WO2020116835A1 - 자기이동경로 제어장치 - Google Patents

자기이동경로 제어장치 Download PDF

Info

Publication number
WO2020116835A1
WO2020116835A1 PCT/KR2019/016110 KR2019016110W WO2020116835A1 WO 2020116835 A1 WO2020116835 A1 WO 2020116835A1 KR 2019016110 W KR2019016110 W KR 2019016110W WO 2020116835 A1 WO2020116835 A1 WO 2020116835A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
magnetic
outer pole
magnetic force
path control
Prior art date
Application number
PCT/KR2019/016110
Other languages
English (en)
French (fr)
Inventor
이철수
Original Assignee
주식회사 유엔디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유엔디 filed Critical 주식회사 유엔디
Priority to CN201980080860.1A priority Critical patent/CN113168950B/zh
Priority to US17/299,952 priority patent/US11817238B2/en
Publication of WO2020116835A1 publication Critical patent/WO2020116835A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/04Means for releasing the attractive force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0226PM with variable field strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/206Electromagnets for lifting, handling or transporting of magnetic pieces or material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/103Magnetic circuits with permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/206Electromagnets for lifting, handling or transporting of magnetic pieces or material
    • H01F2007/208Electromagnets for lifting, handling or transporting of magnetic pieces or material combined with permanent magnets

Definitions

  • the present invention relates to a magnetic movement path control device capable of controlling desorption and adsorption by switching the magnetic movement path, which is the direction in which the magnetic force of the permanent magnet moves.
  • magnetic desorption devices are mostly electromagnet type magnetic devices, which generate or release magnetic force by controlling on/off the current applied to the electromagnet in a control system, thereby adsorbing or desorbing a target object by magnetic force.
  • the magnetic detachable device has an advantage in that the external appearance of the object is not damaged because pressure is not directly applied to the target object.
  • the target object is heavy from a few tens of kilograms to as many as several tens of tons, there is a disadvantage that a lot of power is consumed by increasing the amount of current applied to the electromagnet as the weight of the target object and the time required to maintain adsorption increase.
  • the electromagnet type magnetic desorption device has a risk that when the power to the electromagnet is unintentionally cut off in the adsorption state, the magnetic force is released and the target object adsorbed on the magnetic desorption device suddenly falls. Therefore, there is a problem in that an uninterruptible power supply (UPS), an AC-DC converter for supplying large power, and an expensive large-scale power supply system such as a rectifier must be additionally provided.
  • UPS uninterruptible power supply
  • AC-DC converter for supplying large power
  • an expensive large-scale power supply system such as a rectifier
  • the zero-electron method is a method of generating a magnetic force by a permanent magnet during normal operation and releasing the magnetic force when a current is applied.
  • the zero-electron method is not suitable for the purpose of repeating ON-OFF in a short time for adsorption or desorption at instantaneous large current, and it is possible to continuously turn ON-OFF about 10 times in general, but in the case of more than that, no current flows This is necessary.
  • the number of times or the operation time of the magnetic force control is limited, such as ON-OFF about once per minute on average.
  • the power consumption is less than that of the electromagnet, but the zero-electron type also has a problem in that power consumption increases in proportion to the time for maintaining the release state of the magnetic force.
  • the present invention has been devised to solve the above-described problems, and provides a magnetic movement path control device capable of controlling desorption and adsorption by switching a magnetic movement path in a direction in which magnetic force is moved using a permanent magnet without power consumption. There is a purpose.
  • the magnetic movement path control device which is an embodiment of the present invention devised to solve the above-described problem, includes a permanent magnet generating permanent magnetic force, a first pole piece attached to the first surface of the permanent magnet, and the permanent A magnetic force moving unit including a second pole piece attached to a second surface of the magnet; A first outer pole piece in contact with the magnetic force moving unit to form a magnetic path; A second outer pole piece in contact with the magnetic force moving unit to form a magnetic path different from the first outer pole piece; A base member in contact with an upper portion of the first outer pole piece; And a magnetic path control material for releasing or generating a magnetic path by causing the magnetic movement unit to contact the first outer pole piece and to be spaced apart or in contact with the second outer pole piece.
  • At least one of the first pole piece and the second pole piece is in contact with the first outer pole piece, the second pole piece is spaced apart from the second outer pole piece, the first position being a detachable position to detach the object, and the first pole piece And at least one of the second pole piece is in contact with the first outer pole piece, and the second pole piece is in contact with the second outer pole piece to move between a second position that is an adsorption position to adsorb the target object.
  • the air existing in the interior space may be discharged to the outside through the first air moving part, the second air moving part and the third air moving part.
  • the first outer pole piece forms the outer surface of the magnetic movement path control device
  • the second outer pole piece is installed concentrically inside the first outer pole piece
  • the magnetic force moving unit is the magnetic path It can be installed concentrically on the inside of the control material.
  • the magnetic force moving unit has a cylindrical shape as a whole, by providing through holes in the center of each of the permanent magnet, the first pole piece and the second pole piece, thereby increasing the surface area of the magnetic force moving unit, the Through-hole edges can be formed to increase the magnetic force.
  • the magnetic movement path control device may further include a guide shaft inserted into the through hole to move the magnetic movement unit.
  • the base member may include a first guide groove that supports the guide shaft at the center of the base member.
  • the second outer pole piece the shape is formed in a cylindrical shape, may include a second guide groove for supporting the guide shaft in the center of the second outer pole piece.
  • the first air moving portion is a groove formed opposite to the first pole piece and the second pole piece in four directions, and the second air moving portion is in communication with the first air moving portion. It may be a hole formed radially on the upper surface of the outer pole piece.
  • the third air moving part may be a groove formed at the bottom edge of the base member.
  • the third air moving portion may be formed with a hole penetrating the base member and may be positioned in line with the second air moving portion.
  • the magnetic movement path control device is a pneumatic space defined by a lower surface of the base member, an inner surface of the first outer pole piece, and an upper surface of the magnetic movement unit, wherein the magnetic movement unit is the magnetic path control material
  • the air When moved to the second position by, the air may be introduced to further include a first pneumatic generating unit for pressing the magnetic force moving unit to the second position.
  • the magnetic movement path control device is a pneumatic space defined by the inner surface of the first outer pole piece, the lower surface of the magnetic movement unit and the upper surface of the second outer pole piece, wherein the magnetic movement unit is the magnetic When it is moved to the first position by the path control member, the air may be introduced to further include a second pneumatic generator that presses the magnetic force moving unit to the first position.
  • the magnetic path control material includes a bobbin coupled to the outside of the second outer pole piece and a coil wound around the bobbin, and the magnetic path is changed by a direction of a current applied to the coil to move the magnetic force
  • the unit can be moved.
  • the first position the permanent magnet is in contact with the first outer pole piece
  • the bottom surface of the magnetic force transfer unit is a position spaced apart from the upper surface of the second outer pole piece
  • the second position is the permanent
  • the magnet may be in contact with the bobbin
  • the bottom surface of the magnetic force transfer unit may be a position in contact with the second outer pole piece and the upper surface.
  • planar shape of the magnetic movement path control device may be formed in a square shape.
  • the first outer pole piece may be composed of a plurality of sub outer pole pieces that can be assembled.
  • the magnetic movement path control device includes a permanent magnet generating permanent magnetic force, a first pole piece attached to the first surface of the permanent magnet, and a second magnet attached to the second surface of the permanent magnet.
  • Magnetic transfer unit comprising two pole pieces; A first outer pole piece in contact with the magnetic force moving unit to form a magnetic path; A second outer pole piece in contact with the magnetic force moving unit to form a magnetic path different from the first outer pole piece; A base member in contact with an upper portion of the first outer pole piece; And a magnetic path control material for releasing or generating a magnetic path by causing the magnetic force moving unit to be spaced apart from or in contact with the first outer pole piece and the second outer pole piece simultaneously, wherein the magnetic force moving unit comprises: a first pole piece.
  • the second pole piece is spaced apart from the second outer pole piece, the first position being a detachable position for detaching the target object, and the first pole piece is in contact with the first outer pole piece,
  • the second pole piece is moved between the second position, which is an adsorption position that is in contact with the second outer pole piece and adsorbs the object,
  • the first pole piece is cylindrical, and the outer diameter of the first pole piece is from the top. It is formed narrower toward the bottom, the first outer pole piece has a cylindrical shape through which the inside passes, and an upper portion of the first outer pole piece is formed with a protrusion inside, and the inner diameter of the protrusion becomes narrower from top to bottom.
  • the outer periphery of the first pole piece is in an inclined shape, so that the contact area is widened by contacting the protrusion of the first outer pole piece, thereby increasing the magnetic force.
  • the magnetic force moving unit has a cylindrical shape as a whole, by providing through holes in the center of each of the permanent magnet, the first pole piece and the second pole piece, thereby increasing the surface area of the magnetic force moving unit, the Through-hole edges can be formed to increase the magnetic force.
  • the magnetic movement path control device may further include a guide shaft that is inserted into the through hole to move the magnetic movement unit.
  • the guide shaft the cylindrical guide shaft body; A guide jaw formed around the bottom surface of the guide shaft body; A guide shaft body hole formed through the guide shaft body; And a guide jaw hole formed through the guide jaw.
  • the magnetic path control material includes a bobbin coupled to the outside of the second outer pole piece and a coil wound around the bobbin, and the magnetic path is changed by the direction of the current applied to the coil to move the magnetic force. Units can be moved.
  • the second outer pole piece a jaw of a predetermined width is formed on the inside and the outside on the top, the jaw formed on the outside is chamfered at an angle at a predetermined angle toward the edge that meets the outer side from the end, and on the inside
  • the formed jaw may be formed in an chamfer at an angle at a predetermined angle from an edge where the inner side meets to a lower portion of the side.
  • the magnetic movement path control device is inserted into the guide shaft main body hole and is inserted into the guide shaft fixing member and the guide jaw hole to fix the guide shaft and the base member located above the guide shaft, and the guide shaft and the A second outer pole piece fixing member for engaging and fixing the second outer pole piece may be further included.
  • the number of times of magnetic force control for desorption and adsorption by switching a magnetic movement path in a direction in which magnetic force is moved by using a permanent magnet without power consumption instead of an electromagnet with high power consumption B is no restriction on the operating time, and even if the time to maintain the weight and adsorption power of the object is increased, there is an effect of minimizing power consumption while maintaining a constant magnetic force.
  • the present invention increases the surface area of the magnetic force transfer unit by forming a through hole in the center of the magnetic force transfer unit, and increases the magnetic force as a whole by forming strong magnetism at the edge of the through hole.
  • the present invention includes a magnetic movement unit having a through hole formed in the central portion and a guide shaft inserted into the through hole to move the magnetic movement unit, so that the magnetic movement unit can move more stably along the outside of the guide shaft.
  • the present invention forms an air moving part on the magnetic force moving unit, the first outer pole piece, and the base member, thereby removing the air present in the inner space between the first outer pole piece and the second outer pole piece according to the movement of the magnetic force moving unit.
  • the present invention forms an air moving part on the magnetic force moving unit, the first outer pole piece, and the base member, thereby removing the air present in the inner space between the first outer pole piece and the second outer pole piece according to the movement of the magnetic force moving unit.
  • planar shape of the magnetic movement path control device according to the present invention is formed in a square shape, and a plurality of magnetic movement path control devices are arranged in a matrix form to minimize the space between the magnetic movement path control devices, thereby effectively using magnetic force. There is.
  • FIG. 1 is a perspective view of a magnetic movement path control device according to an embodiment of the present invention as viewed from above.
  • FIG. 2 is a perspective view of the magnetic movement path control device of FIG. 1 as viewed from below.
  • Figure 3 is an exploded perspective view of the magnetic movement path control device of Figure 1;
  • Figure 4 is a cross-sectional view showing a removable state of the magnetic path control device of Figure 1;
  • Figure 5 is a cross-sectional view showing the adsorption state of the magnetic movement path control device of Figure 1;
  • FIG. 6 is a block diagram showing a control structure of the magnetic movement path control device of FIG. 1;
  • FIG. 7 is a conceptual diagram showing a power application method and power consumption of the magnetic movement path control device of FIG. 1;
  • FIG. 8 is a conceptual diagram showing a power supply method and power consumption of a conventional electromagnet type magnetic detachable device.
  • FIG. 9 is a perspective view of the magnetic movement path control device according to another embodiment of the present invention as viewed from above.
  • FIG. 10 is a perspective view of the magnetic movement path control device of FIG. 9 as viewed from below.
  • Figure 11 is an exploded perspective view of the magnetic movement path control device of Figure 9;
  • FIG. 12 is a perspective view of a magnetic movement path control device according to another embodiment of the present invention as viewed from above.
  • FIG. 13 is a perspective view of the magnetic movement path control device of FIG. 12 as viewed from below.
  • FIG. 14 is an exploded perspective view of the magnetic movement path control device of FIG. 12;
  • FIG. 15 is a cross-sectional view showing a detached state of the magnetic movement path control device of FIG. 12;
  • FIG. 16 is a cross-sectional view showing the adsorption state of the magnetic movement path control device of FIG. 12;
  • the magnetic movement path control apparatus may include a path control material 140, the base member 150, and the guide shaft 160.
  • the magnetic force moving unit 110 is composed of a permanent magnet 111, a first pole piece 112 and a second pole piece 113.
  • the permanent magnet 111 may generate a permanent magnetic force, and a neodymium (Nd) magnet may be used, but is not limited thereto, and magnets of various materials may be used according to the purpose.
  • the permanent magnet 111 is formed with a through hole in the central portion, the outer side is made of a cylindrical shape.
  • the permanent magnet 111 is formed in a disc shape, and is formed of a S-pole disc and an N-pole disc.
  • the first pole piece 112 is a ferromagnetic material and may be attached to a first surface which is one of both surfaces of the permanent magnet 111, and if the first surface of the permanent magnet 111 is an S pole, the first pole piece 112 Has a polarity close to the S pole.
  • the first pole piece 112 is formed with a through hole in the central portion, and is formed in a cylindrical shape.
  • the second pole piece 113 is a ferromagnetic material and may be attached to a second surface, which is the other side of the both sides of the permanent magnet 111, and if the second surface of the permanent magnet 111 is an N pole, the second pole piece 113 Has a polarity close to the N pole.
  • the second pole piece 113 is formed with a through hole in the central portion, and is formed in a cylindrical shape.
  • each of the first pole piece 112 and the second pole piece 113 and the permanent magnet 111 may be coupled by magnetic force, or forced coupling by fastening means.
  • the magnetic force moving unit 110 has a cylindrical shape as a whole, and each of the permanent magnet 111, the first pole piece 112 and the second pole piece 113 has a through hole in its central portion, thereby allowing the magnetic force moving unit
  • the surface area of (110) is increased, and strong magnetism is formed at the edge of the through-hole, thereby increasing the magnetic force as a whole.
  • the magnetic body has a narrower end than the body, and when a through hole is formed in the magnetic body, a stronger magnetic force is formed at the edge of the through hole, so the magnetic body can adsorb the object with a greater magnetic force.
  • a through hole is formed in the central portion of the magnetic force moving unit 110, and a guide shaft 160 for moving the magnetic force moving unit 110 is inserted into the through hole.
  • the guide shaft 160 has a cylindrical shape, and the magnetic force moving unit 110 is stably moved along the outside of the guide shaft 160 having a cylindrical shape. By the guide shaft 160, the magnetic force moving unit 110 is moved without shaking left and right when moving up and down.
  • the first outer pole piece 120 forms the outer surface of the magnetic movement path control device
  • the second outer pole piece 130 is installed concentrically inside the first outer pole piece 120
  • the magnetic force moving unit 110 Is concentrically installed inside the magnetic path control material 140.
  • the base member 150 is in contact with the upper portion of the first outer pole piece 120.
  • a first air moving part 171 is formed outside the first pole piece 112 and the second pole piece 113, and a second air moving part () is formed at a protrusion 121 that is an upper portion of the first outer pole piece 120. 172 is formed, and a third air moving part 173 is formed on the bottom surface of the base member 150.
  • the first pneumatic generator (B) is a space defined by the lower surface of the base member 150, the inner surface of the first outer pole piece 120, and the upper surface of the magnetic force moving unit 110, the magnetic force moving unit As the 110 is moved to the second position, air is introduced into the first pneumatic generator B, thereby pressing the movement of the magnetic movement unit 110 to the second position.
  • the magnetic force moving unit 110 moves from the second position to the first position, air present in the upper portion of the magnetic force moving unit 110 (first air pressure generating part B) is a third air moving part 173. Is discharged through the outside. Meanwhile, a part of the air is moved to the second pneumatic generator (A). That is, the second pneumatic generator (A) is a space defined by the upper surface of the second outer pole piece 130, the lower surface of the magnetic force moving unit 110, and the outer surface of the guide shaft 160, the magnetic force moving unit ( As 110) is moved to the first position, air is introduced into the second pneumatic generator A, thereby pressing the movement of the magnetic movement unit 110 to the first position.
  • the first air moving unit 171 is a groove formed in four directions opposite to the outer surfaces of the first pole piece 112 and the second pole piece 113, and the second air moving unit 172 is the first air moving unit 171 It is a hole formed radially on the upper surface of the first outer pole piece 120 to be in circulation with.
  • the magnetic path control material 140 is fixed to the outside of the second outer pole piece 130, where air can move between the upper portion of the magnetic path control material 140 and the first outer pole piece 120. Space is formed.
  • the third air moving portion 173 is formed as a groove at the bottom edge of the base member 150, and the third air moving portion 173 is formed as a hole penetrating the base member 150, and the second air moving portion 172 It is located in line with.
  • a base member 150 having a first guide groove (not shown) that supports the guide shaft 160 is attached to the center of the first outer pole piece 120.
  • the second outer pole piece 130 is formed in a cylindrical shape, and a second guide groove (not shown) for supporting the guide shaft 160 is formed in the center thereof. Therefore, the guide shaft 160 is attached and fixed between the first guide groove and the second guide groove.
  • a moving distance (or gap) through which the magnetic force moving unit 110 can move is formed.
  • the moving distance of the magnetic force moving unit 110 increases, and when the guide shaft 160 becomes shorter, the moving distance of the magnetic force moving unit 110 decreases.
  • the length of the guide shaft 160 can be changed manually and automatically, and as the guide shaft 160 gets longer, the distance for moving the magnetic force moving unit 110 increases, and the magnetic force moving unit 110 increases proportionally. Since the current consumption for controlling also increases, it is necessary to adjust the length of the guide shaft 160 accordingly.
  • the lower end portion (for example, the portion adsorbing the object) of the first outer pole piece 120 is applied.
  • the lower end portion (for example, the portion adsorbing the object) of the first outer pole piece 120 is applied.
  • a chamfering method is also applied to the lower end portion of the second outer pole piece 130, and accordingly, the second outer pole piece 130 is more like the first outer pole piece 120 than in the case of not chamfering. It is possible to obtain the effect of adsorbing the object with a large magnetic force.
  • the magnetic path control material 140 is coupled to the outside of the second outer pole piece 130 to move the magnetic force moving unit 110 to generate a magnetic path or to release it.
  • the magnetic path control material 140 may include a bobbin 141 and a coil 142 wound around the bobbin 141.
  • the coil 142 excluding the bobbin 141 may be coiled and coupled in a shape that can be closely adhered to the side of the second outer pole piece 130.
  • the coil can be hardened after being impregnated with a specific insulating solution to maintain insulation (eg, short circuit and short circuit protection, and waterproof) and coil shape.
  • the entire lower part (a lower space between the first outer pole piece 120 and the second outer pole piece 130, the entire bottom surface) can be molded.
  • the waterproof and dustproof effects are improved, and the entire external shape of the magnetic movement path control device according to the present embodiment can be integrally formed.
  • the molding material can have excellent thermal insulation effect when using a material that has very low thermal conductivity at high temperature (eg, cerac wool), and accordingly, even when adsorbing high temperature steel, the magnetic path control device can be prevented from being damaged. .
  • the coil 142 used for the magnetic path control material 140 is wound in a certain direction. Accordingly, when a current is applied to the coil, a magnetic field (eg, N pole-S pole, or S pole-N pole) is generated according to the current application direction.
  • the second outer pole piece 130 located inside the coil 142 acts as a kind of core, so that when the current is applied to the coil (or coiled bobbin), the strength of the generated magnetic field may be greater. have.
  • the magnetic force moving unit 110 is pushed upward in the upward direction (that is, the direction in which the base member 150 is located) or, conversely, the magnetic force moving unit 110 is pushed. It is lowered in the downward direction (the direction in which the second outer pole piece 130 is located).
  • a magnetic path is formed. That is, a magnetic path is formed between the first outer pole piece 120, the second outer pole piece 130, and the object (not shown) in contact with the magnetic force moving unit 110.
  • the magnetic path control unit 140 temporarily receives current only for a period of time to form or release the magnetic path, and when the magnetic path is formed or released, the supplied current is cut off.
  • the current supplied is a direct current (DC) current.
  • the magnetic force moving unit 110 is at least one of the first pole piece 112 and the second pole piece 113, the first outer pole piece ( 120), the second pole piece 113 has a first position spaced apart from the second outer pole piece 130, and at least one of the first pole piece 112 and the second pole piece 113 is made 1 is in contact with the outer pole piece 112, the second pole piece 113 is moved between the second position in contact with the second outer pole piece 130.
  • the magnetic force moving unit 110 moves upward by the control of the magnetic path control unit 140 so that the first pole piece 112 is in close contact with the lower portion of the base member 150. .
  • the outer surfaces of the first pole piece 112 and the second pole piece 113 are in contact with the inner side, which is derived from the upper portion of the second outer pole piece, and the lower side of the second pole piece 113 is the second outer pole.
  • the magnetic path is not formed below the first outer pole piece 120 and the second outer pole piece 130 by being separated from the upper portion of the piece 130.
  • air existing between the magnetic force moving unit 110 and the base member 150 may interfere with the rise of the magnetic force moving unit 110. Accordingly, according to the rise of the magnetic force moving unit 110, a part of the air existing between the magnetic force moving unit 110 and the base member 150 moves air rapidly to the third air moving part 173 of the base member 150. Air pressure is thereby eliminated. A portion of the air moves to the second pneumatic generating unit (A) along the first air moving unit 171 formed on the side surface of the magnetic moving unit 110 to help the magnetic moving unit 110 to rise, thereby moving the magnetic moving unit 110 ) Easily rises and moves.
  • the magnetic force moving unit 110 moves under the control of the magnetic path control unit 140 so that the lower portion of the second pole piece 113 has a second outer pole piece 130. It is in contact with the upper part.
  • the outer surface of the first pole piece 112 is in contact with the inner side that is drawn on top of the second outer pole piece
  • the lower portion of the second pole piece 113 is in contact with the upper portion of the second outer pole piece 130
  • Magnetic path by the object that is in contact with the lower part of the first outer pole piece 120 and the second outer pole piece 130 and the first outer pole piece 120 and the second outer pole piece 130 (that is, The path through which the magnetic force is transmitted) is formed.
  • the magnetic path control device When the inside of the magnetic path control device is sealed, the magnetic path control device generates significant air pressure during up and down operation in less than 1 second, and if the air pressure is not removed, the magnetic path control device is turned on or off. There is a problem in that the operating performance is significantly weakened and the power consumption is increased. Therefore, in order to solve such a problem, a moving part capable of rapidly discharging air pressure is required.
  • the apparatus for controlling a magnetic movement path further includes a control unit 210, a power switching unit 220, and a magnetic force detection unit 230.
  • the control unit 210 automatically generates an adsorption command (that is, an adsorption command for the target object) according to a specified process, outputs an adsorption signal corresponding to the adsorption command for a specified time period (for example, 0.2 seconds), and then displays the adsorption signal. End output.
  • an adsorption command that is, an adsorption command for the target object
  • a specified time period for example, 0.2 seconds
  • control unit 210 receives the user's adsorption command, outputs an adsorption signal corresponding to the adsorption command for a specified time (for example, 0.2 seconds), and then ends the output of the adsorption signal.
  • the power switching unit 220 outputs a direct current (DC) voltage (eg, V+) of a predetermined constant level corresponding to the adsorption signal to the magnetic path control unit 140.
  • DC direct current
  • a direct current (DC) voltage for example, V+
  • V+ direct current
  • a magnetic field ie, a magnetic field in a direction in which the magnetic force transmitting unit is pulled down
  • the magnetic field moves the magnetic force moving unit 110 downward (ie, toward the second outer pole piece 130).
  • the magnetic force generated in the permanent magnet 111 is the first outer pole piece in direct contact with the first and second pole pieces 112 and 113 in close contact with one side.
  • a magnetic path is formed by the 120 and the second outer pole piece 130 and the object (contacting the lower portions of the first outer pole piece 120 and the second outer pole piece 130).
  • a gap (GAP) in the upper part of the magnetic force moving unit 110 (that is, between the base member 150 and the magnetic force moving unit 110)
  • the magnetic force of the permanent magnet 111 is a magnetic path (magnetic moving unit 110, the first outer pole piece 120, the second outer pole piece 130, and the magnetic path formed by the object) It flows only through, and the magnetic movement to the upper part (base member 150) is blocked.
  • the gap (GAP), the magnetic force of the permanent magnet 111 flows only through the formed magnetic path, thereby generating an effect of enhancing the adsorption force to the object.
  • the permanent magnet 111 comes into contact with the bobbin 141, so that the magnetic force moving unit 110 is seated at the correct position.
  • the magnetic field generated in the magnetic path control unit 140 until the magnetic path is forcibly released through the magnetic path control unit 140 Even if it is released, the magnetic path once formed is maintained.
  • control unit 210 automatically generates a detachment command according to a designated process, or receives a detachment command (that is, a command for detaching an object) from a user, and outputs a detachment signal for a specified time (eg 0.2 seconds). After that, the output of the desorption signal is terminated.
  • a detachment command that is, a command for detaching an object
  • the power switching unit 220 outputs a direct current (DC) voltage (eg, V-) of a predetermined level corresponding to the detachable signal to the magnetic path control unit 140.
  • DC direct current
  • the detachment signal according to the detachment command is a signal for detaching the target object from the magnetic movement path control device
  • the direct current (DC) voltage (eg, V-) corresponding to the detachment signal is the magnetic path control unit 140
  • a magnetic field ie, a magnetic field in a direction in which the magnetic force moving unit 110 is pushed up
  • the magnetic path control material 140 to move the magnetic force moving unit 110 upward (ie, the base member 150).
  • the first pole piece 112 is attached to the base member 150 with magnetic force generated from the permanent magnet 111.
  • a magnetic path is not formed, and attachment is made only by the magnetic force of the magnetic force moving unit 110, and magnetic movement to the lower portion (ie, the object side) is blocked.
  • the magnetic movement path control apparatus releases the magnetic field generated in the magnetic path control material 140 until it is forcibly released through the magnetic path control material 140. Even if possible, the magnetic path once formed is continuously maintained.
  • the magnetic movement path control device applies power to the magnetic path control unit 140 only at the moment of generating or releasing the magnetic path, and after generating or releasing the magnetic path, the magnetic path control unit ( Since the magnetic path can be continuously maintained even when power is not applied to 140), there is an effect of reducing power consumption by several thousand times or more compared to the conventional electromagnet type magnetic detachable device (see FIGS. 7 and 8).
  • the magnetic force detection unit 230 detects the magnetic force of the base member 150.
  • the magnetic force detection unit 230 may include a hall sensor.
  • the control unit 210 has a first magnetic path (ie, a magnetic force including the base member). It can be determined that the transmitted magnetic path) is formed, and if the magnetic force of the base member 150 detected through the magnetic force detecting unit 230 is equal to or less than a predetermined magnetic force (eg, residual magnetic force of the base member), it is determined that the magnetic path is formed. can do.
  • a preset magnetic force eg, residual magnetic force of the base member
  • control unit 210 determines the generation and release of the current magnetic path using the magnetic force detected by the magnetic force detection unit 230, and maintains the output of the signal until the desired magnetic path is formed or released, thereby maintaining the magnetic path. It can be created or released stably.
  • FIG. 7 and 8 is an exemplary view for comparing the power application method and the power consumption of the magnetic movement path control device and the conventional electromagnet type magnetic detachable device according to the present embodiment in FIG. 6, adsorbing a target object of 1 ton
  • the existing electronic magnetic desorption device consumed 975 KW of power (FIG. 8)
  • the magnetic path control device according to this embodiment consumed only 0.2 KW of power (FIG. 7)
  • the magnetic movement path control device applies power to the magnetic path control unit 140 only at the moment of generating (eg, adsorbing) or releasing (eg, detaching) the magnetic path as shown in FIG. 7. This is because, as shown in FIG. 8, the existing electromagnet type magnetic detachment device continuously consumes power from the electromagnet from the time of adsorption (Lift) to the time of detachment (Drop).
  • the power consumption of the existing electromagnet type magnetic detachable device will increase in proportion to the increased travel time, but this embodiment The magnetic movement path control device according to the power consumption is not increased even if the movement time increases, so the difference in power consumption may be greater.
  • the magnetic movement path control device is very stable as it is capable of adsorption and desorption at the same time as the conventional electromagnet type magnetic desorption device. It has the effect.
  • the magnetic movement path control device includes a magnetic movement unit 310, a first outer pole piece 320, a second outer pole piece 330, a magnetic path control material 340, and a base. It includes a member 350 and a guide member 360.
  • the magnetic force moving unit 310 is a permanent magnet 311 for generating a permanent magnetic force and the first pole piece 312 attached to the first surface of the permanent magnet 311 and the second surface of the permanent magnet 311 It includes a second pole piece 313 attached to.
  • the magnetic movement path control device has a square shape as viewed from above.
  • the magnetic force moving unit 310, the first outer pole piece 320, the second outer pole piece 330, the magnetic path control material 340, and the base member 350 have a planar shape as viewed from above.
  • the base member 350, the first outer pole piece 320 and the magnetic path control member 340 have a square shape viewed from above, and the second outer pole piece 330 and the magnetic force moving unit 310 are from the top.
  • the plane shape may be circular.
  • the first outer pole piece 320 is composed of a plurality of sub outer pole pieces 321 that can be assembled.
  • the magnetic movement path control apparatus can be installed in a matrix form when a plurality of magnetic paths are installed, thereby efficiently using magnetic force.
  • the magnetic movement path control device When the magnetic movement path control device is cylindrical, when a plurality of magnetic paths are installed, space is created between the magnetic movement path control devices, so that magnetic force cannot be efficiently used. Therefore, a plurality of square magnetic movement path control devices are installed to be used for attaching and detaching an object having a large area.
  • the magnetic movement path control device includes a magnetic force moving unit 410, a first outer pole piece 420, a second outer pole piece 430, and a magnetic path. It includes a control material 440.
  • the magnetic force moving unit 410 is composed of a permanent magnet 411, a first pole piece 412, and a second pole piece 413.
  • the permanent magnet 411 is formed with a through hole in the central portion, and has a cylindrical shape.
  • the permanent magnet 411 is formed in a disk shape, and is formed of an S-pole and an N-pole.
  • the first pole piece 412 is a ferromagnetic material and may be attached to a first surface, which is one of both surfaces of the permanent magnet 411, and if the first surface of the permanent magnet 411 is an S pole, the first pole piece 412 Has a polarity close to the S pole.
  • the first pole piece 412 is formed with a through hole in the central portion, and is formed in a cylindrical shape.
  • the second pole piece 413 is a ferromagnetic material and may be attached to a second surface, which is one of both surfaces of the permanent magnet 411, and if the second surface of the permanent magnet 411 is an N pole, the second pole piece 413 Has a polarity close to the N pole.
  • the second pole piece 413 is formed with a through hole in the central portion, and is formed in a cylindrical shape.
  • the magnetic force moving unit 410 has a cylindrical shape as a whole, and each of the permanent magnet 411, the first pole piece 412, and the second pole piece 413 has a through hole in its central portion, thereby moving the magnetic force.
  • the surface area of the unit 410 increases, and a strong magnetism is formed by the edges of the through-holes to increase the magnetic force.
  • the magnetic force moving unit 410 composed of the permanent magnet 411, the first pole piece 412, and the second pole piece 413 has a through hole formed in its central portion, and a magnetic force moving unit 410 is provided in the through hole.
  • the guide shaft 460 to be moved is inserted.
  • the guide shaft 460 has a cylindrical shape, and the magnetic force moving unit 410 is stably moved along the outside of the guide shaft 460 having a cylindrical shape. If there is no guide shaft 460, there is a problem that the magnetic force moving unit 410 may swing left and right when moving up and down, but since there is a guide shaft 460, the magnetic force moving unit 410 moves without shaking left and right when moving up and down. .
  • the first pole piece 412 and the second pole piece 413 and the permanent magnet 411 may be coupled by magnetic force, or forcedly coupled by a fastening means.
  • the first pole piece 412 is a cylindrical shape
  • the outer diameter is formed narrower from the top to the bottom
  • the first outer pole piece 420 is a cylindrical shape through which the inside, the upper side The protruding portion is formed inward, and the protruding portion is formed narrower as the inner diameter goes from upper to lower, and is in contact with or spaced apart from the outer side of the first pole piece 412.
  • the outer side of the first pole piece 412 and the inner side of the first outer pole piece 420 have an inclined slope from top to bottom. (420) It is easily separated from the inside inclined surface.
  • the entire outer periphery of the first pole piece is in an inclined shape, thereby contacting the entire protrusion of the first outer pole piece, thereby increasing the contact area and increasing the magnetic force.
  • the first pole piece 412 when the first pole piece 412 is moved downward, it is in contact with the inclined surface inside the first outer pole piece 420 so that it is no longer moved downward, thereby limiting the moving distance of the magnetic movement unit 410.
  • the first pole piece 412 supports the lower portion of the magnetic force moving unit 410 when moving downward.
  • the moving distance becomes longer if there is no support object.
  • the movement distance of the magnetic movement unit 410 becomes too long, there is a problem that the consumption of current increases, so it is necessary to determine the movement distance in consideration of this.
  • the magnetic force moving unit 410 is controlled by the control of the magnetic path control unit 440.
  • the second pole piece 413 is formed by a first position spaced apart from the second outer pole piece 430, the object It is detached from the object (see Fig. 15).
  • the magnetic force moving unit 410 moves under the control of the magnetic path control material 440, the first pole piece 412 is in contact with the first outer pole piece 420, and the second pole piece 413 ) Forms a second position in contact with the second outer pole piece 430 and is adsorbed with the object (see FIG. 16 ).
  • the present embodiment additionally includes a first outer pole piece fixing member 451, a base member 450, a gap (GAP) adjusting unit 475, a magnetic force moving unit coupling member 414, a guide shaft fixing member 461, and 2 includes an outer pole piece fixing member (462).
  • the first outer pole piece fixing member 451 couples the first outer pole piece 420 to the base member 450.
  • the first outer pole piece fixing member 451 is formed in a bolt shape
  • the base member 450 is formed in a circular plate shape.
  • the first outer pole piece 420 as the outer cover (or frame) of the magnetic movement path control device according to the present embodiment, has a cylindrical shape through which the inside is formed, and a protruding jaw is formed inward on its upper side, and the jaw There are a plurality of holes (holes) are formed at regular intervals.
  • the plurality of holes formed in the jaw of the first outer pole piece 420 penetrates the first outer pole piece fixing member 451 and uses the first outer pole piece fixing member 451 to form the first
  • the outer pole piece 420 and the base member 450 are coupled to be fixed.
  • the first outer pole piece fixing member 451 is inserted into a hole from the outer upper portion of the base member 450 to be defective, thereby being exposed to the outside, but the first outer pole piece fixing member 451 ) Is coupled by being inserted in the direction of the base member 450 from the inner lower portion of the first outer pole piece 420, so that the first outer pole piece fixing member 451 may not be exposed to the outside.
  • the hole formed in the base member 450 needs to adjust the hole depth formed in the lower portion so as not to penetrate to the upper portion. have.
  • the guide shaft 460 includes a cylindrically shaped guide shaft body, a guide jaw formed around the bottom surface of the guide shaft body, a guide body hole formed through the guide shaft body, and a guide jaw hole formed through the guide jaw. It is composed.
  • the guide shaft fixing member 461 is inserted into the guide shaft body hole to fix the guide shaft 460 and the base member 450, and the second outer pole piece fixing member 462 is inserted into the guide jaw hole to guide (460) ) Fix the shaft and the second outer pole piece 430.
  • the magnetic force moving unit 410 moves up and down along the outside of the cylindrical portion of the guide shaft 460.
  • the length (or distance, gap) that the magnetic force moving unit 410 can move may be adjusted according to the thickness of the gap (GAP) adjusting unit 475.
  • the gap adjustment unit 475 may be formed of a material other than a magnetic material.
  • the gap adjustment unit 475 is in the form of a ring having a specified specific thickness, and is fixedly coupled between the base member 450 and the magnetic force moving unit 410.
  • the thickness of the gap adjusting unit 475 corresponds to a length (or distance, gap) for moving the magnetic force moving unit 410, for example, 1 (mm) to 10 (mm) is preferable, but it is necessarily this thickness. It is not intended to be limited to. As the thickness of the gap adjustment unit 475 is thicker, the length (or distance, gap) for moving the magnetic force moving unit 410 increases, and the current consumption for controlling the magnetic path control unit 440 is proportionally proportional to this. Since it increases, it is necessary to adjust the thickness of the gap adjustment unit 475 in consideration of this.
  • the magnetic force moving unit 410 moves toward the upper base member 450 (ie, when moving to detach the object), the magnetic force moving unit 410 A gap GAP corresponding to the thickness of the gap adjusting unit 475 is formed between the lower portion of the upper portion and the upper portion of the second outer pole piece 430. Accordingly, magnetic force is not transmitted from the magnetic force moving unit 410 to the first outer pole piece 420 and the second outer pole piece 430 through the gap GAP. At this time, even if the magnetic force moving unit 410 and the base member 450 are attached, the magnetic path is not formed, but is only attached by the magnetic force.
  • the magnetic force moving unit 410 moves toward the lower second outer pole piece 430 (that is, when moving to adsorb the object)
  • the magnetic force moving unit A gap GAP corresponding to the thickness of the gap adjusting unit 475 is formed between the upper portion of the 410 and the lower portion of the base member 450. Accordingly, while preventing the magnetic force from being transmitted from the magnetic force moving unit 410 to the base member 450 through the gap GAP, the first outer pole piece 420 and the second outer side contacting the magnetic force moving unit 410 at the same time.
  • a magnetic path is formed between the pole piece 430 and the object (not shown).
  • an object (not shown) is maintained in an adsorbed state on the first outer pole piece 420 and the second outer pole piece 430 by the formed magnetic path.
  • the gap GAP is a space formed on either side of the upper and lower sides of the magnetic force moving unit 410 by the direction in which the magnetic force moving unit 410 moves along the guide shaft 460.
  • the magnetic force of the magnetic force moving unit 410 is prevented from being transmitted to the upper portion or the lower portion by the gap GAP.
  • the second outer pole piece 430 may be in contact with the lower portion of the magnetic force moving unit 410, and a through-hole is formed in the central portion, thereby forming a cylinder of the guide shaft 460 through the through-hole. It is formed so that the part can pass.
  • the upper portion of the second outer pole piece 430 is formed with a chin having a predetermined width inward and outward, and the chin formed on the outer side is designated in advance toward an edge where the outer side meets the outer side.
  • the angle is chamfered at an angle, and an angle is chamfered at a predetermined angle from the edge where the chin formed inside and the inside side meet to the bottom of the side.
  • the magnetic path control material 440 is coupled to be in close contact with the outside of the second outer pole piece 430.
  • the magnetic force moving unit 410 a permanent magnet 411 having a through-hole formed in the center in the form of a circular plate, and first and second pole pieces 412, respectively, at upper and lower portions of the permanent magnet 411, respectively. 413) is formed by integrally using the magnetic movement unit coupling member 414.
  • the first and second pole pieces 412 and 413 are formed of a magnetic material (or ferromagnetic material), while transmitting to the upper or lower portion while minimizing the loss of magnetic force generated in the permanent magnet 411, and also the permanent magnet 411 It functions to prevent physical damage (or loss of magnetic force) due to impact (ie, friction or impact generated when moving up and down).
  • the permanent magnet 411 For reference, by forming the size of the through-hole formed in the permanent magnet 411 larger than the size of the through-hole formed in the first and second pole pieces 412 and 413, the permanent magnet 411 ) Even if a hole for the magnetic force moving unit coupling member 414 is not drilled (that is, when a hole is drilled in the permanent magnet 411, the magnetic force is affected), the first and second pole pieces 412 , By combining the first and second pole pieces (412, 413) by using a magnetic movement unit coupling member 414 through a hole (hole) only, the permanent magnet 411 is fixed therebetween without physical damage. .
  • the present invention has the potential for industrial use in the field of manufacture for magnetic path control devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electromagnets (AREA)
  • Linear Motors (AREA)

Abstract

본 발명은 영구적인 자력을 발생하는 영구자석과, 상기 영구자석의 제1면에 부착되는 제1 폴피스와, 상기 영구자석의 제2면에 부착되는 제2 폴피스를 포함하는 자력이동유닛과; 상기 자력이동유닛과 접촉하여 자기경로를 형성하는 제1 외측폴피스; 상기 자력이동유닛과 접촉하여 상기 제1 외측폴피스와는 다른 자기경로를 형성하는 제2 외측폴피스; 및 상기 자력이동유닛이 상기 제1 외측폴피스와 접촉하고, 제2 외측폴피스와는 이격하거나 접촉하게 함으로써 자기경로를 해제하거나 생성하는 자기경로 제어부재를 포함하며, 상기 자력이동유닛은, 제1 폴피스와 제2 폴피스 중 적어도 하나가 제1 외측폴피스와 접촉되고, 제2 폴피스는 제2 외측폴피스와 이격되어 대상 물체를 탈착시키는 제1 위치와, 제1 폴피스와 제2 폴피스 중 적어도 하나는 제1 외측폴피스와 접촉되고, 제2 폴피스는 제2 외측폴피스와 접촉되어 상기 대상 물체를 흡착시키는 제2 위치 사이에서 이동하는, 자기이동경로 제어장치를 제공한다.

Description

자기이동경로 제어장치
본 발명은 영구자석의 자기력이 이동하는 방향인 자기이동 경로를 전환함으로써 탈착 및 흡착 제어가 가능한 자기이동경로 제어장치에 관한 것이다.
일반적으로 마그네틱 탈부착 장치는 대부분 전자석 방식 마그네틱 장치로서, 제어 시스템에서 전자석에 인가되는 전류를 온오프 제어하여 자력을 생성하거나 해제함으로써, 대상 물체를 자력으로 흡착 또는 탈착시킨다.
마그네틱 탈부착 장치는 대상 물체에 직접 압력이 가해지지 않으므로 물체의 외관에 손상이 발생되지 않는 장점이 있다. 그러나, 대상 물체가 작게는 수십 킬로그램에서 많게는 수십 톤까지 무겁기 때문에, 대상물체의 무게 및 흡착을 유지해야 할 시간의 증가에 따라 전자석에 인가되는 전류량도 증가하여 많은 전력이 소모되는 단점이 있다.
따라서 전자석 방식의 마그네틱 탈부착 장치와 동일한 흡착력을 계속 유지할 수 있는 자력을 생성하면서도 전력 소모가 적은 마그네틱 탈부착 장치가 필요한 상황이다.
동일한 자력을 발생할 수 있는 영구자석을 이용할 경우 전력 소모는 발생하지 않겠지만, 영구자석은 자력이 해제되지 않기 때문에 흡착된 대상 물체를 탈착시키는 것이 쉽지 않다는 문제점이 있다.
또한, 전자석 방식 마그네틱 탈부착 장치는 흡착 상태에서 의도하지 않게 전자석에 인가되는 전원이 차단될 경우, 자기력이 해제되어 마그네틱 탈부착 장치에 흡착되어 있던 대상 물체가 갑자기 떨어지는 사고가 발생할 수 있는 위험이 있다. 그래서 무정전전원장치(UPS), 대전력 공급을 위한 AC-DC 컨버터, 및 정류기 등의 고가의 대형 전원 공급 시스템 등이 추가로 구비되어야 하는 문제점이 있다.
따라서 전자석 방식의 문제점을 보완하기 위하여 영전자 방식이 개발되었으며, 영전자 방식은 전자석과 반대로 평상시에는 영구자석에 의한 자력을 발생하다가 전류를 인가하면 자력을 해제시키는 방식이다.
하지만 영전자 방식은 순간 대전류에서 흡착이나 탈착을 위해 단시간에 ON-OFF를 반복하는 용도에는 적합하지 않으며, 통상적으로 10회 정도의 연속 ON-OFF는 가능하지만, 그 이상의 경우는 전류를 흘리지 않는 기간이 필요하다. 또한, 자석의 크기에 따라 다르지만, 평균적으로 수분에 1회 정도로 ON-OFF 해야 하는 등, 자력 제어의 횟수나 작동 시간이 제한되는 문제점이 있다. 또한 전자석에 비해서는 전력의 소모가 적지만, 영전자식도 자력의 해제 상태를 유지시키기 위한 시간에 비례하여 전력의 소모가 증가되는 문제점이 있다.
본 발명은 상술한 과제를 해결하기 위하여 안출된 것으로서, 전력 소모가 없는 영구자석을 이용하여 자기력이 이동되는 방향인 자기이동 경로를 전환함으로써 탈착 및 흡착 제어가 가능한 자기이동경로 제어장치를 제공하는데 그 목적이 있다.
상술한 과제를 해결하기 위하여 안출된 본 발명의 일실시예인 자기이동경로 제어장치는, 영구적인 자력을 발생하는 영구자석과, 상기 영구자석의 제1면에 부착되는 제1 폴피스와, 상기 영구자석의 제2면에 부착되는 제2 폴피스를 포함하는 자력이동유닛; 상기 자력이동유닛과 접촉하여 자기경로를 형성하는 제1 외측폴피스; 상기 자력이동유닛과 접촉하여 상기 제1 외측폴피스와는 다른 자기경로를 형성하는 제2 외측폴피스; 상기 제1 외측폴피스의 상부와 접촉하는 베이스 부재; 및 상기 자력이동유닛이 상기 제1 외측폴피스와 접촉하고, 제2 외측폴피스와는 이격하거나 접촉하게 함으로써 자기경로를 해제하거나 생성하는 자기경로 제어부재를 포함하며, 상기 자력이동유닛은, 제1 폴피스와 제2 폴피스 중 적어도 하나가 제1 외측폴피스와 접촉되고 제2 폴피스는 제2 외측폴피스와 이격되어 대상 물체를 탈착시키는 탈착 위치인 제1 위치와, 제1 폴피스와 제2 폴피스 중 적어도 하나는 제1 외측폴피스와 접촉되고, 제2 폴피스는 제2 외측폴피스와 접촉되어 상기 대상 물체를 흡착시키는 흡착 위치인 제2 위치 사이에서 이동하고, 상기 제1 폴피스 및 제2 폴피스 각각의 외측에 형성된 제1 에어이동부; 상기 제1 외측 폴피스의 상면에 형성되는 제2 에어이동부; 상기 베이스 부재의 저면에 형성되는 제3 에어이동부를 포함하고, 상기 자력 이동유닛이 상기 제1 위치에서 상기 제2 위치로 이동할 때 상기 제1 외측폴피스와 상기 제2 외측폴피스에 의해 정의되는 내부 공간에 존재하는 공기가 상기 제1 에어이동부, 상기 제2 에어이동부 및 상기 제3 에어이동부를 거쳐 외부로 이동 배출될 수 있다.
여기서, 상기 제1 외측폴피스는 상기 자기이동경로 제어장치의 외면을 형성하고, 상기 제2 외측폴피스는 상기 제1 외측폴피스의 내측에 동심으로 설치되고, 상기 자력이동유닛은 상기 자기경로 제어부재의 내측에 동심으로 설치될 수 있다.
여기서, 상기 자력이동유닛은, 전체적으로 원통형상을 가지며, 상기 영구자석, 상기 제1 폴피스 및 상기 제2 폴피스의 중앙부에 각각 관통홀을 구비함으로써, 상기 자력이동유닛의 표면적을 증가시키고, 상기 관통홀 모서리를 형성하여 자기력을 증대시킬 수 있다.
여기서 상기 자기이동경로 제어장치는, 상기 관통홀에 삽입되어 상기 자력이동유닛을 이동시키는 가이드축을 더 포함할 수 있다.
여기서, 상기 베이스 부재는, 상기 베이스 부재의 중심부에 상기 가이드축을 지지하는 제1 가이드 홈을 포함할 수 있다.
여기서, 상기 제2 외측폴피스는, 형상이 원통형 형상으로 형성되어 있고, 상기 제2 외측폴피스의 중심부에 상기 가이드축을 지지하는 제2 가이드 홈을 포함할 수 있다.
여기서, 상기 제1 에어이동부는, 상기 제1 폴피스 및 상기 제2 폴피스의 외측면에 4방향 대향지게 형성된 홈이고, 상기 제2 에어이동부는, 상기 제1 에어이동부와 유통되게 상기 제1 외측 폴피스의 상면에 방사상으로 형성되는 홀일 수 있다.
여기서, 상기 제 3 에어이동부는, 상기 베이스 부재의 저면 가장자리에 형성된 홈일 수 있다.
여기서, 상기 제3 에어이동부는, 상기 베이스 부재를 관통하는 홀로 형성되어 상기 제2 에어이동부와 일직선상에 위치할 수 있다.
여기서, 상기 자기이동경로 제어장치는, 상기 베이스 부재의 하면, 상기 제1 외측폴피스의 내측면 및 상기 자력이동유닛의 상면에 의해 정의되는 공압 공간으로서, 상기 자력이동유닛이 상기 자기 경로 제어부재에 의해 상기 제2 위치로 이동되면, 상기 공기가 유입되어서 상기 자력이동유닛을 상기 제2 위치로 가압하는 제1 공압 생성부를 더 포함할 수 있다.
여기서, 상기 자기이동경로 제어장치는, 상기 제1 외측폴피스의 내측면, 상기 자력이동유닛의 하면 및 상기 제2 외측폴피스의 상면에 의해 정의되는 공압 공간으로서, 상기 자력이동유닛이 상기 자기 경로 제어부재에 의해 상기 제1 위치로 이동되면, 상기 공기가 유입되어서 상기 자력이동유닛을 상기 제1 위치로 가압하는 제2 공압 생성부를 더 포함할 수 있다.
여기서, 상기 자기경로 제어부재는, 상기 제2 외측폴피스의 외측에 결합되는 보빈 및 상기 보빈에 권취되는 코일을 포함하며, 상기 코일에 인가되는 전류의 방향을 의해 자기경로가 변경되어서 상기 자력 이동유닛이 이동될 수 있다.
여기서, 상기 제1 위치는, 상기 영구 자석이 상기 제1 외측 폴피스와 접촉하고, 상기 자력이동유닛의 저면이 상기 제2 외측 폴피스의 상면과 이격되는 위치이고, 상기 제2 위치는 상기 영구 자석이 상기 보빈에 접촉하고, 상기 자력이동유닛의 저면이 상기 제2 외측 폴피스와 상면과 접촉되는 위치일 수 있다.
여기서, 상기 자기이동경로 제어장치의 평면 형상이 정사각형으로 이루어질 수 있다.
여기서, 상기 제1 외측폴피스는 조립 가능한 복수개의 서브 외측 폴피스로 구성될 수 있다.
본 발명의 다른 실시예인 자기이동경로 제어장치는, 영구적인 자력을 발생하는 영구자석과, 상기 영구자석의 제1면에 부착되는 제1 폴피스와, 상기 영구자석의 제2면에 부착되는 제2 폴피스를 포함하는 자력이동유닛; 상기 자력이동유닛과 접촉하여 자기경로를 형성하는 제1 외측폴피스; 상기 자력이동유닛과 접촉하여 상기 제1 외측폴피스와는 다른 자기경로를 형성하는 제2 외측폴피스; 상기 제1 외측폴피스의 상부와 접촉하는 베이스 부재; 및 상기 자력이동유닛이 상기 제1 외측폴피스와 제2 외측폴피스에 동시에 이격하거나 접촉하게 함으로써 자기경로를 해제하거나 생성하는 자기경로 제어부재를 포함하며, 상기 자력이동유닛은, 제1 폴피스는 제1 외측폴피스와 이격되고, 제2 폴피스는 제2 외측폴피스와 이격되어 대상 물체를 탈착시키는 탈착 위치인 제1 위치와, 제1 폴피스는 제1 외측폴피스와 접촉되고, 제2 폴피스는 제2 외측폴피스와 접촉되어 상기 대상물체를 흡착시키는 흡착 위치인 제2 위치 사이에서 이동하고, 상기 제1 폴피스는 원통 형상이며, 상기 제1 폴피스의 외경은 상부에서 하부로 갈수록 좁게 형성되고, 상기 제1 외측폴피스는 내부가 관통되는 원통 형상이며, 상기 제1 외측폴피스의 상측에는 돌출부가 내측으로 형성되며, 상기 돌출부의 내경은 상부에서 하부로 갈수록 좁게 형성되고, 상기 제1폴피스의 외측 둘레는 경사진 형상으로 상기 제1 외측폴피스의 돌출부와 접촉됨으로써 접촉면적이 넓어져서 자기력이 증가될 수 있다.
여기서, 상기 자력이동유닛은, 전체적으로 원통형상을 가지며, 상기 영구 자석, 상기 제1 폴피스 및 상기 제2 폴피스의 중앙부에 각각 관통홀을 구비함으로써, 상기 자력이동유닛의 표면적을 증가시키고, 상기 관통홀 모서리를 형성하여 자기력을 증대시킬 수 있다.
여기서, 상기 자이동경로 제어장치는, 상기 관통홀에 삽입되어 상기 자력이동유닛을 이동시키는 가이드축을 더 포함할 수 있다.
여기서, 상기 가이드축은, 원기둥형상의 가이드축 본체; 상기 가이드축 본체의 저면 둘레에 형성된 가이드턱; 상기 가이드축 본체를 관통하여 형성된 가이드축본체홀; 및 상기 가이드턱을 관통하여 형성된 가이드턱홀을 포함할 수 있다.
여기서, 상기 자기경로 제어부재는, 상기 제2 외측폴피스의 외측에 결합되는 보빈과 상기 보빈에 권취되는 코일을 포함하며, 상기 코일에 인가되는 전류의 방향에 의해 자기경로가 변경되어서 상기 자력이동유닛이 이동되게 할 수 있다.
여기서, 상기 제2 외측폴피스는, 상부에 내측과 외측으로 미리 지정된 폭의 턱이 형성되며, 외측에 형성된 턱은 끝에서 외측 측부와 만나는 모서리를 향해 미리 지정된 각도로 비스듬히 모따기를 하며, 내측에 형성된 턱은 내측 측부가 만나는 모서리에서 측부의 하부를 향해 미리 지정된 각도로 비스듬히 모따기를 한 형태로 형성될 수 있다.
여기서, 자기이동경로 제어장치는, 상기 가이드축본체홀에 삽입되어 상기 가이드축과 상기 가이드축 상부에 위치한 상기 베이스부재를 결합 고정하는 가이드축고정부재 및 상기 가이드턱홀에 삽입되어 상기 가이드축과 상기 제2 외측폴피스를 결합 고정하는 제2외측폴피스고정부재를 더 포함할 수 있다.
상술한 구성을 가진 본 발명의 일실시예에 따르면, 전력 소모가 많은 전자석 대신 전력 소모가 없는 영구자석을 이용하여 자기력이 이동되는 방향인 자기이동 경로를 전환함으로써 탈착과 흡착을 위한 자력 제어의 횟수나 작동 시간에 제한이 없고, 또한 대상물체의 무게와 흡착력을 유지할 시간이 증가되더라도 일정한 자력을 유지하면서도 전력 소모는 최소화시킬 수 있는 효과가 있다.
또한, 본 발명은 자력이동유닛의 중앙부에 관통홀을 형성함으로써 자력이동유닛의 표면적이 증가하고, 관통홀의 모서리로 강한 자기를 형성하여 전체적으로 자기력이 증가하게 된다.
또한, 본 발명은 중앙부에 관통홀이 형성된 자력이동유닛과 그 관통홀에 삽입되어 자력이동유닛을 이동시키는 가이드축을 포함함으로써 자력이동유닛이 가이드축의 외측을 따라 보다 안정적으로 이동할 수 있게 된다.
또한, 본 발명은 자력이동유닛, 제1 외측폴피스 및 베이스 부재에 에어이동부를 형성하여 자력이동유닛의 이동에 따라 제1 외측폴피스와 제2 외측폴피스 사이의 내부 공간에 존재하는 공기를 외부로 이동시킴으로써 공기압에 따른 자력이동유닛의 이동 저항을 최소화 하는 효과가 있다.
또한, 본 발명인 자기이동경로 제어장치의 평면 형상이 정사각형으로 형성되고, 복수의 자기이동경로 제어장치를 매트릭스 형태로 배열하여 자기이동경로 제어장치 사이의 공간을 최소화함으로써 자기력을 효율적으로 사용할 수 있는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 자기이동경로 제어장치를 상측에서 바라본 사시도.
도 2는 도 1의 자기이동경로 제어장치를 하측에서 바라본 사시도.
도 3은 도 1의 자기이동경로 제어장치에 대한 분해 사시도.
도 4는 도 1의 자기이동경로 제어장치의 탈착 상태를 도시한 단면도.
도 5는 도 1의 자기이동경로 제어장치의 흡착 상태를 도시한 단면도.
도 6는 도 1의 자기이동경로 제어장치의 제어구조를 도시한 블럭도.
도 7은 도 1의 자기이동경로 제어장치의 전원 인가 방식 및 전력 소모량을 나타낸 개념도.
도 8은 기존 전자석 방식 마그네틱 탈부착 장치의 전원 인가 방식 및 전력 소모량을 나타낸 개념도.
도 9는 본 발명의 다른 실시예에 따른 자기이동경로 제어장치를 상측에서 바라본 사시도.
도 10은 도 9의 자기이동경로 제어장치를 하측에서 바라본 사시도.
도 11은 도 9의 자기이동경로 제어장치에 대한 분해 사시도.
도 12는 본 발명의 또 다른 실시예에 따른 자기이동경로 제어장치를 상측에서 바라본 사시도.
도 13은 도 12의 자기이동경로 제어장치를 하측에서 바라본 사시도.
도 14는 도 12의 자기이동경로 제어장치에 대한 분해 사시도.
도 15는 도 12의 자기이동경로 제어장치의 탈착 상태를 도시한 단면도.
도 16은 도 12의 자기이동경로 제어장치의 흡착 상태를 도시한 단면도.
이하, 본 발명의 바람직한 실시예에 따른 자기이동경로 제어장치에 대하여 첨부한 도면을 참조하여 상세히 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다.
본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다.
도 1 내지 도 3을 참조하면, 본 발명의 일실시예에 따른 자기이동경로 제어장치는, 자력이동유닛(110), 제1 외측폴피스(120), 제2 외측폴피스(130), 자기경로 제어부재(140), 베이스부재(150), 및 가이드축(160)을 포함할 수 있다.
자력이동유닛(110)은 영구자석(111), 제1 폴피스(112) 및 제2 폴피스(113)로 구성된다.
영구자석(111)은 영구적인 자기력을 발생하는 것으로 네오디움(Nd) 자석을 사용할 수 있으나, 이를 한정하는 것은 아니며, 목적에 따라 다양한 재질의 자석을 사용한다. 또한, 영구자석(111)은 중앙부에 관통홀이 형성되고, 외측은 원통 형상으로 이루어진다. 보다 구체적으로 설명하면 영구자석(111)은 원판 형상으로 형성되어 있으며, S극 원판과 N극 원판으로 형성된다.
제1 폴피스(112)는 강자성체로서 영구자석(111)의 양면 중 어느 한면인 제1 면에 부착될 수 있고, 영구자석(111)의 제1면이 S극이면 제1 폴피스(112)는 S극에 가까운 극성을 띄게 된다. 제1 폴피스(112)는 중앙부에 관통홀이 형성되고, 원통 형상으로 형성된다.
제2 폴피스(113)는 강자성체로서 영구자석(111)의 양면 중 다른 한면인 제2 면에 부착될 수 있고, 영구자석(111)의 제2면이 N극이면 제2 폴피스(113)는 N극에 가까운 극성을 띄게 된다. 제2 폴피스(113)는 중앙부에 관통홀이 형성되고, 원통 형상으로 형성된다.
제1 폴피스(112) 및 제2 폴피스(113) 각각과 영구자석(111) 간의 결합은 자력에 의한 결합도 가능하고, 체결수단에 의한 강제 결합도 가능하다.
따라서, 자력이동유닛(110)은 전체적으로 원통형상을 가지며, 영구자석(111), 제1 폴피스(112) 및 제2 폴피스(113) 각각은 그 중앙부에 관통홀을 구비함으로써, 자력이동유닛(110)의 표면적을 증가시키고, 상기 관통홀의 모서리에 강한 자기가 형성되게 하여 전체적으로 자기력을 증대시킨다. 자성체는 몸체보다 끝단이 좁아지고, 자성체에 관통홀이 형성되면 관통홀 모서리 부분에 보다 강한 자기력이 형성되므로 자성체는 대상물체를 더 큰 자력으로 흡착할 수 있다.
이와 같이 자력이동유닛(110)은 그 중앙부에 관통홀이 형성되고, 상기 관통홀에는 자력이동유닛(110)을 이동시키는 가이드축(160)이 삽입된다. 가이드축(160)은 원기둥 형상이고, 자력이동유닛(110)은 원기둥 형상의 가이드축(160) 외측을 따라 안정적으로 이동하게 된다. 가이드축(160)에 의해, 자력이동유닛(110)은 상하 이동시 좌우 흔들림 없이 이동하게 된다.
제1 외측폴피스(120)는 자기이동경로 제어장치의 외면을 형성하고, 제2 외측폴피스(130)는 제1 외측폴피스(120)의 내측에 동심으로 설치되고, 자력이동유닛(110)은 자기경로 제어부재(140)의 내측에 동심으로 설치된다. 제1 외측폴피스(120)의 상부에는 베이스 부재(150)가 접촉된다.
제1 폴피스(112) 및 제2 폴피스(113)의 외측에는 제1 에어이동부(171)가 형성되고, 제1 외측 폴피스(120)의 상부인 돌출부(121)에는 제2 에어이동부(172)가 형성되고, 베이스 부재(150)의 저면에는 제3 에어이동부(173)가 형성된다.
따라서, 자력이동유닛(110)이 제1 위치(탈착 위치: 도 4 참조)에서 제2 위치(흡착 위치: 도 5 참조)로 이동할 때 제1 외측폴피스(120)와 제2 외측폴피스(130)에 의해 정의되는 내부 공간(제2 공압 생성부: A)에 존재하는 공기가 제1 에어이동부(171), 제2 에어이동부(172) 및 제3 에어이동부(173)를 거쳐 외부로 이동 배출된다. 한편 이 공기 중 일부는, 제1공압 생성부(B)로 이동하게 된다. 즉, 제1 공압생성부(B)는 베이스부재(150)의 하면, 제1 외측 폴피스(120)의 내측면, 그리고 자력이동유닛(110)의 상면에 의해 정의되는 공간으로서, 자력이동유닛(110)이 제2 위치로 이동됨에 따라, 제1 공압 생성부(B)로 공기가 유입되게 되며 이에 따라 자기이동유닛(110)의 제2위치로의 이동을 가압하게 된다.
반대로, 자력이동유닛(110)이 상기 제2 위치에서 상기 제1 위치로 이동할 때 자력이동유닛(110)의 상부(제1 공압 생성부: B)에 존재하는 공기는 제3 에어이동부(173)을 통해 외부로 배출된다. 한편 이 공기 중 일부는, 제2 공압 생성부(A)로 이동하게 된다. 즉, 제2 공압생성부(A)는 제2 외측 폴피스(130)의 상면, 자력 이동유닛(110)의 하면, 가이드축(160)의 외측면에 의해 정의되는 공간으로서, 자력이동유닛(110)이 제1 위치로 이동됨에 따라, 제2 공압 생성부(A)로 공기가 유입되게 되며 이에 따라 자기이동유닛(110)의 제1위치로의 이동을 가압하게 된다.
제1 에어이동부(171)는 제1 폴피스(112) 및 제2 폴피스(113)의 외측면에 4방향 대향지게 형성된 홈이고, 제2 에어이동부(172)는 제1 에어이동부(171)와 유통되게 제1 외측 폴피스(120)의 상면에 방사상으로 형성되는 홀이다. 여기서, 제2 외측폴피스(130)의 외측으로 자기경로 제어부재(140)가 고정되는데, 이때 자기경로 제어부재(140)의 상부와 제1 외측폴피스(120)사이에 공기가 이동할 수 있는 공간이 형성된다.
제 3 에어이동부(173)는 베이스 부재(150)의 저면 가장자리에 홈으로 형성되고, 또한, 제3 에어이동부(173)는 베이스부재(150)를 관통하는 홀로 형성되어 제2 에어이동부(172)와 일직선상에 위치된다.
제1 외측폴피스(120)의 상부에는 중심부에 가이드축(160)이 지지부착되게 하는 제1 가이드 홈(미도시)이 형성된 베이스 부재(150)가 부착된다. 제2 외측폴피스(130)는 형상이 원통형 형상으로 형성되어 있으며, 그 중심부에 가이드축(160)을 지지하는 제2 가이드 홈(미도시)이 형성된다. 따라서, 가이드축(160)은 제1 가이드 홈과 제2 가이드 홈 사이에 부착되어 고정된다.
여기서, 베이스 부재(150)와 제2 외측폴피스(130) 사이에 고정되는 가이드축(160)의 길이에 따라 자력이동유닛(110)이 이동할 수 있는 이동거리(또는 갭)가 형성된다. 가이드축(160)이 길어지면 자력이동유닛(110)의 이동거리가 늘어나고, 가이드축(160)이 짧아지면 자력이동유닛(110)의 이동거리가 줄어들게 된다.
가이드축(160)의 길이는 수동 및 자동으로 변경이 가능하고, 가이드축(160)이 길어질수록 자력이동유닛(110)을 이동시키기 위한 거리가 증가하고, 이에 비례하여 자력이동유닛(110)를 제어하기 위한 전류 소모도 증가하므로, 이에 따른 가이드축(160)의 길이를 조절할 필요가 있다.
또한 자력이 형성되는 도체의 끝 부분의 넓이가 좁을수록 더 큰 자력이 형성되는 원리를 적용하기 위하여, 제1 외측폴피스(120)에서 하부의 끝부분(예 : 대상물체를 흡착하는 부분)이 모따기 됨으로써, 즉 몸통의 두께보다 하부의 끝 부분의 두께가 점차로 좁아지는 형태로 형성된다. 제2 외측폴피스(130)의 하부 끝 부분에도 모따기 방식이 적용되고, 이에 따라 제2 외측폴피스(130)은, 상기 제1 외측폴피스(120)과 마찬가지로, 모따기 하지 않은 경우에 비해 더 큰 자력으로 대상물체를 흡착할 수 있는 효과를 얻을 수 있다.
한편, 자기경로 제어부재(140)는 제2 외측폴피스(130)외측에 결합되어 자력이동유닛(110)을 이동시켜 자기경로를 생성하거나 그가 해제되게 한다.
자기경로 제어부재(140)는 보빈(141)과 보빈(141)에 권취된 코일(142)를 포함할 수 있다. 이와 달리, 보빈(141)을 제외한 코일(142)만이 제2 외측폴피스(130)의 측부에 밀착 가능한 형상으로 코일링되어 결합될 수 있다. 보빈(141)을 제외하고 코일(142)만을 이용할 경우, 절연(예 : 누전 및 합선 방지, 및 방수)과 코일 형상을 유지시키기 위해 코일을 특정 절연 용액에 함침 시킨 후 굳힐 수 있다.
절연(예: 누전 및 합선 방지, 및 방수) 효과를 위해, 하부 전체{제1 외측폴피스(120)와 제2 외측폴피스(130) 간의 하부 공간으로서, 바닥면 전체}를 몰딩할 수 있다. 몰딩을 통해 방수 및 방진 효과를 향상시키며, 본 실시예에 따른 자기이동경로 제어장치의 외관 형상 전체를 일체형으로 형성할 수 있다. 몰딩 소재는 고온에서 열전도율이 매우 낮은 소재(예 : 세라크울)를 이용할 경우 우수한 단열효과를 가질 수 있으며, 이에 따라 고온의 철강을 흡착할 경우에도 자기이동경로 제어장치가 손상되지 않도록 할 수도 있다.
자기경로 제어부재(140)에 사용되는 코일(142)은 일정한 방향으로 감긴 형태가 된다. 이에 따라 코일에 전류가 인가될 경우, 전류의 인가 방향에 따라 자기장(예 : N극-S극, 또는 S극-N극)이 생성된다. 코일(142)의 내측에 위치하는 제2 외측폴피스(130)가 일종의 코어(core)로 작용하여, 코일(또는 코일형 보빈)에 전류가 인가될 경우에 생성되는 자기장의 세기가 더욱 커질 수 있다.
자기경로 제어부재(140)에 전류가 인가되는 방향에 따라, 자력이동유닛(110)을 상측 방향(즉, 베이스부재(150)가 있는 방향)로 밀어올리거나, 반대로 자력이동유닛(110)을 하측 방향{제2 외측폴피스(130)가 있는 방향}으로 끌어 내린다.
자력이동유닛(110)을 하부로 끌어내릴 경우, 자기경로가 형성된다. 즉, 자력이동유닛(110)과 접촉된 제1 외측폴피스(120), 제2 외측폴피스(130) 및 대상물체(미도시) 간에 자기경로가 형성된다. 이때 자기경로 제어부재(140)는 자기경로를 형성하거나 해제하기 위한 시간 동안만 일시적으로 전류를 공급받으며, 자기경로가 형성되거나 해제가 완료되면 공급되는 전류가 차단된다. 이때 공급되는 전류는 직류(DC) 전류이다.
이하, 위의 자기이동경로 제어장치가 작동하는 방식에 대해 상세히 설명하도록 한다.
도 4를 참조하면, 자기경로 제어부재(140)의 제어에 의해, 자력이동유닛(110)은 제1 폴피스(112)와 제2 폴피스(113) 중 적어도 하나는 제1 외측폴피스(120)와 접촉되고, 제2 폴피스(113)는 제2 외측폴피스(130)와 이격되는 제1 위치와, 제1 폴피스(112)와 제2 폴피스(113) 중 적어도 하나는 제1 외측폴피스(112)와 접촉되고, 제2 폴피스(113)는 제2 외측폴피스(130)와 접촉되는 제2 위치 사이에서 이동한다.
도 4의 제1 위치를 참조하면, 자기경로 제어부재(140)의 제어에 의해 자력이동유닛(110)은 상부에 이동하여 제1 폴피스(112)가 베이스 부재(150)의 하부에 밀착된다.
이때 제1 폴피스(112)와 제2 폴피스(113)의 외측면은 제2 외측폴피스의 상부에 도출된 내측과 접촉하고 있으며, 제2 폴피스(113)의 하부는 제2 외측폴피스(130)의 상부와 이격되어 제1 외측폴피스(120)와 제2 외측폴피스(130)하부에 자기 경로가 형성되지 않는다.
한편 자력이동유닛(110)이 탈착 위치로 이동하는 과정에서, 자력이동유닛(110)과 베이스 부재(150) 사이에 존재하는 공기는 자력이동유닛(110)의 상승에 방해가 될 수 있다. 따라서, 자력이동유닛(110)의 상승에 따라 자력이동유닛(110)과 베이스 부재(150)사이에 존재하는 공기의 일부는 베이스 부재(150)의 제3 에어이동부(173)로 공기가 빠르게 이동함으로써 공기압이 제거된다. 공기의 일부는 자력이동유닛(110)의 측면에 형성된 제1 에어이동부(171)를 따라 제2 공압 생성부(A)로 이동하여 자력이동유닛(110)의 상승을 도움으로써 자력이동유닛(110)이 쉽게 상승하여 이동하게 된다.
도 5의 제2 위치를 참조하면, 자기경로 제어부재(140)의 제어에 의해 자력이동유닛(110)은 하부에 이동하여 제2 폴피스(113)의 하부가 제2 외측폴피스(130)의 상부에 접촉된다.
이때 제1 폴피스(112)의 외측면은 제2 외측폴피스의 상부에 도출된 내측과 접촉하고 있으며, 제2 폴피스(113)의 하부는 제2 외측폴피스(130)의 상부와 접촉되어 제1 외측폴피스(120) 및 제2 외측폴피스(130)와 제1 외측폴피스(120) 및 제2 외측폴피스(130)의 하부에 접촉된 대상물체에 의한 자기경로(즉, 자력이 전달되는 경로)가 형성된다.
한편 자력이동유닛(110)이 흡착위치로 이동하는 과정에서, 자력이동유닛(110)과 제2 외측폴피스(130)사이에 존재하는 공기는 자력이동유닛(110)의 하강에 방해가 될 수 있다. 따라서, 자력이동유닛(110)의 하강에 따라 자력이동유닛(110)과 제2 외측폴피스(130)사이에 존재하는 공기의 일부는 자력이동유닛(110)의 측면에 형성된 제1 에어이동부(171)를 따라 제1 외측폴피스(120)에 형성된 제2 에어이동부(172)로 이동하고, 이어서 베이스 부재(150)에 형성된 제3 에어이동부(173)를 따라 외부로 이동함으로써 공기압이 빠르게 제거된다. 공기의 일부는 자력이동유닛(110)의 측면에 형성된 제1 에어이동부(171)를 따라 제1 공압 생성부(B)로 이동하여 자력이동유닛(110)의 하강을 도움으로써 자력이동유닛(110)이 쉽게 하강하여 이동하게 된다.
자기이동경로 제어장치의 내부가 밀폐된 형태가 되면 자기이동경로 제어장치가 1초 미만으로 상, 하 작동시에 상당한 공기압을 형성하고, 이러한 공기압을 제거하지 않으면 자기이동경로 제어장치의 온-오프 작동 성능이 현저히 약화되고, 전력소모가 증가하는 문제가 발생한다. 따라서, 이와 같은 문제점을 해결하기 위해서는 공기압을 빠르게 배출할 수 있는 에이이동부가 필요하다.
도 6을 참조하면, 본 발명의 일실시예에 따른 자기이동경로 제어장치는 제어부(210), 전원 스위칭부(220), 및 자력 검출부(230)를 추가로 포함한다.
제어부(210)는 지정된 프로세스에 따라 자동으로 흡착 명령(즉, 대상물체에 대한 흡착 명령)을 발생하여 이 흡착 명령에 대응하는 흡착 신호를 지정된 시간 동안(예 : 0.2초) 출력한 후 흡착 신호의 출력을 종료한다.
또한, 제어부(210)는 사용자의 흡착 명령을 입력받아 이 흡착 명령에 대응하는 흡착 신호를 지정된 시간 동안(예 : 0.2초) 출력한 후 흡착 신호의 출력을 종료한다.
전원 스위칭부(220)는 흡착 신호에 대응하는 지정된 일정 레벨의 직류(DC) 전압(예 : V+)을 자기경로 제어부재(140)에 출력한다.
이때 흡착 명령에 따른 흡착 신호가, 대상 물체를 자기이동경로 제어장치에 흡착시키기 위한 신호라고 가정하면, 흡착 신호에 대응하는 직류(DC) 전압(예 : V+)이 자기경로 제어부재(140)에 인가됨에 따라, 자기경로 제어부재(140)에 자기장(즉, 자력전달유닛을 끌어 내리는 방향의 자기장)이 생성된다. 그 자기장은 자력이동유닛(110)을 하측으로(즉, 제2 외측폴피스(130) 측으로) 이동시킨다.
자력이동유닛(110)이 하측으로 이동됨에 따라, 영구자석(111)에서 발생되는 자력은 일 측에 밀착된 제1 및 제2 폴피스(112, 113)와 직접적으로 접촉된 제1 외측폴피스(120) 및 제2 외측폴피스(130), 그리고 대상물체{제1 외측폴피스(120) 및 제2 외측폴피스(130)의 하부에 접촉됨}에 의한 자기경로를 형성된다.
대상물체의 흡착을 위해 자력이동유닛(110)이 하측으로 이동됨에 따라, 자력이동유닛(110)의 상부(즉, 베이스 부재(150)와 자력이동유닛(110)의 사이)에 갭(GAP)이 생성됨으로써, 영구자석(111)의 자력이 자기경로{자력이동유닛(110), 제1 외측폴피스(120), 제2 외측폴피스(130), 및 대상물체에 의해 형성된 자기경로}를 통해서만 흐르게 하고, 상부{베이스 부재(150)}로의 자기 이동은 차단된다. 상기 갭(GAP)은, 영구자석(111)의 자력이 상기 형성된 자기경로를 통해서만 흐르게 함으로써, 대상물체에 대한 흡착력을 강화시키는 효과를 발생시킨다.
또한, 자력이동유닛(110)이 흡착 위치로 이동하는 경우 영구자석(111)은 보빈(141)과 접촉하게 되어, 자력이동유닛(110)은 정확한 위치에 안착된다.
상기와 같이 본 실시예에 따른 자기이동경로 제어장치는 일단 자기경로가 형성되면, 자기경로 제어부재(140)를 통해 강제적으로 자기경로를 해제하기 전까지는 자기경로 제어부재(140)에 생성되었던 자기장이 해제되더라도 일단 형성된 자기경로는 계속해서 유지된다.
또한 제어부(210)는 지정된 프로세스에 따라 자동으로 탈착 명령을 발생하거나, 사용자로부터 탈착 명령(즉, 대상물체를 탈착시키기 위한 명령)을 입력받고, 탈착 신호를 지정된 시간 동안(예 : 0.2초) 출력한 후 탈착 신호의 출력을 종료한다.
전원 스위칭부(220)는 탈착 신호에 대응하는 지정된 일정 레벨의 직류(DC) 전압(예 : V-)을 자기경로 제어부재(140)에 출력한다.
이때 탈착 명령에 따른 탈착 신호가, 대상 물체를 자기이동경로 제어장치에서 탈착시키기 위한 신호라고 가정하면, 탈착 신호에 대응하는 직류(DC) 전압(예 : V-)이 자기경로 제어부재(140)에 인가됨에 따라, 자기경로 제어부재(140)에 자기장(즉, 자력이동유닛(110)을 밀어 올리는 방향의 자기장)이 생성되어 자력이동유닛(110)을 상부로(즉, 베이스 부재(150) 측으로) 이동시킨다.
자력이동유닛(110)이 상부로 이동됨에 따라, 영구자석(111)에서 발생되는 자력으로 제1 폴피스(112)가 베이스 부재(150)에 부착된다. 이 경우에는 자기경로는 형성되지 않으며, 단순히 자력이동유닛(110)의 자력에 의해서만 부착이 이루어지며, 하부(즉, 대상물체 측)로의 자기 이동은 차단된다.
상기와 같이 본 실시예에 따른 자기이동경로 제어장치는 일단 자기경로가 형성되면, 자기경로 제어부재(140)을 통해 강제적으로 해제하기 전까지는, 자기경로 제어부재(140)에 생성되었던 자기장이 해제되더라도 일단 형성된 자기경로를 계속해서 유지한다.
상기와 같이 본 실시예에 따른 자기이동경로 제어장치는 자기경로를 생성하거나 해제하는 순간에만 자기경로 제어부재(140)에 전원을 인가하고, 자기경로를 생성하거나 해제한 이후에는 자기경로 제어부재(140)에 전원을 인가하지 않더라도 계속해서 자기경로를 유지할 수 있으므로, 기존의 전자석 방식 마그네틱 탈부착 장치에 비해서 전력 소모를 수 천배 이상 감소시킬 수 있는 효과가 있다(도 7 및 8 참조).
자력 검출부(230)는 베이스 부재(150)의 자력을 검출한다. 예컨대 상기 자력 검출부(230)는 홀센서를 포함할 수 있다.
제어부(210)는 자력 검출부(230)를 통해 검출된 베이스 부재(150)의 자력이 기 설정된 자력(예 : 베이스부재의 잔류 자력)보다 크면 제1 자기경로(즉, 베이스부재를 포함하여 자력이 전달되는 자기경로)가 형성된 것으로 판단할 수 있고, 자력 검출부(230)를 통해 검출된 베이스 부재(150)의 자력이 기 설정된 자력(예 : 베이스부재의 잔류 자력) 이하이면 자기경로가 형성된 것으로 판단할 수 있다.
따라서 제어부(210)는 자력 검출부(230)를 통해 검출된 자력을 이용해 현재의 자기경로의 생성과 해제를 판단하고, 원하는 자기경로가 형성되거나 해제될 때까지 신호의 출력을 유지함으로써, 자기경로를 안정적으로 생성하거나 해제할 수 있도록 한다.
도 7 및 8은 도 6에 있어서, 본 실시예에 따른 자기이동경로 제어장치와 기존의 전자석 방식 마그네틱 탈부착 장치의 전원 인가 방식과 전력 소모량을 비교하기 위한 예시도로서, 1톤의 대상 물체를 흡착하여 3분 동안 이동시키는 테스트를 실시한 결과, 기존의 전자식 마그네틱 탈부착 장치는 975KW의 전력을 소모하였으나(도 8), 본 실시예에 따른 자기이동경로 제어장치는 단지 0.2KW의 전력을 소모함으로써(도 7), 수 천배 이상의 전력 소모를 감소시키는 효과가 있음을 알 수 있었다.
왜냐하면, 본 실시예에 따른 자기이동경로 제어장치는, 도 7에서와 같이 자기경로를 생성(예 : 흡착)하거나 해제(예 : 탈착)하는 순간에만 자기경로 제어부재(140)에 전원을 인가하지만, 도 8과 같이 기존의 전자석 방식 마그네틱 탈부착 장치는 흡착(Lift) 시부터 탈착(Drop) 시까지 계속해서 전자석에서 전력을 소모하기 때문이다.
그런데 만약 대상 물체를 흡착한 후 이동시키는 시간이, 테스트 시간(3분)보다 더 증가되는 경우에는 증가된 이동 시간에 비례하여 기존 전자석 방식 마그네틱 탈부착 장치의 전력 소모는 더 증가할 것이나, 본 실시예에 따른 자기이동경로 제어장치는 이동 시간이 증가하더라도 전력 소모는 더 증가되지 않기 때문에 전력 소모량의 차이는 더 커질 수 있다.
이와 같이 본 실시예에 따른 자기이동경로 제어장치는 기존 전자석 방식 마그네틱 탈부착 장치와 같이 정확한 시점에 흡착과 탈착이 가능하여 매우 안정적이면서도, 오히려 소모 전력은 기존 전자석 방식 마그네틱 탈부착 장치 대비 수 천배 이상 감소시킬 수 있는 효과가 있다.
이하, 본 발명에 따른 자기이동경로 제어장치의 다른 실시예에 대해서 설명하도록 한다.
도 9 내지 도 11을 참조하면, 자기이동경로 제어장치는, 자력이동유닛(310), 제1 외측폴피스(320), 제2 외측폴피스(330), 자기경로 제어부재(340), 베이스 부재(350) 및 가이드 부재(360)를 포함한다.
또한, 자력이동유닛(310)은 영구적인 자력을 발생하는 영구자석(311)과 영구자석(311)의 제1 면에 부착되는 제1 폴피스(312)와 영구자석(311)의 제2 면에 부착되는 제2 폴피스(313)를 포함한다.
상기 각각의 구성요소의 기능과 작동은 위에서 설명한 실시예와 동일하므로 여기서는 생략하기로 한다.
본 실시예에 따른 자기이동경로 제어장치는 위에서 바라 본 평면 형상이 정사각형으로 이루어진다.
또한, 자력이동유닛(310), 제1 외측폴피스(320), 제2 외측폴피스(330), 자기경로 제어부재(340) 및 베이스 부재(350)는 위에서 본 평면 형상이 정사각형으로 이루어진다.
여기서, 베이스 부재(350)와 제1 외측폴피스(320)와 자기경로 제어부재(340)는 위에서 본 평면 형상이 정사각형이고, 제2 외측폴피스(330)와 자력이동유닛(310)은 위에서 본 평면 형상이 원형으로 될 수 있다.
제1 외측폴피스(320)는 조립 가능한 복수 개의 서브 외측 폴피스(321)로 구성된다.
본 실시예에 따른 자기이동경로 제어장치는 복수 개가 설치될 경우 매트릭스 형태로 설치가 가능하므로 자기력을 효율적으로 사용하게 된다.
자기이동경로 제어장치가 원통형일 경우, 복수 개가 설치되면 자기이동경로 제어장치 사이에 공간이 생기므로 자기력을 효율적으로 상용하지 못하게 된다. 따라서, 정사각형의 자기이동경로 제어장치를 복수 개로 설치하여 면적이 큰 대상물체를 탈부착하는데 사용하게 된다.
이하, 본 발명에 따른 자기이동경로 제어장치의 또 다른 실시예에 대해서 설명하도록 한다. 구체적인 구성 및 작동은 앞에서 설명한 일실시예와 유사하므로 여기서는 차이점 위주로 설명한다.
도 12 내지 도 14를 참조하면, 본 발명의 또 다른 실시예인 자기이동경로 제어장치는, 자력이동유닛(410), 제1 외측폴피스(420), 제2 외측폴피스(430) 및 자기경로 제어부재(440)를 포함한다.
자력이동유닛(410)은 영구자석(411), 제1 폴피스(412) 및 제2 폴피스(413)로 구성된다. 영구자석(411)은 중앙부에 관통홀이 형성되고, 원통 형상으로 이루어진다. 보다 구체적으로 설명하면 영구자석(411)은 원판 형상으로 형성되어 있으며, S극 원판과 N극 원판으로 형성된다.
제1 폴피스(412)는 강자성체로서 영구자석(411)의 양면 중 어느 한 면인 제1 면에 부착될 수 있고, 영구자석(411)의 제1면이 S극이면 제1 폴피스(412)는 S극에 가까운 극성을 띄게 된다. 제1 폴피스(412)는 중앙부에 관통홀이 형성되고, 원통 형상으로 형성된다.
제2 폴피스(413)는 강자성체로서 영구자석(411)의 양면 중 어느 한 면인 제2 면에 부착될 수 있고, 영구자석(411)의 제2면이 N극이면 제2 폴피스(413)는 N극에 가까운 극성을 띄게 된다. 제2 폴피스(413)는 중앙부에 관통홀이 형성되고, 원통 형상으로 형성된다.
여기서, 자력이동유닛(410)은 전체적으로 원통형상을 가지며, 영구 자석(411), 제1 폴피스(412), 및 제2 폴피스(413) 각각은 그 중앙부에 관통홀을 구비함으로써, 자력이동유닛(410)의 표면적이 증가하고, 상기 관통홀 모서리로 강한 자기를 형성하여 자기력을 증대시킨다.
영구자석(411), 제1 폴피스(412) 및 제2 폴피스(413)로 구성된 자력이동유닛(410)은 그 중앙부에 관통홀이 형성되고, 상기 관통홀에는 자력이동유닛(410)을 이동시키는 가이드축(460)이 삽입된다. 가이드축(460)은 원기둥 형상이고, 자력이동유닛(410)은 원기둥 형상의 가이드축(460) 외측을 따라 안정적으로 이동하게 된다. 만약 가이드축(460)이 없다면 자력이동유닛(410)이 상하로 이동시 좌우로 흔들릴 수 있는 문제가 있지만, 가이드축(460)이 있으므로 자력이동유닛(410)이 상하 이동시 좌우 흔들림 없이 이동하게 되는 것이다.
제1 폴피스(412) 및 제2 폴피스(413)와 영구자석(411)과의 결합은 자력에 의한 결합도 가능하고, 체결수단에 의한 강제 결합도 가능하다.
본 실시예의 특징은, 제1 폴피스(412)는 원통 형상이며, 그 외경이 상부에서 하부로 갈수록 좁게 형성되고, 제1 외측폴피스(420)는 내부가 관통되는 원통 형상이며, 그 상측에는 돌출부가 내측으로 형성되며, 상기 돌출부는 그 내경이 상부에서 하부로 갈수록 좁게 형성되어 제1 폴피스(412)의 외측과 접촉되거나 이격된다.
여기서, 제1 폴피스(412)의 외측과 제1 외측폴피스(420)의 내측이 상부에서 하부로 비스듬히 기울기를 가지고 대면함으로써 제1 폴피스가(412)가 상부로 이동시 제1 외측폴피스(420) 내측의 경사면으로부터 용이하게 이격된다. 또한, 제1 폴피스의 외측 둘레 전체는 경사진 형상으로 제1 외측폴피스의 돌출부 전체와 접촉됨으로써 접촉면적이 넓어져서 자기력이 증가된다.
만약 제1 폴피스(412)의 외측과 제1 외측폴피스(420)의 내측이 수직방향으로 서로 대면한다면 제1폴피스(412)가 상부로 이동시 제1 외측폴피스(420)와의 마찰로 이동이 용이하지 않게 된다.
한편, 제1 폴피스가(412)가 하부로 이동시 제1 외측폴피스(420) 내측의 경사면에 접촉되어 그 이상 하부로 이동하지 않게 됨으로써 자력이동유닛(410)의 이동거리를 제한할 수 있는 장점이 있다. 따라서, 자력이동유닛(410)의 하부를 받쳐주는 지지대상이 없어도 더 이상 아래로 이동하지 않게 되며, 이로 인해 자력이동유닛의 이동거리를 정할 수 있는 장점이 있다.
만약 제1 폴피스(412)의 외측과 제1 외측폴피스(420)의 내측이 수직방향으로 서로 대면한다면 제1폴피스(412)가 하부로 이동시 자력이동유닛(410)의 하부를 받쳐주는 지지대상이 따로 없다면 이동거리가 길어지는 단점이 있다. 앞서 언급한 바와 같이, 자력이동유닛(410)의 이동거리는 너무 길어지면 전류의 소모가 증가되는 문제가 있기 때문에 이를 고려하여 이동거리를 정해야 한다.
제1 폴피스(412)의 외측과 제1 외측폴피스(420)의 상측에 형성된 돌출부의 내면이 서로 경사지게 대면함으로써, 자기경로 제어부재(440)의 제어에 의해 자력이동유닛(410)이 상부에 이동하게 되면 제1 폴피스(412)는 제1 외측폴피스(420)와 이격되고, 제2 폴피스(413)는 제2 외측폴피스(430)와 이격되는 제1 위치를 형성하여 대상물체와 탈착된다(도 15 참조).
이어서 자기경로 제어부재(440)의 제어에 의해 자력이동유닛(410)이 하부에 이동하게 되면 제1 폴피스(412)는 제1 외측폴피스(420)와 접촉되고, 제2 폴피스(413)는 제2 외측폴피스(430)와 접촉되는 제2 위치를 형성하여 대상물체와 흡착된다(도 16 참조).
본 실시예는 추가적으로 제1외측폴피스고정부재(451), 베이스 부재(450), 갭(GAP)조정유닛(475), 자력이동유닛결합부재(414), 가이드축고정부재(461) 및 제2외측폴피스고정부재(462)를 포함한다.
제1외측폴피스고정부재(451)는 베이스 부재(450)에 제1 외측폴피스(420)를 결합한다. 예컨대 상기 제1외측폴피스고정부재(451)는 볼트 형태로 형성되고, 베이스 부재(450)는 원형 판(板) 형태로 형성된다.
제1 외측폴피스(420)는, 본 실시예에 따른 자기이동경로 제어장치의 외부 커버(또는 프레임)로서, 내부가 관통되는 원통형 형태이며, 그 상측에는 돌출된 턱이 내측으로 형성되고, 턱에는 복수의 홀(hole)이 일정한 간격으로 형성된다.
제1 외측폴피스(420)의 턱에 형성된 복수의 홀(hole)은, 제1외측폴피스고정부재(451)를 관통시켜, 상기 제1외측폴피스고정부재(451)를 이용해 상기 제1 외측폴피스(420)과 상기 베이스 부재(450)를 결합 고정시킬 수 있도록 한다.
도 14에는 제1외측폴피스고정부재(451)가 베이스부재(450)의 외측 상부로부터 홀(hole)에 삽입되어 결함됨으로써, 외부에 노출되게 도시되어 있지만, 제1외측폴피스고정부재(451)가 결합되는 방향은 제1외측폴피스(420)의 내측 하부에서 베이스 부재(450)의 방향으로 삽입되어 결합되게 함으로써, 제1외측폴피스고정부재(451)가 외부에 노출되지 않게 할 수도 있다. 물론, 상기 제1외측폴피스고정부재(451)가 외부에 노출되지 않도록 구현할 경우, 베이스 부재(450)에 형성되는 홀(hole)은 상부까지 관통되지 않도록 하부에 형성되는 홀 깊이를 조정할 필요가 있다.
상기와 같이 상기 제1외측폴피스고정부재(451)가 외부에 노출되지 않도록 하면서 제1 외측폴피스(420)과 상기 베이스 부재(450)를 결합 고정할 경우, 방진 및 방수 효과를 얻을 수 있으며, 또한 외관 형상을 미려하게 하여 대상물체나 사용자에 대하여 걸림이나 긁힘 등의 사고가 발생하지 않도록 하는 효과를 추가로 얻을 수 있다.
가이드축(460)는 내부가 채워진 원기둥 형상의 가이드축 본체와, 가이드축 본체의 저면 둘레에 형성된 가이드턱과, 가이드축 본체를 관통하여 형성된 가이드본체홀과, 가이드턱을 관통하여 형성된 가이드턱홀로 구성된다.
이때 가이드축고정부재(461)는 가이드축본체홀에 삽입되어 가이드축(460)과 베이스부재(450)를 고정하고, 제2외측폴피스고정부재(462)는 가이드턱홀에 삽입되어 가이드(460)축과 제2 외측폴피스(430)를 고정한다.
여기서, 자력이동유닛(410)이 가이드축(460)의 원기둥 부분의 외측을 따라 상하로 이동한다. 자력이동유닛(410)이 이동할 수 있는 길이(또는 거리,갭)는 갭(GAP)조정유닛(475)의 두께에 따라 조정될 수 있다. 상기 갭조정유닛(475)은 자성체가 아닌 소재로 형성될 수도 있다. 갭조정유닛(475)은 지정된 특정 두께를 갖는 링(ring) 형태이며, 베이스 부재(450)와 자력이동유닛(410)의 사이에 고정 결합된다.
여기서 갭조정유닛(475)의 두께는, 자력이동유닛(410)을 이동시키기 위한 길이(또는 거리, 갭)에 해당하는 것으로서, 예컨대 1(mm) 내지 10(mm)가 바람직하지만, 반드시 이 두께로 한정하고자 하는 것은 아니다. 갭조정유닛(475)의 두께가 더 두꺼울수록 자력이동유닛(410)을 이동시키기 위한 길이(또는 거리, 갭)가 증가하고, 이에 비례하여 자기경로 제어부재(440)을 제어하기 위한 전류 소모도 증가하므로, 이를 고려하여 갭조정유닛(475)의 두께를 조정할 필요가 있다.
한편 자기경로 제어부재(440)에 의해 제어되어, 자력이동유닛(410)이 상부의 베이스 부재(450)를 향하여 이동할 경우(즉, 대상물체를 탈착시키기 위하여 이동할 경우), 자력이동유닛(410)의 하부와 제2 외측폴피스(430)의 상부 간에 갭조정유닛(475)의 두께에 해당하는 만큼의 갭(GAP)이 형성된다. 이에 따라 상기 갭(GAP)을 통해 자력이동유닛(410)에서 제1 외측폴피스(420), 및 제2 외측폴피스(430)으로 자력이 전달되지 않도록 한다. 이때 자력이동유닛(410)과 베이스 부재(450)가 부착된다고 하더라도 자기경로가 형성되는 것은 아니며 단지 자력에 의해 부착상태로 있게 된다.
반대로 자기경로 제어부재(440)에 의해 제어되어, 자력이동유닛(410)이 하부의 제2 외측폴피스(430)을 향하여 이동할 경우(즉, 대상물체를 흡착시키기 위하여 이동할 경우), 자력이동유닛(410)의 상부와 베이스부재(450)의 하부 간에 갭조정유닛(475)의 두께에 해당하는 만큼의 갭(GAP)이형성된다. 이에 따라 상기 갭(GAP)을 통해 자력이동유닛(410)에서 베이스부재(450)로 자력이 전달되지 않도록 하면서 동시에 자력이동유닛(410)과 접촉된 제1 외측폴피스(420), 제2 외측폴피스(430) 및 대상물체(미도시) 간에 자기경로가 형성된다.
따라서 형성된 자기경로에 의해 상기 제1 외측폴피스(420) 및 제2 외측폴피스(430)에 대상물체(미도시)가 흡착된 상태로 유지된다.
즉, 갭(GAP)은 자력이동유닛(410)이 가이드축(460)를 따라 이동하는 방향에 의해 자력이동유닛(410)의 상하 양측 중 어느 일 측에 형성되는 공간이다. 갭(GAP)에 의해 자력이동유닛(410)의 자력이 상부나 하부로 전달되는 것을 방지한다.
제2 외측폴피스(430)은 자력이동유닛(410)의 하부에 접촉될 수 있으며, 중앙부에 관통형 홀(hole)이 형성되어 이 관통형 홀(hole)을 통해 가이드축(460)의 원기둥 부분이 통과될 수 있도록 형성된다.
도 15 및 도 16을 참조하면, 제2 외측폴피스(430)의 상부는 내측과 외측으로 미리 지정된 폭의 턱이 형성되며, 외측에 형성된 턱은 그 끝에서 외측 측부와 만나는 모서리를 향해 미리 지정된 각도로 비스듬히 모따기를 하며, 내측에 형성된 턱과 내측 측부가 만나는 모서리에서 측부의 하부를 향해 미리 지정된 각도로 비스듬히 모따기를 한다.
상기 제2 외측폴피스(430)의 외측으로 밀착되게 자기경로 제어부재(440)이 결합된다.
자력이동유닛(410)은, 원형 판 형태로 중심부에 관통형 홀(hole)이 형성된 영구자석(411), 및 영구자석(411)의 상부와 하부에 각기 제1 및 제2 폴피스(412, 413)가 자력이동유닛결합부재(414)를 이용해 일체로 결합하여 형성한다. 여기서 제1 및 제2 폴피스(412, 413)는 자성체(또는 강자성체)로 형성되며, 영구자석(411)에서 발생한 자력의 손실을 최소화하면서 상부나 하부로 전달하고, 또한 영구자석(411)이 충격(즉, 상하 이동 시 발생하는 마찰이나 충격)에 의해 물리적으로 파손(또는 자력 손실)되는 것을 방지할 수 있도록 기능한다.
참고로 영구자석(411)에 형성된 관통형 홀(hole)의 크기가 제1 및 제2 폴피스(412, 413)에 형성된 관통형 홀(hole)의 크기보다 더 크게 형성함으로써, 영구자석(411)에는 자력이동유닛결합부재(414)를 위한 홀(hole)을 뚫지 않더라도(즉, 영구자석(411)에 홀을 뚫을 경우에는 자력에 영향을 미치므로), 제1 및 제2 폴피스(412, 413)에만 홀(hole)을 뚫어 자력이동유닛결합부재(414)를 이용해 제1 및 제2 폴피스(412, 413)를 결합함으로써, 그 사이에 영구자석(411)을 물리적 손상 없이 고정한다.
설명된 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다. 또한, 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.
본 발명은 자기이동경로 제어장치에 대한 제조 분야에 산업상 이용 가능성이 있다.

Claims (22)

  1. 영구적인 자력을 발생하는 영구자석과, 상기 영구자석의 제1면에 부착되는 제1 폴피스와, 상기 영구자석의 제2면에 부착되는 제2 폴피스를 포함하는 자력이동유닛;
    상기 자력이동유닛과 접촉하여 자기경로를 형성하는 제1 외측폴피스;
    상기 자력이동유닛과 접촉하여 상기 제1 외측폴피스와는 다른 자기경로를 형성하는 제2 외측폴피스;
    상기 제1 외측폴피스의 상부와 접촉하는 베이스 부재; 및
    상기 자력이동유닛이 상기 제1 외측폴피스와 접촉하고, 제2 외측폴피스와는 이격하거나 접촉하게 함으로써 자기경로를 해제하거나 생성하는 자기경로 제어부재를 포함하며,
    상기 자력이동유닛은,
    제1 폴피스와 제2 폴피스 중 적어도 하나가 제1 외측폴피스와 접촉되고 제2 폴피스는 제2 외측폴피스와 이격되어 대상 물체를 탈착시키는 탈착 위치인 제1 위치와, 제1 폴피스와 제2 폴피스 중 적어도 하나는 제1 외측폴피스와 접촉되고, 제2 폴피스는 제2 외측폴피스와 접촉되어 상기 대상 물체를 흡착시키는 흡착 위치인 제2 위치 사이에서 이동하고,
    상기 제1 폴피스 및 제2 폴피스 각각의 외측에 형성된 제1 에어이동부;
    상기 제1 외측 폴피스의 상면에 형성되는 제2 에어이동부;
    상기 베이스 부재의 저면에 형성되는 제3 에어이동부를 포함하고,
    상기 자력 이동유닛이 상기 제1 위치에서 상기 제2 위치로 이동할 때 상기 제1 외측폴피스와 상기 제2 외측폴피스에 의해 정의되는 내부 공간에 존재하는 공기가 상기 제1 에어이동부, 상기 제2 에어이동부 및 상기 제3 에어이동부를 거쳐 외부로 이동 배출되는, 자기이동경로 제어장치.
  2. 제1항에 있어서,
    상기 제1 외측폴피스는 상기 자기이동경로 제어장치의 외면을 형성하고, 상기 제2 외측폴피스는 상기 제1 외측폴피스의 내측에 동심으로 설치되고, 상기 자력이동유닛은 상기 자기경로 제어부재의 내측에 동심으로 설치되는, 자기이동경로 제어장치.
  3. 제1항에 있어서,
    상기 자력이동유닛은,
    전체적으로 원통형상을 가지며, 상기 영구자석, 상기 제1 폴피스 및 상기 제2 폴피스의 중앙부에 각각 관통홀을 구비함으로써, 상기 자력이동유닛의 표면적을 증가시키고, 상기 관통홀 모서리를 형성하여 자기력을 증대시키는, 자기이동경로 제어장치.
  4. 제3항에 있어서,
    상기 관통홀에 삽입되어 상기 자력이동유닛을 이동시키는 가이드축을 더 포함하는, 자기이동경로 제어장치.
  5. 제4항에 있어서,
    상기 베이스 부재는,
    상기 베이스 부재의 중심부에 상기 가이드축을 지지하는 제1 가이드 홈을 포함하는, 자기이동경로 제어장치.
  6. 제5항에 있어서,
    상기 제2 외측폴피스는, 형상이 원통형 형상으로 형성되어 있고,
    상기 제2 외측폴피스의 중심부에 상기 가이드축을 지지하는 제2 가이드 홈을 포함하는, 자기이동경로 제어장치.
  7. 제1항에 있어서,
    상기 제1 에어이동부는, 상기 제1 폴피스 및 상기 제2 폴피스의 외측면에 4방향 대향지게 형성된 홈이고,
    상기 제2 에어이동부는, 상기 제1 에어이동부와 유통되게 상기 제1 외측 폴피스의 상면에 방사상으로 형성되는 홀인, 자기이동경로 제어장치.
  8. 제7항에 있어서,
    상기 제 3 에어이동부는, 상기 베이스 부재의 저면 가장자리에 형성된 홈인, 자기이동경로 제어장치.
  9. 제7항에 있어서
    상기 제3 에어이동부는, 상기 베이스 부재를 관통하는 홀로 형성되어 상기 제2 에어이동부와 일직선상에 위치하는, 자기이동경로 제어장치.
  10. 제1항에 있어서,
    상기 베이스 부재의 하면, 상기 제1 외측폴피스의 내측면 및 상기 자력이동유닛의 상면에 의해 정의되는 공압 공간으로서, 상기 자력이동유닛이 상기 자기 경로 제어부재에 의해 상기 제2 위치로 이동되면, 상기 공기가 유입되어서 상기 자력이동유닛을 상기 제2 위치로 가압하는 제1 공압 생성부를 더 포함하는, 자기이동경로 제어장치.
  11. 제10항에 있어서,
    상기 제1 외측폴피스의 내측면, 상기 자력이동유닛의 하면 및 상기 제2 외측폴피스의 상면에 의해 정의되는 공압 공간으로서, 상기 자력이동유닛이 상기 자기 경로 제어부재에 의해 상기 제1 위치로 이동되면, 상기 공기가 유입되어서 상기 자력이동유닛을 상기 제1 위치로 가압하는 제2 공압 생성부를 더 포함하는, 자기이동경로 제어장치.
  12. 제1항에 있어서,
    상기 자기경로 제어부재는 상기 제2 외측폴피스의 외측에 결합되는 보빈 및 상기 보빈에 권취되는 코일을 포함하며, 상기 코일에 인가되는 전류의 방향을 의해 자기경로가 변경되어서 상기 자력이동유닛이 이동되게 되는, 자기이동경로 제어장치.
  13. 제12항에 있어서,
    상기 제1 위치는, 상기 영구 자석이 상기 제1 외측 폴피스와 접촉하고, 상기 자력이동유닛의 저면이 상기 제2 외측 폴피스의 상면과 이격되는 위치이고,
    상기 제2 위치는 상기 영구 자석이 상기 보빈에 접촉하고, 상기 자력이동유닛의 저면이 상기 제2 외측 폴피스와 상면과 접촉되는 위치인, 자기이동경로 제어장치.
  14. 제1항에 있어서,
    상기 자기이동경로 제어장치의 평면 형상이 정사각형으로 이루어지는, 자기이동경로 제어장치.
  15. 제14항에 있어서,
    상기 제1 외측폴피스는 조립 가능한 복수개의 서브 외측 폴피스로 구성되는, 자기이동경로 제어장치.
  16. 영구적인 자력을 발생하는 영구자석과, 상기 영구자석의 제1면에 부착되는 제1 폴피스와, 상기 영구자석의 제2면에 부착되는 제2 폴피스를 포함하는 자력이동유닛;
    상기 자력이동유닛과 접촉하여 자기경로를 형성하는 제1 외측폴피스;
    상기 자력이동유닛과 접촉하여 상기 제1 외측폴피스와는 다른 자기경로를 형성하는 제2 외측폴피스;
    상기 제1 외측폴피스의 상부와 접촉하는 베이스 부재; 및
    상기 자력이동유닛이 상기 제1 외측폴피스와 제2 외측폴피스에 동시에 이격하거나 접촉하게 함으로써 자기경로를 해제하거나 생성하는 자기경로 제어부재를 포함하며,
    상기 자력이동유닛은,
    제1 폴피스는 제1 외측폴피스와 이격되고, 제2 폴피스는 제2 외측폴피스와 이격되어 대상 물체를 탈착시키는 탈착위치인 제1 위치와, 제1 폴피스는 제1 외측폴피스와 접촉되고, 제2 폴피스는 제2 외측폴피스와 접촉되어 상기 대상물체를 흡착시키는 흡착 위치인 제2 위치 사이에서 이동하고,
    상기 제1 폴피스는 원통 형상이며, 상기 제1 폴피스의 외경은 상부에서 하부로 갈수록 좁게 형성되고, 상기 제1 외측폴피스는 내부가 관통되는 원통 형상이며, 상기 제1 외측폴피스의 상측에는 돌출부가 내측으로 형성되며, 상기 돌출부의 내경은 상부에서 하부로 갈수록 좁게 형성되고,
    상기 제1폴피스의 외측 둘레는 경사진 형상으로 상기 제1 외측폴피스의 돌출부와 접촉됨으로써 접촉면적이 넓어져서 자기력이 증가되는, 자기이동경로 제어장치.
  17. 제16항에 있어서,
    상기 자력이동유닛은,
    전체적으로 원통형상을 가지며, 상기 영구 자석, 상기 제1 폴피스 및 상기 제2 폴피스의 중앙부에 각각 관통홀을 구비함으로써, 상기 자력이동유닛의 표면적을 증가시키고, 상기 관통홀 모서리를 형성하여 자기력을 증대시키는, 자기이동경로 제어장치.
  18. 제17항에 있어서,
    상기 관통홀에 삽입되어 상기 자력이동유닛을 이동시키는 가이드축을 더 포함하는, 자기이동경로 제어장치.
  19. 제18항에 있어서,
    상기 가이드축은,
    원기둥형상의 가이드축 본체;
    상기 가이드축 본체의 저면 둘레에 형성된 가이드턱;
    상기 가이드축 본체를 관통하여 형성된 가이드축본체홀; 및
    상기 가이드턱을 관통하여 형성된 가이드턱홀을 포함하는, 자기이동경로 제어장치.
  20. 제16항에 있어서,
    상기 자기경로 제어부재는 상기 제2 외측폴피스의 외측에 결합되는 보빈과 상기 보빈에 권취되는 코일을 포함하며, 상기 코일에 인가되는 전류의 방향에 의해 자기경로가 변경되어서 상기 자력이동유닛이 이동되게 하는, 자기이동경로 제어장치.
  21. 제16항에 있어서,
    상기 제2 외측폴피스는,
    상부에 내측과 외측으로 미리 지정된 폭의 턱이 형성되며, 외측에 형성된 턱은 끝에서 외측 측부와 만나는 모서리를 향해 미리 지정된 각도로 비스듬히 모따기를 하며, 내측에 형성된 턱은 내측 측부가 만나는 모서리에서 측부의 하부를 향해 미리 지정된 각도로 비스듬히 모따기를 한 형태로 형성되는, 자기이동경로 제어장치.
  22. 제19항에 있어서,
    상기 가이드축본체홀에 삽입되어 상기 가이드축과 상기 가이드축 상부에 위치한 상기 베이스부재를 결합 고정하는 가이드축고정부재; 및
    상기 가이드턱홀에 삽입되어 상기 가이드축과 상기 제2 외측폴피스를 결합 고정하는 제2외측폴피스 고정부재를 더 포함하는, 자기이동경로 제어장치.
PCT/KR2019/016110 2018-12-07 2019-11-22 자기이동경로 제어장치 WO2020116835A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980080860.1A CN113168950B (zh) 2018-12-07 2019-11-22 磁移动路径控制装置
US17/299,952 US11817238B2 (en) 2018-12-07 2019-11-22 Magnetic flux path control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180156866A KR102004983B1 (ko) 2018-12-07 2018-12-07 자기이동경로 제어장치
KR10-2018-0156866 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020116835A1 true WO2020116835A1 (ko) 2020-06-11

Family

ID=67473478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016110 WO2020116835A1 (ko) 2018-12-07 2019-11-22 자기이동경로 제어장치

Country Status (4)

Country Link
US (1) US11817238B2 (ko)
KR (1) KR102004983B1 (ko)
CN (1) CN113168950B (ko)
WO (1) WO2020116835A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004983B1 (ko) 2018-12-07 2019-07-30 (주)유엔디 자기이동경로 제어장치
KR102269293B1 (ko) * 2019-11-28 2021-06-25 (주)유엔디 육면체 타입의 자기이동경로 제어장치
KR20230065642A (ko) 2021-11-05 2023-05-12 (주)유엔디 스마트 블록결합형 마그네틱 척 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160056216A (ko) * 2014-11-11 2016-05-19 주식회사 이디리서치 자기력착탈장치
KR20160090155A (ko) * 2015-01-21 2016-07-29 최태광 자성체 홀딩 장치
KR20160130699A (ko) * 2015-05-04 2016-11-14 최태광 자기흐름 제어장치
JP2018503257A (ja) * 2014-01-30 2018-02-01 イクストゥール オイIxtur Oy 磁石
KR102004983B1 (ko) * 2018-12-07 2019-07-30 (주)유엔디 자기이동경로 제어장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751070A (zh) * 2012-07-10 2012-10-24 郜业伟 磁力安装装置及其用途
JP2019164094A (ja) 2018-03-20 2019-09-26 日本碍子株式会社 電荷発生装置とそれを有する微粒子検出器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503257A (ja) * 2014-01-30 2018-02-01 イクストゥール オイIxtur Oy 磁石
KR20160056216A (ko) * 2014-11-11 2016-05-19 주식회사 이디리서치 자기력착탈장치
KR20160090155A (ko) * 2015-01-21 2016-07-29 최태광 자성체 홀딩 장치
KR20160130699A (ko) * 2015-05-04 2016-11-14 최태광 자기흐름 제어장치
KR102004983B1 (ko) * 2018-12-07 2019-07-30 (주)유엔디 자기이동경로 제어장치

Also Published As

Publication number Publication date
US20210335529A1 (en) 2021-10-28
CN113168950B (zh) 2022-12-09
CN113168950A (zh) 2021-07-23
US11817238B2 (en) 2023-11-14
KR102004983B1 (ko) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2020116835A1 (ko) 자기이동경로 제어장치
WO2016003040A1 (ko) 자성체 홀딩 장치
WO2015156494A1 (ko) 잔류 자기를 최소화한 자성체 홀딩 장치
WO2016178473A1 (ko) 자기흐름 제어장치
WO2015182806A1 (ko) 이동 단말기의 부상 시스템
WO2013095067A1 (ko) 무선 전력전송장치 및 방법
WO2016021776A1 (ko) 무선 단말기 거치 겸용 충전 시스템
WO2012144769A1 (ko) 영구자석 워크홀딩 장치
WO2019164296A1 (ko) 카메라 모듈
WO2016117751A1 (ko) 자성체 홀딩 장치
WO2018182105A1 (ko) 고속스위치
EP3818598A1 (en) Safety outlet
WO2014148742A1 (ko) 리셉터클형 무선전력 전송장치
WO2016148321A1 (ko) 자성체 홀딩 장치
WO2017191861A1 (ko) 헤드마운티드 디스플레이
WO2014017713A1 (ko) 무정전 전원 공급 시스템
WO2020055127A1 (ko) 영구자석 내장형 마그네틱 척
WO2011162425A1 (ko) 영구자석 잠금장치
WO2015064852A1 (ko) 차량용 스마트폰 거치대
WO2018074780A1 (ko) 건식 에칭장치 및 그 제어방법
WO2021187774A1 (ko) 아크 소호 조립체 및 이를 포함하는 차단기
WO2018199404A1 (ko) 광원 모듈 체결 구조
WO2021137311A1 (ko) 사용자 단말을 다양한 방향 및 각도로 거치할 수 있는 무선 충전 장치
KR101942509B1 (ko) 디씨 구동 원형 타입 마그네틱 리프트 및 그 제어 장치
WO2021080071A1 (ko) 래디얼 마그넷 액추에이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894076

Country of ref document: EP

Kind code of ref document: A1