distribution of D90 of 240 ⁇ m or less.
  • the crosslinked hyaluronic acid hydrated gel may exhibit a particle size distribution of D10 of 25 ⁇ m to 40 ⁇ m, D50 of 70 ⁇ m to 110 ⁇ m, and D90 of 190 ⁇ m to 240 ⁇ m.
  • the method may further include filtering the crosslinked hyaluronic acid hydrated gel using a filter.
  • the crosslinked hyaluronic acid hydrated gel after filtration may have a particle size distribution of D90 of 120 ⁇ m or less.
  • the crosslinked hyaluronic acid hydrated gel after filtration may exhibit a particle size distribution of 10 ⁇ m to 30 ⁇ m D10, 35 ⁇ m to 65 ⁇ m D50, and 80 ⁇ m to 120 ⁇ m D90.
  • the present invention provides a cross-linked hyaluronic acid hydration gel prepared by the above methods.
  • the crosslinked hyaluronic acid hydration gel may have an elasticity of 30 to 200 Pa and a viscosity of 10 to 100 Pa.
  • the present invention provides an amorphous crosslinked hyaluronic acid hydration gel.
  • the hyaluronic acid hydration gel may have an X-ray powder diffraction pattern (XRD) as shown in FIG. 5.
  • XRD X-ray powder diffraction pattern
  • the hyaluronic acid hydration gel may have a particle size distribution of D90 of 120 ⁇ m or less.
  • the particle size distribution of the hyaluronic acid hydration gel may be 10 ⁇ m to 30 ⁇ m, D50 is 35 ⁇ m to 65 ⁇ m, and D90 may be 80 ⁇ m to 120 ⁇ m.
  • the crosslinked hyaluronic acid hydration gel may have an elasticity of 30 to 200 Pa and a viscosity of 10 to 100 Pa.
  • the crosslinked hyaluronic acid hydration gel may have an elasticity of 100 to 150 Pa and a viscosity of 10 to 60 Pa.
  • the crosslinked hyaluronic acid hydration gel may have an elasticity reduction rate of 30% or less when stored for 8 months at 25°C. In embodiments of the present invention, the crosslinked hyaluronic acid hydration gel may have an elasticity reduction ratio of 25% or less when stored at 30°C for 8 months. In embodiments of the present invention, the crosslinked hyaluronic acid hydration gel may have an elasticity reduction rate of 40% or less when stored for 8 months at 40°C. In embodiments of the present invention, the crosslinked hyaluronic acid hydration gel may have an elasticity reduction rate of 90% or less when stored for 8 months at 60°C.
  • the crosslinked hyaluronic acid hydration gel may have a viscosity reduction rate of 35% or less when stored for 8 months at 25°C. In embodiments of the present invention, the crosslinked hyaluronic acid hydration gel may have a viscosity reduction rate of 20% or less when stored for 8 months at 30°C. In embodiments of the present invention, the crosslinked hyaluronic acid hydration gel may have a viscosity reduction rate of 18% or less when stored at 40°C for 8 months. In embodiments of the present invention, the crosslinked hyaluronic acid hydration gel may have a viscosity reduction rate of 50% or less when stored at 60°C for 8 months.
  • Hyaluronic acid degrades and reduces polymer chains due to factors such as temperature and enzymes, thereby reducing viscoelasticity and rheological properties, and thus, viscosupplementation performance may be deteriorated.
  • the cross-linked hyaluronic acid has improved decomposition resistance, and thus the maintenance period in the body can be improved compared to the non-crosslinked hyaluronic acid.
  • the crosslinked hyaluronic acid hydration gel may have improved degradation resistance compared to hyaluronic acid, and improved degradation resistance compared to non-crosslinked hyaluronic acid.
  • the crosslinked product of hyaluronic acid in the powder form of the present invention has a uniform crosslinking degree, can be easily washed with a small amount of washing solution, and has excellent quality uniformity.
  • the cross-linked hyaluronic acid hydration gel prepared using the powdered hyaluronic acid crosslinked product can be filtered using a filter having a small pore size to easily remove foreign matter and has excellent quality uniformity. Therefore, the powdered hyaluronic acid crosslinked product according to the present invention and the crosslinked hyaluronic acid hydrated gel prepared using the same are suitable for mass production and economical.
  • FIG. 1 is a view showing the particle size distribution of sodium hyaluronate as a raw material and the hyaluronic acid crosslinked product in powder form according to Examples 1-1 to 1-3.
  • the vertical axis represents volume density (%), and the horizontal axis represents particle size ( ⁇ m).
  • FIG. 2 is a view showing the particle size distribution of the cross-linked hyaluronic acid hydration gel according to Example 6 and Example 10.
  • the vertical axis represents Channel (%)
  • the horizontal axis represents particle size ( ⁇ m).
  • FIG. 3 is a diagram showing the results of X-ray powder diffraction analysis of a cross-linked hyaluronic acid powder in Example 2;
  • the vertical axis represents strength (cps) and the horizontal axis represents 2 ⁇ (°).
  • FIG. 4 is a diagram showing the results of X-ray powder diffraction analysis of a crosslinked hyaluronic acid hydrated gel according to Example 6.
  • the vertical axis represents intensity (cps) and the horizontal axis represents 2 ⁇ (°).
  • FIG. 5 is a diagram showing the results of X-ray powder diffraction analysis of a crosslinked hyaluronic acid hydrated gel after filtration according to Example 10.
  • the vertical axis represents intensity (cps) and the horizontal axis represents 2 ⁇ (°).
  • Figure 6 shows the elasticity (Pa at 2.5 Hz, 25 °C) with time and temperature changes measured for the hyaluronic acid hydrated gel according to Example 12.
  • Figure 7 shows the viscosity (Pa at 2.5 Hz, 25 °C) according to the time and temperature changes measured for the hyaluronic acid hydration gel according to Example 12.
  • Figure 8 shows the elasticity (Pa at 2.5 Hz, 25 °C) according to the time and temperature changes measured for the hyaluronic acid hydration gel according to Example 13.
  • Figure 9 shows the viscosity (Pa at 2.5 Hz, 25 °C) according to the time and temperature changes measured for the hyaluronic acid hydration gel according to Example 13.
  • Figure 10 shows the elasticity (Pa at 2.5 Hz, 25 °C) according to the time and temperature changes measured for the comparative product (Synvisc-one®).
  • Figure 11 shows the viscosity (Pa at 2.5 Hz, 25 °C) according to the time and temperature changes measured for the comparative product (Synvisc-one®).
  • DX is Y
  • the particle size of the hyaluronic acid, hyaluronic acid gel, or crosslinked hyaluronic acid hydrated gel on the powder is represented by a cumulative curve
  • the particle size is accumulated in the order of smallest, and thus X% (% is number, volume Or it is calculated on the basis of weight) means that the particle size at point Y is Y.
  • D10 is the particle size of the particles at the point of 10% by accumulating the particle size of the hyaluronic acid, hyaluronic acid gel, or crosslinked hyaluronic acid hydrated gel in powder in small order
  • D50 is hyaluronic acid and hyaluron in powder.
  • D90 is the particle size of the hyaluronic acid, hyaluronic acid gel or the crosslinked hyaluronic acid hydrated gel in powder form. Represents the particle size of particles at a point where they are 90% by accumulating in small order.
  • DX represents the percentage of total cumulative particles based on number, volume, or weight depends on the method used to measure the particle size distribution. Methods for measuring particle size distribution and the type of% in this regard are known to those skilled in the art. For example, when measuring the particle size distribution by a well-known laser diffraction method, the X value in DX may represent the percentage calculated by the volume average. Those skilled in the art are well aware that the results of particle size distribution measurements obtained by a particular method may be correlated with those obtained from other techniques based on experience by routine experimentation. For example, laser diffraction provides a volume average particle size in response to the volume of the particle, which corresponds to a weight average particle size when the density is constant.
  • Viscoelasticity in this specification means storage modulus (G') and loss modulus (G").
  • the viscoelasticity is measured by a rotational rheometer, and the dynamic viscoelasticity is measured by a geometry having a diameter of 20 mm.
  • the measurement distance (GAP) between the geometry and the plate was 0.5 mm, and the temperature was kept constant until the end of the analysis at 25°C, and frequency oscillation was used as a control program.
  • the storage modulus (G') is indicated as elastic
  • the loss modulus (G") is the loss. Energy can be expressed as viscosity.
  • the hyaluronic acid in the form of a fine particle having a uniform particle size is formed by slowly adding ethanol to the aqueous solution over a period of time, and the hyaluronic acid particles in the solid state react with a crosslinking agent. Uniform crosslinking reaction proceeds.
  • cross-linked hyaluronic acid cross-linked products may be formed, and physical properties such as particle size (particle size), viscosity, and elasticity are appropriate and uniform while having fine particle size at the powder level in each manufacturing process.
  • Hyaluronic acid crosslinked products can be obtained.
  • a cross-linked hyaluronic acid product having particle size, viscosity, and elasticity, which exhibits an optimum effect can be repeatedly produced in large quantities.
  • the rate of adding ethanol onto the aqueous solution may be adjusted so that hyaluronic acid of a solid produced by adding ethanol can be produced in a particle form. Specifically, by adjusting the rate of change in the ethanol concentration of the entire reaction solution according to the ethanol administration rate, it is possible to produce a hyaluronic acid crosslinked product having a desired solid hyaluronic acid particle size and physical properties.
  • the step of preparing an aqueous solution comprising the hyaluronic acid, a salt thereof, or a mixture thereof is performed by adding the hyaluronic acid, a salt thereof, or a mixture thereof to an alkaline aqueous solution containing a basic substance.
  • a basic substance e.g., a sodium hyaluronic acid, sodium EDTA, sodium EDTA, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium
  • the hyaluronic acid may refer to hyaluronic acid itself, a salt of hyaluronic acid, or a mixture thereof. Therefore, an aqueous solution containing hyaluronic acid may mean an aqueous solution containing hyaluronic acid, a salt thereof, or a mixture thereof. Further, the hyaluronic acid particles may mean particles formed using hyaluronic acid, a salt thereof, or a mixture thereof.
  • the salt of hyaluronic acid may be in any salt form suitable for application to a living body, specifically, an alkali salt, an alkaline earth metal salt, an amino acid salt, a salt with an organic base or a mixture thereof.
  • salts of hyaluronic acid include sodium hyaluronate, calcium hyaluronate, potassium hyaluronate, magnesium hyaluronate, zinc hyaluronate, cobalt hyaluronate, tetrabutylammonium hyaluronate salt, hyaluronic acid diethanolamine, hyaluronic acid cyclohexylamine and Any combination of these may be selected.
  • the salt of hyaluronic acid may be sodium hyaluronate.
  • the hyaluronic acid or salt thereof may have a molecular weight of about 100,000 Da to about 6,000,000 Da, and in one embodiment, the molecular weight of the hyaluronic acid or sodium hyaluronate is about 100,000 Da to about 6,000,000 Da, specifically about 500,000 Da to about 6,000,000 Da, and more specifically, about 1,000,000 Da to about 4,000,000 Da.
  • the hyaluronic acid includes any hyaluronic acid known in the art, and hyaluronic acid obtained from any raw material may be used.
  • the hyaluronic acid is animals (such as animal placenta, chicken combs), one may have, any microorganisms capable of producing fermentation hyaluronic acid (for example, Staphylococcus Cocos genus (Staphylococcus) microorganisms, Streptococcus Cocos in (Streptococcus) microbial) origin It may be hyaluronic acid.
  • the hyaluronic acid is a hyaluronic acid derived from microorganisms, for example, hyaluronic acid derived from microorganisms of the genus Streptococcus.
  • Hyaluronic acid derived from microorganisms can be free from viral problems of animal-derived hyaluronic acid or uniformity of raw material quality, so it has excellent advantages in terms of quality control during manufacture as a pharmaceutical.
  • the aqueous solution comprising hyaluronic acid, a salt thereof, or a mixture thereof can be an aqueous alkali solution comprising any basic material known to be used in the preparation of a hyaluronic acid crosslinked product.
  • the aqueous alkali solution may be an aqueous alkali solution having a pH of 9 to 13
  • the alkaline aqueous solution may be an aqueous solution containing sodium hydroxide, an aqueous solution containing potassium hydroxide, or an aqueous solution containing ammonia
  • the aqueous alkali solution is It may be an aqueous solution containing sodium hydroxide.
  • the aqueous solution comprising hyaluronic acid, a salt thereof, or a mixture thereof is about 0.5% (w/v) to 5% of the hyaluronic acid, a salt thereof, or a mixture thereof, based on the total volume of the aqueous solution. (w/v), and specifically, may be included to be about 1% (w/v) to 4% (w/v).
  • the aqueous solution including the salt of hyaluronic acid or a mixture thereof may include sodium hyaluronate to be about 2% (w/v).
  • the aqueous solution when the aqueous solution is prepared by adding sodium hydroxide as a basic material and adding sodium hyaluronate, the aqueous solution may include sodium ions of 0.2 M or more.
  • the aqueous solution may further include a crosslinking agent.
  • the crosslinking agent is a compound having one or more functional groups, and specifically, may be a compound having at least one aldehyde group, carbodiimide, epoxy group, or vinyl sulfone group. More specifically, the crosslinking agent may be a compound having two or more epoxy groups or divinyl sulfone.
  • the crosslinking agent is 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI•HCl), 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide- Meto-p-toluenesulfonate, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide hydrochloride, glutaraldehyde, divinyl sulfone, butanediol diglycidyl ether (1, 4-butanediol diglycidyl ether (BDDE), ethylene glycol diglycidyl ether (EGDGE), hexanediol diglycidyl ether (1,6-hexanediol diglycidyl ether), propylene glycol diglycidyl ether (BDDE) propylene glycol diglycidyl ether, polypropylene glycol diglycid
  • the aqueous solution may contain a crosslinking agent in an amount of 0.005 mol to 1 mol, specifically 0.01 mol to 0.8 mol, per 1 mol of hyaluronic acid, a hyaluronic acid salt, or a mixture thereof.
  • the aqueous solution may include a crosslinking agent in a range of about 10 ⁇ l to 500 ⁇ l, specifically about 50 ⁇ l to 400 ⁇ l, for 1 g of hyaluronic acid, a salt thereof, or a mixture thereof.
  • the ethanol in the step of preparing a mixed solution containing solid hyaluronic acid particles by adding ethanol to the aqueous solution, the ethanol is added to 1 volume of an aqueous solution containing hyaluronic acid, a salt thereof, or a mixture thereof. With respect to about 1 to about 10 volumes.
  • the volume ratio of the aqueous solution and the added ethanol may be about 1: 1 to 10, more specifically about 1: 2 to 8.
  • the hyaluronic acid gel prepared using the hyaluronic acid particles in the solid form may exhibit excellent rheological properties, and may exhibit excellent effects in treating or preventing arthritis.
  • the ethanol input rate when ethanol is added to an aqueous solution containing the hyaluronic acid, a salt thereof, or a mixture thereof, the ethanol input rate may be constant or variable. Specifically, the ethanol input rate may be constant.
  • the mixed solution of the aqueous solution and ethanol may be continuously stirred.
  • the mixed solution during the ethanol addition process may be stirred at about 50 rpm to 300 rpm, more specifically about 50 rpm to 250 rpm.
  • the stirring speed of the mixed solution may be constant or variable. Specifically, the stirring speed of the mixed solution may be constant.
  • Hyaluronic acid is a linear polymer, dehydrated by ethanol, and has a characteristic of being extracted in the form of a thread (thread bundle).
  • ethanol may be slowly added to the aqueous solution to the extent that a hyaluronic acid solid in the form of a fiber (thread bundle) or a hyaluronic acid solid in a lump form is not formed. More specifically, ethanol on the aqueous solution may be added slowly so that hyaluronic acid can be precipitated in the form of fine particles such as powder.
  • the injection rate of the ethanol may be about 20 mL/min to 1000 mL/min. Specifically, the injection rate of the ethanol may be about 20 mL/min to 700 mL/min, and more specifically, the injection rate of the ethanol may be about 20 mL/min to 500 mL/min.
  • hyaluronic acid may not aggregate and may be precipitated in the form of fine particles like powder.
  • the rate of change in the volume of ethanol relative to the volume of the aqueous solution containing hyaluronic acid and the mixture containing ethanol is about 0.5% (v/v)/min to 35% (v /v)/min.
  • hyaluronic acid particles may be precipitated in the form of uniform fine particles.
  • the hyaluronic acid obtained in the form of a uniform fine particle can be washed with ethanol or a solution containing ethanol after the crosslinking reaction, and there is little or no swelling phenomenon of the crosslinked hyaluronic acid powder during washing. Therefore, when washing the crosslinking agent or impurities, even a small amount of washing solution can be sufficiently washed, and the homogeneity of the properties of the hyaluronic acid crosslinked product can be improved, and mass production is possible and economical.
  • the cross-linking reaction may proceed by reacting the particles of the solid hyaluronic acid with a cross-linking agent, and a cross-linked hyaluronic acid fine powder may be formed by the cross-linking reaction.
  • the fine particles which are powdery hyaluronic acid crosslinked products, have a uniform particle size and a uniform crosslinking degree.
  • the cross-linking reaction of the hyaluronic acid particles in the solid state and the cross-linking agent may be performed at about 20 to 40° C. for about 6 to 24 hours.
  • the decomposition of hyaluronic acid can be minimized, and a crosslinked product of hyaluronic acid having a long chain length may be formed.
  • a crosslinking degree suitable for the treatment of arthritis, and a hyaluronic acid crosslinked product having excellent physical properties may be formed.
  • the crosslinked product of hyaluronic acid in the form of fine powder may have a D90 of about 80 ⁇ m or less.
  • the homogeneous fine powder form of the hyaluronic acid crosslinked product may have a D10 of about 2.5 ⁇ m to 6 ⁇ m, a D50 of about 8 ⁇ m to 20 ⁇ m, and a D90 of about 25 ⁇ m to 80 ⁇ m. .
  • the particle size of the crosslinked product of hyaluronic acid in the form of fine powder may be measured by a laser particle size analysis method, and specifically, may be performed by a dry method.
  • the hyaluronic acid crosslinked product on the powder may be amorphous, and the X-ray powder diffraction analysis pattern may exhibit a halo pattern.
  • the crosslinked product of hyaluronic acid on the powder may have an X-ray powder diffraction pattern (XRD) as shown in FIG. 3.
  • the hyaluronic acid crosslinked product on the powder is amorphous, and particles of the crosslinked product have a D10 of about 2.5 ⁇ m to 6 ⁇ m, a D50 of about 8 ⁇ m to 20 ⁇ m, and a D90 of about 25 ⁇ m to 80 ⁇ m.
  • the pH of the mixed solution may be adjusted to less than 9 to terminate the crosslinking reaction.
  • hydrochloric acid HCl
  • HCl hydrochloric acid
  • the fine-particle hyaluronic acid cross-linked product may be obtained through filtration. That is, the crosslinked product of hyaluronic acid in the powder form of the present invention has a powder form, and when not stirred, it sinks in a solution, and can be obtained by easily separating the crosslinked product of hyaluronic acid in powder form through a simple filtration process. .
  • the method may further include washing the cross-linked hyaluronic acid powder.
  • Cross-linking agent and impurities remaining in the cross-linked hyaluronic acid may be removed by the washing.
  • the washing may be performed one or more times using ethanol or a solution containing ethanol, for example, the washing uses an aqueous ethanol solution of about 70% (w/w), about 95% (w/w).
  • the hyaluronic acid crosslinked product on the obtained powder may be washed three to five times while exchanging about 70% (w/w) and about 95% (w/w) ethanol aqueous solutions.
  • the washing step may be performed under a pH of less than 9, specifically, may be performed under a pH of 6 to less than pH 9.
  • the washing step of the present invention suppresses the phenomenon that the hyaluronic acid crosslinked product swells during washing by using a solution containing ethanol such as ethanol or an ethanol aqueous solution, rather than an aqueous solution buffer such as pure water or phosphate buffer compared to conventional methods.
  • Quality control is easy, and little or no swelling during the washing step is minimized, so it is possible to easily remove the crosslinking agent and impurities with a small amount of washing liquid, thus making mass production easy.
  • the method may further include drying the crosslinked product of hyaluronic acid on the powder after washing.
  • the drying may be vacuum drying, and may be performed at about 35°C to about 70°C for about 10 to 40 hours.
  • the ethanol provides a crosslinked product of hyaluronic acid in a powder prepared by a method in which the aqueous solution is slowly added over a period of time.
  • the method may further include a step of cross-linking an aqueous solution containing hyaluronic acid particles.
  • the step may be to continue the crosslinking reaction of the aqueous solution containing hyaluronic acid particles.
  • the crosslinked product of hyaluronic acid in powder form prepared by the above method is easy to handle as fine particles and has a uniform crosslinking degree. In addition, since it does not swell during the washing step and maintains the fine particle form as a powder, washing is easy and mass production is possible.
  • the cross-linking agent such as NaOH and unreacted BDDE for the cross-linked product in powder form is easy to clean, pH can be adjusted, and appropriate viscoelasticity of the final gel can be induced later, and the cross-linked hyaluronic acid according to pH It can minimize and suppress the denatured browning reaction.
  • the particle size distribution of the crosslinked product of hyaluronic acid on the powder of the present invention may indicate that D90 has a particle size distribution of about 80 ⁇ m or less.
  • the homogeneous fine powder form of the cross-linked hyaluronic acid of the present invention may exhibit a particle size distribution of D10 of about 2.5 ⁇ m to 6 ⁇ m, D50 of about 8 ⁇ m to 20 ⁇ m, and D90 of about 25 ⁇ m to 80 ⁇ m.
  • the particle size of the crosslinked product of hyaluronic acid in the form of fine powder may be measured by a laser particle size analysis method, and may be specifically performed by a dry method.
  • the hyaluronic acid crosslinked product on the powder of the present invention may be amorphous, and the X-ray powder diffraction analysis pattern may exhibit a halo pattern.
  • the crosslinked product of hyaluronic acid on the powder may have an X-ray powder diffraction pattern (XRD) as shown in FIG. 3.
  • the method for preparing the crosslinked product of hyaluronic acid on the powder and the properties of the crosslinked product of hyaluronic acid are as described above.
  • the present invention provides a method for producing a crosslinked hyaluronic acid hydration gel that exhibits excellent rheological properties, is easy to remove foreign substances, is economical, and is optimized for mass production.
  • the method for preparing the crosslinked product of hyaluronic acid on the powder and the physical properties of the crosslinked hyaluronic acid are as described above.
  • the crosslinked hyaluronic acid hydrated gel prepared according to the preparation method of the present invention exhibits rheological properties optimized for the prevention or treatment of arthritis.
  • the cross-linked hyaluronic acid hydration gel can be filtered with a filter, so it is easy to remove foreign substances, so it is easy to manage impurities when formulated as a medicine, and thus has a remarkable advantage in terms of economy and mass production.
  • the cross-linked hyaluronic acid hydration gel has excellent quality uniformity and exhibits homogeneous physical properties and excellent reproducibility due to the almost identical rheological properties of the cross-linked hyaluronic acid gel prepared by batch.
  • the elasticity (storage modulus, G') and the viscosity (loss modulus, G") of the cross-linked hyaluronic acid hydration gel may represent a range suitable for use as a supplement for human joints.
  • the crosslinked hyaluronic acid hydration gel may have an elasticity of about 30 to 200 Pa, a viscosity of about 10 to 100 Pa, specifically, an elasticity of about 100 to 150 Pa, and a viscosity of about 10 to 60 Pa.
  • the crosslinked hyaluronic acid hydration gel of the present invention may have an elasticity of about 30 to 200 Pa and a viscosity of about 10 to 100 Pa, and it is possible to perform a filtration process through a filter.
  • the crosslinked hyaluronic acid hydrated gel of the present invention may have an elasticity of about 30 to 200 Pa, a viscosity of about 10 to 100 Pa, and a particle size of D90 may be 240 ⁇ m or less, and more specifically D10 of about 25 ⁇ m to 40 ⁇ m, D50 is about 70 ⁇ m to 110 ⁇ m, D90 is about 190 ⁇ m to 240 ⁇ m, or D10 is about 10 ⁇ m to 30 ⁇ m, D50 is about 35 ⁇ m to 65 ⁇ m, D90 is about 80 ⁇ m to 120 ⁇ m It can represent the particle size distribution of, it is possible to perform the filtration process through the filter.
  • the step of preparing a cross-linked hyaluronic acid product is as described above.
  • the step of hydrating the crosslinked product of hyaluronic acid on the powder may be a step of mixing the crosslinked product of hyaluronic acid on the powder with a solution containing water or water.
  • the solution containing water may be a buffer solution, specifically, a phosphate buffer solution.
  • the hyaluronic acid crosslinked product on the powder may be added at a concentration of about 5 mg/mL to about 15 mg/mL with respect to the water or a solution containing water.
  • the cross-linked hyaluronic acid gel exhibits viscosity and elasticity suitable for the treatment of arthritis, and removes foreign substances by showing rheological properties of filtration It is easy and the quality control is easy accordingly, and it can show the proper injection pressure when filling the syringe.
  • the method may further include homogenizing the crosslinked hyaluronic acid hydrogel.
  • the homogenization may be performed using a homogenizer, and the crosslinked hyaluronic acid hydration gel may be homogenized using a homogenizer at about 7000 rpm or less, for example, about 2000 to about 7000 rpm, for about 3 minutes to about 20 minutes. .
  • the method may further include filtering the crosslinked hyaluronic acid hydrated gel with a filter having a pore size of about 5 ⁇ m to 30 ⁇ m.
  • the cross-linked hyaluronic acid hydration gel can be filtered through a filter having a small pore size to easily remove foreign matter from the hyaluronic acid hydration gel, thereby facilitating quality control, thereby reducing the risk of foreign matter inclusion, and hydrating gel
  • the homogeneity of the particle size and the particle size distribution can be improved, and thus a high quality can be improved.
  • filtration using the filter may be performed under a reduced pressure or a vacuum state, specifically, under about 80 kPa to 20 kPa pressure.
  • filtration using the filter may be performed one or more times, specifically, one or two times. Even if the number of times the filtration process is performed through the filter is increased, the hyaluronic acid hydration gel property remains the same and the particle size can be reduced.
  • the hyaluronic acid hydrated gel before performing the filtration process through the filter may exhibit a particle size distribution in which D90 is about 240 ⁇ m or less.
  • the hyaluronic acid hydrated gel before performing the filtration process through the filter has a particle size distribution of D10 of about 25 ⁇ m to 40 ⁇ m, D50 of about 70 ⁇ m to 110 ⁇ m, and D90 of about 190 ⁇ m to 240 ⁇ m. Can represent.
  • the crosslinked hyaluronic acid hydrated gel before performing the filtration process through the filter may be amorphous, and the X-ray powder diffraction analysis pattern may exhibit a halo pattern.
  • the hyaluronic acid hydration gel may have an X-ray powder diffraction pattern (XRD) as shown in FIG. 4.
  • the gel is amorphous, the X-ray powder diffraction pattern (XRD) is the same as in FIG. 4, and D90 may exhibit a particle size distribution of 240 ⁇ m or less, and more specifically, D10 is about 25 ⁇ m. It may exhibit a particle size distribution of about 40 ⁇ m, D50 of about 70 ⁇ m to 110 ⁇ m, and D90 of about 190 ⁇ m to 240 ⁇ m.
  • the crosslinked hyaluronic acid hydrogel is capable of performing a filtration process through a filter.
  • the crosslinked hyaluronic acid hydrated gel after the filtration process using the filter may have a D90 of about 120 ⁇ m or less in particle size distribution.
  • the hyaluronic acid hydrated gel after the filtration process using the filter has a particle size distribution of D10 of about 10 ⁇ m to 30 ⁇ m, D50 of about 35 ⁇ m to 65 ⁇ m, and D90 of about 80 ⁇ m to 120 ⁇ m. Can represent.
  • the crosslinked hyaluronic acid hydrated gel after performing the filtration process through the filter may be amorphous, and the X-ray powder diffraction analysis pattern may exhibit a halo pattern.
  • the hyaluronic acid hydration gel may have an X-ray powder diffraction pattern (XRD) as shown in FIG. 5.
  • the gel has an amorphous shape, an X-ray powder diffraction pattern (XRD) is as shown in FIG. 5, and D90 may exhibit a particle size distribution of 120 ⁇ m or less, and more specifically, D10 is about 10 ⁇ m. It may exhibit a particle size distribution of about 30 ⁇ m, D50 of about 35 ⁇ m to 65 ⁇ m, and D90 of about 80 ⁇ m to 120 ⁇ m.
  • XRD X-ray powder diffraction pattern
  • the crosslinked hyaluronic acid hydrogel is capable of performing a filtration process through a filter.
  • the particle size of the cross-linked hyaluronic acid hydration gel may be measured by laser particle size analysis.
  • the particle size of the cross-linked hyaluronic acid hydration gel may be measured by a wet method.
  • the filtering step may be performed after the homogenizing step.
  • the method may further include sterilizing the crosslinked hyaluronic acid hydrogel.
  • the sterilization may be performed at about 100°C or higher for about 10 minutes or more, and specifically, at about 121°C or higher for about 15 minutes or longer.
  • the sterilization may be performed before filling the syringe with the crosslinked hyaluronic acid hydrogel or after filling the syringe, specifically filling the crosslinked hyaluronic acid gel with a syringe. Can then be performed.
  • a crosslinked hyaluronic acid hydrated gel prepared by the method is provided.
  • the ethanol When ethanol is added to the aqueous solution in the above method, the ethanol may be slowly added to the aqueous solution over a period of time.
  • the hyaluronic acid hydration gel exhibits rheological properties optimized for pain relief, prevention and treatment by degenerative arthritis.
  • the cross-linked hyaluronic acid hydration gel can be filtered with a filter having a small pore size, it is easy to remove foreign substances, so it is easy to manage impurities when formulated into medicines and medical devices, and thus has a remarkable advantage in terms of economy and mass production.
  • the cross-linked hyaluronic acid hydrated gel has excellent quality uniformity and exhibits homogeneous physical properties and excellent reproducibility because the rheological properties of the cross-linked hyaluronic acid hydrated gel prepared by batch are almost the same.
  • the crosslinked hyaluronic acid hydrated gel of the present invention may have a D90 of about 240 ⁇ m or less in particle size distribution.
  • the crosslinked hyaluronic acid hydrated gel of the present invention may exhibit a particle size distribution of D10 of about 25 ⁇ m to 40 ⁇ m, D50 of about 70 ⁇ m to 110 ⁇ m, and D90 of about 190 ⁇ m to 240 ⁇ m.
  • the crosslinked hyaluronic acid hydrated gel of the present invention may be amorphous, and the X-ray powder diffraction analysis pattern may exhibit a halo pattern.
  • the hyaluronic acid hydration gel may have an X-ray powder diffraction pattern (XRD) as shown in FIG. 4.
  • the crosslinked hyaluronic acid hydration gel may be filtered with a filter having a pore size of about 5 ⁇ m to 30 ⁇ m.
  • the crosslinked hyaluronic acid hydrated gel after filtration of the present invention may have a particle size distribution of D90 of about 120 ⁇ m or less.
  • the crosslinked hyaluronic acid hydrated gel after filtration of the present invention may exhibit a particle size distribution of about 10 ⁇ m to 30 ⁇ m D10, about 35 ⁇ m to 65 ⁇ m D50, and about 80 ⁇ m to 120 ⁇ m D90.
  • the crosslinked hyaluronic acid hydrated gel after filtration of the present invention may be amorphous, and the X-ray powder diffraction analysis pattern may exhibit a halo pattern.
  • the hyaluronic acid hydrated gel after filtration may have an X-ray powder diffraction pattern (XRD) as shown in FIG. 5.
  • the method for preparing the cross-linked hyaluronic acid particles and the hyaluronic acid hydrated gel powder and the physical properties of the cross-linked hyaluronic acid particles and the physical properties of the cross-linked hyaluronic acid hydrated gel are as described above.
  • the hyaluronic acid hydrated gel obtained after the filtration step may have an elasticity of 30 to 200 Pa, a viscosity of 10 to 100 Pa, specifically, an elasticity of 100 to 150 Pa, and a viscosity of 10 to It can be 60 Pa.
  • the present invention provides a syringe filled with the crosslinked hyaluronic acid hydration gel.
  • the syringe When applied to the human body, the syringe may exhibit an appropriate pressure for injection and may exhibit pain relief, prevention and treatment effects due to excellent degenerative arthritis due to the excellent rheological properties of the cross-linked hyaluronic acid gel.
  • Butanediol diglycidyl ether (BDDE) was mixed with 0.2 ⁇ 0.3 M NaOH aqueous solution (pH> 9), and the concentration of sodium hyaluronate (Na-HA, molecular weight: 1.0-4.0 MDa) was 2% ( w/v). At this time, the ratio of BDDE and sodium hyaluronate was 100 ⁇ l (BDDE)/1 g (HA).
  • the reaction was stirred at room temperature to dissolve sodium hyaluronate to prepare 250 mL of sodium hyaluronate-containing aqueous solution (Na-HA solution), and crosslinked while stirring at 250 rpm for 4 to 6 hours at 25 to 35°C.
  • sodium hyaluronate-containing aqueous solution Na-HA solution
  • ethanol was added until the volume ratio of the aqueous solution containing sodium hyaluronate and ethanol was 1: 5, and at this time, ethanol was added at a rate of 20 mL/min so that sodium hyaluronate did not clump.
  • the mixture was cross-linked while stirring at 250 rpm for 24 hours or less at 25°C. After this crosslinking reaction, the solution was terminated by adjusting the pH (pH 6.0 to less than 9.0) by adding an HCl solution of 2.0 M or less.
  • the solidified hyaluronic acid crosslinked product was recovered through filtering. 95% (w/w) of the solidified hyaluronic acid crosslinked product Ethanol and 70% (w/w) The ethanol was alternately exchanged and washed several times. After washing, the recovered crosslinked hyaluronic acid was dried under vacuum at 60° C. or less for 24 hours or less to remove ethanol and moisture to obtain a crosslinked product of hyaluronic acid in powder form.
  • a crosslinked product of hyaluronic acid in powder form was obtained in the same manner as in Example 1-1, except that ethanol was added to the aqueous solution containing sodium hyaluronate at a rate of 80 mL/min.
  • a crosslinked product of hyaluronic acid in powder form was obtained in the same manner as in Example 1-1, except that ethanol was added to the aqueous solution containing sodium hyaluronate at a rate of 200 mL/min.
  • a powdered hyaluronic acid crosslinked product was prepared in the same manner as in Example 1-1, except that ethanol was added to the sodium hyaluronate aqueous solution until the volume ratio of the sodium hyaluronate aqueous solution and ethanol was 1:3. Did.
  • a powdered hyaluronic acid crosslinked product was prepared in the same manner as in Example 1-1, except that ethanol was added to the sodium hyaluronate aqueous solution until the volume ratio between the sodium hyaluronate aqueous solution and ethanol was 1:7. Did.
  • DVS was added instead of BDDE as a crosslinking agent so that 100 ⁇ l (DVS)/1 g (HA) was added, and ethanol was added to the aqueous solution containing sodium hyaluronate until the volume ratio of the aqueous solution containing sodium hyaluronate and ethanol was 1:3.
  • a crosslinked product of hyaluronic acid in the form of a powder was prepared in the same manner as in Example 1-1, except.
  • the hyaluronic acid crosslinked product in powder form prepared in Example 1-1 was added to PBS (Phosphate buffered saline) at 10-15 mg/mL to obtain a hydrated gel.
  • the hydrated gel was homogenized at 7000 rpm or less with a homogenizer.
  • sterilization was performed at 121°C for 20 minutes or less to obtain a crosslinked hyaluronic acid hydrated gel.
  • the hyaluronic acid crosslinked product in powder form prepared in Example 2 was dissolved in PBS (Phosphate buffered saline) at 10-15 mg/mL to obtain a hydrated gel.
  • the hydrated gel was homogenized at 7000 rpm or less with a homogenizer.
  • the homogenized gel was sterilized at 121°C for 20 minutes or less to obtain a crosslinked hyaluronic acid hydrated gel.
  • the crosslinked hyaluronic acid in powder form prepared in Example 3 was dissolved in PBS (Phosphate buffered saline) at 10-15 mg/mL to obtain a hydrated gel.
  • the gel was homogenized at 7000 rpm or less with a homogenizer.
  • the homogenized hydrated gel was sterilized at 121°C for 20 minutes or less to obtain a crosslinked hyaluronic acid hydrated gel.
  • the crosslinked hyaluronic acid in powder form prepared in Example 4 was dissolved in PBS (Phosphate buffered saline) at 10-15 mg/mL to obtain a hydrated gel.
  • the gel was homogenized at 7000 rpm or less with a homogenizer.
  • the homogenized hydrated gel was sterilized at 121°C for 20 minutes or less to obtain a crosslinked hyaluronic acid hydrated gel.
  • the crosslinked hyaluronic acid in powder form prepared in Example 2 was dissolved in PBS (Phosphate buffered saline) at 6-8 mg/mL to obtain a hydrated gel.
  • the gel was homogenized at 7000 rpm or less with a homogenizer.
  • the homogenized hydrated gel was sterilized at 121°C for 20 minutes or less to obtain a cross-linked hyaluronic acid gel.
  • the prepared hyaluronic acid crosslinked product in powder form was dissolved in PBS (Phosphate buffered saline) at 10-15 mg/mL to obtain a hydrated gel.
  • the gel was homogenized at 7000 rpm or less with a homogenizer.
  • the homogenized hydrated gel was filtered using a SS suspension (Solid suspension Filtering, with joint) in a vacuum filtration device, wherein the filter used a nylon filter paper of 25 ⁇ m or less and at a pressure of about 80 kPa or less. Filtration proceeded.
  • the filtered hydration gel was sterilized in 20 minutes or less to obtain a crosslinked hyaluronic acid hydration gel.
  • the prepared hyaluronic acid crosslinked product in powder form was dissolved in PBS (Phosphate buffered saline) at 10-15 mg/mL to obtain a hydrated gel.
  • the homogenized hydrated gel was sequentially filtered twice using an SS filtration device (Solid suspension Filtering, with joint) in a vacuum filtration device. At this time, a filter of 25 ⁇ m or less Nylon Filter paper was used and the pressure was less than about 80 kPa. Filtration proceeded.
  • the filtered hydrogel was sterilized at 121°C for 20 minutes or less to obtain a cross-linked hyaluronic acid hydration gel.
  • Sodium hyaluronate is completely dissolved in an aqueous solution of 0.8-1.2% (w/w) sodium hydroxide containing ethanol at a rate of 8-12% (w/w), and then BDDE is 50-100 ⁇ l/sodium hyaluronate 1 g was added and mixed.
  • a crosslinking reaction was performed at a reaction temperature of about 40-50°C and a reaction time of about 6 hours or less.
  • the hydrogel-type crosslinked product of the hydrogel in which the reaction was completed was dialyzed against PBS solution (Phosphate Buffered saline).
  • the hydrogel obtained after dialysis was washed with distilled water to remove BDDE, and the neutralized hydrogel was extracted into a 95% (w/w) ethanol aqueous solution to obtain a powdered hyaluronic acid primary crosslinked product.
  • a secondary crosslinking reaction was performed on the primary crosslinked product of hyaluronic acid.
  • the powdered hyaluronic acid primary crosslinked product was completely dissolved in a 0.8 to 1.2% (w/w) aqueous sodium hydroxide solution at a weight ratio of 1:4 to 6.
  • BDDE was added to the obtained reaction mixture at a ratio of 50 to 100 ⁇ l/1 g of the primary crosslinked product, and mixed.
  • a crosslinking reaction was performed at a reaction temperature of 40-50°C for about 12 hours or less.
  • the resulting secondary crosslinked product was dialyzed with PBS solution for about 12 to 24 hours.
  • the particles obtained after dialysis were washed with distilled water to remove BDDE, and the neutralized hydrogel was extracted into a 95% (w/w) ethanol aqueous solution to obtain a powdery hyaluronic acid secondary crosslinked product.
  • the hyaluronic acid primary crosslinked product and the hyaluronic acid secondary crosslinked product were prepared in a gel at a weight ratio of 9:1 in PBS to a final concentration of 2% (w/w), and then the physical force of the gel was applied to 500 ⁇ m.
  • the final hyaluronic acid crosslinked product was obtained by performing a process of grinding through a sieve of the mesh.
  • Viscoelasticity was measured for the crosslinked hyaluronic acid hydrogel prepared in the above example. Viscoelasticity was measured using a rotary rheometer, Kinexus Pro Rheometer (Malvern, Worchestershire, UK).
  • Geometry with a diameter of 20 mm was used for dynamic viscoelasticity measurement, the measurement distance (GAP) between the geometry and the plate was 0.5 mm, and the temperature was kept constant until the end of the analysis at 25°C.
  • Frequency oscillation was used as a control program, and the frequency range was set to 0.1 to 10 Hz to save modulus (G') and loss modulus (G) equivalent to 2.5 Hz. ") Measured.
  • the cross-linked hyaluronic acid hydrogel was prepared three times according to the method of Example 10 and Comparative Example 1.
  • the viscoelasticity of each crosslinked hyaluronic acid hydrogel was measured as in Experimental Example 1, and the average value and standard deviation are shown in Table 2 below.
  • Sodium hyaluronate (molecular weight: 1.0 to 4.0 MDa) in the form of powder, which is the raw material used in Examples 1-1 to 1-3, and hyaluronic acid in powder form according to Examples 1-1 to 1-3.
  • the particle size of the crosslinked product was analyzed by a dry method using a particle size analyzer (Mastersizer 3000, Malvern, England), and the results are shown in FIG. 1 and Table 3.
  • Example 6 The particle size of the crosslinked hyaluronic acid hydrated gels of Example 6, Example 10, and Example 11 was measured by a wet method using a particle size analyzer (Microtrac, Montgomeryville, PA), and the results are shown in FIGS. 2 and 4.
  • the crosslinked hyaluronic acid hydration gel can be filtered, and the particle size is reduced through filtration and shows a more uniform particle size distribution.
  • the physical state of the powdered hyaluronic acid crosslinked product according to Example 2 and the crosslinked hyaluronic acid hydrated gels according to Examples 6 and 10 was confirmed through X-ray diffraction analysis.
  • the inter-plane distance (d) obtained from the measured XRD spectrum was compared with the proportional reflection intensity (I/Io) to compare the peaks of the crystal structure using the semi-quantitative (RIR) method.
  • the instrument and conditions of X-ray diffraction spectrum measurement are as follows.
  • the crosslinked product of hyaluronic acid in powder form according to Example 2 exhibited a gentle peak at a position where the 2 ⁇ value was about 22° to 23°, and the crosslinked hyaluronic acid hydrogel according to Examples 6 and 10 had a 2 ⁇ value of about 28. It showed a gentle peak at the position of °.
  • Ethanol was added to the 1% NaOH aqueous solution in the same amount, and sodium hyaluronate (Na-HA, molecular weight: 1.0 to 4.0 MDa) was added thereto, so that the concentration of the mixture was 3% (w/v).
  • Na-HA sodium hyaluronate
  • BDDE sodium hyaluronate
  • the reaction was stirred at 30°C at a speed of 200 rpm or less to crosslink the mixture for 5 hours.
  • ethanol was added at a rate of 100 mL/min or less until the volume ratio of the reactant and ethanol became 1:5.
  • Sodium hyaluronate (Na-HA) was precipitated in a powder state and then crosslinked for 16 hours in a precipitated state.
  • a 1.2M HCl solution was added to adjust the pH (pH 8 or less) to terminate the reaction, and washed several times with ethanol.
  • hyaluronic acid crosslinked product was added to PBS (Phosphate buffered saline) to be 10 mg/mL to obtain a hydrated gel.
  • PBS Phosphate buffered saline
  • the hydrated gel was homogenized at 7000 rpm or less with a homogenizer.
  • sterilization was performed at 121°C for 20 minutes or less to obtain a crosslinked hyaluronic acid hydrated gel.
  • Sodium hyaluronate (Na-HA) is added to a mixture of 1% NaOH aqueous solution and ethanol to mix the mixture to a concentration of 2% (w/v), and BDDE is proportioned with sodium hyaluronate (Na-HA).
  • a powdered hyaluronic acid crosslinked product was prepared in the same manner as in Example 12, except that the reaction was prepared by adding 125 ⁇ l (BDDE)/1 g (HA).
  • the crosslinked hyaluronic acid hydrated gels prepared in Examples 12 and 13 were stored at 25°C, 30°C, 40°C and 60°C for 8 months, respectively, and viscoelasticity was measured periodically every month.
  • the viscoelasticity was measured under the same conditions as in Experimental Example 1 using a rotary rheometer Kinexus Pro Rheometer (Malvern, Worchestershire, UK).
  • viscoelasticity was measured under the same conditions using a commercially available hyaluronic acid crosslinked injection agent, Synvisc-one® (Sanofi Co.), as a comparative product.
  • Viscosity results according to temperature and storage period
  • Elasticity in Table 5 refers to storage modulus (G', Pa at 2.5 Hz), and viscosity in Table 6 refers to loss modulus (G", Pa at 2.5 Hz).
  • the hydration gels according to Examples 12 and 13 or the comparative products show elastic reduction ratio and viscosity reduction ratio measured after storage for 8 months at 25°C, 30°C, 40°C, and 60°C, respectively.
  • the hydration gels according to Examples 12 and 13 showed equal or higher stability than the comparative product (Synvisc-one®).
  • the higher the storage condition temperature the more the viscoelasticity tended to decrease, and the lower the elasticity, the higher the viscosity.
  • Ethanol was added to a 1% aqueous NaOH solution at a ratio of 6:4, and sodium hyaluronate (Na-HA, molecular weight: 1.0 to 4.0 MDa) was added thereto, so that the concentration of the mixture was 2.5% (w/v). .
  • Na-HA sodium hyaluronate
  • BDDE sodium hyaluronate
  • the reaction was stirred at 30° C. at a speed of 170 rpm to crosslink for 5 hours.
  • ethanol was added at a rate of 100 mL/min or less until the volume ratio of the reactant and ethanol became 1:5.
  • Sodium hyaluronate (Na-HA) was precipitated in a powder state and then crosslinked for 16 hours in a precipitated state.
  • a 1.2M HCl solution was added to adjust the pH (pH 8 or less) to terminate the reaction, and washed several times with ethanol.
  • hyaluronic acid crosslinked product was added to PBS (Phosphate buffered saline) to be 10 mg/mL to obtain a hydrated gel.
  • PBS Phosphate buffered saline
  • the hydrated gel was homogenized at 7000 rpm or less with a homogenizer.
  • sterilization was performed at 121°C for 21 minutes or less to obtain a crosslinked hyaluronic acid hydrated gel.
  • Ethanol was added to a 1% aqueous NaOH solution at a ratio of 6:4, and sodium hyaluronate (Na-HA, molecular weight: 1.0 to 4.0 MDa) was added thereto, so that the concentration of the mixture was 2.5% (w/v). .
  • Na-HA sodium hyaluronate
  • BDDE was added to prepare a reaction.
  • the ratio of BDDE and sodium hyaluronate (Na-HA) was 120 ⁇ l (BDDE)/1 g (HA).
  • the reaction was stirred at a rate of 170 rpm at 25° C. and crosslinked for 5 hours.
  • ethanol was added at a rate of 100 mL/min or less until the volume ratio of the reactant and ethanol became 1:5.
  • Sodium hyaluronate (Na-HA) was precipitated in a powder state and then crosslinked for 16 hours in a precipitated state.
  • a 1.2M HCl solution was added to adjust the pH (pH 8 or less) to terminate the reaction, and washed several times with ethanol.
  • hyaluronic acid crosslinked product was added to PBS (Phosphate buffered saline) to be 10 mg/mL to obtain a hydrated gel.
  • PBS Phosphate buffered saline
  • the hydrated gel was homogenized at 7000 rpm or less with a homogenizer.
  • sterilization was performed at 121°C for 21 minutes or less to obtain a crosslinked hyaluronic acid hydrated gel.
  • a crosslinked product of hyaluronic acid was prepared in the same manner as in Example 15-1, except that the reaction product was crosslinked at a reaction temperature of 30°C.
  • a crosslinked product of hyaluronic acid was prepared in the same manner as in Example 15-1, except that the reaction product was crosslinked at 35°C.
  • Ethanol was added to a 1% aqueous NaOH solution at a ratio of 6:4, and sodium hyaluronate (Na-HA, molecular weight: 1.0 to 4.0 MDa) was added thereto, so that the concentration of the mixture was 2.5% (w/v). .
  • Na-HA sodium hyaluronate
  • BDDE was added to prepare a reaction.
  • the ratio of BDDE and sodium hyaluronate (Na-HA) was 120 ⁇ l (BDDE)/1 g (HA).
  • the reaction was stirred at 30° C. at a speed of 50 rpm to crosslink for 5 hours.
  • ethanol was added at a rate of 100 mL/min or less until the volume ratio of the reactant and ethanol became 1:5.
  • Sodium hyaluronate (Na-HA) was precipitated in a powder state and then crosslinked for 16 hours in a precipitated state.
  • a 1.2M HCl solution was added to adjust the pH (pH 8 or less) to terminate the reaction, and washed several times with ethanol.
  • hyaluronic acid crosslinked product was added to PBS (Phosphate buffered saline) to be 10 mg/mL to obtain a hydrated gel.
  • PBS Phosphate buffered saline
  • the hydrated gel was homogenized at 7000 rpm or less with a homogenizer.
  • sterilization was performed at 121°C for 21 minutes or less to obtain a crosslinked hyaluronic acid hydrated gel.
  • a crosslinked product of hyaluronic acid in powder form was prepared in the same manner as in Example 16-1, except that the stirring speed of the reactants was 130 rpm.
  • a crosslinked product of hyaluronic acid in powder form was prepared in the same manner as in Example 16-1, except that the stirring speed of the reactant was 200 rpm.
  • Hyaluronic acid is a repeat-linked polysaccharide of glucuronic acid and N-acetyl-D-glucosamine, and when treated with Streptomyces hyaluronidase in hyaluronic acid, the reducing end is non-reducing. It is known to break down into oligosaccharides with 4,5-unsaturated glucuronosyl residues at the end).
  • Unmodified HA which has been completely digested, is composed of two products: tetrasaccharide (tetramer) and hexasaccharide (hexamer), and octasaccharide (octamer) , octamer) is the smallest sized substrate for enzymatic decomposition As the enzymatic decomposition proceeds, HA is decomposed into small units of oligosaccharides. -BDDE-HA, HA-BDDE), the difference between unmodified HA and retention time occurs during HPLC analysis.
  • the degree of modification by the crosslinking agent binding to the hyaluronic acid is defined as the degree of modification (MoD), and the crosslinking agent (HA-BDDE-HA) cross-linking the hyaluronic acid on both sides of the crosslinking agent (Crosslink MoD) ), and one in which hyaluronic acid was crosslinked (HA-BDDE) on one side of the crosslinking agent was defined as a pendant crosslinking strain (pendant MoD).
  • hyaluronidase Mercury from Streptomyces hyalurolyticus
  • Merck Sigma Aldrich
  • HA hyaluronic acid
  • the column for HPLC analysis was Dionex CarboPac PA100 (Thermo Scientific).
  • HA modified by the crosslinking agent was decomposed under the conditions of pH 5.0 and 36°C using hyaluronic acid degrading enzyme. Degraded HA was able to clearly separate tetramers, hexamers, and higher oligomers using HPLC systems. The size of each separated peak was compared through UV absorbance at 232 nm.
  • the hyaluronic acid is completely decomposed by a degrading enzyme, it becomes a tetramer and a hexamer, and the cross-linked hyaluronic acid is separated into a tetramer and a slightly larger equivalent than the hexamer, and more oligomers, etc. to represent a chromatogram.
  • the strain (MoD) can be obtained by the area of each chromatogram, and the peaks of the oligomers above 8-mer (crosslink MoD) (%), tetramer and tetramer (hexamer) The peaks of oligomers smaller than the octamer except for the peaks were classified as pendant crosslinking strain (%), and the sum of the two was obtained as the total crosslinking strain (total MoD) (%).
  • the hyaluronic acid cross-linked product prepared in Example 12 showed viscoelasticity similar to that of Synvisc-one® used as a comparative product, and showed equal or higher stability.
  • the hyaluronic acid crosslinked product prepared in Example 12 is a pendant crosslinking strain (%), crosslinking crosslinking strain (%), and total crosslinking strain (total MoD) than natural hyaluronic acid (HA). )(%).
  • the hyaluronic acid cross-linked product prepared in Example 12 showed a pendant MoD (%), cross-linked MoD (%), and total MoD (%) equal to or higher than Synvisc-one®.
  • the crosslinking reaction increased as the crosslinking agent input (BDDE:HA molar ratio) increased, and as the crosslinking reaction increased, the crosslinking strain (or strain, crosslinking degree) (MoD) (%) increased.
  • the crosslinking strain or strain, crosslinking degree
  • the crosslinking strain MoD (%) increased as the crosslinking agent concentration increased. Showed.
  • MoD crosslinking strain
  • the viscoelastic value is not always consistent because it is influenced by other factors such as formulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)
  • Materials For Medical Uses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 분말 상의 히알루론산 가교물 및 이의 제조방법과 상기 분말 상의 히알루론산 가교물을 사용하여 제조된 가교된 히알루론산 수화 겔 및 이의 제조방법을 제공한다. 본 발명에 따른 상기 가교된 히알루론산 수화 겔은 우수한 유변학적 특성을 나타내며, 대량생산이 용이하고 품질 균일성이 우수하다.

Description

히알루론산 가교물, 히알루론산 수화 겔 및 이들의 제조방법
본 발명은 히알루론산 가교물, 히알루론산 수화 겔 및 이들의 제조방법에 관한 것이다.
히알루론산은 N-아세틸-D-글루코사민과 D-글루쿠론산으로 이루어진 반복 단위(repeating unit)가 선형으로 연결되어 있는 생체 고분자 물질로서, 동물의 태반, 안구의 유리액, 관절의 활액, 또는 닭벼슬 등에 많이 존재하는 것으로 알려져 있다. 또한, 히알루론산은 스트렙토코코스속 미생물(예: Streptococcus equi, Streptococcus zooepidemecus) 또는 스타필로코코스속 미생물에 의한 발효에 의해서도 생산되는 것으로 알려져 있다.
현재 미국에는 1회 투여만으로 6 개월간 효과가 지속되는 히알루론산 가교물 주사제인 Synvisc-one® 이 시판되고 있다. Synvisc-one® 은 닭 벼슬의 히알루론산을 포르말린 함유 수용액으로 추출하면서 얻어진 히알루론산 가교물을 함유하며, 히알루론산에 연결된 단백질이 포르말린에 의해 약하게 가교되어 낮은 점탄성을 가진다(특허문헌 1). 상기 약하게 가교된 히알루론산은, 추가로 가교제 DVS(divinyl sulfone)에 의해 더욱 가교되어 증가된 점탄성을 갖는 히알루론산 가교물과 조합되어 인체의 관절강에 적용하기 적절한 점탄성을 갖는 복합 히알루론산 가교물(Synvisc-one® )을 구성한다.
그러나 종래의 히알루론산 가교물의 경우, 여과를 할 수 없어 겔에 포함된 이물질의 제거에 많은 노력이 소요되며, 가교제의 세척을 위해 대량의 세척 버퍼가 요구되었다. 이에 더하여 종래 히알루론산 가교물은 제조 배치마다 제조된 히알루론산의 점탄성 등 유변학적 특성이 편차가 심하여 품질의 균일성에 많은 문제가 있었다. 따라서 품질 관리가 용이하지 않고 대량 생산을 위해 복잡한 공정이 필요하고 많은 비용이 소요되었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 미국특허등록공보 4,713,448
(특허문헌 2) 대한민국공개공보 10-2017-0090965
본 발명의 일 양상은 경제적이며 대량생산에 최적화된 분말 상의 히알루론산 가교물의 제조방법에 관한 것이다.
본 발명은 다른 일 양상은 경제적이며 대량생산에 최적화된 분말 상의 히알루론산 가교물에 관한 것이다.
본 발명은 또 다른 일 양상은 우수한 유변학적 특성을 나타내며 품질균일성이 우수한 가교된 히알루론산 수화 겔의 제조방법에 관한 것이다.
본 발명은 또 다른 일 양상은 우수한 유변학적 특성을 나타내며 품질균일성이 우수한 가교된 히알루론산 수화 겔에 관한 것이다.
본 발명은 경제적이며 대량생산에 최적화된 분말 상의 히알루론산 가교물의 제조방법을 제공한다.
본 발명의 상기 분말 상의 히알루론산 가교물의 제조방법은,
히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계;
상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;를 포함한다.
일 구체예에서, 상기 가교 반응은 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액에 가교제를 첨가하여 10 내지 40℃, 예컨대 25℃ 내지 35℃에서, 2 내지 8시간, 예컨대 4 내지 6시간 동안, 50 내지 350rpm, 예를 들어 150 내지 350rpm, 예컨대 250 rpm으로 교반하면서 가교 반응시키는 것일 수 있다.
본 발명의 상기 방법에서 상기 수용액 상에 에탄올 첨가 시, 상기 에탄올의 투입 속도는 20 mL/min 내지 1000 mL/min일 수 있다.
본 발명의 상기 방법에서 상기 수용액 상에 에탄올을 첨가하는 동안 혼합액 전체 부피에 대한 에탄올의 부피변화 속도는 0.5%(v/v)/min 내지 35%(v/v)/min일 수 있다.
본 발명의 실시예들에 있어서, 상기 수용액은 가교제를 히알루론산, 이의 염 또는 이들의 혼합물 1 g에 대하여 10 μl 내지 500 μl의 양으로 포함할 수 있다.
본 발명의 실시예들에 있어서, 상기 수용액과 수용액에 첨가되는 에탄올의 부피비는 1: 1 내지 10일 수 있다.
본 발명의 실시예들에 있어서, 히알루론산 입자를 포함하는 수용액을 가교 반응시키는 단계를 추가로 포함할 수 있다. 상기 단계는 수용액 중에 첨가된 가교제에 의한 가교 반응을 지속시키는 단계일 수 있다. 상기 단계에서 히알루론산의 입자를 포함하는 수용액은 수용액 중 반응하고 남은 가교제와 추가로 가교 반응할 수 있다.
일 구체예에서, 상기 추가의 가교 반응은 히알루론산의 입자를 포함하는 수용액을 15 내지 30℃, 예컨대 25℃에서 24시간 이하 동안 50 내지 350rpm, 예컨대 250rpm으로 교반하면서 가교 반응시키는 것일 수 있다. 상기 추가의 가교 반응에서의 교반 속도는 에탄올 첨가 전 가교 반응에서의 교반 속도와 동일하게 할 수 있다.
본 발명의 실시예들에 있어서, 상기 가교 반응 후 히알루론산 입자로 고체화하여 얻은 히알루론산 가교물, 또는 수용액 중 남은 가교제와 추가로 가교 반응시켜 얻은, 얻은 히알루론산 가교물을 에탄올 또는 에탄올을 포함하는 용액으로 세척하는 단계를 더 포함할 수 있다.
본 발명의 실시예들에 있어서, 상기 분말 상의 히알루론산 가교물은 D90이 80 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 분말 상의 히알루론산 가교물은 D10이 2.5 ㎛ 내지 6 ㎛, D50이 8 ㎛ 내지 20 ㎛ 및 D90이 25 ㎛ 내지 80 ㎛의 입도분포를 나타낼 수 있다.
본 발명은 위 방법들에 의해 제조된 분말 상의 히알루론산 가교물을 제공한다.
본 발명의 실시예들에 있어서, 상기 히알루론산 가교물은 시판제품 예컨대 Synvisc-one®와 유사한 점탄성을 보이고, 동등이상의 안정성, 및 동등이상의 가교변형률(Degree of Modification, MoD)을 보일 수 있다. 본 발명의 실시예들에 있어서, 상기 히알루론산 가교물은 천연 히알루론산(HA) 또는 Synvisc-one®보다 펜던트 가교변형률(pendant MoD)(%), 교차결합 가교변형률(crosslink MoD)(%), 및 총 가교변형률(total MoD)(%)의 증가를 보일 수 있다.
본 발명의 실시예들에 있어서, 히알루론산(HA)의 가교변형률(Degree of Modification, MoD) 분석은 HPLC 시스템을 이용할 수 있다. 상기 분석방법에서, 다당류(polysaccharide)인 HA (glucuronic acid와 N-acetyl-D-glucosamine의 반복 구조)가 히알루론산 분해효소(hyaluronidase)에 의해 분해되어 더 작은 폴리머(polymer)가 형성되며, 가교제에 의해 변형된 HA와 미변형된 HA는 크로마토그램 차이와 변형률을 상대비교하여 구분할 수 있다. 상기 분석방법에서 히알루론산 분해효소 (Streptomyces hyalurolyticus 로부터 얻은 Hyaluronidase)를 이용하여 pH 5.0, 36℃조건에서 히알루론산(HA)을 분해(digestion) 후, Dionex CarboPac PA100 (Thermo Scientific) HPLC 컬럼을 이용하여 UV 흡광도(232 nm)에서 분해된 당량체(saccharide unit)을 측정할 수 있다. 히알루론산이 분해효소에 의해 완전분해되면 4량체(Tetramer)와 6량체(Hexamer)가 되며, 가교결합된 히알루론산은 4량체와 6량체보다 약간 큰 당량체, 그리고 그 이상의 올리고머(Oligomer) 등으로 분리되어 크로마토그램을 나타낼 수 있다. 각 크로마토그램의 면적으로 변형률(MoD)을 구할 수 있으며, 8량체(Octamer) 이상의 올리고머의 peak는 교차결합 가교변형률(crosslink MoD)(%)로 구분할 수 있고, 4량체와 6량체의 main peak를 제외한 8량체 보다 작은 올리고머의 peak는 펜던트 가교변형률(pendant MoD)(%)로 구분할 수 있으며, 이 둘을 합하여 총 가교변형률(total MoD)(%)로 할 수 있다.
히알루론산 가교물은 가교 반응이 많이 일어날수록 가교변형률(Degree of Modification, MoD)(%)의 증가를 보일 수 있고, 또한 과다한 가교 반응에 의해 제조된 히알루론산은 충분한 물을 흡수할 수 없는 구조로 될 수 있다. 본 발명의 실시예들에 있어서, 상기 히알루론산 가교물은 0.1% 내지 10%의 총 가교변형률(total Degree of Modification, total MoD)(%)을 보일 수 있다. 또한, 상기 가교변형률을 만족하는 히알루론산 가교물은 충분한 물을 흡수할 수 있는 구조를 가지며, 충분한 수화를 나타낼 수 있는 점탄성 값을 보일 수 있다.
본 발명은 우수한 유변학적 특성을 나타내며 품질 균일성이 우수한 가교된 히알루론산 수화 겔의 제조방법을 제공한다.
본 발명의 상기 가교된 히알루론산 수화 겔의 제조방법은,
히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계;
상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;
상기 히알루론산의 입자를 포함하는 수용액의 가교 반응을 지속시켜 분말 상의 히알루론산 가교물을 제조하는 단계; 및
상기 제조된 분말 상의 히알루론산 가교물을 수화시키는 단계를 포함한다.
본 발명의 상기 방법에서 상기 수용액 상에 상기 에탄올 첨가 시, 에탄올의 투입 속도가 20 mL/min 내지 1000 mL/min 가 되도록 첨가될 수 있다.
본 발명의 상기 방법에서 상기 수용액 상에 에탄올을 첨가하는 동안 혼합액 전체 부피에 대한 에탄올의 부피 농도 변화 속도는 0.5%(v/v)/min 내지 35%(v/v)/min일 수 있다.
본 발명의 실시예들에 있어서, 상기 수화시키는 단계는, 상기 분말 상의 히알루론산 가교물을 물 또는 물을 포함하는 용액에 첨가하는 단계일 수 있다.
본 발명의 실시예들에 있어서, 상기 분말 상의 히알루론산 가교물은 물 또는 물을 포함하는 용액 1 mL에 대하여 5 mg 내지 15 mg으로 첨가될 수 있다.
본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 D90이 240 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 D10이 25 ㎛ 내지 40 ㎛, D50이 70 ㎛ 내지 110 ㎛, D90이 190 ㎛ 내지 240 ㎛의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 방법은 상기 가교된 히알루론산 수화 겔을 필터를 사용하여 여과하는 단계를 더 포함할 수 있다.
본 발명의 실시예들에 있어서, 상기 여과 후의 가교된 히알루론산 수화 겔은 D90이 120 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 여과 후의 가교된 히알루론산 수화 겔은 D10이 10 ㎛ 내지 30 ㎛, D50이 35 ㎛ 내지 65 ㎛, D90이 80 ㎛ 내지 120 ㎛의 입도 분포를 나타낼 수 있다.
본 발명은 위 방법들에 의해 제조된 가교된 히알루론산 수화 겔을 제공한다.
본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 탄성이 30 내지 200 Pa이고 점성이 10 내지 100 Pa일 수 있다.
본 발명은 무정형의 가교된 히알루론산 수화 겔을 제공한다. 상기 히알루론산 수화 겔은 X선 분말 회절 패턴(XRD)이 도 5와 같을 수 있다.
본 발명의 실시예들에 있어서, 상기 히알루론산 수화 겔은 D90이 120 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 히알루론산 수화 겔의 입도분포는 D10이 10 ㎛ 내지 30 ㎛, D50이 35 ㎛ 내지 65 ㎛, D90이 80 ㎛ 내지 120 ㎛일 수 있다.
본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 탄성이 30 내지 200 Pa이고 점성이 10 내지 100Pa일 수 있다.
본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 탄성이 100 내지 150 Pa이고 점성이 10 내지 60Pa일 수 있다.
본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 25℃에서 8개월 보관 시 탄성감소율이 30% 이하일 수 있다. 본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 30℃에서 8개월 보관 시 탄성감소율이 25% 이하일 수 있다. 본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 40℃에서 8개월 보관 시 탄성감소율이 40% 이하일 수 있다. 본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 60℃에서 8개월 보관 시 탄성감소율이 90% 이하일 수 있다.
본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 25℃에서 8개월 보관 시 점성감소율이 35% 이하일 수 있다. 본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 30℃에서 8개월 보관 시 점성감소율이 20% 이하일 수 있다. 본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 40℃에서 8개월 보관 시 점성감소율이 18% 이하일 수 있다. 본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 60℃에서 8개월 보관 시 점성감소율이 50% 이하일 수 있다.
히알루론산은 온도, 효소 등의 요인에 의해 중합체 사슬(polymer chain)이 분해, 감소되어 점탄성, 유변학적 특성(Rheological properties)이 감소하며, 이에 따라 점성 보충(Viscosupplementation) 성능이 저하될 수 있다. 이와 비교하여, 가교된 히알루론산은 분해저항성이 향상되어 비가교 히알루론산 대비 체내 유지기간이 향상될 수 있다. 본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔은 히알루론산 대비 분해저항성이 향상되고, 비가교 히알루론산 대비 분해저항성이 향상될 수 있다.
본 발명의 분말 상의 히알루론산 가교물은 가교 정도가 균일하며, 적은 양의 세척액으로 용이하게 세척이 가능하고, 품질 균일성이 우수하다. 또한, 상기 분말 상의 히알루론산 가교물을 사용하여 제조된 가교된 히알루론산 수화 겔은 작은 기공 크기를 가지는 필터를 사용하여 여과가 가능하여 이물질을 용이하게 제거할 수 있으며, 품질 균일성이 우수하다. 따라서 본 발명에 따른 분말 상의 히알루론산 가교물 및 이를 사용하여 제조된 가교된 히알루론산 수화 겔은 대량 생산에 적합하며 경제적이다.
도 1은 원료물질인 히알루론산 나트륨 및 실시예 1-1 내지 1-3에 따른 분말 상태의 히알루론산 가교물의 입도분포를 보여주는 도이다. 상기 도 1에서 세로축은 volume density (%)이며, 가로축은 입도(㎛)을 나타낸다.
도 2는 실시예 6 및 실시예 10에 따른 가교된 히알루론산 수화 겔의 입도 분포를 보여주는 도이다. 상기 도 2에서 세로축은 Channel (%)이며, 가로축은 입도(㎛)을 나타낸다.
도 3은 실시예 2에 따른 분말 상태의 히알루론산 가교물의 X선 분말 회절 분석 결과를 보여주는 도이다. 도 3에서 세로축은 강도(cps)를 나타내며 가로축은 2θ(°)를 나타낸다.
도 4는 실시예 6에 따른 가교된 히알루론산 수화 겔의 X선 분말 회절 분석 결과를 보여주는 도이다. 도 4에서 세로축은 강도(cps)를 나타내며 가로축은 2θ (°)를 나타낸다.
도 5는 실시예 10에 따른 여과 후의 가교된 히알루론산 수화 겔의 X선 분말 회절 분석 결과를 보여주는 도이다. 도 5에서 세로축은 강도(cps)를 나타내며 가로축은 2θ (°)를 나타낸다.
도 6은 실시예 12에 따른 히알루론산 수화 겔에 대해 측정한 시간 및 온도 변화에 따른 탄성(Pa at 2.5 Hz, 25℃)을 나타낸다.
도 7은 실시예 12에 따른 히알루론산 수화 겔에 대해 측정한 시간 및 온도 변화에 따른 점성(Pa at 2.5 Hz, 25℃)을 나타낸다.
도 8은 실시예 13에 따른 히알루론산 수화 겔에 대해 측정한 시간 및 온도 변화에 따른 탄성(Pa at 2.5 Hz, 25℃)을 나타낸다.
도 9는 실시예 13에 따른 히알루론산 수화 겔에 대해 측정한 시간 및 온도 변화에 따른 점성(Pa at 2.5 Hz, 25℃)을 나타낸다.
도 10은 비교제품(Synvisc-one®)에 대해 측정한 시간 및 온도 변화에 따른 탄성(Pa at 2.5 Hz, 25℃)을 나타낸다.
도 11은 비교제품(Synvisc-one®) 에 대해 측정한 시간 및 온도 변화에 따른 점성(Pa at 2.5 Hz, 25℃)을 나타낸다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용 전부는 본 명세서에 참고로 통합된다.
본 명세서에서 DX가 Y 라는 것은 분말 상의 히알루론산, 히알루론산 겔 또는 가교된 히알루론산 수화 겔의 입자 크기를 누적곡선에 의해 나타낼 때, 입자 크기가 작은 순으로 누적하여 X% (%는 수, 부피 또는 중량을 기준으로 계산됨)가 되는 지점의 입자 크기가 Y임을 의미한다. 예를 들어, D10은 분말 상의 히알루론산, 히알루론산 겔 또는 가교된 히알루론산 수화 겔의 입자 크기를 작은 순으로 누적하여 10%가 되는 지점의 입자의 입자 크기를, D50은 분말 상의 히알루론산, 히알루론산 겔 또는 가교된 히알루론산 수화 겔의 입자 크기를 작은 순으로 누적하여 50%가 되는 지점의 입자의 입자 크기를, D90은 분말 상의 히알루론산, 히알루론산 겔 또는 가교된 히알루론산 수화 겔의 입자 크기를 작은 순으로 누적하여 90%가 되는 지점의 입자의 입자 크기를 표현한다.
입자 크기 분포 DX가 수, 부피, 또는 중량 중 어떠한 것을 기준으로 전체 누적 입자 중의 퍼센트를 나타내는지는 입자 크기 분포를 측정하는데 사용하는 방법에 따라 달라진다. 입자 크기 분포를 측정하는 방법과 이와 관련한 %의 유형은 이 분야의 통상의 기술자에게 공지되어 있다. 예를 들어, 잘 알려진 레이저 회절법에 의해 입자 크기 분포를 측정하는 경우, DX 중 X 값은 부피 평균에 의해 계산된 퍼센트를 나타낼 수 있다. 특정 방법에 의해 얻어진 입자 크기 분포 측정 결과는 통상적인 실험에 의해 경험을 바탕으로 하여 다른 기술로부터 얻은 것과 상관관계에 있을 수 있음을 이 분야의 통상의 기술자는 잘 알고 있다. 예를 들어, 레이저 회절법은 입자의 부피에 감응하여 부피 평균 입도를 제공하는데, 이는 밀도가 일정한 경우 중량 평균 입도에 상당한다.
본 명세서에서 점탄성은 저장 탄성률(storage modulus, G')과 손실 탄성률(loss modulus, G")을 의미한다. 상기 점탄성은 회전형 레오미터로 측정되며, 동적 점탄성 측정은 지름이 20 mm인 Geometry를 이용하였으며, Geometry와 플레이트(Plate) 사이의 측정거리(GAP)은 0.5 mm이며, 온도는 25℃로 분석 종료 전까지 일정하게 유지하고, 콘트롤 프로그램(control program)으로 주파 진동(frequency oscillation)을 이용하였으며, 주파수의 범위를 0.1~10 Hz 로 설정하여 저장 탄성률 및 손실 탄성률을 측정한다. 본 명세서에서는 저장 탄성률(storage modulus, G')에 탄성으로 표기하며, 손실 탄성률(Loss modulus, G")은 손실된 에너지는 점성으로 나타낼 수 있다.
본 발명의 분말 상의 히알루론산 가교물의 제조방법은,
히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계; 및
상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;를 포함한다.
상기 방법에서 수용액 상에 에탄올 첨가 시, 상기 에탄올은 일정 시간에 걸쳐 천천히 첨가된다.
본 발명의 제조방법에 따르면, 수용액 상에 에탄올을 일정시간에 걸쳐 천천히 첨가함으로써 균일한 입자 크기를 가지는 미세한 입자 형태의 고체의 히알루론산이 형성되며, 상기 고체 상태의 히알루론산 입자가 가교제와 반응하여 균일한 가교 반응이 진행된다. 이에 의해 가교도가 균일한 분말 상의 히알루론산 가교물이 형성될 수 있으며, 각각의 제조공정에서 분말 수준의 미세 입자 크기를 가지면서 입자크기(입도), 점성 및 탄성 등의 물리적 물성이 적합하고 균일한 히알루론산 가교물이 수득될 수 있다. 그 결과 최적의 효과를 나타내는 입도, 점성 및 탄성을 가지는 히알루론산 가교물을 재현성 있게 반복적으로 대량 생산할 수 있다.
상기 수용액 상에 에탄올을 투입하는 속도는 에탄올 첨가에 따라 생성되는 고체의 히알루론산이 입자 형태로 생성될 수 있도록 조정될 수 있다. 구체적으로 상기 에탄올 투여 속도에 따른 전체 반응액의 에탄올 농도 변화 속도를 조절하여 원하는 고체의 히알루론산 입자 크기 및 물리적 특성을 가지는 히알루론산 가교물을 생산할 수 있다.
본 발명의 실시예들에 있어서, 상기 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계는, 상기 히알루론산, 이의 염 또는 이들의 혼합물을 염기성 물질을 포함하는 알칼리 수용액에 첨가하여 제조될 수 있다.
본 명세서에서, 상기 히알루론산은 히알루론산 자체, 히알루론산의 염, 또는 이들의 혼합물을 지칭할 수 있다. 따라서 히알루론산을 포함하는 수용액은 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 의미할 수 있다. 또한, 히알루론산 입자는 히알루론산, 이의 염 또는 이들의 혼합물을 사용하여 형성된 입자를 의미할 수 있다.
상기 히알루론산의 염은 생체에 적용하기에 적합한 임의의 염 형태일 수 있으며, 구체적으로는 알칼리염, 알칼리토금속염, 아미노산염, 유기 염기와의 염 또는 이들의 혼합물일 수 있다. 예를 들어 히알루론산의 염은 히알루론산 나트륨, 히알루론산 칼슘, 히알루론산 칼륨, 히알루론산 마그네슘, 히알루론산 아연, 히알루론산 코발트, 히알루론산 테트라부틸암모늄염, 히알루론산 디에탄올아민, 히알루론산 시클로헥실아민 및 이들의 임의의 조합으로 구성된 군에서 선택될 수 있다. 일 구체예에서, 상기 히알루론산의 염은 히알루론산 나트륨일 수 있다.
상기 히알루론산 또는 이의 염의 분자량은 약 100,000 Da 내지 약 6,000,000 Da 일 수 있으며, 일 구체 예에서, 상기 히알루론산 또는 히알루론산 나트륨의 분자량은 약 100,000 Da 내지 약 6,000,000 Da, 구체적으로는 약 500,000 Da 내지 약 6,000,000 Da, 보다 구체적으로는 약 1,000,000 Da 내지 약 4,000,000 Da 일 수 있다.
상기 히알루론산은 당해 기술분야에 공지된 임의의 히알루론산을 포함하며, 임의의 원료로부터 얻은 히알루론산을 이용할 수 있다. 상기 히알루론산은 동물(예: 동물 태반, 닭벼슬)일 수도 있고, 발효시 히알루론산을 생산할 수 있는 임의의 미생물 (예: 스타필로코코스속(Staphylococcus) 미생물, 스트렙토코코스속(Streptococcus) 미생물) 유래의 히알루론산일 수 있다.
일 구체예에서, 상기 히알루론산은 미생물 유래의 히알루론산이며, 예를 들어 스트렙토코커스(Streptococcus)속 미생물 유래의 히알루론산이다. 미생물 유래의 히알루론산은 동물 기원 히알루론산의 바이러스 문제 혹은 원료 품질의 균일성 문제로부터 자유로울 수 있어 의약품으로서 제조 시 품질관리의 측면에서 우수한 장점이 있다.
히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액은 히알루론산 가교물의 제조에 사용될 수 있는 것으로 공지된 임의의 염기성 물질을 포함하는 알칼리 수용액일 수 있다. 예를 들면, 상기 알칼리 수용액은 pH 9 ~ 13의 알칼리 수용액일 수 있으며, 상기 알칼리 수용액은 수산화나트륨 함유 수용액, 수산화칼륨 함유 수용액, 또는 암모니아 함유 수용액일 수 있으며, 일 구체예에서, 상기 알칼리 수용액은 수산화나트륨 함유 수용액일 수 있다.
본 발명의 실시예들에 있어서, 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액은 히알루론산, 이의 염 또는 이들의 혼합물을 수용액 전체 부피를 기준으로 약 0.5%(w/v) 내지 5%(w/v) 되도록 포함할 수 있으며, 구체적으로는 약 1%(w/v) 내지 4%(w/v)가 되도록 포함할 수 있다. 일 구체예에서, 상기 히알루론산 이의 염 또는 이들의 혼합물을 포함하는 수용액은 히알루론산 나트륨을 약 2 %(w/v)가 되도록 포함할 수 있다.
본 발명의 실시예들에 있어서, 상기 수용액이 염기성 물질로 수산화나트륨을 포함하고 히알루론산 나트륨을 첨가하여 제조되는 경우 상기 수용액은 나트륨 이온을 0.2 M 이상으로 포함할 수 있다.
본 발명의 실시예들에 있어서, 상기 수용액은 가교제를 더 포함할 수 있다. 상기 가교제는 하나 이상의 관능기를 가지는 화합물로, 구체적으로는 하나 이상의 알데하이드기, 카보다이이미드, 에폭시기 또는 비닐설폰기를 가지는 화합물일 수 있다. 보다 구체적으로 상기 가교제는 두 개 이상의 에폭시기를 가지는 화합물 또는 다이비닐 설폰일 수 있다. 예를 들면, 상기 가교제는 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드 히드로클로라이드(EDCIㆍHCl), 1-시클로헥실-3-(2-모르폴리노에틸)카르보디이미드-메토-p-톨루엔술포네이트, 1-시클로헥실-3-(2-모르폴리노에틸)카르보디이미드 히드로클로라이드, 글루타르알데하이드, 다이비닐설폰(divinyl sulfone), 부탄디올디글리시딜에테르(1,4-butanediol diglycidyl ether: BDDE), 에틸렌글리콜디글리시딜에테르(ethylene glycol diglycidyl ether: EGDGE), 헥산디올디글리시딜에테르(1,6-hexanediol diglycidyl ether), 프로필렌글리콜디글리시딜에테르(propylene glycol diglycidyl ether), 폴리프로필렌글리콜디글리시딜에테르(polypropylene glycol diglycidyl ether), 폴리테트라메틸렌글리콜디글리시딜에테르(polytetramethylene glycol diglycidyl ether), 네오펜틸글리콜디글리시딜에테르(neopentyl glycol diglycidyl ether), 폴리글리세롤폴리글리시딜에테르(polyglycerol polyglycidyl ether), 디글리세롤폴리글리시딜에테르(diglycerol polyglycidyl ether), 글리세롤폴리글리시딜에테르(glycerol polyglycidyl ether), 트리메틸프로판폴리글리시딜에테르(tri-methylpropane polyglycidyl ether), 비스에폭시프로폭시에틸렌(1,2-(bis(2,3-epoxypropoxy)ethylene), 펜타에리쓰리톨폴리글리시딜에테르(pentaerythritol polyglycidyl ether), 소르비톨폴리글리시딜에테르(sorbitol polyglycidyl ether) 또는 이들의 혼합물일 수 있으며, 일 구현예로 상기 가교제는 부탄디올디글리시딜에테르, 다이비닐설폰 또는 이들의 혼합물일 수 있다. 일 구현예로 상기 가교제는 부탄디올디글리시딜에테르(BDDE)일 수 있다. 일 구현예로 상기 가교제는 다이비닐 설폰(DVS)일 수 있다.
본 발명의 실시예들에 있어서, 상기 수용액은 가교제를 히알루론산, 히알루론산 염 또는 이들의 혼합물 1몰에 대하여 0.005몰 내지 1몰, 구체적으로는 0.01몰 내지 0.8몰로 포함할 수 있다.
본 발명의 실시예들에 있어서, 상기 수용액은 가교제를 히알루론산, 이의 염 또는 이들의 혼합물 1g에 대하여 약 10 μl ~ 500 μl, 구체적으로는 약 50 μl ~ 400 μl 으로 포함할 수 있다.
본 발명의 실시예들에 있어서, 상기 수용액 상에 에탄올을 첨가하여 고체의 히알루론산 입자를 포함하는 혼합액을 제조하는 단계에서 상기 에탄올은 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액 1 부피에 대하여 약 1 내지 약 10 부피로 첨가될 수 있다. 구체적으로 상기 혼합액의 제조 시, 상기 수용액과 첨가되는 에탄올을 부피비는 약 1: 1 내지 10, 보다 구체적으로는 약 1: 2 내지 8일 수 있다. 상기 범위로 에탄올이 첨가됨으로써 상기 고체 형태의 히알루론산 입자를 사용하여 제조된 히알루론산 겔이 우수한 유변학적 특성을 나타낼 수 있으며, 관절염 치료 또는 예방에 우수한 효과를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액에 에탄올 첨가 시, 에탄올의 투입 속도는 일정할 수도 있고 변동될 수도 있다. 구체적으로 에탄올 투입 속도는 일정할 수 있다.
본 발명의 실시예들에 있어서, 상기 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액에 에탄올을 첨가하는 공정 동안 상기 수용액과 에탄올의 혼합액은 계속적으로 교반 될 수 있다. 구체적으로는 상기 에탄올 첨가 공정 동안 혼합액은 약 50 rpm 내지 300 rpm, 보다 구체적으로는 약 50 rpm 내지 250 rpm으로 교반될 수 있다.
본 발명의 실시예들에 있어서, 상기 혼합액의 교반 속도는 일정할 수도 있고 변동될 수도 있다. 구체적으로 상기 혼합액의 교반속도는 일정할 수 있다.
본 발명의 실시예들에 있어서, 상기 수용액 상에 에탄올 첨가 시 상기 에탄올은 서서히 일정 시간에 걸쳐 첨가될 수 있다. 히알루론산은 선형의 고분자로 에탄올에 의해 탈수되면서 실(실뭉치)와 같은 형태로 추출되는 특성이 있다. 구체적으로 상기 수용액 상에 에탄올은 섬유 상(실뭉치)의 히알루론산 고체 또는 덩어리 형태의 히알루론산 고체가 형성되지 않을 정도로 천천히 첨가될 수 있다. 보다 구체적으로 수용액 상에 에탄올은 히알루론산이 분말과 같이 미세 입자의 형태로 석출될 수 있도록 천천히 첨가될 수 있다. 상기 에탄올 첨가 속도가 하기 범위를 초과하는 경우, 섬유 상의 히알루론산으로 추출되어, 세척 시 pH 조절이 불가능하고 세척이 용이하지 않으며, 최종 생성물질이 갈변화되거나, 점탄성이 낮아져 액체 상태로 생산될 수 있다. 상기 수용액 상에 에탄올 첨가 시, 상기 에탄올의 투입 속도는 약 20 mL/min 내지 1000 mL/min일 수 있다. 구체적으로는 상기 에탄올의 투입 속도는 약 20 mL/min 내지 700 mL/min일 수 있으며, 보다 구체적으로는 상기 에탄올의 투입 속도는 약 20 mL/min 내지 500 mL/min일 수 있다. 상기 속도로 에탄올 투입 시 히알루론산이 뭉치지 않고 분말과 같이 미세 입자의 형태로 석출될 수 있다.
본 발명의 실시예들에 있어서, 상기 에탄올의 첨가 시, 히알루론산 함유 수용액 및 에탄올을 포함하는 혼합액의 부피에 대한 에탄올의 부피 변화 속도가 약 0.5%(v/v)/min 내지 35%(v/v)/min가 되도록 첨가될 수 있다.
이와 같이 에탄올이 서서히 일정 시간에 걸쳐 첨가되는 경우, 균일한 미세 입자의 형태로 히알루론산 입자가 석출될 수 있다.
또한 균일한 미세 입자의 형태로 수득된 히알루론산은 가교 반응 후 에탄올 또는 에탄올을 포함하는 용액으로 세척이 가능하며, 세척 동안 분말 상의 히알루론산 가교물이 팽윤되는 현상이 거의 없거나 최소화할 수 있다. 따라서 가교제 또는 불순물의 세척 시 적은 양의 세척액으로도 세척이 충분히 가능하고, 히알루론산 가교물 물성의 균질성을 향상시킬 수 있어 대량 생산이 가능하며, 경제적이다.
본 발명의 실시예들에 있어서, 상기 고체 히알루론산의 입자와 가교제가 반응하여 가교 반응이 진행될 수 있으며, 상기 가교 반응에 의해 미세한 입자인 분말 상의 히알루론산 가교물이 형성될 수 있다. 상기 미세한 입자인 분말 상의 히알루론산 가교물은 균일한 입자 크기를 가지며 가교도가 균일할 수 있다.
본 발명의 실시예들에 있어서, 상기 고체 상태의 히알루론산 입자와 상기 가교제의 가교 반응은 약 20 내지 40℃에서 약 6 내지 24시간 동안 수행될 수 있다. 상기와 같은 반응 조건에서 히알루론산의 분해를 최소화할 수 있어 사슬 길이가 긴 히알루론산 가교물이 형성될 수 있다. 또한, 관절염 치료에 적합한 가교도를 나타내며, 우수한 물성을 가지는 히알루론산 가교물이 형성될 수 있다.
본 발명의 실시예들에 있어서, 미세 분말 형태의 히알루론산 가교물은 D90이 약 80 ㎛ 이하일 수 있다.
본 발명의 실시예들에 있어서, 상기 균일한 미세 분말 형태의 히알루론산 가교물은 D10이 약 2.5 ㎛ 내지 6 ㎛, D50이 약 8 ㎛ 내지 20 ㎛, D90이 약 25 ㎛ 내지 80 ㎛일 수 있다.
본 발명의 실시예들에 있어서, 상기 미세 분말 형태인 히알루론산 가교물의 입도는 레이저 입도 분석법에 의해 측정될 수 있으며, 구체적으로는 건식법에 의해 수행될 수 있다.
본 발명의 실시예들에 있어서, 상기 분말 상의 히알루론산 가교물은 무정형일 수 있으며, X-선 분말 회절 분석 패턴이 할로 패턴을 나타낼 수 있다. 구체적으로 상기 분말 상의 히알루론산 가교물은 X선 분말 회절 패턴(XRD)이 도 3과 같을 수 있다.
본 발명의 실시예들에 있어서, 상기 분말 상의 히알루론산 가교물은 무정형이며, 상기 가교물의 입자는 D10이 약 2.5 ㎛ 내지 6 ㎛, D50이 약 8 ㎛ 내지 20 ㎛, D90이 약 25 ㎛ 내지 80 ㎛일 수 있다.
본 발명의 실시예들에 있어서, 상기 가교 반응 수행 후 혼합액의 pH를 9 미만으로 조절하여 가교 반응을 종료시킬 수 있다. 예를 들면, 상기 가교 반응 수행 후 염산(HCl)을 첨가하여 혼합액의 pH를 6 이상 9미만으로 조정하여 가교 반응을 종료시킬 수 있다.
본 발명의 실시예들에 있어서, 상기 가교 반응 종료 후 상기 미세 입자인 분말 상의 히알루론산 가교물은 여과를 통해 수득할 수 있다. 즉, 본 발명의 분말 상의 히알루론산 가교물은 분말 형태를 가지므로 교반하지 않는 경우, 용액 속에 가라앉아 있으며, 단순한 여과 공정을 통해 용이하게 분말 상의 히알루론산 가교물을 액체와 분리하여 수득할 수 있다.
본 발명의 실시예들에 있어서, 상기 방법은 분말 상의 히알루론산 가교물을 세척하는 단계를 더 포함할 수 있다. 상기 세척에 의해 분말 상의 히알루론산 가교물에 잔류되어 있는 가교제 및 불순물들이 제거될 수 있다. 상기 세척은 에탄올 또는 에탄올을 포함하는 용액을 사용하여 1회 이상 수행될 수 있으며, 예를 들면, 상기 세척은 약 70%(w/w), 약 95%(w/w)의 에탄올 수용액을 사용하여 수회 수행될 수 있다. 예를 들면, 상기 수득된 분말 상의 히알루론산 가교물은 약 70%(w/w), 약 95%(w/w)의 에탄올 수용액을 서로 교환하면서 3회 내지 5회 걸쳐 세척될 수 있다.
본 발명의 실시예들에 있어서, 상기 세척단계는 pH 9 미만 조건하에서 수행될 수 있으며, 구체적으로는 pH 6 내지 pH 9 미만의 조건하에서 수행될 수 있다.
본 발명의 상기 세척 단계는 종래 방법들과 비교하여 순수한 물 또는 인산 완충액과 같은 수용액 완충액이 아니라 에탄올 또는 에탄올 수용액과 같은 에탄올을 포함하는 용액을 사용함으로써 히알루론산 가교물이 세척 동안 팽윤되는 현상을 억제할 수 있어 품질 관리가 용이하며, 세척단계 동안 팽윤이 거의 되지 않거나 최소화되어 소량의 세척액으로 충분히 가교제 및 불순물을 제거할 수 있어 용이하게 대량 생산이 가능하다.
본 발명의 실시예들에 있어서, 상기 방법은 세척 후 상기 분말 상의 히알루론산 가교물을 건조하는 단계를 더 포함할 수 있다. 상기 건조는 진공건조일 수 있으며, 약 35℃내지 약 70℃에서 약 10 내지 40시간 동안 수행될 수 있다.
본 발명은,
히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계; 및
상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;를 포함하며,
상기 에탄올은 상기 수용액 상에 일정 시간에 걸쳐 천천히 첨가되는 것인 방법에 의해 제조된 분말 상의 히알루론산 가교물을 제공한다.
상기 방법은 히알루론산 입자를 포함하는 수용액을 가교 반응시키는 단계를 추가로 포함하는 것일 수 있다. 상기 단계는 히알루론산 입자를 포함하는 수용액의 가교 반응을 지속시키는 것일 수 있다.
상기 방법에 의해 제조된 분말 상의 히알루론산 가교물은 미세입자로 취급이 용이하며, 가교도가 균질하다. 또한, 세척단계 동안 팽윤되지 않고 분말과 같이 미세 입자 형태를 그대로 유지하고 있어 세척이 용이하며 대량 생산이 가능하다.
또한, 세척단계 동안에 분말 상태의 가교물에 대한 NaOH, 미반응물 BDDE와 같은 가교제의 세척이 용이하며 pH 조절이 가능하고, 추후 최종 겔의 적절한 점탄성을 유도할 수 있으며, pH에 따른 히알루론산 가교물의 변성인 갈변 반응을 최소화 및 억제할 수 있다.
본 발명의 분말 상의 히알루론산 가교물의 입도 분포는 D90이 약 80 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 상기 균일한 미세 분말 형태의 히알루론산 가교물은 D10이 약 2.5 ㎛ 내지 6 ㎛, D50이 약 8 ㎛ 내지 20 ㎛, D90이 약 25 ㎛ 내지 80 ㎛의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 미세 분말 형태의 히알루론산 가교물의 입도는 레이저 입도 분석법에 의해 측정될 수 있으며, 구체적으로는 건식법에 의해 수행될 수 있다.
본 발명의 분말 상의 히알루론산 가교물은 무정형일 수 있으며, X-선 분말 회절 분석 패턴이 할로 패턴을 나타낼 수 있다. 구체적으로 상기 분말 상의 히알루론산 가교물은 X선 분말 회절 패턴(XRD)이 도 3과 같을 수 있다.
상기 분말 상의 히알루론산 가교물의 제조방법 및 상기 히알루론산 가교물의 물성은 앞서 살핀 바와 같다.
본 발명은 우수한 유변학적 특성을 나타내며 이물 제거가 용이하고 경제적이며 대량생산에 최적화된 가교된 히알루론산 수화 겔의 제조방법을 제공한다.
본 발명의 상기 가교된 히알루론산 수화 겔의 제조방법은,
히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계;
상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;
상기 히알루론산의 입자를 포함하는 수용액의 가교 반응을 지속시켜 분말 상의 히알루론산 가교물을 제조하는 단계; 및
상기 분말 상의 히알루론산 가교물을 수화시키는 단계를 포함한다.
상기 방법에서 수용액 상에 에탄올 첨가 시, 상기 에탄올은 상기 수용액 상에 일정 시간에 걸쳐 천천히 첨가된다.
상기 분말 상의 히알루론산 가교물의 제조방법 및 히알루론산 가교물의 물성은 앞서 살핀 바와 같다.
본 발명의 제조방법에 따라 제조된 가교된 히알루론산 수화 겔은 관절염 예방 또는 치료에 최적화된 유변학적 특성을 나타낸다. 또한, 상기 가교된 히알루론산 수화 겔은 필터로 여과가 가능하므로 이물질 제거가 쉬워 의약품으로 제제화 시 불순물 관리가 용이하여 경제성 및 대량 생산 면에서 현저히 우수한 장점을 가진다. 또한 상기 가교된 히알루론산 수화 겔은 품질 균일성이 우수하며 배치별로 제조된 가교된 히알루론산 겔의 유변학적 특성이 거의 동일하여 균질한 물성을 나타내며 재현성이 우수하다.
본 발명의 실시예들에 있어서, 상기 가교된 히알루론산 수화 겔의 탄성(storage modulus, G') 및 점성(loss modulus, G")은 인체 관절 보충액으로 사용하기에 적절한 범위를 나타낼 수 있다.
상기 가교된 히알루론산 수화 겔은 탄성은 약 30 내지 200 Pa이고 점성은 약 10 내지 100 Pa 일 수 있으며, 구체적으로는 탄성은 약 100 내지 150 Pa이고 점성은 약 10 내지 60 Pa 일 수 있다. 본 발명의 가교된 히알루론산 수화 겔은 탄성은 약 30 내지 200 Pa이고 점성은 약 10 내지 100 Pa일 수 있으며, 필터를 통한 여과 공정 수행이 가능하다.
본 발명의 가교된 히알루론산 수화 겔은 탄성은 약 30 내지 200 Pa이고 점성은 약 10 내지 100 Pa일 수 있으며, 입도는 D90이 240 ㎛이하일 수 있으며, 보다 구체적으로는 D10이 약 25 ㎛ 내지 40 ㎛, D50이 약 70 ㎛ 내지 110 ㎛, D90이 약 190 ㎛ 내지 240 ㎛의 입도 분포, 또는 D10이 약 10 ㎛ 내지 30 ㎛, D50이 약 35 ㎛ 내지 65 ㎛, D90이 약 80 ㎛ 내지 120 ㎛의 입도 분포를 나타낼 수 있고, 필터를 통한 여과 공정 수행이 가능하다.
상기 가교된 히알루론산 수화 겔의 제조방법에서 분말 상의 히알루론산 가교물을 제조하는 단계는 앞서 설명한 바와 같다.
본 발명의 실시예들에 있어서, 상기 분말 상의 히알루론산 가교물을 수화시키는 단계는 상기 분말 상의 히알루론산 가교물을 물 또는 물을 포함하는 용액과 혼합하는 단계일 수 있다. 여기서 상기 물을 포함하는 용액은 완충액일 수 있으며, 구체적으로 인산 완충액일 수 있다.
상기 분말 상의 히알루론산 가교물은 상기 물 또는 물을 포함하는 용액에 대하여 약 5 mg/mL 내지 약 15 mg/mL의 농도로 첨가될 수 있다. 상기 분말 상의 히알루론산 가교물이 물 또는 물을 포함하는 용액에 위 농도로 첨가되는 경우, 가교된 히알루론산 겔이 관절염 치료에 적절한 점성 및 탄성을 나타내며, 여과가능한 정도의 유변학적 특성을 나타내어 이물질 제거가 용이하며 그에 따른 품질관리가 용이하고, 주사기 충진 시 적절한 주사압력을 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 방법은 상기 가교된 히알루론산 수화겔을 균질화하는 단계를 더 포함할 수 있다. 상기 균질화는 균질기를 이용하여 수행될 수 있으며, 상기 가교된 히알루론산 수화 겔은 균질기를 이용하여 약 7000 rpm 이하, 예를 들어 약 2000 내지 약 7000 rpm으로 약 3분 내지 약 20분간 균질화 될 수 있다.
본 발명의 실시예들에 있어서, 상기 방법은 가교된 히알루론산 수화 겔을 약 5 ㎛ 내지 30 ㎛의 기공 크기(pore size)를 가지는 필터로 여과하는 단계를 더 포함할 수 있다. 상기 가교된 히알루론산 수화 겔은 작은 기공 크기를 가지는 필터를 통해 여과할 수 있어 히알루론산 수화 겔로부터 이물질을 쉽게 제거할 수 있어 품질 관리가 용이하여, 이물질 포함에 따른 위험성을 낮출 수 있고, 수화 겔의 물리적인 특징이 크게 변화되지 않고 유지되면서 입도 및 입도 분포의 균질성을 향상시킬 수 있어 높은 품질 향상을 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 필터를 이용한 여과는 감압 상태 또는 진공 상태에서 수행될 수 있으며, 구체적으로는 약 80 kPa에서 20 kPa 압력 하에서 수행될 수 있다.
본 발명의 실시예들에 있어서, 상기 필터를 이용한 여과는 1회 이상 수행될 수 있으며, 구체적으로는 1회 또는 2회 수행될 수 있다. 필터를 통한 여과 공정의 수행 횟수가 증가하여도 히알루론산 수화 겔의 특성은 동일하게 유지되며, 입도가 감소될 수 있다.
본 발명의 실시예들에 있어서, 상기 필터를 통한 여과 공정 수행 전의 히알루론산 수화 겔은 D90이 약 240 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 필터를 통한 여과 공정 수행전의 히알루론산 수화 겔은 D10이 약 25 ㎛ 내지 40 ㎛, D50이 약 70 ㎛ 내지 110 ㎛, D90이 약 190 ㎛ 내지 240 ㎛의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 필터를 통한 여과 공정 수행 전의 가교화된 히알루론산 수화 겔은 무정형일 수 있으며, X-선 분말 회절 분석 패턴이 할로 패턴을 나타낼 수 있다. 구체적으로 상기 히알루론산 수화 겔은 X선 분말 회절 패턴(XRD)이 도 4와 같을 수 있다.
본 발명의 가교된 히알루론산 수화겔은 겔은 무정형으로, X선 분말 회절 패턴(XRD)이 도 4와 같으며, D90이 240 ㎛이하인 입도 분포를 나타낼 수 있으며, 보다 구체적으로는 D10이 약 25 ㎛ 내지 40 ㎛, D50이 약 70 ㎛ 내지 110 ㎛, D90이 약 190 ㎛ 내지 240 ㎛의 입도 분포를 나타낼 수 있다. 상기 가교된 히알루론산 수화겔은 필터를 통한 여과 공정 수행이 가능하다.
본 발명의 실시예들에 있어서, 상기 필터를 이용한 여과 공정 후의 가교된 히알루론산 수화 겔은 D90이 약 120 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 필터를 이용한 여과 공정 후의 히알루론산 수화 겔은 D10이 약 10 ㎛ 내지 30 ㎛, D50이 약 35 ㎛ 내지 65 ㎛, D90이 약 80 ㎛ 내지 120 ㎛의 입도 분포를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 필터를 통한 여과 공정 수행 후의 가교된 히알루론산 수화 겔은 무정형일 수 있으며, X-선 분말 회절 분석 패턴이 할로 패턴을 나타낼 수 있다. 구체적으로 상기 히알루론산 수화 겔은 X선 분말 회절 패턴(XRD)이 도 5와 같을 수 있다.
본 발명의 가교된 히알루론산 수화겔은 겔은 무정형으로, X선 분말 회절 패턴(XRD)이 도 5와 같으며, D90이 120 ㎛ 이하인 입도 분포를 나타낼 수 있으며, 보다 구체적으로는 D10이 약 10 ㎛ 내지 30 ㎛, D50이 약 35 ㎛ 내지 65 ㎛, D90이 약 80 ㎛ 내지 120 ㎛의 입도 분포를 나타낼 수 있다. 상기 가교된 히알루론산 수화겔은 필터를 통한 여과 공정 수행이 가능하다.
본 발명에 있어서 상기 가교된 히알루론산 수화 겔의 입도는 레이저 입도 분석법에 의해 측정된 것일 수 있다.
본 발명에 있어서, 상기 가교된 히알루론산 수화 겔의 입도는 습식법에 의해 측정된 것일 수 있다.
본 발명의 실시예들에 있어서, 상기 여과하는 단계는 균질화하는 단계 후에 수행될 수 있다.
본 발명의 실시예들에 있어서, 상기 방법은 상기 가교된 히알루론산 수화겔을 멸균하는 단계를 더 포함할 수 있다. 상기 멸균은 약 100℃이상에서 약 10분 이상 수행될 수 있으며, 구체적으로는 약 121℃이상에서 약 15분 이상 수행될 수 있다.
본 발명의 실시예들에 있어서, 상기 멸균은 상기 가교된 히알루론산 수화겔을 주사기에 충진하기 전에 수행되거나 또는 주사기에 충진 한 후 수행될 수 있으며, 구체적으로는 상기 가교된 히알루론산 겔을 주사기에 충진한 후 수행될 수 있다.
본 발명은,
히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계;
상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;
상기 히알루론산의 입자를 포함하는 수용액의 가교 반응을 지속시켜 분말 상의 히알루론산 가교물을 제조하는 단계; 및
상기 분말 상의 히알루론산 가교물을 수화시키는 단계를 포함하는
방법에 의해 제조된 가교된 히알루론산 수화 겔을 제공한다.
상기 방법에서 수용액 상에 에탄올 첨가 시, 상기 에탄올은 상기 수용액 상에 일정 시간에 걸쳐 천천히 첨가될 수 있다.
상기 히알루론산 수화 겔은 퇴행성 관절염에 의한 통증완화, 예방 및 치료에 최적화된 유변학적 특성을 나타낸다. 또한, 상기 가교된 히알루론산 수화 겔은 작은 기공 크기를 가지는 필터로 여과가 가능하므로 이물질 제거가 쉬어 의약품 및 의료기기로 제제화 시 불순물 관리가 용이하여 경제성 및 대량 생산 면에서 현저히 우수한 장점을 가진다. 또한 상기 가교된 히알루론산 수화 겔은 품질 균일성이 우수하며 배치별로 제조된 가교된 히알루론산 수화 겔의 유변학적 특성이 거의 동일하여 균질한 물성을 나타내며 재현성이 우수하다.
본 발명의 가교된 히알루론산 수화 겔은 D90이 약 240 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 가교된 히알루론산 수화 겔은 D10이 약 25 ㎛ 내지 40㎛, D50이 약 70 ㎛ 내지 110 ㎛, D90이 약 190 ㎛ 내지 240 ㎛의 입도 분포를 나타낼 수 있다.
본 발명의 가교된 히알루론산 수화 겔은 무정형일 수 있으며, X-선 분말 회절 분석 패턴이 할로 패턴을 나타낼 수 있다. 구체적으로 상기 히알루론산 수화 겔은 X선 분말 회절 패턴(XRD)이 도 4와 같을 수 있다.
본 발명의 실시예에 따르면, 가교된 히알루론산 수화 겔은 약 5 ㎛ 내지 30 ㎛의 기공 크기(pore size)를 가지는 필터로 여과될 수 있다.
본 발명의 여과 후의 가교된 히알루론산 수화 겔은 D90이 약 120 ㎛ 이하의 입도 분포를 나타낼 수 있다.
본 발명의 여과 후의 가교된 히알루론산 수화 겔은 D10이 약 10 ㎛ 내지 30 ㎛, D50이 약 35 ㎛ 내지 65 ㎛, D90이 약 80 ㎛ 내지 120 ㎛의 입도 분포를 나타낼 수 있다.
본 발명의 여과 후의 가교된 히알루론산 수화 겔은 무정형일 수 있으며, X-선 분말 회절 분석 패턴이 할로 패턴을 나타낼 수 있다. 구체적으로 상기 여과후의 히알루론산 수화 겔은 X선 분말 회절 패턴(XRD)이 도 5와 같을 수 있다.
본 발명에서 상기 분말 상의 히알루론산 가교물 입자 및 가교된 히알루론산 수화 겔의 제조방법과 분말 상의 히알루론산 가교물 입자의 물성 및 가교된 히알루론산 수화 겔의 물성은 앞서 살핀 바와 같다.
본 발명의 실시예들에 있어서, 상기 여과 단계 후 수득된 히알루론산 수화 겔은 탄성은 30 내지 200 Pa이고 점성은 10 내지 100 Pa일 수 있으며, 구체적으로 탄성은 100 내지 150 Pa이고 점성은 10 내지 60 Pa 일 수 있다.
본 발명은 상기 가교된 히알루론산 수화 겔이 충진된 주사기를 제공한다. 상기 주사기는 인체에 적용 시, 주사에 적절한 압력을 나타낼 수 있으며 가교된 히알루론산 겔의 우수한 유변학적 특성으로 인해 우수한 퇴행성 관절염에 의한 통증완화, 예방 및 치료효과를 나타낼 수 있다.
[실시예]
이하, 하기 실시예에 의해 본 발명을 더욱 상세히 설명하나, 하기 실시예는 본 발명을 설명하기 위한 것일 뿐 본 발명의 범위가 이들로 한정되는 것은 아니다.
실시예 1
실시예 1-1
0.2~0.3 M NaOH 수용액(pH > 9)에 부탄디올디글리시딜에테르(butanediol diglycidyl ether, BDDE)를 혼합하고, 히알루론산 나트륨(Na-HA, 분자량: 1.0~4.0 MDa)의 농도가 2%(w/v)가 되도록 반응물을 제조하였다. 이 때, BDDE와 히알루론산 나트륨의 비율은 100 μl(BDDE)/1 g(HA)이었다.
상기 반응물을 상온에서 교반하여 히알루론산 나트륨을 용해시켜 히알루론산 나트륨 포함 수용액(Na-HA solution) 250 mL를 제조하고, 25 내지 35℃에서 4 내지 6시간 동안 250 rpm으로 교반하면서 가교 반응 시켰다. 상기 히알루론산 나트륨 포함 수용액에 히알루론산 나트륨 포함 수용액과 에탄올의 부피비가 1: 5가 될 때까지 에탄올을 첨가하였으며, 이 때 에탄올을 히알루론산 나트륨이 뭉치지 않도록 20 mL/min 속도로 첨가하였다.
히알루론산 나트륨이 분말 형태로 석출된 후, 25℃에서 24시간 이하 동안 250rpm으로 교반하면서 가교 반응시켰다. 이 가교 반응 후, 2.0M 이하의 HCl 용액을 투입하여 pH를 조정(pH 6.0~9.0 미만)하여 반응을 종료시켰다. 필터링을 통해 고형화된 히알루론산 가교물을 회수하였다. 고형화된 히알루론산 가교물을 95%(w/w) 에탄올과 70%(w/w) 에탄올을 번갈아 교환하여 수회 세척하였다. 세척 후, 회수된 가교된 히알루론산은 60℃이하에서, 24시간 이하 동안 진공 건조하여 에탄올 및 수분을 제거하여 분말형태의 히알루론산 가교물을 수득하였다.
실시예 1-2
히알루론산 나트륨 포함 수용액에 에탄올을 80 mL/min의 속도로 첨가한 것을 제외하고 실시예 1-1과 동일한 방법으로 분말 형태의 히알루론산 가교물을 수득하였다.
실시예 1-3
히알루론산 나트륨 포함 수용액에 에탄올을 200 mL/min의 속도로 첨가한 것을 제외하고 실시예 1-1과 동일한 방법으로 분말 형태의 히알루론산 가교물을 수득하였다.
실시예 2
히알루론산 나트륨 포함 수용액과 에탄올의 부피비가 1: 3이 될 때까지 히알루론산 나트륨 포함 수용액에 에탄올을 첨가한 점을 제외하고는 실시예 1-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실시예 3
히알루론산 나트륨 포함 수용액과 에탄올의 부피비가 1: 7이 될 때까지 히알루론산 나트륨 포함 수용액에 에탄올을 첨가한 점을 제외하고는 실시예 1-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실시예 4
가교제로 BDDE 대신에 DVS를 100μl (DVS)/1 g(HA) 되도록 첨가하고, 히알루론산 나트륨 포함 수용액과 에탄올의 부피비가 1: 3이 될 때까지 히알루론산 나트륨 포함 수용액에 에탄올을 첨가한 점을 제외하고는 실시예 1-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실시예 5
실시예 1-1에서 제조된 분말형태의 히알루론산 가교물을 PBS (Phosphate buffered saline)에 10~15 mg/mL로 첨가하여 수화 겔을 수득하였다. 상기 수화 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 겔 대해서, 121℃에서 20분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시예 6
실시예 2에서 제조된 분말형태의 히알루론산 가교물을 PBS (Phosphate buffered saline)에 10~15mg/mL로 용해하여 수화 겔을 수득하였다. 상기 수화 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 겔에 대해서 121℃에서 20분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시예 7
실시예 3에서 제조된 분말 형태의 가교 히알루론산을 PBS (Phosphate buffered saline)에 10~15mg/mL로 용해하여 수화 겔을 수득하였다. 상기 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 수화 겔에 대해서 121℃에서 20분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시예 8
실시예 4에서 제조된 분말 형태의 가교 히알루론산을 PBS (Phosphate buffered saline)에 10~15mg/mL로 용해하여 수화 겔을 수득하였다. 상기 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 수화 겔에 대해서 121℃에서 20분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시예 9
실시예 2에서 제조된 분말 형태의 가교 히알루론산을 PBS (Phosphate buffered saline)에 6~8mg/mL로 용해하여 수화 겔을 수득하였다. 상기 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 수화 겔에 대해서 121℃에서 20분 이하로 멸균을 진행하여 가교된 히알루론산 겔을 수득하였다.
실시예 10
실시예 2와 동일한 방법으로 분말 형태의 히알루론산 가교물을 제조하였다.
제조된 분말 형태의 히알루론산 가교물을 PBS (Phosphate buffered saline)에 10~15 mg/mL로 용해하여 수화 겔을 수득하였다. 상기 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 수화 겔을 감압 여과 장치에 S.S 여과장치 (Solid suspension Filtering, with joint) 를 사용하여 여과하였으며, 이 때 필터는 25㎛ 이하 Nylon Filter paper를 사용하였으며 약 80 kPa 압력 이하에서 여과를 진행하였다. 여과된 수화 겔을 20분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시예 11
실시예 2와 동일한 방법으로 분말 형태의 히알루론산 가교물을 제조하였다.
제조된 분말 형태의 히알루론산 가교물을 PBS (Phosphate buffered saline)에 10~15 mg/mL로 용해하여 수화 겔을 수득하였다. 상기 균질화된 수화 겔을 감압 여과 장치에 S.S 여과장치 (Solid suspension Filtering, with joint) 를 사용하여 2회 순차적으로 여과하였으며, 이 때 필터는 25㎛ 이하 Nylon Filter paper를 사용하였으며 약 80 kPa 압력 이하에서 여과를 진행하였다. 여과된 수화겔을 121℃에서 20분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
비교예 1
8~12% (w/w)의 비율로 에탄올을 함유하는 0.8~1.2% (w/w) 수산화 나트륨 수용액에 히알루론산나트륨을 가하여 완전히 용해시킨 다음, BDDE를 50~100 μl /히알루론산나트륨 1 g의 비율로 가하고 혼합하였다. 상기 혼합이 완료되면 반응온도 약 40~50℃, 반응시간 약 6시간 이하로 가교 반응을 수행시켰다. 반응이 완료된 하이드로겔 형태의 히알루론산 가교물을 PBS 용액 (Phosphate Buffered saline)에 투석하였다. 투석 후 얻어진 하이드로겔을 BDDE를 제거하기 위해 증류수로 세척하고 중성화된 하이드로겔을 95% (w/w) 에탄올 수용액에 추출하여 분말상의 히알루론산 1차 가교물을 수득하였다.
상기 히알루론산 1차 가교물에 2차 가교 반응을 수행하였다. 상기 분말상의 히알루론산 1차 가교물은 0.8~1.2% (w/w) 수산화 나트륨 수용액 중에 1:4~6의 중량비로 혼합하여 완전히 용해시켰다. 얻어진 반응 혼합물에 BDDE를 50~100 μl/1차 가교물 1g의 비율로 가하여 혼합하였다. 상기 혼합이 완료되면, 반응 온도 40~50℃로 약 12시간 이하로 가교 반응을 수행하였다. 반응이 완료된 후 생성된 2차 가교물을 PBS 용액으로 약 12 ~ 24 시간 동안 투석을 수행하였다. 투석 후 얻어진 입자를 BDDE를 제거하기 위해 증류수로 세척하고 중성화 된 하이드로겔을 95% (w/w) 에탄올 수용액에 추출하여 분말상의 히알루론산 2차 가교물을 수득하였다.
상기 히알루론산 1차 가교물 및 히알루론산 2차 가교물을 PBS 중에 9:1의 중량비로 최종 농도가 2%(w/w)이 되도록 겔 제조한 다음, 상기 겔을 물리적 힘을 가하여 500 μm의 메쉬의 체를 통과시켜 분쇄하는 공정을 수행함으로써 최종적인 히알루론산 가교물을 수득하였다.
실험예 1: 히알루론산 수화 겔의 점탄성 측정 (1)
상기 실시예에서 제조된 가교된 히알루론산 수화겔에 대해 점탄성을 측정하였다. 점탄성은 회전형 레오미터인 Kinexus Pro Rheometer(Malvern, Worchestershire, UK)을 이용하여 측정하였다.
동적 점탄성 측정을 위하여 지름이 20 mm인 Geometry를 이용하였으며, Geometry와 플레이트(Plate) 사이의 측정거리(GAP)은 0.5 mm이며 온도는 25℃로 분석 종료 전까지 일정하게 유지하였다. 콘트롤 프로그램(control program)으로 주파 진동(frequency oscillation)을 이용하였으며, 주파수의 범위를 0.1~10 Hz 로 설정하여 2.5 Hz에 해당하는 저장 탄성률(storage modulus, G'), 손실 탄성률(loss modulus, G") 측정하였다.
실시예에 따른 수화 겔의 점탄성 측정 결과는 표 1과 같으며, 상기 표 1에서 탄성은 저장 탄성률(storage modulus, G')을 의미하며 점성은 손실 탄성률(loss modulus, G")을 의미한다.
[표 1]
Figure PCTKR2019017210-appb-I000001
실험예 2: 히알루론산 수화 겔의 점탄성 측정 (2)
실시예 10 및 비교예 1의 방법에 따라 가교된 히알루론산 수화겔을 3회 별도로 제조하였다. 상기 각각의 가교된 히알루론산 수화겔에 대해 실험예 1과 같이 점탄성을 측정하였고 그 평균값 및 표준편차를 하기 표 2에 나타내었다.
[표 2]
Figure PCTKR2019017210-appb-I000002
위 표 2에서 확인되는 바와 같이, 실시예 10의 방법에 따르면, 가교된 히알루론산 수화 겔의 탄성 및 점성은 표준 편차가 상당히 낮은 값을 나타내어 각 배치마다 거의 일정한 물성을 나타내었다. 반면, 비교예 1의 방법에 따르면, 가교된 히알루론산 겔의 탄성 및 점성은 제조 시마다 큰 차이를 나타내었다.
이로부터 본원발명에 따르면 균일한 물성을 가지는 가교된 히알루론산 수화 겔이 제조될 수 있음을 알 수 있다.
실험예 3: 분말형태의 히알루론산 가교물의 입도 분석
실시예 1-1 내지 실시예 1-3에서 사용된 원료물질인 분말 형태의 히알루론산 나트륨(분자량: 1.0~4.0 MDa) 및 실시예 1-1 내지 실시예 1-3에 따른 분말 형태의 히알루론산 가교물의 입도를 입도 분석기 (Mastersizer 3000, Malvern社, England)를 이용하여 건식법으로 분석하였으며, 그 결과는 상기 도 1 및 표 3과 같다.
[표 3]
Figure PCTKR2019017210-appb-I000003
상기 도 1 및 표 3에서 확인되는 바와 같이, 실시예 1-1 내지 1-3에 따른 분말 상태의 히알루론산 가교물은 원료물질인 히알루론산 나트륨보다 보다 미세한 분말 상태의 가교물로 수득되었다.
또한, 에탄올 투입 속도가 높을수록 입도가 증가하는 경향을 나타내었으며, 입도분포에서 D90의 값이 증가하는 것을 확인할 수 있다.
실험예 4: 가교된 히알루론산 수화 겔의 입도 분석
실시예 6, 실시예 10, 실시예 11의 가교된 히알루론산 수화 겔을 입도분석기(Microtrac, Montgomeryville, PA)를 이용하여 습식법으로 입도를 측정하였으며, 그 결과를 도 2 및 표 4에 나타내었다.
[표 4]
Figure PCTKR2019017210-appb-I000004
상기 도 2 및 표 4에 따르면, 가교된 히알루론산 수화 겔은 여과가 가능하며, 여과를 통해 입도가 감소되고, 보다 균일한 입도 분포를 나타내었다.
이로부터 여과 공정을 통해 가교된 히알루론산 수화 겔은 보다 균질화 되어 입도의 균일성이 향상되는 것을 알 수 있다.
실험예 5: 가교된 히알루론산 겔의 XRD 구조 분석
실시예 2에 따른 분말 상태의 히알루론산 가교물과 실시예 6 및 10에 따른 가교된 히알루론산 수화 겔의 물리적인 상태를 X선 회절 분석을 통하여 확인하였다. 측정된 XRD스펙트럼에서 구한 면간 거리(d)와 비례 반사강도(I/Io)를 비교하여 RIR (Semi- Quantitative) method 로 결정 구조의 peak 를 비교하였다.
X-선 회절 스펙트럼 측정의 기기 및 조건은 다음과 같다.
<분말 X-선 회절 스펙트럼 측정방법>
- 제조사: PANalytical 社 (Almelo, Netherlands)
- 모델명: X'pert pro MPD
- X선의 파장: CuKγ의 1.5405Å
상기 X선 회절 분석 결과는 도 3 내지 도 5에 나타내었다.
하기 도 3 내지 도 5에서 확인되는 바와 같이, 실시예 2에 따른 분말 상태의 히알루론산 가교물과 실시예 6 및 10에 따른 가교된 히알루론산 수화 겔 모두 무정형 상태임을 확인할 수 있었다.
실시예 2에 따른 분말 상태의 히알루론산 가교물은 2θ 값이 약 22°~ 23°인 위치에서 완만한 피크를 나타냈으며, 실시예 6 및 10에 따른 가교된 히알루론산 수화겔은 2θ 값이 약 28° 인 위치에서 완만한 피크를 나타내었다.
실시예 12
1% NaOH 수용액에 에탄올을 동량 첨가하고, 여기에 히알루론산 나트륨(Na-HA, 분자량: 1.0~4.0 MDa)을 첨가하여 혼합물의 농도가 3%(w/v)가 되도록 혼합하였다. 여기에 BDDE을 첨가하여 반응물을 제조하였다. 이 때, BDDE와 히알루론산 나트륨(Na-HA)의 비율은 100 μL(BDDE)/1 g(HA)이었다.
상기 반응물을 30℃에서 200 rpm 이하의 속도로 교반하여 5시간 동안 가교 반응 시켰다. 여기에 반응물과 에탄올의 부피비가 1:5가 될 때까지 100 mL/min 이하 속도로 에탄올을 투입하였다. 히알루론산 나트륨(Na-HA)이 분말 상태로 석출된 후 침전된 상태로 16시간 더 가교 반응 시켰다. 이 가교 반응 후, 1.2M HCl 용액을 투입하여 pH를 조정(pH 8이하)하여 반응을 종료시키고, 에탄올로 수회 세척하였다.
세척 후, 건조감량 10%이하로 건조시켜 분말형태의 히알루론산 가교물을 얻었다. PBS (Phosphate buffered saline)에 상기 히알루론산 가교물을 10 mg/mL이 되도록 첨가하여 수화 겔을 수득하였다. 상기 수화 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 겔 대해서, 121℃에서 20분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시예 13
1% NaOH 수용액과 에탄올의 혼합액에 히알루론산 나트륨(Na-HA)을 첨가하여 혼합물의 농도가 2%(w/v)가 되도록 혼합하고, 여기에 BDDE을 히알루론산 나트륨(Na-HA)과 비율 125 μl(BDDE)/1 g(HA)로 첨가하여 반응물을 제조한 것을 제외하고는, 실시예 12와 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실험예 6: 가교된 히알루론산 수화겔의 보관 안정성 평가, 점탄성 측정 (3)
실시예 12 및 13에서 제조된 가교된 히알루론산 수화 겔을 각각 25℃, 30℃, 40℃, 60℃에서 8개월 동안 보관하며 1개월 마다 주기적으로 점탄성을 측정하였다. 점탄성의 측정은 회전형 레오미터인 Kinexus Pro Rheometer(Malvern, Worchestershire, UK)을 이용하여 실험예 1과 동일한 조건에서 측정하였다. 또한, 시판되고 있는 히알루론산 가교물 주사제인 Synvisc-one®(사노피社)을 비교제품으로 사용하여 동일한 조건에서 점탄성을 측정하였다. 표 5 및 표 6에서 실험이 종료되어 측정하지 않은 값(빈칸=Not measured)의 경우 *로 표시하였다.
실시예 12 및 13 또는 비교제품에 따른 수화 겔의 탄성 및 점성의 측정 결과는 표 5 내지 표 7과, 도 6 내지 도 11에 나타내었다.
[표 5]
온도 및 보관기간에 따른 탄성 결과
Figure PCTKR2019017210-appb-I000005
[표 6]
온도 및 보관기간에 따른 점성 결과
Figure PCTKR2019017210-appb-I000006
[표 7]
8개월 후 점탄성 감소율
Figure PCTKR2019017210-appb-I000007
표 5에서 탄성은 저장 탄성률(storage modulus, G', Pa at 2.5 Hz)을 의미하며, 표 6에서 점성은 손실 탄성률(loss modulus, G", Pa at 2.5 Hz)을 의미한다. 표 7은 실시예 12 및 13 또는 비교제품에 따른 수화 겔을 각각 25℃, 30℃, 40℃, 60℃에서 8개월 동안 보관 후 측정한 탄성감소율 및 점성감소율을 나타낸다.
상기 표 5 및 표 6과, 도 6 내지 도 11에서와 같이, 실시예 12 및 13에 따른 수화 겔은 비교 제품(Synvisc-one®) 대비 동등이상의 안정성을 보였다. 또한, 실시예 12 및 13 또는 비교제품에 따른 수화 겔에서 보관조건의 온도가 높을수록 점탄성이 감소하는 경향을 보였으며, 점성보다 탄성의 저하율이 높았다.
실시예 14
실시예 14-1
1% NaOH 수용액에 에탄올을 6:4비율로 첨가하고, 여기에 히알루론산 나트륨(Na-HA, 분자량: 1.0~4.0 MDa)을 첨가하여 혼합물의 농도가 2.5%(w/v)가 되도록 혼합하였다. 여기에 BDDE을 첨가하여 반응물을 제조하였다. 이 때, BDDE와 히알루론산 나트륨(Na-HA)의 비율은 100 μl(BDDE)/1 g(HA)이었다.
상기 반응물을 30℃에서 170 rpm의 속도로 교반하여 5시간 동안 가교 반응 시켰다. 여기에 반응물과 에탄올의 부피비가 1:5가 될 때까지 100 mL/min 이하 속도로 에탄올을 투입하였다. 히알루론산 나트륨(Na-HA)이 분말 상태로 석출된 후 침전된 상태로 16시간 더 가교 반응 시켰다. 이 가교 반응 후, 1.2M HCl 용액을 투입하여 pH를 조정(pH 8이하)하여 반응을 종료시키고, 에탄올로 수회 세척하였다.
세척 후, 건조감량 10%이하로 건조시켜 분말형태의 히알루론산 가교물을 얻었다. PBS (Phosphate buffered saline)에 상기 히알루론산 가교물을 10 mg/mL이 되도록 첨가하여 수화 겔을 수득하였다. 상기 수화 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 겔 대해서, 121℃에서 21분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시예 14-2
BDDE을 히알루론산 나트륨(Na-HA)과 비율 120 μl(BDDE)/1 g(HA)로 첨가하여 반응물을 제조한 것을 제외하고는, 실시예 14-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실시예 14-2
BDDE을 히알루론산 나트륨(Na-HA)과 비율 140 μl(BDDE)/1 g(HA)로 첨가하여 반응물을 제조한 것을 제외하고는, 실시예 14-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실시예 15
실시예 15-1
1% NaOH 수용액에 에탄올을 6:4비율로 첨가하고, 여기에 히알루론산 나트륨(Na-HA, 분자량: 1.0~4.0 MDa)을 첨가하여 혼합물의 농도가 2.5%(w/v)가 되도록 혼합하였다. 여기에 BDDE을 첨가하여 반응물을 제조하였다. 이 때, BDDE와 히알루론산 나트륨(Na-HA)의 비율은 120 μl(BDDE)/1 g(HA)이었다.
상기 반응물을 25℃에서 170 rpm의 속도로 교반하여 5시간 동안 가교 반응 시켰다. 여기에 반응물과 에탄올의 부피비가 1:5가 될 때까지 100 mL/min 이하 속도로 에탄올을 투입하였다. 히알루론산 나트륨(Na-HA)이 분말 상태로 석출된 후 침전된 상태로 16시간 더 가교 반응 시켰다. 이 가교 반응 후, 1.2M HCl 용액을 투입하여 pH를 조정(pH 8이하)하여 반응을 종료시키고, 에탄올로 수회 세척하였다.
세척 후, 건조감량 10%이하로 건조시켜 분말형태의 히알루론산 가교물을 얻었다. PBS (Phosphate buffered saline)에 상기 히알루론산 가교물을 10 mg/mL이 되도록 첨가하여 수화 겔을 수득하였다. 상기 수화 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 겔 대해서, 121℃에서 21분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시 예 15-2
반응 온도를 30℃로 하여 반응물을 가교 반응 시킨 것을 제외하고는, 실시예 15-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실시 예 15-3
반응 온도를 35℃로 하여 반응물을 가교 반응 시킨 것을 제외하고는, 실시예 15-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실시 예 16
실시 예 16-1
1% NaOH 수용액에 에탄올을 6:4비율로 첨가하고, 여기에 히알루론산 나트륨(Na-HA, 분자량: 1.0~4.0 MDa)을 첨가하여 혼합물의 농도가 2.5%(w/v)가 되도록 혼합하였다. 여기에 BDDE을 첨가하여 반응물을 제조하였다. 이 때, BDDE와 히알루론산 나트륨(Na-HA)의 비율은 120 μl(BDDE)/1 g(HA)이었다.
상기 반응물을 30℃에서 50 rpm의 속도로 교반하여 5시간 동안 가교 반응 시켰다. 여기에 반응물과 에탄올의 부피비가 1:5가 될 때까지 100 mL/min 이하 속도로 에탄올을 투입하였다. 히알루론산 나트륨(Na-HA)이 분말 상태로 석출된 후 침전된 상태로 16시간 더 가교 반응 시켰다. 이 가교 반응 후, 1.2M HCl 용액을 투입하여 pH를 조정(pH 8이하)하여 반응을 종료시키고, 에탄올로 수회 세척하였다.
세척 후, 건조감량 10%이하로 건조시켜 분말형태의 히알루론산 가교물을 얻었다. PBS (Phosphate buffered saline)에 상기 히알루론산 가교물을 10 mg/mL이 되도록 첨가하여 수화 겔을 수득하였다. 상기 수화 겔을 균질기로 7000 rpm 이하에서 균질화하였다. 상기 균질화된 겔 대해서, 121℃에서 21분 이하로 멸균을 진행하여 가교된 히알루론산 수화 겔을 수득하였다.
실시예 16-2
반응물의 교반 속도를 130 rpm으로 한 것을 제외하고는, 실시예 16-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실시예 16-3
반응물의 교반 속도를 200 rpm으로 한 것을 제외하고는, 실시예 16-1과 동일한 방법으로 분말형태의 히알루론산 가교물을 제조하였다.
실험예 7: 히알루론산 가교물의 가교도 분석
히알루론산(HA)은 글루쿠론산과 N-아세틸-D-글루코사민의 반복 결합된 다당류(polysaccharide)이며, 히알루론산에 스트렙토마이세스 히알루로니다아제(Streptomyces hyaluronidase)을 처리하면 환원 말단(non-reducing end)에 4,5-불포화 글루코로노실 잔기(4,5-unsaturated glucuronosyl residue)을 갖는 올리고당(oligosaccharide)으로 분해되는 것으로 알려져 있다. 완전분해(complete digestion)된 미변형 HA는 테트라사카라이드(tetrasaccharide) (4량체, tetramer)와 헥사사카라이드(hexasaccharide)(6량체, hexamer)의 두 생성물로 되며, 옥타사카라이드(octasaccharide (8량체, octamer)는 효소분해의 최소크기 기질이다. 효소분해가 진행됨에 따라 작은 단위의 올리고당으로 HA가 분해되는데, BDDE 등의 가교제에 의해 변형된 HA는 효소에 의해 분해되어도 가교제가 결합된 올리고당(HA-BDDE-HA, HA-BDDE) 형태로 생성되므로, HPLC 분석 시 미변형 HA와 머무름 시간(retention time)에 차이가 발생한다.
따라서, 히알루론산에 가교제가 결합하여 변형된 정도를 가교변형률(Dgree of Modification, MoD)로 하며, 가교제의 양쪽에 히알루론산이 가교된 것(HA-BDDE-HA)을 교차결합 가교변형률 (Crosslink MoD), 가교제의 한쪽에 히알루론산이 가교된 것(HA-BDDE)을 펜던트 가교변형률 (pendant MoD)로 하였다.
히알루론산(HA)의 분해(digestion)에 사용된 히알루론산 분해효소(Streptomyces hyalurolyticus로부터 얻은 Hyaluronidase) Merck (Sigma Aldrich)社의 제품을 사용했다. HPLC 분석을 위한 칼럼은 Dionex CarboPac PA100 (Thermo Scientific 社)을 사용했다.
가교제에 의해 변형된 HA는 히알루론산 분해효소를 이용해 pH 5.0, 36℃ 조건에서 분해되었다. 분해된 HA는 HPLC 시스템을 이용해 4량체(Tetramer), 6량체(Hexamer), 그리고 그 이상의 올리고머(Oligomer)를 뚜렷하게 분리할 수 있었다. 232 nm에서 UV 흡광도를 통해 각 분리된 피크(peak)의 크기를 비교하였다. 히알루론산이 분해효소에 의해 완전분해되면 4량체와 6량체가 되며, 가교결합된 히알루론산은 4량체와 6량체보다 약간 큰 당량체, 그리고 그 이상의 올리고머 등으로 분리되어 크로마토그램을 나타낸다. 각 크로마토그램의 면적으로 변형률(MoD)을 구할 수 있으며, 8량체(Octamer) 이상의 올리고머의 peak는 교차결합 가교변형률(crosslink MoD)(%), 4량체(Tetramer)와 6량체(hexamer)의 main peak를 제외한 8량체보다 작은 올리고머의 peak는 펜던트 가교변형률(pendant MoD)(%)로 구분하였으며, 이 둘을 합하여 총 가교변형률(total MoD)(%)로 구하였다.
실시예 12에서 제조한 히알루론산 가교물, 비교제품으로 사용한 Synvisc-one®(Sanofi 社), 및 천연 히알루론산(HA)의 가교도를 분석하여 표 8에 나타내었다. 또한, 실시예 14-1~16-3에서 제조한 히알루론산 가교물의 가교도를 분석하여 표 9에 나타내었다.
[표 8]
Figure PCTKR2019017210-appb-I000008
[표 9]
Figure PCTKR2019017210-appb-I000009
상기 표 8에서와 같이, 실시예 12에서 제조한 히알루론산 가교물은 비교제품으로 사용한 Synvisc-one®와 유사한 점탄성을 보이고, 동등이상의 안정성을 보였다. 또한, 실시예 12에서 제조한 히알루론산 가교물은 천연 히알루론산(HA) 보다 펜던트 가교변형률(pendant MoD)(%), 교차결합 가교변형률(crosslink MoD)(%), 및 총 가교변형률(total MoD)(%)의 증가를 보였다. 또한, 실시예 12에서 제조한 히알루론산 가교물은 Synvisc-one®와 동등이상의 펜던트 MoD (%), 교차결합 MoD (%), 및 총 MoD (%)를 보였다.
상기 표 9에서와 같이, 가교 반응이 많이 일어날수록 가교변형률(Degree of Modification, MoD)(%)의 증가를 보였다. 일반적으로 가교 반응은 가교제 투입량(BDDE:HA 몰비)이 높을수록 증가하며, 가교 반응이 증가할수록 가교변형률 (또는 변형도, 가교도)(MoD)(%)의 증가를 보였다. 예를 들어, 가교제(예컨대 BDDE) 농도를 달리하여 제조한 실시예 14-1~14-3에 따른 히알루론산 가교물의 가교도 분석 결과, 가교제 농도가 증가할수록 가교변형률(MoD)(%)의 증가를 보였다.
또한, 상기 표 9에서와 같이, 반응 온도를 달리하여 제조한 실시예 15-1~15-3에 따른 히알루론산 가교물의 가교도 분석 결과, 반응 온도가 증가할수록 가교변형률(MoD)(%)의 증가를 보였다. 한편, 가교 반응 시 교반 속도(BDDE 투입 후 5시간 이하)를 달리하여 제조한 실시예 16-1~16-3에 따른 히알루론산 가교물의 가교도 분석 결과, 교반 속도에 따른 가교변형률(MoD)(%) 차이는 크지 않았다.
일반적으로 가교변형률(MoD)(%) 값이 클수록 점탄성 즉, 저장 탄성률(storage modulus, G', Pa at 2.5 Hz)로 표현되는 탄성과 손실 탄성률(loss modulus, G", Pa at 2.5 Hz)로 표현되는 점성이 높게 나타나지만, 점탄성 값은 제형 등 다른 요인에도 영향을 받기 때문에 항상 일정한 경향을 나타내지는 않았다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 상기 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (28)

  1. 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
    상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계; 및
    상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;를 포함하는
    분말 상의 히알루론산 가교물을 제조하는 방법.
  2. 제1항에 있어서, 상기 수용액에 에탄올 첨가 시, 상기 에탄올은 20 mL/min 내지 1000 mL/min의 속도로 첨가되는 것인 제조방법.
  3. 제1항에 있어서, 상기 에탄올을 첨가하는 동안 혼합액 전체부피에 대한 에탄올의 부피변화 속도는 0.5%(v/v) /min 내지 35%(v/v) /min인 것인 제조방법.
  4. 제1항에 있어서, 상기 가교제를 히알루론산, 이의 염 또는 이들의 혼합물 1 g에 대하여 10 μL 내지 500 μL의 양으로 포함하는 것인 방법.
  5. 제1항에 있어서, 상기 수용액과 수용액에 첨가되는 에탄올의 부피비는 1: 1 내지 10인 것인 방법.
  6. 제1항에 있어서, 히알루론산 입자를 포함하는 수용액을 가교 반응시키는 단계를 추가로 포함하는 것인 방법.
  7. 제1항에 있어서,
    제조된 히알루론산 가교물을 에탄올 또는 에탄올을 포함하는 용액으로 세척하는 단계를 더 포함하는 방법.
  8. 제1항 내지 제7항 중 어느 한 항의 방법에 따라 제조된 분말 상의 히알루론산 가교물.
  9. 제8항에 있어서, 상기 히알루론산 가교물은 D90이 80㎛ 이하의 입도 분포를 나타내는 것인 분말 상의 히알루론산 가교물.
  10. 제8항에 있어서, 상기 히알루론산 가교물은,
    D10이 2.5㎛ 내지 6㎛, D50이 8㎛ 내지 20㎛ 및 D90이 25 ㎛ 내지 80㎛의 입도분포를 나타내는 것인 분말 상의 히알루론산 가교물.
  11. 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
    상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계;
    상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;
    상기 히알루론산 입자를 포함하는 수용액의 가교 반응을 지속시켜 분말 상의 히알루론산 가교물을 제조하는 단계; 및
    상기 제조된 분말 상의 히알루론산 가교물을 수화시키는 단계를 포함하는,
    가교된 히알루론산 수화 겔의 제조방법.
  12. 제11항에 있어서, 상기 수화시키는 단계는,
    상기 분말 상의 히알루론산 가교물을 물 또는 물을 포함하는 용액에 첨가하는 것인 가교된 히알루론산 수화 겔의 제조방법.
  13. 제11항에 있어서, 상기 분말 상의 히알루론산 가교물은 물 또는 물을 포함하는 용액 1 mL에 대하여 5 mg 내지 15 mg으로 첨가되는 것인 가교된 히알루론산 수화 겔의 제조방법.
  14. 제11항에 있어서, 상기 가교된 히알루론산 수화 겔을 필터를 사용하여 여과하는 단계를 더 포함하는 것인 가교된 히알루론산 수화 겔의 제조방법.
  15. 제11항 내지 제14항 중 어느 한 항의 방법에 따라 제조된 가교된 히알루론산 수화 겔.
  16. 제15항에 있어서, 상기 가교된 히알루론산 수화 겔은 D90이 240 ㎛ 이하의 입도 분포를 나타내는 것인 가교된 히알루론산 수화 겔.
  17. 제15항에 있어서, 상기 가교된 히알루론산 수화 겔은
    D10이 25 ㎛ 내지 40 ㎛, D50이 70 ㎛ 내지 110 ㎛, D90이 190 ㎛ 내지 240 ㎛의 입도 분포를 나타내는 것인 가교된 히알루론산 수화 겔.
  18. 제15항에 있어서, 상기 가교된 히알루론산 수화 겔은 탄성이 30 내지 200 Pa이고 점성이 10 내지 100Pa인 것인 가교된 히알루론산 수화 겔.
  19. 히알루론산, 이의 염 또는 이들의 혼합물을 포함하는 수용액을 제조하는 단계;
    상기 수용액에 가교제를 첨가하여 히알루론산을 가교 반응시키는 단계;
    상기 수용액에 에탄올을 첨가하여 히알루론산을 입자로 고체화하는 단계;
    상기 히알루론산 입자를 포함하는 수용액의 가교 반응을 지속시켜 분말 상의 히알루론산 가교물을 제조하는 단계;
    상기 분말 상의 히알루론산 가교물을 수화시켜 가교된 히알루론산 수화 겔을 수득하는 단계; 및
    상기 가교된 히알루론산 수화 겔을 여과하는 단계를 포함하는 방법에 의해 제조된 가교된 히알루론산 수화 겔.
  20. 제19항에 있어서, 여과 단계 수행 후 수득된 가교된 히알루론산 수화 겔은 D90이 120 ㎛ 이하의 입도 분포를 나타내는 것인 가교된 히알루론산 수화 겔.
  21. 제19항에 있어서, 여과 단계 수행 후 수득된 가교된 히알루론산 수화 겔은 D10이 10 ㎛ 내지 30 ㎛, D50이 35 ㎛ 내지 65 ㎛, D90이 80 ㎛ 내지 120 ㎛의 입도 분포를 나타내는 것인 가교된 히알루론산 수화 겔.
  22. 제19항에 있어서, 여과 단계 수행 후 수득된 가교된 히알루론산 수화 겔은 탄성이 30 내지 200 Pa이고 점성이 10 내지 100Pa인 것인 가교된 히알루론산 수화 겔.
  23. 제19항에 있어서, 상기 가교제는 부탄디올디글리시딜에테르(BDDE), 다이비닐설폰(DVS) 또는 이들의 혼합물인 것인 가교된 히알루론산 수화 겔.
  24. 무정형의 가교된 히알루론산 수화겔로, X선 분말 회절 패턴(XRD)이 도 5의 패턴을 나타내는 것인 가교된 히알루론산 수화겔.
  25. 제24항에 있어서, 상기 가교된 히알루론산 수화겔은 D90이 120 ㎛ 이하의 입도 분포를 나타내는 것인 가교된 히알루론산 수화 겔.
  26. 제24항에 있어서, 상기 가교된 히알루론산 수화 겔은 D10이 10 ㎛ 내지 30 ㎛, D50이 35 ㎛ 내지 65 ㎛, D90이 80 ㎛ 내지 120 ㎛의 입도 분포를 나타내는 것인 가교된 히알루론산 수화 겔.
  27. 제24항에 있어서, 상기 가교된 히알루론산 수화 겔은 탄성이 30 내지 200 Pa이고 점성이 10 내지 100Pa인 것인 가교된 히알루론산 수화 겔.
  28. 제24항에 있어서, 상기 가교된 히알루론산 수화 겔은 탄성이 100 내지 150 Pa이고 점성이 10 내지 60Pa인 것인 가교된 히알루론산 수화 겔.
PCT/KR2019/017210 2018-12-07 2019-12-06 히알루론산 가교물, 히알루론산 수화 겔 및 이들의 제조방법 WO2020116999A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/311,070 US12090248B2 (en) 2018-12-07 2019-12-06 Crosslinked hyaluronic acid, hyaluronic acid hydrogel, and method for producing crosslinked hyaluronic acid and hyaluronic acid hydrogel
JP2021532294A JP7555924B2 (ja) 2018-12-07 2019-12-06 ヒアルロン酸架橋物、ヒアルロン酸水和ゲル、及びそれらの製造方法
CN201980081130.3A CN113166434B (zh) 2018-12-07 2019-12-06 交联透明质酸、透明质酸水凝胶及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0156801 2018-12-07
KR20180156801 2018-12-07
KR1020190161388A KR102400586B1 (ko) 2018-12-07 2019-12-06 히알루론산 가교물, 히알루론산 수화 겔 및 이들의 제조방법
KR10-2019-0161388 2019-12-06

Publications (1)

Publication Number Publication Date
WO2020116999A1 true WO2020116999A1 (ko) 2020-06-11

Family

ID=70974683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017210 WO2020116999A1 (ko) 2018-12-07 2019-12-06 히알루론산 가교물, 히알루론산 수화 겔 및 이들의 제조방법

Country Status (3)

Country Link
US (1) US12090248B2 (ko)
JP (1) JP7555924B2 (ko)
WO (1) WO2020116999A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220064436A1 (en) * 2020-08-27 2022-03-03 Hangzhou Singclean Medical Products Co., Ltd Gradient Injection Comprising a Mixture of Polymer Microspheres

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100219A1 (en) 2021-11-30 2023-06-08 Kewpie Corporation Hyaluronic acid powder
CN115656350A (zh) * 2022-09-05 2023-01-31 华熙生物科技股份有限公司 一种确定交联透明质酸的修饰位点和交联方式的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004159A (ko) * 2005-07-04 2007-01-09 주식회사 엘지생명과학 히알루론산 가교물의 제조방법
KR20080073419A (ko) * 2007-02-06 2008-08-11 주식회사 핸슨바이오텍 의료용 히알루론산 유도체 마이크로비드 및 이의 제조 방법
KR20140000206A (ko) * 2010-08-23 2014-01-02 덴키 가가쿠 고교 가부시기가이샤 가교 히알루론산 조성물 및 자기 가교 히알루론산 입자
KR20150008556A (ko) * 2013-07-15 2015-01-23 (주)아크로스 조직수복용 생체재료 제조방법
KR20170090965A (ko) * 2016-01-29 2017-08-08 한미약품 주식회사 복합 히알루론산 가교물 및 그 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713448A (en) 1985-03-12 1987-12-15 Biomatrix, Inc. Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues
WO2000059490A2 (en) * 1999-04-06 2000-10-12 Genzyme Corporation Immunomodulating composition for use especially in the treatment of inflammations, infections and surgical adhesions
IT1395392B1 (it) 2009-08-27 2012-09-14 Fidia Farmaceutici Geli viscoelastici come nuovi filler
CA2916330A1 (en) 2013-06-28 2014-12-31 Galderma S.A. A process for preparing a cross-linked hyaluronic acid product
WO2017131298A1 (en) * 2016-01-29 2017-08-03 Hanmi Pharm. Co., Ltd. Combination of cross-linked hyaluronic acids and method of preparing the same
CN105670011B (zh) 2016-02-02 2019-01-08 华熙福瑞达生物医药有限公司 一种交联透明质酸干粉及其制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004159A (ko) * 2005-07-04 2007-01-09 주식회사 엘지생명과학 히알루론산 가교물의 제조방법
KR20080073419A (ko) * 2007-02-06 2008-08-11 주식회사 핸슨바이오텍 의료용 히알루론산 유도체 마이크로비드 및 이의 제조 방법
KR20140000206A (ko) * 2010-08-23 2014-01-02 덴키 가가쿠 고교 가부시기가이샤 가교 히알루론산 조성물 및 자기 가교 히알루론산 입자
KR20150008556A (ko) * 2013-07-15 2015-01-23 (주)아크로스 조직수복용 생체재료 제조방법
KR20170090965A (ko) * 2016-01-29 2017-08-08 한미약품 주식회사 복합 히알루론산 가교물 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220064436A1 (en) * 2020-08-27 2022-03-03 Hangzhou Singclean Medical Products Co., Ltd Gradient Injection Comprising a Mixture of Polymer Microspheres

Also Published As

Publication number Publication date
US20220040374A1 (en) 2022-02-10
JP2022511551A (ja) 2022-01-31
US12090248B2 (en) 2024-09-17
JP7555924B2 (ja) 2024-09-25

Similar Documents

Publication Publication Date Title
WO2020116999A1 (ko) 히알루론산 가교물, 히알루론산 수화 겔 및 이들의 제조방법
WO2022065843A1 (ko) 생분해성 고흡수성 수지 및 이의 제조 방법
WO2013180458A1 (ko) 약물전달용 가교물 하이드로 젤 및 그 하이드로 젤의 제조방법
WO2012008722A2 (ko) 조직 증강용 충전 조성물
WO2022055290A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2021194203A1 (ko) 고흡수성 수지 필름의 제조 방법
WO2013180459A2 (ko) 카테콜 그래프트 공중합체, 그 공중합체가 가교된 공중합 조성물, 기능성 글루 매트릭스 조성물 및 그 제조방법
WO2021125872A1 (ko) 고흡수성 수지 조성물의 제조 방법
EP2247644A2 (en) Ph-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2014142590A1 (ko) 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체
WO2021194202A1 (ko) 고흡수성 수지 필름 및 이의 제조 방법
WO2021071246A1 (ko) 고흡수성 수지의 제조 방법
WO2024005426A1 (ko) 생분해성 고흡수성 수지 및 이의 제조 방법
WO2022265466A1 (ko) 고흡수성 수지의 제조 방법
WO2024136567A1 (ko) 폴리머
WO2022114610A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2022154645A1 (ko) 히알루론산, 폴리에틸렌글리콜 및 실리콘 함유 성분을 포함하는 생체적합성 하이드로겔
WO2021015588A1 (ko) 히알루론산 및 폴리에틸렌글리콜을 포함하는 생체적합성 하이드로겔
WO2024136590A1 (ko) 카르복시알킬화된 다당류의 제조 방법 및 이를 이용한 생분해성 고흡수성 수지의 제조 방법
WO2022114609A1 (ko) 고흡수성 수지의 제조 방법
WO2023282534A1 (ko) 생분해성 고흡수성 수지 및 이의 제조 방법
WO2021034041A1 (ko) 유기 보레이트계 촉매, 이를 이용한 이소부텐 올리고머의 제조방법 및 이로부터 제조된 이소부텐 올리고머
WO2022177151A1 (ko) 일산화질소 감응성 하이드로겔
WO2023153779A1 (ko) 카르복시알킬화된 전분의 제조 방법
WO2021194201A1 (ko) 고흡수성 수지 필름 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893599

Country of ref document: EP

Kind code of ref document: A1