WO2020115940A1 - タイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システム - Google Patents

タイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システム Download PDF

Info

Publication number
WO2020115940A1
WO2020115940A1 PCT/JP2019/027524 JP2019027524W WO2020115940A1 WO 2020115940 A1 WO2020115940 A1 WO 2020115940A1 JP 2019027524 W JP2019027524 W JP 2019027524W WO 2020115940 A1 WO2020115940 A1 WO 2020115940A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
ground contact
vehicle
stress
characteristic measuring
Prior art date
Application number
PCT/JP2019/027524
Other languages
English (en)
French (fr)
Inventor
貴久 神藏
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US17/298,829 priority Critical patent/US20220034755A1/en
Priority to EP19893973.8A priority patent/EP3892978A4/en
Priority to CN201980079688.8A priority patent/CN113167686A/zh
Publication of WO2020115940A1 publication Critical patent/WO2020115940A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/04Suspension or damping
    • G01M17/045Suspension or damping the vehicle wheels co-operating with rotatable rollers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/06Steering behaviour; Rolling behaviour
    • G01M17/065Steering behaviour; Rolling behaviour the vehicle wheels co-operating with rotatable rolls

Definitions

  • the present invention relates to a tire ground contact characteristic measuring method, a tire ground contact characteristic measuring device, and a tire ground contact characteristic measuring system.
  • the present application claims priority based on Japanese Patent Application No. 2018-227656 filed in Japan on December 4, 2018, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes a method and a device for measuring a tire grounding characteristic that obtains a grounding characteristic of each portion of a tire tread surface.
  • a rotary drum that can be rotationally driven in which a three-component force sensor that can measure a ground contact pressure, a widthwise shear stress and a circumferential shear stress of a tire is embedded, has a required camber angle and The tire as the measurement object to which the slip angle is applied is brought into contact.
  • the rotating drum and the tire are rotated together, the tire is passed over the three-component force sensor a plurality of times, and the three-component force sensor applies the ground contact pressure of the tire, the widthwise shear stress and the circumferential shear stress a plurality of times. taking measurement. Further, the tire circumferential position of each measurement point is specified. Furthermore, while displacing the tire in the direction of the rotation axis of the rotary drum, the measurement of the ground contact pressure, the widthwise shear stress, and the circumferential shear stress of the tire and the specification of the tire circumferential position of the measurement point are repeated.
  • the present invention is a tire that can obtain a tire ground contact characteristic corresponding to the tire attitude of the actual vehicle at each time point during a period in which a transient change in the tire attitude during traveling of the actual vehicle occurs.
  • An object is to provide a ground contact characteristic measuring method, a tire ground contact characteristic measuring device, and a tire ground contact characteristic measuring system.
  • a tire ground contact characteristic measuring method is a method in which a reproducing step of reproducing a transient change in a tire posture during running of an actual vehicle on a tire, and a stress measuring means embedded on a rotatable rotating drum, A stress measuring step of measuring a stress applied to the tire abutting the driven rotating drum, and a ground contacting the rotating drum of the tread surface of the tire based on the stress measured by the stress measuring means.
  • the present invention relates to a method of measuring a tire ground contact characteristic of the corresponding tire.
  • a tire ground contact characteristic measuring method capable of obtaining a tire ground contact characteristic corresponding to the tire attitude of the actual vehicle at each point in time during which a transient change in the tire attitude during traveling of the actual vehicle is occurring,
  • a tire ground contact characteristic measuring device and a tire ground contact characteristic measuring system can be provided.
  • the ground contact characteristics of the tire refer to various measured values obtained from the above-mentioned sensor and various stresses and wear energy calculated from the measured values, slip amount, and the like, and those including a ground contact force distribution, various stress distributions, slip distributions, and the like.
  • the motion state and vehicle characteristics include various parameters represented by vehicle position, steering angle, pitch axis, roll axis, moment about yaw axis, vehicle speed, vehicle inertia parameter, ground contact force, tire axial force, and the like.
  • the axial force of the tire may include at least a 6-component force acting on the rotating shaft of the tire.
  • the 6-component force is the force acting on the fixed axis of the tire along the X-axis, Y-axis, and Z-axis directions, the moment acting about the X axis, the moment acting about the Y axis, and the moment acting about the Z axis.
  • the command based on the predicted vehicle characteristics transmitted to the electronic control unit includes wheel speed, yaw rate, vehicle acceleration, on-axis acceleration of tires, forward radar and various sensors mounted on the vehicle such as a camera. Alternate simulated signals shall be included.
  • FIG. 8 is a diagram when measurement points are further added to the example shown in FIG. 7. It is a figure which shows the time change of the ground contact force Fz [N], the camber angle CA [deg], and the slip angle SA [deg] which a tire angle control means of the tire ground contact characteristic measuring device of 2nd Embodiment gives to a tire.
  • Is. It is a figure which shows the difference between the ground contact force distribution calculated by the processing apparatus of the tire ground contact characteristic measuring apparatus of 1st Embodiment, and the ground contact force distribution calculated by the conventional tire ground contact characteristic measuring apparatus as a comparative example.
  • FIG. 1 is a configuration diagram of an example of a tire ground contact characteristic measuring device 100 according to the first embodiment.
  • FIG. 2 is a diagram for explaining the camber angle CA and the like given to the tire T.
  • FIG. 3 is a diagram for explaining a grounding area T1A, etc., of the tread surface T1 of the tire T, which comes into contact with the rotating drum 1.
  • the tire ground contact characteristic measuring device 100 of the first embodiment measures the ground contact characteristic of the tire T.
  • the tire ground contact characteristic measuring device 100 includes a rotating drum 1, a drum driving unit 2, a stress measuring unit 3, a processing unit 4, a tire position control unit 5, a tire driving unit 6, and a tire angle control unit 7.
  • the rotary drum 1 is a substantially cylindrical drum that is configured to be rotatable. As shown in FIGS. 2 and 3, the tread surface T1 of the tire T is brought into contact with the outer peripheral surface of the rotary drum 1.
  • the drum driving means 2 is, for example, a motor or the like that rotationally drives the rotary drum 1.
  • the drum driving means 2 includes a drum shaft 2A.
  • the drum shaft 2A is connected to the rotary drum 1.
  • the drum driving means 2 can rotate the rotary drum 1 in either forward or reverse directions, and can adjust the rotational speed of the rotary drum 1. 1 to 3, the rotary drum 1 is an outside drum type, but in other examples, the rotary drum 1 may be an inside drum type.
  • the stress measuring means 3 measures the stress applied to the tire T that is embedded in the rotating drum 1 and abuts on the rotating drum 1.
  • the stress measuring means 3 is, for example, a three-component force sensor capable of measuring the ground contact force, the widthwise shear stress, and the circumferential shear stress applied to the tire T.
  • the stress measuring means 3 is a three-component force sensor, but in another example, the stress measuring means 3 includes a sensor for measuring the ground contact force, a widthwise shear stress, and a circumferential shearing force. It may be a combination of a two-axis sensor that measures stress.
  • the processing device 4 uses the stress measured by the stress measuring means 3 to contact the rotating drum 1 of the tread surface T1 of the tire T with the ground area T1A (see FIG. 3). ), the tire ground contact characteristic, which is the characteristic in (1).
  • the processing device 4 calculates the ground contact force distribution, the widthwise shear stress distribution, the circumferential shear stress distribution, etc. in the ground contact area T1A as the tire ground contact characteristics.
  • the processing device 4 is, for example, a microcomputer including a CPU (central processing unit), a memory, and the like.
  • a data analysis program for analyzing the measurement result is stored in the memory of the processing device 4.
  • a general-purpose numerical analysis program can be used.
  • the processing device 4 can visualize and display the calculated contact force distribution, widthwise shear stress distribution, circumferential shear stress distribution, etc. in the contact area T1A on a monitor (not shown). By reflecting the above in the vehicle model, the vehicle behavior can be simulated.
  • the processing device 4 includes the above-described data analysis program, but in another example, the processing device 4 includes a data analysis program different from the above-described data analysis program. May be.
  • the tire position control means 5 controls the position of the tire T with respect to the rotary drum 1.
  • the tire position control means 5 can adjust the position of the tire T with respect to the rotary drum 1 in the rotational axis direction and/or the radial direction of the rotary drum 1.
  • the tire position control means 5 adjusts the position of the tire T with respect to the rotating drum 1, but in other examples, the position of the rotating drum 1 with respect to the tire T may be adjusted.
  • the tire position control means 5 includes a spindle shaft 5A connected to the tire T, a tire drive means 6, and a tire angle control means 7.
  • the tire driving means 6 is, for example, a motor that rotationally drives the tire T.
  • the tire driving means 6 can rotate and drive the tire T in either forward or reverse directions, and can adjust the rotational speed of the tire T.
  • the tire angle control means 7 controls the angle of the tire T with respect to the rotating drum 1.
  • the tire angle control means 7 can give the camber angle CA to the tire T.
  • the tire angle control means 7 can give the tire T a slip angle SA.
  • the tire angle control means 7 can apply the ground contact force to the tire T by bringing the tire T into contact with the rotary drum 1.
  • the tire angle control means 7 can reproduce the tire attitude of the tire T, such as when the vehicle is cornering, by adjusting the camber angle CA, the slip angle SA, and/or the ground contact force of the tire T.
  • One or both of the camber angle CA and the slip angle SA applied to the tire T can be adjusted to 0°.
  • both the camber angle CA and the slip angle SA given to the tire T are adjusted to 0°, the tire attitude of the actual vehicle when traveling straight ahead is reproduced on the tire T.
  • the behavior of the actual vehicle can be reproduced more accurately.
  • the tire ground contact characteristic measuring device 100 of the first embodiment causes a transition of the tire attitude of the actual vehicle when the lane change shown in FIG. 6(B) is executed during the period shown in FIG. These changes were reproduced on the tire T shown in FIGS. 1 to 3.
  • the present inventor has earnestly studied, and tire ground contact characteristics at times A, B, C, D, E (see FIG. 9) calculated by the processing device 4 of the tire ground contact characteristic measuring apparatus 100 of the first embodiment, and the conventional method. It was found that the tire ground contact characteristics at the times A, B, C, D and E calculated by the tire ground contact characteristic measuring device of No. 3 differ.
  • FIG. 10 shows a widthwise shear stress distribution calculated by the processing device 4 of the tire grounding characteristic measuring device 100 of the first embodiment and a widthwise shear stress distribution calculated by a conventional tire grounding characteristic measuring device as a comparative example. It is a figure which shows the difference. Specifically, the upper side of FIG. 10(A) shows the widthwise shear stress distribution at time A calculated by the conventional tire ground contact characteristic measuring device, and the lower side of FIG. 10(A) shows the first embodiment. It shows the widthwise shear stress distribution at time A calculated by the processing device 4 of the tire ground contact characteristic measuring device 100 of the embodiment.
  • the processing device 4 calculates the widthwise shear stress distribution corresponding to the transient tire posture that reproduces the behavior of the actual vehicle at the time A during the period (time t10 to time t70) during which the transient change occurs. did.
  • the ground contact force Fz [N], the camber angle CA [deg] and the slip angle SA [deg] applied to the tire T by the tire angle control means 7 are the time A.
  • the processing device 4 calculated the width-direction shear stress distribution at time A while maintaining the value at the time point.
  • the widthwise shear stress distribution corresponding to the transient tire posture that reproduces the behavior of the actual vehicle (first embodiment) and the widthwise shear stress distribution fixed at the tire posture at each time was calculated. As shown in FIG.
  • the widthwise shear stress distributions at the times A, B, C, D, and E calculated by the processing device 4 of the tire ground contact characteristic measuring device 100 of the first embodiment are the conventional tires as comparative examples.
  • the widthwise shear stress distribution at the times A, B, C, D and E calculated by the ground contact characteristic measuring device was different.
  • FIG. 11 shows the difference between the ground contact force distribution calculated by the processing device 4 of the tire ground contact characteristic measuring device 100 of the first embodiment and the ground contact force distribution calculated by the conventional tire ground contact characteristic measuring device as a comparative example. It is a figure. Specifically, the upper side of FIG. 11(A) shows the ground contact force distribution at time A calculated by the conventional tire ground contact characteristic measuring device, and the lower side of FIG. 11(A) shows the contact force distribution of the first embodiment. 5 shows the ground contact force distribution at time A calculated by the processing device 4 of the tire ground contact characteristic measuring device 100.
  • the ground contact force distribution (ground contact area) at each time calculated by the processing device 4 of the tire ground contact characteristic measuring device 100 of the first embodiment is calculated by a conventional tire ground contact characteristic measuring device as a comparative example. It was different from the ground contact force distribution (ground contact area) at the time.
  • FIG. 12 is a flowchart for explaining an example of processing executed in the tire ground contact characteristic measuring device 100 of the first embodiment.
  • the processing device 4 reproduces a transient change in the tire attitude of the actual vehicle during traveling of the tire T.
  • the transient change in tire attitude may be input from a driving simulator (for example, a vehicle behavior simulation device 300 shown in FIG. 13) that models an actual vehicle, and by reflecting the tire ground contact characteristics in the driving simulator, the driving can be performed.
  • the simulator may be able to reproduce a behavior close to that of an actual vehicle so that a more accurate tire attitude can be obtained.
  • the rotation speed of the rotary drum 1 is adjusted by the drum driving means 2.
  • the position of the tire T with respect to the rotary drum 1 is adjusted by the tire position control means 5 in the rotational axis direction and/or the radial direction of the rotary drum 1. Further, the rotation speed of the tire T is adjusted by the tire driving means 6. Further, the camber angle, slip angle and/or ground contact force of the tire T are adjusted by the tire angle control means 7. Further, the air pressure of the tire T is adjusted by the tire air pressure changing means 10.
  • step S12 the stress measuring means 3 measures the stress applied to the tire T that contacts the rotating drum 1. Specifically, the stress measuring means 3 measures the ground contact force, the widthwise shear stress, the circumferential shear stress, and the like applied to the tire T. Specifically, in step S12, the drum driving means 2 rotationally drives the rotary drum 1, and the tire driving means 6 rotationally drives the tire T, thereby causing the stress measuring means 3 to move to the tread surface T1 of the tire T. Touch multiple points in the circumferential direction. The stress measuring means 3 measures the stress applied to the tire T at a plurality of positions in the circumferential direction of the tread surface T1 of the tire T.
  • step S13 the processing device 4 determines the tire ground contact characteristic that is the characteristic in the ground contact region T1A of the tread surface T1 of the tire T that contacts the rotating drum 1 based on the stress measured by the stress measuring unit 3. calculate.
  • the tire ground contact characteristic calculated in step S13 is the tire corresponding to the tire attitude of the actual vehicle at each time point (for example, time A, B, etc.) during the period in which a transient change in the tire attitude during traveling of the actual vehicle occurs. It is a tire ground contact characteristic of T.
  • the tire ground contact characteristic measuring device 100 measures the transient tire force, which cannot be measured in the conventional drum test, by transiently varying the posture angle of the tire. be able to. Therefore, the tire ground contact characteristic measuring device 100 of the first embodiment can dynamically (transitionally) perform tire evaluation during actual vehicle traveling.
  • the processing device 4 of the tire ground contact characteristic measuring device 100 of the first embodiment calculates the friction coefficient ⁇ and the like at an arbitrary position of the ground contact region T1A of the tire T by correlating the measurement results of the stress measuring means 3 with each other.
  • the stress measuring means 3 faces the same position of the ground contact area T1A of the tire T, so that a plurality of tire T at the same position can be measured.
  • the average of those measurement results is used as the measurement result.
  • the tire angle control means 7 and the drum side rotational position detection means 8 are added to the tire ground contact characteristic measuring device 100 of the first embodiment, and the tire grounds in a specific ground area T1A on the tread surface T1 of the tire T.
  • the characteristic can be measured.
  • the drum-side rotational position detecting means 8 detects the rotational position of the rotary drum 1.
  • the drum side rotational position detecting means 8 detects the rotational position of the stress measuring means 3 embedded on the rotating drum 1.
  • FIGS. 1 the drum-side rotational position detecting means 8 detects the rotational position of the stress measuring means 3 embedded on the rotating drum 1.
  • the drum side rotational position detecting means 8 detects the rotational position of the stress measuring means 3 with respect to the reference position B.
  • the drum-side rotational position detecting means 8 is, for example, a rotary encoder arranged on the drum shaft 2A of the drum driving means 2.
  • the tire-side rotational position detecting means 9 detects the rotational position of the tire T. Specifically, the tire-side rotational position detecting means detects the rotational position of the tire T with respect to the reference position B.
  • the tire side rotational position detection means is, for example, a rotary encoder arranged on the spindle shaft 5A of the tire position control means 5.
  • the rotation position of the stress measuring means 3 with respect to the reference position B detected by the drum side rotation position detecting means 8 and the rotation position of the tire T with respect to the reference position B detected by the tire side rotation position detecting means 9 are the processing device 4 Entered in.
  • the processing device 4 calculates the circumferential position of the tire T with which the stress measuring means 3 abuts, based on the rotational position of the stress measuring means 3 with respect to the reference position B and the rotational position of the tire T with respect to the reference position B.
  • the tire air pressure changing means 10 uses the tire air pressure changing means 10 while the tire angle control means 7 is changing the camber angle, slip angle and/or ground contact force of the tire T, for example. It has a function to change the so-called “behavior” and can grasp the behavior at the time of occurrence of a puncture.
  • FIG. 4 is an example of the tire ground contact characteristics (the characteristics in the ground contact area T1A of the tread surface T1 of the tire T that contacts the rotating drum 1) calculated by the processing device 4 of the tire ground contact characteristic measuring device 100 of the second embodiment. It is a figure for explaining. Specifically, FIG. 4 is a diagram for explaining an example of the tire ground contact characteristics calculated and visualized by the processing device 4.
  • the horizontal axes of FIGS. 4A and 4B indicate the width direction of the tire T, and the vertical axes of FIGS. 4A and 4B indicate the circumferential direction of the tire T.
  • the upper side of FIGS. 4A and 4B shows the kicking side of the tire T, and the lower side of FIG. 4A and FIG. 4B shows the stepping side of the tire T.
  • the tire angle control means 7 reproduces the tire posture of the actual vehicle in a straight traveling state on the tire T, and the contact force distribution in the contact area T1A at that time is shown.
  • the vehicle speed of the actual vehicle is set to 60 [kph] and the slip angle SA is set to 0 [°].
  • the ground contact force at the position directly below the load where the rotating drum 1 and the tire T contact in the ground contact area T1A is larger than the ground contact force at other positions.
  • the tire angle control means 7 reproduces the tire posture of the actual vehicle during cornering on the tire T, and the contact force distribution in the contact area T1A at that time is shown.
  • the vehicle speed of the actual vehicle is set to 60 [kph]
  • the slip angle SA is set to 6 [°].
  • the grounding force on the outside of the cornering (left side of FIG. 4B) in the grounding region T1A is larger than the grounding force on the inside of the cornering (right side of FIG. 4B). ing.
  • FIG. 5 is a diagram for explaining an example of a method for calculating the tire ground contact characteristic as shown in FIG. 4 by the processing device 4 of the tire ground contact characteristic measuring device 100 of the second embodiment.
  • FIG. 5(A) is a diagram for explaining a tread side edge (Leading edge) and a kick side edge (Trailing edge) of the ground contact area T1A of the tread surface T1 of the tire T.
  • FIG. 5B conceptually shows the stress at the “5 deg” position measured by the stress measuring means 3 when the “5 deg” position in the circumferential direction of the tread surface T1 of the tire T abuts on the stress measuring means 3. It is a figure for explaining.
  • FIG. 5 conceptually shows the stress at the “5 deg” position measured by the stress measuring means 3 when the “5 deg” position in the circumferential direction of the tread surface T1 of the tire T abuts on the stress measuring means 3. It is a figure for explaining.
  • FIG. 5 conceptually shows the stress at the “5
  • FIG. 5(C) shows the concept of the stress at the “ ⁇ 5 deg” position measured by the stress measuring unit 3 when the “ ⁇ 5 deg” position in the circumferential direction of the tread surface T1 of the tire T abuts on the stress measuring unit 3. It is a figure for explaining concretely.
  • FIG. 5D is a diagram for conceptually explaining a process of synthesizing stress data at a plurality of circumferential positions of the tread surface T1 of the tire T measured by the stress measuring means 3.
  • FIG. 5(E) is a diagram showing an example of the ground contact force distribution of the ground contact area T1A visualized by the processing device 4.
  • the processing device 4 records the position of the tread surface T1 of the tire T on which the stress measuring means 3 is stepped (the circumferential position in contact with the stress measuring means 3).
  • the stress measuring means 3 not only contacts the tread surface T1 of the tire T at the reference position B (position immediately below the load), but also contacts the tread surface T1 of the tire T at a position other than the reference position B. That is, the stress measuring means 3 is in contact with the stepping side end (Leading edge) of the ground contact area T1A until the contact with the kicking side end (Trailing edge) of the ground contact area T1A. Continue to contact the surface T1. Therefore, the stress measuring means 3 can acquire the change in stress from the step side end to the kick side end.
  • the stress at all positions in the circumferential direction of the tread surface T1 of the tire T is measured by the stress measuring means 3.
  • the processing device 4 continues recording until all positions in the circumferential direction of the tread surface T1 of the tire T come into contact with the stress measuring means 3 during a series of running behaviors.
  • the stress measuring means it is possible to arrange the stress measuring means so as to cover the entire circumference of the rotating drum, but all grounding of the tread surface T1 of the tire T during the period in which a transient change occurs.
  • a braking force can be applied to the tire T.
  • the peripheral speed of the tire T and the peripheral speed of the rotary drum 1 can be made different, and all the positions in the circumferential direction of the tread surface T1 of the tire T can be made to face the stress measuring means 3.
  • the stress measuring means in the width direction of the drum at a plurality of ground contact points of the drum.
  • the measurement time can be shortened and the resolution such as stress distribution can be improved.
  • the measuring device itself can be simplified by reducing the arrangement positions of the stress measuring means.
  • FIG. 6 is a diagram for explaining an example of a transitional change of the tire posture when the actual vehicle is reproduced, which is reproduced on the tire T by the tire ground contact characteristic measuring device 100 of the second embodiment.
  • FIG. 6A shows a ground contact force Fz[N], a camber angle CA[deg] and a slip angle SA applied to the tire T by the tire angle control means 7 of the tire ground contact characteristic measuring device 100 of the second embodiment. It is a figure which shows the time change of [deg].
  • the horizontal axis represents time (time) [sec]
  • the vertical axis represents the ground contact force Fz [N], the camber angle CA [deg], and the slip angle SA [deg].
  • FIG. 6B shows a running state of the actual vehicle corresponding to the time changes of the ground contact force Fz[N], the camber angle CA[deg], and the slip angle SA[deg] shown in FIG. 6A.
  • the actual vehicle is on the left side of FIG. 6B in 5 seconds from 0 [sec] (time t10) to 5 [sec] (time t70) shown on the horizontal axis of FIG. 6A.
  • the control unit 7 changes the ground contact force Fz[N], the camber angle CA[deg], and the slip angle SA[deg] applied to the tire T according to the passage of time. That is, the tire angle control means 7 changes the camber angle CA [deg], the slip angle SA [deg], and/or the ground contact force Fz [N] of the tire T, so that the tire posture during the running of the actual vehicle is transient. Reproduce changes.
  • the example shown in FIG. 6 illustrates a measuring method in the case where one stress measuring means is arranged in the width direction of the circumferential surface of the rotary drum 1.
  • the stress measuring means 3 moves to the reference position B (position just below the load) at time t10. Will be placed.
  • the rotary drum 1 makes one rotation, and at time t30, the stress measuring means 3 is located at the reference position B.
  • the rotary drum 1 makes one rotation, and at time t50, the stress measuring means 3 is positioned at the reference position B.
  • the rotary drum 1 makes one rotation, and at time t70, the stress measuring means 3 is located at the reference position B.
  • the stress on the tread surface T1 of the tire T at time t10, time t30, time t50, and time t70 can be measured by the stress measuring means 3.
  • FIG. 7 is a diagram in which the measurement position is added to the example shown in FIG. 6 by shifting the rotary drum position at the start of measurement by 180°.
  • FIG. 7(A) is similar to FIG. 6(A), and the ground contact force Fz[N] applied to the tire T by the tire angle control means 7 of the tire ground contact characteristic measuring device 100 of the first embodiment, The time change of the camber angle CA [deg] and the slip angle SA [deg] is shown.
  • FIG. 7(B) is an actual vehicle corresponding to the time change of the ground contact force Fz[N], the camber angle CA[deg], and the slip angle SA[deg] shown in FIG. 7(A). Shows the running state of.
  • FIG. 7(A) is similar to FIG. 6(A), and the ground contact force Fz[N] applied to the tire T by the tire angle control means 7 of the tire ground contact characteristic measuring device 100 of the first embodiment, The time change of the camber angle CA [deg] and the slip angle SA [deg] is shown
  • time t20 is the time when the rotary drum 1 is rotated 180° from the state at time t10.
  • Time t40 is the time when the rotary drum 1 rotates 180° from the state at time t30.
  • Time t60 is the time when the rotary drum 1 rotates 180° from the state at time t50.
  • the stress measuring means 3 moves the center of the rotating drum 1 at the time t10. Is placed on the opposite side of the reference position B (position directly below the load).
  • the rotary drum 1 rotates 0.5 times, and at time t20, the stress measuring unit 3 is located at the reference position B.
  • the rotary drum 1 makes one rotation, and at time t40, the stress measuring means 3 is located at the reference position B.
  • the rotary drum 1 makes one rotation, and at time t60, the stress measuring means 3 is located at the reference position B.
  • FIG. 8 is a diagram when measurement points are further added to the example shown in FIG. Specifically, FIG. 8(A) shows the ground contact given to the tire T by the tire angle control means 7 of the tire ground contact characteristic measuring device 100 of the first embodiment, similarly to FIG. 6(A) and FIG. 7(A). The changes over time in force Fz [N], camber angle CA [deg], and slip angle SA [deg] are shown. Similar to FIGS. 6(B) and 7(B), FIG. 8(B) shows the ground contact force Fz[N], the camber angle CA[deg], and the slip angle SA[deg] shown in FIG. 8(A). The running state of the actual vehicle corresponding to the time change is shown.
  • the stress data at a plurality of circumferential positions on the tread surface T1 of T is combined by the processing device 4.
  • the processing device 4 can generate, for example, the ground contact force distribution of the visualized ground contact area T1A.
  • the drum side rotational position detecting means 8 and the tire side rotational position detecting means 9 measure the rotational position of the rotary drum 1 and the rotational position of the tire T in synchronization.
  • FIG. 9 shows changes over time of the ground contact force Fz [N], the camber angle CA [deg], and the slip angle SA [deg] applied to the tire T by the tire angle control means 7 of the tire ground contact characteristic measuring device 100 of the second embodiment.
  • time A corresponds to time t23 shown in FIG.
  • Time B corresponds to time t30 shown in FIGS. 6 to 8.
  • Time C corresponds to time t32 shown in FIG.
  • Time D corresponds to time t36 shown in FIG.
  • Time E corresponds to time t44 shown in FIG.
  • the tire of the tire ground contact characteristic measuring device 100 of the second embodiment is used in order to reproduce the transient change of the tire attitude of the actual vehicle in the tire T during the lane change shown in FIG. 6B.
  • the angle control means 7 changed the ground contact force Fz [N], the camber angle CA [deg], and the slip angle SA [deg] and applied them to the tire T.
  • the present inventor has earnestly studied, and the tire ground contact characteristics at the times A, B, C, D, and E calculated by the processing device 4 of the tire ground contact characteristic measuring apparatus 100 of the second embodiment are also measured by the conventional tire ground contact characteristic measurement. It was found that the tire ground contact characteristics at the times A, B, C, D, and E calculated by the device were different.
  • the process shown in FIG. 12 is executed similarly to the tire ground contact characteristic measuring device 100 of the first embodiment, but a transient change in tire posture is reproduced.
  • the rotational position of the drum and the rotational position of the tire are adjusted so that the reference position B to be measured and the stress measuring unit coincide with each other by using a driving unit, a braking unit, and the like at each measurement point.
  • the tire ground contact characteristic measuring device 100 included in the tire ground contact characteristic measuring system 400 of the third embodiment is configured in the same manner as the tire ground contact characteristic measuring device 100 of the above-described first embodiment or second embodiment, except for the points described below. ing. Therefore, according to the tire ground contact characteristic measuring system 400 of the third embodiment, the same effect as that of the tire ground contact characteristic measuring device 100 of the above-described first embodiment or second embodiment can be obtained, except for the points described below. it can.
  • FIG. 13 is a configuration diagram of an example of a tire ground contact characteristic measurement system 400 according to the third embodiment.
  • the tire ground contact characteristic measurement system 400 includes a tire ground contact characteristic measurement device 100, a vehicle property measurement device 200, and a vehicle behavior simulation device 300.
  • the tire ground contact characteristic measuring device 100 shown in FIG. 13 is configured similarly to the tire ground contact characteristic measuring device 100 of the second embodiment.
  • the vehicle characteristic measuring device 200 includes a test vehicle 201 having a vehicle body 203, wheels 202, and a steering wheel 205, a gantry device (suspension characteristic measuring device) 210, and a controller (computer) 220.
  • the gantry device 210 includes a support unit 214 on which the test vehicle 201 is placed and a measuring instrument 215.
  • the support portion 214 can displace the vehicle body 203 and the wheels 202 independently. Specifically, the support portion 214 can displace the vehicle body 203 and the wheels 202 independently in the front-rear direction, the left-right direction, the up-down direction, the pitch direction, and the roll direction of the test vehicle 201.
  • the support portion 214 may be slidable with respect to the wheel 202 so that the longitudinal force, the lateral force, the cornering force, the slip ratio, and the slip angle that may be generated in the tire while the vehicle is traveling can be realized.
  • the measuring instrument 215 measures the displacement amount and/or acting force of the vehicle body 203 and the displacement amount and/or acting force of the wheels 202. Specifically, the measuring instrument 215 measures the acting force acting on the support portion 214. The measuring instrument 215 also measures the camber angle, toe angle, steering angle, etc. of the wheel 202. Further, the measuring instrument 215 measures the force or torque acting on the axle (not shown). Further, the measuring instrument 215 measures the stroke of the suspension and the acting force. The controller 220 controls the amount of displacement applied to the vehicle body 203 by the support part 214 and the amount of displacement applied to the wheel 202 by the support part 214. In the example shown in FIG. 13, a mechanism that drives the steering wheel 205 to control the steering angle of the wheels 202 is provided, but in another example, the steering wheel 205 may not be provided.
  • the vehicle behavior simulation device 300 causes the tire ground contact characteristic calculated by the processing device 4 of the tire ground contact characteristic measurement device 100 and the displacement of the vehicle body 203 measured by the measuring instrument 215 of the vehicle property measurement device 200. Based on the amount and/or the acting force and the displacement amount and/or the acting force of the wheel 202, the behavior of the actual vehicle during traveling is predicted.
  • the vehicle behavior simulation device 300 is a computer that simulates the behavior of an actual vehicle during traveling, and includes a CPU as an arithmetic processing unit, a ROM, a RAM and an HDD as a storage unit, an interface as a communication unit, and is stored in the storage unit. Works based on the program.
  • the vehicle behavior simulation device 300 also includes input means such as a keyboard and mouse, and display means such as a monitor.
  • the input means can also reproduce a driving state including a steering wheel, an accelerator, a brake, and the like. It is operated by the operator, and the parameters and the like necessary for predicting the behavior of the actual vehicle during traveling are input.
  • the estimated behavior of the actual vehicle at the time of traveling is displayed on the display means.
  • the vehicle behavior simulation device 300 predicts the motion state of the actual vehicle during traveling by using the measurement data of the measuring device 215.
  • the processing device 4 and the tire angle control means 7 of the tire grounding characteristic measuring device 100 reproduce the transient change of the tire posture on the tire T based on the predicted motion state.
  • the vehicle characteristic measuring device 200 can reflect the vehicle characteristic predicted from the tire grounding characteristic calculated by the processing device 4 of the tire grounding characteristic measuring device 100 in the test vehicle 201. .. Specifically, by inputting the tire ground contact characteristics at each time point into the vehicle behavior simulation device 300, the vehicle behavior can be reproduced more faithfully.
  • the measuring instrument 215 measures the amount of displacement and/or the acting force of the vehicle body 203 and the wheels 202 of the test vehicle 201 in which the tire ground contact characteristics calculated by the processing device 4 are reflected.
  • the drum driving means 2 measures the rotary drum 1 of the rotary drum 1. Changing the rotation speed, changing the position of the tire T with respect to the rotating drum 1 by the tire position control means 5, changing the rotation speed of the tire T by the tire driving means 6, and changing the angle of the tire T by the tire angle control means 7. And/or at least one of
  • the rotation speed of the rotary drum 1 is changed by the drum driving means 2
  • the position of the tire T with respect to the rotary drum 1 is changed by the tire position control means 5
  • the tire T by the tire driving means 6 is changed.
  • the vehicle characteristics reflected from the tire ground contact characteristics calculated by the processing device 4 after the rotation speed is changed and/or the angle of the tire T is changed by the tire angle control means 7 are reflected, and
  • the controller 220 of the characteristic measuring device 200 can control the amount of displacement applied to the vehicle body 203 by the support 214 and the amount of displacement applied to the wheel 202 by the support 214.
  • FIG. 14 is a sequence diagram for explaining an example of processing executed in the tire ground contact characteristic measurement system 400 of the third embodiment.
  • the vehicle behavior simulation device 300 starts the preprocessing of the simulation.
  • step S52 the tire ground contact characteristic measuring device 100 moves to the standby position.
  • step S53 the vehicle characteristic measuring device 200 moves to the standby position.
  • step S54 the tire ground contact characteristic measuring device 100 transmits a movement completion flag to the vehicle behavior simulation device 300.
  • the vehicle characteristic measuring device 200 transmits the movement completion flag to the vehicle behavior simulation device 300.
  • step S56 the vehicle behavior simulation device 300 confirms the movement completion flag transmitted from the tire ground contact characteristic measuring device 100 and the movement completion flag transmitted from the vehicle characteristic measuring device 200.
  • step S57 the vehicle behavior simulation device 300 resets the simulation vehicle state.
  • step S58 the vehicle behavior simulation device 300 confirms the stability of the simulated vehicle.
  • step S59 the vehicle behavior simulation device 300 waits for the simulation in the initial state.
  • step S60 the vehicle behavior simulation device 300 transmits an instruction to move to the initial state to the tire ground contact characteristic measuring device 100 and an instruction to move to the initial state to the vehicle characteristic measuring device 200. ..
  • step S61 the tire ground contact characteristic measuring device 100 moves according to an instruction from the vehicle behavior simulation device 300.
  • step S62 the vehicle characteristic measuring device 200 moves according to the instruction from the vehicle behavior simulation device 300.
  • step S63 the tire ground contact characteristic measuring device 100 shifts to a simulation synchronization mode in which the tire ground contact characteristic measuring device 100 operates in synchronization with the vehicle behavior simulation device 300.
  • step S64 the vehicle characteristic measuring device 200 shifts to the simulation synchronization mode in which the vehicle characteristic measuring device 200 operates in synchronization with the vehicle behavior simulation device 300.
  • step S65 the tire ground contact characteristic measurement device 100 transmits to the vehicle behavior simulation device 300 a transition completion flag indicating completion of transition to the simulation synchronization mode.
  • step S66 the vehicle characteristic measuring device 200 transmits to the vehicle behavior simulation device 300 a transition completion flag indicating completion of transition to the simulation synchronization mode.
  • step S67 the vehicle behavior simulation device 300 confirms the transition completion flag transmitted from the tire ground contact characteristic measurement device 100 and the transition completion flag transmitted from the vehicle property measurement device 200, and starts the simulation.
  • step S67A the vehicle behavior simulation device 300 calculates the simulation vehicle motion.
  • the vehicle behavior simulation device 300 sends a command value to the tire ground contact characteristic measurement device 100 and the controller 220 of the vehicle property measurement device 200.
  • the ECU mounted on the test vehicle 201 of the vehicle characteristic measuring device 200 can be used.
  • a command value based on the predicted vehicle characteristics can be used as a simulation signal instead of a signal input to the ECU from various sensors for grasping the running state of the vehicle.
  • the command value transmitted from the vehicle model to the ECU includes information for supplementing the vehicle characteristics to various sensors such as wheel speed, yaw rate, vehicle acceleration, tire axial acceleration, front radar and camera.
  • the tire ground contact characteristic measurement device 100 operates according to the command value transmitted from the vehicle behavior simulation device 300 (that is, in synchronization with the vehicle behavior simulation device 300).
  • the tire ground contact characteristic measuring device 100 operates by reflecting the vehicle characteristic (particularly the tire axial force) obtained from the vehicle behavior simulation device 300. Further, the tire ground contact characteristic measurement device 100 transmits the tire ground contact characteristic data to the vehicle behavior simulation device 300.
  • the vehicle characteristic measuring device 200 operates according to the command value transmitted from the vehicle behavior simulation device 300 (that is, in synchronization with the vehicle behavior simulation device 300).
  • the vehicle characteristic measuring device 200 operates by reflecting the vehicle characteristic (particularly the tire axial force) obtained from the vehicle behavior simulation device 300.
  • the command value transmitted from the vehicle behavior simulation device 300 is input to the ECU mounted on the test vehicle 201.
  • the vehicle characteristic measuring device 200 transmits the measurement data to the vehicle behavior simulation device 300. That is, steps S68, S69, and S70 are executed in parallel, and the tire ground contact characteristic measuring device 100, the vehicle characteristic measuring device 200, and the vehicle behavior simulation device 300 operate in synchronization.
  • step S70A the vehicle behavior simulation device 300 receives data (tire contact property data and measurement data) from the tire contact property measuring device 100 and the vehicle property measuring device 200.
  • step S70B the vehicle behavior simulation device 300 determines whether or not it is the simulation end time and whether or not the simulated vehicle travel distance has reached the planned travel distance. If it is not the end time of the simulation, or if the traveling distance of the vehicle in the simulation has not reached the planned traveling distance, the process proceeds to step S71. On the other hand, if it is the end time of the simulation and if the traveling distance of the vehicle in the simulation has reached the planned traveling distance, the process returns to step S67A.
  • step S71 the vehicle behavior simulation device 300 ends the simulation. Accordingly, in step S72, the operation of the tire ground contact characteristic measuring device 100 is switched to the operation according to the internal command. In step S73, the operation of the vehicle characteristic measuring device 200 is switched to the operation according to the internal command. Next, in step S74, the tire ground contact characteristic measuring device 100 moves to the standby position. Further, in step S75, the vehicle characteristic measuring device 200 moves to the standby position.
  • the tire ground contact characteristic of the tire corresponding to the tire attitude of the actual vehicle at each point in time during which a transient change in the tire attitude during running of the actual vehicle occurs. Is calculated in the calculation step. Therefore, according to the tire ground contact characteristic measuring method of one aspect of the present invention, the tire ground contact characteristic corresponding to the tire attitude of the actual vehicle at each point in time during which a transient change in the tire attitude during running of the actual vehicle occurs. Can be obtained.
  • a rotation speed of the rotating drum is adjusted by a drum driving means, and a position of the tire with respect to the rotating drum is adjusted by a tire position control means.
  • the rotation speed of the tire is adjusted in the rotation axis direction and/or the radial direction of the rotary drum, the rotation speed of the tire is adjusted by the tire driving means, and the camber angle, slip angle and/or ground contact force of the tire are adjusted by the tire angle control means. May be adjusted by When such a thing is done in the stress measurement step, the transitional change of the tire attitude during the running of the actual vehicle is reproduced on the tire more accurately than when the stress measurement step is not done. be able to.
  • the three-component force sensor as the stress measuring means measures a grounding force, a widthwise shear stress, and a circumferential shear stress applied to the tire. You may.
  • the tire ground contact characteristics are the ground contact force distribution, the widthwise shear stress distribution, and the circumferential direction. The shear stress distribution can be calculated.
  • the drum driving unit rotationally drives the rotary drum, and the tire driving unit rotationally drives the tire, so that the stress measuring unit is The tread surface is brought into contact with a plurality of locations in the circumferential direction, the stress measuring means measures the stress applied to the tire at the plurality of locations, the tire side rotational position detecting means, the tire corresponding to each of the plurality of locations.
  • the stress measuring means repeatedly measures the stress applied to the tire
  • the tire side rotational position detecting means by repeatedly detecting the rotational position of the tire, calculates the ground contact force distribution, the width direction shear stress distribution and the circumferential shear stress distribution in the ground contact region, The processing device synthesizes the ground contact force distribution, the widthwise shear stress distribution, and/or the circumferential shear stress distribution at each location in the ground contact area to thereby obtain each time point during the transitional change.
  • the tire ground contact characteristics in step 1 may be calculated.
  • the stress measuring means is brought into contact with a plurality of positions in the circumferential direction of the tread surface of the tire, the stress measuring means repeatedly measures the stress applied to the tire, and the processing device distributes the grounding force and the widthwise shear stress in the contact area And the circumferential shear stress distribution are calculated, and the processing device synthesizes the ground force distribution, the widthwise shear stress distribution and/or the circumferential shear stress distribution at each location in the ground contact area, the tire tread surface It is possible to obtain a ground contact force distribution, a widthwise shear stress distribution and/or a circumferential shear stress distribution at a plurality of positions in the circumferential direction.
  • a support unit of a gantry device of the vehicle characteristic measuring device is provided in the vehicle characteristic measuring device. Displace the vehicle body and wheels of the existing test vehicle independently, and the measuring device of the gantry device measures the displacement amount and/or acting force of the vehicle body and the displacement amount and/or acting force of the wheels,
  • a controller provided in the vehicle characteristic measuring device controls a displacement amount given to the vehicle body by the support portion and a displacement amount given to the wheel by the support portion, and the processing device is
  • the motion state of the actual vehicle during running may be predicted by using the measurement data of the measuring device, and the transient change in the tire posture may be reproduced on the tire based on the predicted motion state.
  • the processing device uses the measurement data of the measuring device to predict the motion state of the actual vehicle during running, and based on this motion state, when a transient change in tire attitude is reproduced on the tire, Unlike the case where the data is not used, the tire ground contact characteristics that reflect the vehicle characteristics such as suspension can be obtained, so that the tire ground contact characteristics can be measured under conditions closer to those of the actual vehicle.
  • the measured stress and ground contact load are reflected in the vehicle model that simulates the behavior of the actual vehicle, so that the vehicle characteristics such as the axial force of the tire can be predicted.
  • the vehicle characteristic measuring device reflects the predicted vehicle characteristics such as the axial force of the tire on the test vehicle, and the measuring instrument measures the displacement amount of the vehicle body and the wheels of the test vehicle on which the vehicle characteristic is reflected and/or Based on the measurement data of the measuring device which measures the acting force and reflects the vehicle characteristics, the rotation speed of the rotary drum is changed by the drum driving means, the position of the tire with respect to the rotary drum by the tire position control means.
  • the rotation speed of the tire by the tire driving means and/or the tire angle by the tire angle control means may be changed.
  • the vehicle characteristic measuring device provides the vehicle characteristics with higher accuracy than the case where the vehicle characteristics are not reflected in the test vehicle. Can be measured.
  • a running state is transmitted to the electronic control unit of the test vehicle by transmitting a command based on the predicted vehicle characteristic to the electronic control unit of the test vehicle. May be recognized.
  • the electronic control unit of the test vehicle is made to recognize the traveling state by transmitting a command based on the predicted vehicle characteristics to the electronic control unit of the test vehicle, the electronic control unit of the test vehicle is driven. It is possible to obtain a tire ground contact characteristic with higher accuracy than in the case where the state is not recognized.
  • a tire ground contact characteristic measuring device relates to a rotatable rotary drum, a drum driving unit that rotationally drives the rotary drum, and a tire that is embedded on the rotary drum and abuts on the rotary drum.
  • Stress measuring means for measuring stress for measuring stress
  • tire position control means for controlling the position of the tire with respect to the rotary drum
  • tire driving means for rotationally driving the tire
  • tire for controlling the angle of the tire with respect to the rotary drum is a rotatable rotary drum, a drum driving unit that rotationally drives the rotary drum, and a tire that is embedded on the rotary drum and abuts on the rotary drum.
  • Angle control means based on the stress measured by the stress measuring means, a processing device for calculating a tire ground contact characteristic which is a characteristic in a ground contact region of the tread surface of the tire in contact with the rotating drum,
  • the drum drive means, the tire position control means, the tire drive means, and the tire angle control means operate so as to reproduce in the tire a transient change in tire posture when the actual vehicle is running.
  • the processing device calculates the tire ground contact characteristic corresponding to the tire attitude of the actual vehicle at each time point during the period in which the transitional change is occurring.
  • the tire ground contact characteristic of the tire corresponding to the tire attitude of the actual vehicle at each point in time during which a transient change in the tire attitude during running of the actual vehicle occurs. Is calculated by the processing device. Therefore, according to the tire ground contact characteristic measuring device of one aspect of the present invention, the tire ground contact characteristic corresponding to the tire attitude of the actual vehicle at each point in time during which a transient change in the tire attitude during traveling of the actual vehicle occurs. Can be obtained.
  • the drum drive means is capable of adjusting the rotation speed of the rotary drum, and the tire position control means rotates the position of the tire with respect to the rotary drum by the rotation. It is adjustable in the rotational axis direction and/or the radial direction of the drum, the tire driving means is able to adjust the rotational speed of the tire, and the tire angle control means is used for the camber angle, slip angle and slip angle of the tire.
  • the ground contact force may be adjustable.
  • the rotation speed of the rotating drum is adjustable, the position of the tire with respect to the rotating drum is adjustable in the rotation axis direction and/or the radial direction of the rotating drum, the rotation speed of the tire is adjustable, the camber angle of the tire, When the slip angle and/or the ground contact force can be adjusted, it is possible to more accurately reproduce the transient change in the tire attitude during running of the actual vehicle on the tire than when either of them cannot be adjusted.
  • the stress measuring unit may be a three-component force sensor capable of measuring a ground contact force applied to the tire, a widthwise shear stress, and a circumferential shear stress.
  • the processing device can calculate the ground contact force distribution, the widthwise shear stress distribution, and the circumferential shear stress distribution as the tire ground contact characteristics.
  • the tire ground contact characteristic measuring device further includes a tire-side rotational position detecting means for detecting a rotational position of the tire, and the drum driving means rotationally drives the rotary drum and the tire driving method.
  • the stress measuring means is brought into contact with a plurality of locations in the circumferential direction of the tread surface of the tire, and the stress measuring means measures the stress applied to the tire at the plurality of locations.
  • the tire side rotational position detecting means detects the rotational position of the tire corresponding to each of the plurality of locations, and the tire position control means determines the position of the tire with respect to the rotating drum in the rotation axis direction of the rotating drum.
  • the stress measuring means While changing to, the stress measuring means repeatedly measures the stress applied to the tire, and the tire side rotational position detecting means repeatedly detects the rotational position of the tire, whereby the processing device has the ground contact.
  • the contact force distribution, the widthwise shear stress distribution, and the circumferential shear stress distribution in the area are calculated, and the processing device causes the contacting force distribution, the widthwise shear stress distribution, and/or the circumferential shear at each location in the contact area.
  • the tire ground contact characteristics at each time point during the period in which the transient change is occurring may be calculated by synthesizing the stress distributions.
  • the stress measuring means is brought into contact with a plurality of positions in the circumferential direction of the tread surface of the tire, the stress measuring means repeatedly measures the stress applied to the tire, and the processing device distributes the grounding force and the widthwise shear stress in the grounding region. And the circumferential shear stress distribution are calculated, and the processing device synthesizes the ground force distribution, the widthwise shear stress distribution and/or the circumferential shear stress distribution at each location in the ground contact area, the tire tread surface It is possible to obtain a ground contact force distribution, a widthwise shear stress distribution and/or a circumferential shear stress distribution at a plurality of positions in the circumferential direction.
  • a tire ground contact characteristic measuring system is a tire ground contact characteristic measuring system including the tire ground contact characteristic measuring device, a vehicle characteristic measuring device, and a simulator of an actual vehicle behavior
  • the vehicle characteristic measuring device comprises: A test vehicle having a vehicle body and wheels, a gantry device, and a controller
  • the gantry device includes a support part on which the test vehicle is mounted, and a measuring device, and the support part is It is possible to displace the vehicle body and the wheels independently
  • the measuring device measures the displacement amount and/or acting force of the vehicle body and the displacement amount and/or acting force of the wheel
  • the controller controls the amount of displacement given to the vehicle body by the support and the amount of displacement given to the wheel by the support
  • the processing device uses the measurement data of the measuring instrument.
  • the motion state of the actual vehicle during running is predicted, and the transitional change of the tire posture is reproduced in the tire based on the predicted motion state. That is, in the tire ground contact characteristic measuring system according to one aspect of the present invention, the processing device predicts the motion state of the actual vehicle during running by using the measurement data of the measuring device, and based on the motion state, the transition of the tire posture is performed. Reproduce the changes in the tire. Therefore, according to the tire ground contact characteristic measuring system of one aspect of the present invention, unlike the case where the measurement data of the measuring instrument is not used, it is possible to obtain the tire ground contact characteristic reflecting the vehicle characteristic such as suspension.
  • the vehicle characteristic measurement device reflects a vehicle characteristic predicted from the tire ground contact characteristic calculated by the processing device on the test vehicle, and the measuring instrument is , Measuring the displacement amount and/or acting force of the vehicle body and the wheels of the test vehicle in which the vehicle characteristics are reflected, and based on the measurement data of the measuring instrument in which the vehicle characteristics are reflected, for the drum Changing the rotation speed of the rotating drum by a driving means, changing the position of the tire with respect to the rotating drum by the tire position control means, changing the rotation speed of the tire by the tire driving means, and the tire angle control means And/or the angle of the tire may be changed.
  • the vehicle characteristics predicted from the tire ground contact characteristics calculated by the processor are reflected in the test vehicle, the vehicle characteristics predicted from the tire ground contact characteristics calculated by the processor are not reflected in the test vehicle.
  • the vehicle characteristic measuring device can measure the vehicle characteristic with higher accuracy.
  • a running state is transmitted to the electronic control unit of the test vehicle by transmitting a command based on the predicted vehicle characteristic to the electronic control unit of the test vehicle. May be recognized.
  • the electronic control unit of the test vehicle is made to recognize the traveling state by transmitting a command based on the predicted vehicle characteristics to the electronic control unit of the test vehicle, the electronic control unit of the test vehicle is driven. It is possible to obtain a tire ground contact characteristic with higher accuracy than in the case where the state is not recognized.
  • the tire ground contact characteristic measuring method, the tire ground contact characteristic measuring device, and the tire ground contact characteristic measuring system of the present invention By applying the tire ground contact characteristic measuring method, the tire ground contact characteristic measuring device, and the tire ground contact characteristic measuring system of the present invention to the relevant field, each during a period in which a transient change in the tire posture during running of the actual vehicle occurs. It is possible to obtain the tire ground contact characteristic corresponding to the tire attitude of the actual vehicle at the time point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tires In General (AREA)

Abstract

本発明のタイヤ接地特性計測方法は、実車の走行時のタイヤ姿勢の過渡的な変化をタイヤに再現する再現ステップと、回転可能な回転ドラム上に埋設された応力測定手段が、回転駆動される前記回転ドラムに当接する前記タイヤにかかる応力を測定する応力測定ステップと、前記応力測定手段によって測定された応力に基づいて、前記タイヤのトレッド表面のうちの前記回転ドラムに接触する接地領域における特性であるタイヤ接地特性を算出する算出ステップとを含み、前記算出ステップにおいて算出されるタイヤ接地特性は、前記過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応する前記タイヤのタイヤ接地特性である。

Description

タイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システム
 本発明はタイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システムに関する。
本願は、2018年12月4日に日本に出願された特願2018-227656号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、タイヤのトレッド表面の各部位の接地特性を得るタイヤの接地特性の測定方法および測定装置が記載されている。特許文献1に記載された技術では、タイヤの接地圧、幅方向せん断応力および周方向せん断応力を測定可能な3分力センサが埋設された、回転駆動可能な回転ドラムに、所要のキャンバ角およびスリップ角を付与した測定対象としてのタイヤが当接させられる。また、回転ドラムおよびタイヤが共に回転させられ、タイヤが、3分力センサ上を複数回通過させられ、3分力センサが、タイヤの接地圧、幅方向せん断応力および周方向せん断応力を複数回測定する。また、各々の測定点のタイヤ周方向位置が特定される。更に、タイヤを回転ドラムの回転軸方向に変位させながら、タイヤの接地圧、幅方向せん断応力および周方向せん断応力の測定と、測定点のタイヤ周方向位置の特定とが、繰り返される。その結果、タイヤが回転ドラムに接触している領域である接触領域における接地圧分布、幅方向せん断応力分布および周方向せん断応力分布を得られる。
 ところで、特許文献1に記載された技術では、所定の時点のタイヤの接地圧、幅方向せん断応力および周方向せん断応力を得るための測定が、開始されてから終了するまでの間、付与されるキャンバ角およびスリップ角が一定値に維持される。そのため、特許文献1に記載された技術によっては、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中(例えばレーンチェンジの開始時から終了時までの期間中)の各時点における実車のタイヤ姿勢に対応するタイヤ接地特性(接地力分布、幅方向せん断応力分布および周方向せん断応力分布)を得ることができない。
日本国特開2014-021012号公報
 上述した問題点に鑑み、本発明は、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応するタイヤ接地特性を得ることができるタイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システムを提供することを目的とする。
 本発明の一態様のタイヤ接地特性計測方法は、実車の走行時のタイヤ姿勢の過渡的な変化をタイヤに再現する再現ステップと、回転可能な回転ドラム上に埋設された応力測定手段が、回転駆動される前記回転ドラムに当接する前記タイヤにかかる応力を測定する応力測定ステップと、前記応力測定手段によって測定された応力に基づいて、前記タイヤのトレッド表面のうちの前記回転ドラムに接触する接地領域における特性であるタイヤ接地特性を算出する算出ステップとを含み、前記算出ステップにおいて算出されるタイヤ接地特性は、前記過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応する前記タイヤのタイヤ接地特性を計測する方法に関する。
 本発明によれば、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応するタイヤ接地特性を得ることができるタイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システムを提供することができる。
 本願においてタイヤの接地特性とは、上記センサから得られる計測値および計測値から算出される各種応力および摩耗エネルギーやすべり量等をいい、接地力分布、各種応力分布、すべり分布等を含むものをいう。
 前記運動状態および車両特性には、車両位置、操舵角、ピッチ軸、ロール軸、ヨー軸まわりのモーメント、車両速度、車両の慣性パラメータ、接地力、タイヤの軸力等に代表される各種パラメータを含むことができ、タイヤの軸力としてはタイヤの回転軸に作用する6分力を少なくとも含むものことができる。6分力とはタイヤの固定軸に作用するX軸、Y軸、Z軸方向に沿う力と、X軸周りに作用するモーメント、Y軸周りに作用するモーメント、Z軸周りに作用するモーメントを指す。
 また、前記電子制御ユニットに対して送信される予測された車両特性にもとづく指令には、ホイールスピード、ヨーレート、車両加速度、タイヤの軸上の加速度、前方レーダおよびカメラ等の各種車載されるセンサに代わる模擬信号を含むものとする。
第1実施形態のタイヤ接地特性計測装置の一例の構成図である。 タイヤに付与されるキャンバ角などを説明するための図である。 タイヤのトレッド表面のうちの回転ドラムに接触する接地領域などを説明するための図である。 第2実施形態のタイヤ接地特性計測装置の処理装置によって算出されたタイヤ接地特性の一例を説明するための図である。 第2実施形態のタイヤ接地特性計測装置の処理装置によって図4に示すようなタイヤ接地特性が算出される手法の一例を説明するための図である。 第2実施形態のタイヤ接地特性計測装置によってタイヤに再現される実車の走行時のタイヤ姿勢の過渡的な変化の一例などを説明するための図である。 図6に示す例に測定開始時の回転ドラム位置を180°ずらして計測位置を追加した図である。 図7に示す例に更に計測点を追加した時の図である。 第2実施形態のタイヤ接地特性計測装置のタイヤ角制御手段がタイヤに付与する接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]の時間変化を示す図である。 第1実施形態のタイヤ接地特性計測装置の処理装置によって算出された幅方向せん断応力分布と、比較例としての従来のタイヤ接地特性計測装置によって算出された幅方向せん断応力分布との違いを示す図である。 第1実施形態のタイヤ接地特性計測装置の処理装置によって算出された接地力分布と、比較例としての従来のタイヤ接地特性計測装置によって算出された接地力分布との違いを示す図である。 第1実施形態のタイヤ接地特性計測装置100において実行される処理の一例を説明するためのフローチャートである。 第3実施形態のタイヤ接地特性計測システムの一例の構成図である。 第2実施形態のタイヤ接地特性計測システムにおいて実行される処理の一例を説明するためのシーケンス図である。
 以下、図面を参照し、本発明のタイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システムの実施形態について説明する。
[第1実施形態]
 図1は第1実施形態のタイヤ接地特性計測装置100の一例の構成図である。図2はタイヤTに付与されるキャンバ角CAなどを説明するための図である。図3はタイヤTのトレッド表面T1のうちの回転ドラム1に接触する接地領域T1Aなどを説明するための図である。
 図1~図3に示す例では、第1実施形態のタイヤ接地特性計測装置100が、タイヤTの接地特性の計測を行う。タイヤ接地特性計測装置100は、回転ドラム1と、ドラム用駆動手段2と、応力測定手段3と、処理装置4と、タイヤ位置制御手段5と、タイヤ用駆動手段6と、タイヤ角制御手段7と、タイヤ空気圧変更手段10とを備えている。
 回転ドラム1は、回転可能に構成された概略円柱形状のドラムである。図2および図3に示すように、回転ドラム1の外周面には、タイヤTのトレッド表面T1が当接させられる。
 ドラム用駆動手段2は、回転ドラム1を回転駆動する例えばモータなどである。ドラム用駆動手段2はドラム軸2Aを備えている。ドラム軸2Aは回転ドラム1に連結されている。ドラム用駆動手段2は、回転ドラム1を正逆いずれの向きにも回転駆動することができ、また、回転ドラム1の回転速度を調整することができる。
 図1~図3に示す例では、回転ドラム1がアウトサイドドラム型であるが、他の例では、回転ドラム1がインサイドドラム型であってもよい。
 図1~図3に示す例では、応力測定手段3が、回転ドラム1上に埋設され、回転ドラム1に当接するタイヤTにかかる応力を測定する。応力測定手段3は、例えばタイヤTにかかる接地力と幅方向せん断応力と周方向せん断応力とを測定可能な3分力センサである。
 図1~図3に示す例では、応力測定手段3が3分力センサであるが、他の例では、応力測定手段3が、接地力を測定するセンサと、幅方向せん断応力と周方向せん断応力とを測定する2軸センサとを組み合わせたものであってもよい。
 図1~図3に示す例では、処理装置4が、応力測定手段3によって測定された応力に基づいて、タイヤTのトレッド表面T1のうちの回転ドラム1に接触する接地領域T1A(図3参照)における特性であるタイヤ接地特性を算出する。詳細には、処理装置4が、タイヤ接地特性として、接地領域T1Aにおける接地力分布、幅方向せん断応力分布、周方向せん断応力分布などを算出する。
 処理装置4は、例えば、CPU(中央演算処理装置)、メモリ等を備えたマイクロコンピュータである。処理装置4のメモリには、測定結果を解析するための、データ解析プログラムが格納される。データ解析プログラムとしては、例えば、汎用数値解析プログラムを用いることができる。
 処理装置4は、算出された接地領域T1Aにおける接地力分布、幅方向せん断応力分布、周方向せん断応力分布などを可視化処理してモニタ(図示せず)に表示することができ、タイヤの接地特性を車両モデルに反映させることにより、車両挙動をシミュレーションすることができる。
 図1~図3に示す例では、処理装置4が、上述したデータ解析プログラムを備えているが、他の例では、処理装置4が、上述したデータ解析プログラムとは異なるデータ解析プログラムを備えていてもよい。
 図1~図3に示す例では、タイヤ位置制御手段5が、回転ドラム1に対するタイヤTの位置を制御する。詳細には、タイヤ位置制御手段5は、回転ドラム1に対するタイヤTの位置を回転ドラム1の回転軸方向および/または径方向に調整可能である。
 図1~図3に示す例では、タイヤ位置制御手段5が、回転ドラム1に対するタイヤTの位置を調整するが、他の例では、タイヤTに対する回転ドラム1の位置が調整されてもよい。
 図1~図3に示す例では、タイヤ位置制御手段5が、タイヤTに連結されたスピンドル軸5Aと、タイヤ用駆動手段6と、タイヤ角制御手段7とを備えている。
 タイヤ用駆動手段6は、タイヤTを回転駆動する例えばモータなどである。タイヤ用駆動手段6は、タイヤTを正逆いずれの向きにも回転駆動することができ、また、タイヤTの回転速度を調整することができる。
 タイヤ角制御手段7は、回転ドラム1に対するタイヤTの角度を制御する。詳細には、タイヤ角制御手段7は、タイヤTにキャンバ角CAを付与することができる。また、タイヤ角制御手段7は、タイヤTにスリップ角SAを付与することができる。また、タイヤ角制御手段7は、回転ドラム1にタイヤTを当接させることによって、タイヤTに接地力を付与することができる。つまり、タイヤ角制御手段7は、タイヤTのキャンバ角CA、スリップ角SAおよび/または接地力を調整することによって、実車のコーナリング時などのタイヤ姿勢をタイヤTに再現することができる。
 タイヤTに付与されるキャンバ角CAおよびスリップ角SAのいずれか一方または両方を0°に調整することもできる。タイヤTに付与されるキャンバ角CAおよびスリップ角SAの両方が0°に調整される場合には、実車の直進時のタイヤ姿勢がタイヤTに再現される。
 上記において得られたタイヤの接地特性をシミュレータ(例えば図13に示す車両挙動シミュレーション装置300)に反映させることにより実車の挙動をより正確に再現することが可能となる。
 本発明者は、鋭意研究において、第1実施形態のタイヤ接地特性計測装置100によって、図6(B)に示すレーンチェンジが図9に示す期間中に実行される場合における実車のタイヤ姿勢の過渡的な変化を、図1~図3に示すタイヤTに再現した。
 本発明者は、鋭意研究において、第1実施形態のタイヤ接地特性計測装置100の処理装置4によって算出される時刻A、B、C、D、E(図9参照)におけるタイヤ接地特性と、従来のタイヤ接地特性計測装置によって算出される時刻A、B、C、D、Eにおけるタイヤ接地特性とが異なることを見い出した。
 図10は第1実施形態のタイヤ接地特性計測装置100の処理装置4によって算出された幅方向せん断応力分布と、比較例としての従来のタイヤ接地特性計測装置によって算出された幅方向せん断応力分布との違いを示す図である。
 詳細には、図10(A)の上側は、従来のタイヤ接地特性計測装置によって算出された時刻Aにおける幅方向せん断応力分布を示しており、図10(A)の下側は、第1実施形態のタイヤ接地特性計測装置100の処理装置4によって算出された時刻Aにおける幅方向せん断応力分布を示している。
 第1実施形態のタイヤ接地特性計測装置100では、図6(B)に示すレーンチェンジ中における実車のタイヤ姿勢の過渡的な変化をタイヤTに再現するために、時刻t10から時刻t70までの期間中、ドラム用駆動手段2と、タイヤ位置制御手段5と、タイヤ用駆動手段6と、タイヤ角制御手段7とが動作した。更に、処理装置4は、過渡的な変化が発生している期間(時刻t10~時刻t70)中の時刻Aにおける実車の挙動を再現した過渡的なタイヤ姿勢に対応する幅方向せん断応力分布を算出した。
 一方、比較例としての従来のタイヤ接地特性計測装置では、タイヤ角制御手段7がタイヤTに付与する接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]が、時刻Aの時点の値に維持されている状態で、処理装置4が時刻Aにおける幅方向せん断応力分布を算出した。
 同様に時刻B、C、D、Eについても実車挙動を再現した過渡的なタイヤ姿勢に対応する幅方向せん断応力分布(第1実施形態)および各時刻のタイヤ姿勢に固定した幅方向せん断応力分布(比較例)を算出した。
 図10に示すように、第1実施形態のタイヤ接地特性計測装置100の処理装置4が算出した時刻A、B、C、D、Eの幅方向せん断応力分布は、比較例としての従来のタイヤ接地特性計測装置が算出した時刻A、B、C、D、Eの幅方向せん断応力分布とは異なるものになった。
 図11は第1実施形態のタイヤ接地特性計測装置100の処理装置4によって算出された接地力分布と、比較例としての従来のタイヤ接地特性計測装置によって算出された接地力分布との違いを示す図である。
 詳細には、図11(A)の上側は、従来のタイヤ接地特性計測装置によって算出された時刻Aにおける接地力分布を示しており、図11(A)の下側は、第1実施形態のタイヤ接地特性計測装置100の処理装置4によって算出された時刻Aにおける接地力分布を示している。
 上述した幅方向のせん断応力分布と同様に、時刻B、C、D、Eについても実車挙動を再現した過渡的なタイヤ姿勢に対応する接地力分布(第1実施形態)および各時刻のタイヤ姿勢に固定して接地力分布(比較例)を算出した。図11に示すように、第1実施形態のタイヤ接地特性計測装置100の処理装置4が算出した各時刻の接地力分布(接地面積)は、比較例としての従来のタイヤ接地特性計測装置が算出した時刻の接地力分布(接地面積)とは異なるものになった。
 図12は第1実施形態のタイヤ接地特性計測装置100において実行される処理の一例を説明するためのフローチャートである。
 図12に示す例では、ステップS11において、処理装置4が、実車の走行時のタイヤ姿勢の過渡的な変化をタイヤTに再現する。タイヤ姿勢の過渡的な変化は実車をモデル化したドライビングシミュレータ(例えば図13に示す車両挙動シミュレーション装置300)から入力するものであって良く、前記ドライビングシミュレータにタイヤ接地特性を反映させることにより、ドライビングシミュレータにおいて実車に近い挙動を再現することができるものとすることにより、より正確なタイヤ姿勢を得ることができるものとしてもよい。
 詳細には、ステップS11では、回転ドラム1の回転速度が、ドラム用駆動手段2によって調整される。また、回転ドラム1に対するタイヤTの位置が、タイヤ位置制御手段5によって回転ドラム1の回転軸方向および/または径方向に調整される。また、タイヤTの回転速度が、タイヤ用駆動手段6によって調整される。また、タイヤTのキャンバ角、スリップ角および/または接地力が、タイヤ角制御手段7によって調整される。また、タイヤTの空気圧がタイヤ空気圧変更手段10によって調整される。
 次いで、ステップS12において、応力測定手段3が、回転ドラム1に当接するタイヤTにかかる応力を測定する。詳細には、応力測定手段3が、タイヤTにかかる接地力、幅方向せん断応力、周方向せん断応力等を測定する。
 詳細には、ステップS12では、ドラム用駆動手段2が回転ドラム1を回転駆動すると共に、タイヤ用駆動手段6がタイヤTを回転駆動することによって、応力測定手段3を、タイヤTのトレッド表面T1の周方向の複数箇所に接触させる。応力測定手段3は、タイヤTのトレッド表面T1の周方向の複数箇所においてタイヤTにかかる応力を測定する。
 次いで、ステップS13において、処理装置4は、応力測定手段3によって測定された応力に基づいて、タイヤTのトレッド表面T1のうちの回転ドラム1に接触する接地領域T1Aにおける特性であるタイヤ接地特性を算出する。
 ステップS13において算出されるタイヤ接地特性は、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中の各時点(例えば時刻A、Bなど)における実車のタイヤ姿勢に対応するタイヤTのタイヤ接地特性である。
 換言すれば、実車試験では路面の状態や温度、気温、気圧等の環境条件の変化を制御することは困難であると共に、コストおよび労力と時間を必要とするが、第1実施形態におけるステップS11~S13を繰り返し行うことにより、タイヤ接地特性計測装置100では、従来のドラム試験において計測することができなかった過渡的なタイヤ力を、タイヤの姿勢角を過渡的に変動させることによって、計測することができる。そのため、第1実施形態のタイヤ接地特性計測装置100では、実車走行時のタイヤ評価を動的(過渡的)に行うことができる。
 第1実施形態のタイヤ接地特性計測装置100の処理装置4は、応力測定手段3による測定結果を相互に関連させることにより、タイヤTの接地領域T1Aの任意の位置における摩擦係数μ等を算出し、タイヤTの接地領域T1A内の摩擦係数μの分布つまり滑り分布を得ることもできる。
 また、第1実施形態のタイヤ接地特性計測装置100では、例えば、測定の際に、応力測定手段3がタイヤTの接地領域T1Aの同一位置に対向することにより、タイヤTの同一位置について複数の測定結果が得られた場合には、それらの測定結果を平均したものが測定結果として用いられる。
[第2の実施形態]
 第1実施形態のタイヤ接地特性計測装置100にタイヤ角制御手段7と、ドラム側回転位置検出手段8が追加されたものであり、タイヤTのトレッド表面T1における特定の接地領域T1Aにおけるタイヤの接地特性を計測することができるものとすることができる。第1の実施形態とは異なりトレッドパターンを詳細に反映したタイヤの接地特性を計測することができるものである。図1~図3に示す例では、ドラム側回転位置検出手段8が、回転ドラム1の回転位置を検出する。詳細には、ドラム側回転位置検出手段8は、回転ドラム1上に埋設された応力測定手段3の回転位置を検出する。
 図1~図3に示す例では、回転ドラム1とタイヤTとが接触する荷重直下位置が、基準位置B(図3参照)に設定されている。ドラム側回転位置検出手段8は、基準位置Bに対する応力測定手段3の回転位置を検出する。
 ドラム側回転位置検出手段8は、例えばドラム用駆動手段2のドラム軸2Aに配置されたロータリーエンコーダなどである。
 図1~図3に示す例では、タイヤ側回転位置検出手段9が、タイヤTの回転位置を検出する。詳細には、タイヤ側回転位置検出手段は、基準位置Bに対するタイヤTの回転位置を検出する。タイヤ側回転位置検出手段は、例えばタイヤ位置制御手段5のスピンドル軸5Aに配置されたロータリーエンコーダなどである。
 ドラム側回転位置検出手段8によって検出された基準位置Bに対する応力測定手段3の回転位置と、タイヤ側回転位置検出手段9によって検出された基準位置Bに対するタイヤTの回転位置とは、処理装置4に入力される。処理装置4は、基準位置Bに対する応力測定手段3の回転位置と、基準位置Bに対するタイヤTの回転位置とに基づいて、応力測定手段3が当接するタイヤTの周方向位置を算出する。
 図1~図3に示す例では、タイヤ空気圧変更手段10は、例えばタイヤ角制御手段7がタイヤTのキャンバ角、スリップ角および/または接地力を変更している期間中などにタイヤTの空気圧を変更する機能を有し、いわゆるパンク発生時の挙動等を把握することができる。
 図4は第2実施形態のタイヤ接地特性計測装置100の処理装置4によって算出されたタイヤ接地特性(タイヤTのトレッド表面T1のうちの回転ドラム1に接触する接地領域T1Aにおける特性)の一例を説明するための図である。詳細には、図4は処理装置4によって算出されて可視化処理されたタイヤ接地特性の一例を説明するための図である。
 図4(A)および図4(B)の横軸はタイヤTの幅方向を示しており、図4(A)および図4(B)の縦軸はタイヤTの周方向を示している。図4(A)および図4(B)の上側はタイヤTの蹴り側を示しており、図4(A)および図4(B)の下側はタイヤTの踏み側を示している。
 図4(A)に示す例では、タイヤ角制御手段7によって実車の直進時のタイヤ姿勢がタイヤTに再現され、その時の接地領域T1A内における接地力分布が示されている。図4(A)に示す例では、実車の車速が60[kph]に設定され、スリップ角SAが0[°]に設定されている。図4(A)に示す例では、接地領域T1Aのうちの回転ドラム1とタイヤTとが接触する荷重直下位置における接地力が、他の位置における接地力よりも大きくなっている。
 図4(B)に示す例では、タイヤ角制御手段7によって実車のコーナリング時のタイヤ姿勢がタイヤTに再現され、その時の接地領域T1A内における接地力分布が示されている。図4(B)に示す例では、実車の車速が60[kph]に設定され、スリップ角SAが6[°]に設定されている。図4(B)に示す例では、接地領域T1Aのうちのコーナリング外側(図4(B)の左側)における接地力が、コーナリング内側(図4(B)の右側)における接地力よりも大きくなっている。
 図5は第2実施形態のタイヤ接地特性計測装置100の処理装置4によって図4に示すようなタイヤ接地特性が算出される手法の一例を説明するための図である。
 詳細には、図5(A)はタイヤTのトレッド表面T1の接地領域T1Aの踏み側端部(Leading edge)と、蹴り側端部(Trailing edge)とを説明するための図である。図5(B)はタイヤTのトレッド表面T1の周方向の「5deg」位置が応力測定手段3に当接した場合に、応力測定手段3によって測定される「5deg」位置の応力を概念的に説明するための図である。図5(C)はタイヤTのトレッド表面T1の周方向の「-5deg」位置が応力測定手段3に当接した場合に、応力測定手段3によって測定される「-5deg」位置の応力を概念的に説明するための図である。図5(D)は応力測定手段3によって測定されたタイヤTのトレッド表面T1の周方向の複数の位置の応力データを合成する処理を概念的に説明するための図である。図5(E)は処理装置4によって可視化された接地領域T1Aの接地力分布の一例を示す図である。
 図5に示す例では、処理装置4が、タイヤTのトレッド表面T1のうちの応力測定手段3を踏んだ位置(応力測定手段3に当接した周方向位置)を記録する。応力測定手段3は、基準位置B(荷重直下位置)においてタイヤTのトレッド表面T1に当接するのみならず、基準位置B以外の位置においてもタイヤTのトレッド表面T1に当接する。つまり、応力測定手段3は、接地領域T1Aの踏み側端部(Leading edge)に当接してから、接地領域T1Aの蹴り側端部(Trailing edge)に当接するまでの期間中、タイヤTのトレッド表面T1に当接し続ける。そのため、応力測定手段3は、踏み側端部から蹴り側端部までの間の応力の変化を取得することができる。
 詳細には、「Tire Angle=0deg」(図5(A)参照)の位置の応力が応力測定手段3によって測定されるのみならず、図5(A)中の「5deg」の位置に相当する「Tire Posi=5deg」(図5(B)参照)の位置の応力も応力測定手段3によって測定される。また、図5(A)中の「-5deg」の位置に相当する「Tire Posi=-5deg」(図5(C)参照)の位置の応力も応力測定手段3によって測定される。
 更に、タイヤTのトレッド表面T1の周方向のすべての位置の応力が応力測定手段3によって測定される。処理装置4は、一連の走行挙動中におけるタイヤTのトレッド表面T1の周方向のすべての位置が応力測定手段3に当接するまで記録を続ける。
 詳細には、回転ドラムの全周上をカバーできるように応力測定手段を配置することも可能であるが、過渡的な変化が発生している期間中におけるタイヤTのトレッド表面T1のすべての接地位置を、応力測定手段3に当接させるために、例えば制動力をタイヤTに対して付与することもできる。それにより、タイヤTの周速度と回転ドラム1の周速度とを異ならせることができ、タイヤTのトレッド表面T1の周方向のすべての位置を、応力測定手段3に対向させることもできる。いずれの方法により計測するにせよドラムの接地個所の複数個所でドラムの幅方向に応力測定手段を配置したほうがより効率的に測定を行うことができる。なお、幅方向に一列に複数個設置されるセンサを複数列互い違いになるように設置することによって、計測時間を短縮できるほか、応力分布等の解像度を向上させることができる。また、応力測定手段の配置位置を少なくすることにより測定装置自体を簡素化することができる。
 図6は第2実施形態のタイヤ接地特性計測装置100によってタイヤTに再現される実車の走行時のタイヤ姿勢の過渡的な変化の一例などを説明するための図である。
 詳細には、図6(A)は第2実施形態のタイヤ接地特性計測装置100のタイヤ角制御手段7がタイヤTに付与する接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]の時間変化を示す図である。図6(A)において横軸は時間(時刻)[sec]を示しており、縦軸は接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]を示している。
 図6(B)は図6(A)に示す接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]の時間変化に相当する実車の走行状態を示す。
 図6に示す例では、図6(A)の横軸に示す0[sec](時刻t10)から5[sec](時刻t70)までの5秒間に、実車が、図6(B)の左側車線から右側車線へのレーンチェンジを実行する。
 つまり、図6に示す例では、図6(B)に示すレーンチェンジ中における実車のタイヤ姿勢の過渡的な変化をタイヤTに再現するために、図6(A)に示すように、タイヤ角制御手段7が、タイヤTに付与される接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]を、時間の経過に応じて変更する。すなわち、タイヤ角制御手段7がタイヤTのキャンバ角CA[deg]、スリップ角SA[deg]および/または接地力Fz[N]を変更することによって、実車の走行時のタイヤ姿勢の過渡的な変化を再現する。
 詳細には、図6に示す例では、回転ドラム1の周上表面の幅方向に応力測定手段を一つ配置した場合の測定方法を例示する。時刻t10、時刻t30、時刻t50および時刻t70におけるタイヤTのトレッド表面T1の応力を応力測定手段3によって測定するために、時刻t10に、応力測定手段3が、基準位置B(荷重直下位置)に配置される。次いで、回転ドラム1が1回転し、時刻t30に、応力測定手段3が、基準位置Bに位置する。次いで、回転ドラム1が1回転し、時刻t50に、応力測定手段3が、基準位置Bに位置する。次いで、回転ドラム1が1回転し、時刻t70に、応力測定手段3が、基準位置Bに位置する。その結果、時刻t10、時刻t30、時刻t50および時刻t70におけるタイヤTのトレッド表面T1の応力を応力測定手段3によって測定することができる。
 図7は図6に示す例に測定開始時の回転ドラム位置を180°ずらして計測位置を追加した図である。詳細には、図7(A)は、図6(A)と同様に、第1実施形態のタイヤ接地特性計測装置100のタイヤ角制御手段7がタイヤTに付与する接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]の時間変化を示している。図7(B)は、図6(B)と同様に、図7(A)に示す接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]の時間変化に相当する実車の走行状態を示す。
 図7において、時刻t20は、回転ドラム1が時刻t10の状態から180°回転した時刻である。時刻t40は、回転ドラム1が時刻t30の状態から180°回転した時刻である。時刻t60は、回転ドラム1が時刻t50の状態から180°回転した時刻である。
 図7に示す例では、時刻t20、時刻t40および時刻t60におけるタイヤTのトレッド表面T1の応力を応力測定手段3によって測定するために、時刻t10に、応力測定手段3が、回転ドラム1の中心を隔てて基準位置B(荷重直下位置)の反対側に配置される。次いで、回転ドラム1が0.5回転し、時刻t20に、応力測定手段3が、基準位置Bに位置する。次いで、回転ドラム1が1回転し、時刻t40に、応力測定手段3が、基準位置Bに位置する。次いで、回転ドラム1が1回転し、時刻t60に、応力測定手段3が、基準位置Bに位置する。その結果、時刻t20、時刻t40および時刻t60におけるタイヤTのトレッド表面T1の応力を応力測定手段3によって測定することができる。
 図8は図7に示す例に更に計測点を追加した時の図である。詳細には、図8(A)は、図6(A)および図7(A)と同様に、第1実施形態のタイヤ接地特性計測装置100のタイヤ角制御手段7がタイヤTに付与する接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]の時間変化を示している。図8(B)は、図6(B)および図7(B)と同様に、図8(A)に示す接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]の時間変化に相当する実車の走行状態を示す。
 上述の如く過渡的な変化を伴うすべての接地位置におけるタイヤの接地特性を測定したうえで、図5に示す例では、図5(D)に示すように、応力測定手段3によって測定されたタイヤTのトレッド表面T1の周方向の複数の位置の応力データが、処理装置4によって合成される。次いで、図5(E)に示すように、処理装置4は、可視化された接地領域T1Aの例えば接地力分布を生成することができる。また、第2実施形態のタイヤ接地特性計測装置100では、ドラム側回転位置検出手段8およびタイヤ側回転位置検出手段9によって回転ドラム1の回転位置とタイヤTの回転位置とを同期させて計測することにより、パタン付きタイヤフットプリント計測(ラグ溝などを含む接地領域T1Aのタイヤ接地特性の算出)を実現することができる。
 図9は第2実施形態のタイヤ接地特性計測装置100のタイヤ角制御手段7がタイヤTに付与する接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]の時間変化を示す図である。
 図9において、時刻Aは、図8に示す時刻t23に相当する。時刻Bは、図6~図8に示す時刻t30に相当する。時刻Cは、図8に示す時刻t32に相当する。時刻Dは、図8に示す時刻t36に相当する。時刻Eは、図8に示す時刻t44に相当する。
 本発明者の鋭意研究では、図6(B)に示すレーンチェンジ中における実車のタイヤ姿勢の過渡的な変化をタイヤTに再現するために、第2実施形態のタイヤ接地特性計測装置100のタイヤ角制御手段7が、図9に示すように、接地力Fz[N]、キャンバ角CA[deg]およびスリップ角SA[deg]を変化させて、タイヤTに付与した。
 本発明者は、鋭意研究において、第2実施形態のタイヤ接地特性計測装置100の処理装置4によって算出される時刻A、B、C、D、Eにおけるタイヤ接地特性も、従来のタイヤ接地特性計測装置によって算出される時刻A、B、C、D、Eにおけるタイヤ接地特性とは異なることを見い出した。
 第2実施形態のタイヤ接地特性計測装置100においては、第1実施形態のタイヤ接地特性計測装置100と同様に、図12に示す処理が実行されるが、タイヤ姿勢の過渡的な変化を再現する前提条件として、各々の計測点にドラムの回転位置およびタイヤの回転位置を駆動手段、制動手段等を用いることにより計測すべき基準位置Bと応力測定手段が合致するように調整される。
[第3実施形態]
 以下、本発明のタイヤ接地特性計測装置100の第3実施形態について説明する。
 第3実施形態のタイヤ接地特性計測システム400が備えるタイヤ接地特性計測装置100は、後述する点を除き、上述した第1実施形態または第2実施形態のタイヤ接地特性計測装置100と同様に構成されている。従って、第3実施形態のタイヤ接地特性計測システム400によれば、後述する点を除き、上述した第1の実施形態または第2実施形態のタイヤ接地特性計測装置100と同様の効果を奏することができる。
 図13は第3実施形態のタイヤ接地特性計測システム400の一例の構成図である。
 図13に示す例では、タイヤ接地特性計測システム400が、タイヤ接地特性計測装置100と、車両特性計測装置200と、車両挙動シミュレーション装置300とを備えている。
 上述したように、図13に示すタイヤ接地特性計測装置100は、第2実施形態のタイヤ接地特性計測装置100と同様に構成されている。
 車両特性計測装置200は、車体203と車輪202とステアリングホイール205とを有する試験用車両201と、架台装置(サスペンション特性計測装置)210と、制御器(コンピュータ)220とを備えている。
 架台装置210は、試験用車両201が載置される支持部214と、計測器215とを備えている。
 支持部214は、車体203と車輪202とを独立に変位させることが可能である。詳細には、支持部214は、車体203と、車輪202とを、試験用車両201の前後方向、左右方向、上下方向、ピッチ方向およびロール方向に独立に変位させることができる。
車両の走行中にタイヤに発生し得る前後力、横力、コーナリングフォース、スリップ率、スリップ角の発生が実現できるように、支持部214が車輪202に対して摺動可能であってよい。
 計測器215は、車体203の変位量および/または作用力と、車輪202の変位量および/または作用力とを計測する。詳細には、計測器215は、支持部214に作用する作用力を計測する。また、計測器215は、車輪202のキャンバ角、トー角、舵角などを計測する。また、計測器215は、車軸(図示せず)に作用する力またはトルクを計測する。また、計測器215は、サスペンションのストローク、作用力を計測する。
 制御器220は、支持部214によって車体203に付与される変位量と、支持部214によって車輪202に付与される変位量とを制御する。
 図13に示す例では、ステアリングホイール205を駆動して車輪202の舵角を制御する機構が設けられているが、他の例では、ステアリングホイール205が備えられていなくてもよい。
 図13に示す例では、車両挙動シミュレーション装置300が、タイヤ接地特性計測装置100の処理装置4によって算出されたタイヤ接地特性と、車両特性計測装置200の計測器215によって計測された車体203の変位量および/または作用力、および、車輪202の変位量および/または作用力とに基づいて、実車の走行時の挙動を予測する。
 車両挙動シミュレーション装置300は、実車の走行時の挙動をシミュレーションするコンピュータであり、演算処理手段としてのCPU、記憶手段としてのROM、RAMおよびHDD、通信手段としてのインターフェイスを含み、記憶手段に格納されたプログラムに基づいて動作する。また、車両挙動シミュレーション装置300には、キーボードやマウス等の入力手段やモニタ等の表示手段が含まれる。入力手段は、ハンドルおよびアクセル、ブレーキ等からなる運転状態を再現することもできる。作業者によって操作され、実車の走行時の挙動の予測に必要なパラメータ等が入力される。表示手段には、推定された実車の走行時の挙動などが表示される。
 図13に示す例では、車両挙動シミュレーション装置300が、計測器215の計測データを用いることによって実車の走行時の運動状態を予測する。タイヤ接地特性計測装置100の処理装置4およびタイヤ角制御手段7は、予測された運動状態に基づいて、タイヤ姿勢の過渡的な変化をタイヤTに再現する。
 更に、図13に示す例では、車両特性計測装置200が、タイヤ接地特性計測装置100の処理装置4によって算出されたタイヤ接地特性から予測される車両特性を試験用車両201に反映することもできる。具体的には車両挙動シミュレーション装置300に各時点におけるタイヤ接地特性を入力することにより、車両挙動をより忠実に再現することが可能となる。計測器215は、処理装置4によって算出されたタイヤ接地特性が反映された試験用車両201の車体203および車輪202の変位量および/または作用力を計測する。
 また、タイヤ接地特性計測装置100では、処理装置4によって算出されたタイヤ接地特性から予測される車両特性が反映された計測器215の計測データに基づいて、ドラム用駆動手段2による回転ドラム1の回転速度の変更、タイヤ位置制御手段5による回転ドラム1に対するタイヤTの位置の変更、タイヤ用駆動手段6によるタイヤTの回転速度の変更、および、タイヤ角制御手段7によるタイヤTの角度の変更の少なくともいずれかが行われる。
 また、図13に示す例では、ドラム用駆動手段2による回転ドラム1の回転速度の変更、タイヤ位置制御手段5による回転ドラム1に対するタイヤTの位置の変更、タイヤ用駆動手段6によるタイヤTの回転速度の変更、および、タイヤ角制御手段7によるタイヤTの角度の変更の少なくともいずれかが行われた後に処理装置4によって算出されたタイヤ接地特性から予測される車両特性を反映させて、車両特性計測装置200の制御器220が、支持部214によって車体203に付与される変位量と、支持部214によって車輪202に付与される変位量とを制御することができる。
 図14は第3実施形態のタイヤ接地特性計測システム400において実行される処理の一例を説明するためのシーケンス図である。
 図14に示す例では、ステップS51において、車両挙動シミュレーション装置300が、シミュレーションの前処理を開始する。
 次いで、ステップS52において、タイヤ接地特性計測装置100が、待機位置に移動する。
 また、ステップS53において、車両特性計測装置200が、待機位置に移動する。
 次いで、ステップS54において、タイヤ接地特性計測装置100が、移動完了フラグを車両挙動シミュレーション装置300に送信する。
 また、ステップS55において、車両特性計測装置200が、移動完了フラグを車両挙動シミュレーション装置300に送信する。
 次いで、ステップS56において、車両挙動シミュレーション装置300が、タイヤ接地特性計測装置100から送信された移動完了フラグと、車両特性計測装置200から送信された移動完了フラグとを確認する。
 次いで、ステップS57において、車両挙動シミュレーション装置300が、シミュレーションの車両状態をリセットする。
 次いで、ステップS58において、車両挙動シミュレーション装置300が、シミュレーションの車両の安定を確認する。
 次いで、ステップS59において、車両挙動シミュレーション装置300が、シミュレーションを初期状態で待機する。
 次いで、ステップS60において、車両挙動シミュレーション装置300が、タイヤ接地特性計測装置100に対して初期状態への移動指示を送信すると共に、車両特性計測装置200に対して初期状態への移動指示を送信する。
 次いで、ステップS61において、タイヤ接地特性計測装置100が、車両挙動シミュレーション装置300からの指示に応じて移動する。
 また、ステップS62において、車両特性計測装置200が、車両挙動シミュレーション装置300からの指示に応じて移動する。
 次いで、ステップS63において、タイヤ接地特性計測装置100が、車両挙動シミュレーション装置300と同期して動作するシミュレーション同期モードに移行する。
 また、ステップS64において、車両特性計測装置200が、車両挙動シミュレーション装置300と同期して動作するシミュレーション同期モードに移行する。
 次いで、ステップS65において、タイヤ接地特性計測装置100が、シミュレーション同期モードへの移行完了を示す移行完了フラグを車両挙動シミュレーション装置300に送信する。
 また、ステップS66において、車両特性計測装置200が、シミュレーション同期モードへの移行完了を示す移行完了フラグを車両挙動シミュレーション装置300に送信する。
 次いで、ステップS67において、車両挙動シミュレーション装置300が、タイヤ接地特性計測装置100から送信された移行完了フラグと、車両特性計測装置200から送信された移行完了フラグとを確認し、シミュレーションを開始する。
 次いで、ステップS67Aにおいて、車両挙動シミュレーション装置300が、シミュレーションの車両運動を計算する。
 次いで、ステップS68において、車両挙動シミュレーション装置300が、タイヤ接地特性計測装置100と、車両特性計測装置200の制御器220に指令値をおくる。同様にECU(電子制御ユニット)(図示せず)とに指令値を送信することが可能である。ECUは車両特性計測装置200の試験用車両201に搭載されているものを用いることができる。通常、車両の走行状態を把握するための各種センサからECUへ入力される信号に代わる模擬信号として、予測された前記車両特性に基づく指令値を用いることができる。
 車両モデルからECUへ送信される指令値としては、ホイールスピード、ヨーレート、車両加速度、タイヤの軸上の加速度、前方レーダおよびカメラ等の各種センサに対して車両特性を補足する情報が含まれる。これらの情報をECUへ反映し、走行状態を試験用車両に認識させることより走行状態を精密に再現したシミュレーションを行うことができる。
 また、ステップS69において、タイヤ接地特性計測装置100が、車両挙動シミュレーション装置300から送信された指令値に応じて(つまり、車両挙動シミュレーション装置300と同期して)動作する。詳細には、タイヤ接地特性計測装置100が、車両挙動シミュレーション装置300から得られる車両特性(特にタイヤの軸力)を反映して動作する。また、タイヤ接地特性計測装置100は、タイヤ接地特性のデータを車両挙動シミュレーション装置300に送信する。
 また、ステップS70において、車両特性計測装置200が、車両挙動シミュレーション装置300から送信された指令値に応じて(つまり、車両挙動シミュレーション装置300と同期して)動作する。詳細には、車両特性計測装置200が、車両挙動シミュレーション装置300から得られる車両特性(特にタイヤの軸力)を反映して動作する。また、車両挙動シミュレーション装置300から送信された指令値を、試験用車両201に搭載されたECUに入力する。また、車両特性計測装置200は、計測データを車両挙動シミュレーション装置300に送信する。
 つまり、ステップS68、S69、S70が並行して実行され、タイヤ接地特性計測装置100と車両特性計測装置200と車両挙動シミュレーション装置300とが同期して動作する。
 次いで、ステップS70Aにおいて、車両挙動シミュレーション装置300が、タイヤ接地特性計測装置100と車両特性計測装置200とからデータ(タイヤ接地特性のデータおよび計測データ)を受信する。
 次いで、ステップS70Bにおいて、車両挙動シミュレーション装置300は、シミュレーションの終了時間であるか否か、および、シミュレーションの車両の走行距離が走行予定距離に到達したか否かを判定する。
 シミュレーションの終了時間でない場合、または、シミュレーションの車両の走行距離が走行予定距離に到達していない場合には、ステップS71に進む。一方、シミュレーションの終了時間である場合、かつ、シミュレーションの車両の走行距離が走行予定距離に到達した場合には、ステップS67Aに戻る。
 ステップS71において、車両挙動シミュレーション装置300は、シミュレーションを終了する。
 それに伴って、ステップS72において、タイヤ接地特性計測装置100の動作が、内部指令に応じた動作に切り替わる。
 また、ステップS73において、車両特性計測装置200の動作が、内部指令に応じた動作に切り替わる。
 次いで、ステップS74において、タイヤ接地特性計測装置100が、待機位置に移動する。
 また、ステップS75において、車両特性計測装置200が、待機位置に移動する。
 つまり、本発明の一態様のタイヤ接地特性計測方法では、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応するタイヤのタイヤ接地特性が、算出ステップにおいて算出される。
 そのため、本発明の一態様のタイヤ接地特性計測方法によれば、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応するタイヤ接地特性を得ることができる。
 本発明の一態様のタイヤ接地特性計測方法における、前記応力測定ステップでは、前記回転ドラムの回転速度が、ドラム用駆動手段によって調整され、前記回転ドラムに対する前記タイヤの位置が、タイヤ位置制御手段によって前記回転ドラムの回転軸方向および/または径方向に調整され、前記タイヤの回転速度が、タイヤ用駆動手段によって調整され、前記タイヤのキャンバ角、スリップ角および/または接地力が、タイヤ角制御手段によって調整されてもよい。
 応力測定ステップにおいてそのようなことが行われる場合には、応力測定ステップにおいてそのようなことが行われない場合よりも正確に、実車の走行時のタイヤ姿勢の過渡的な変化をタイヤに再現することができる。
 本発明の一態様のタイヤ接地特性計測方法における、前記応力測定ステップでは、前記応力測定手段としての3分力センサが、前記タイヤにかかる接地力と幅方向せん断応力と周方向せん断応力とを測定してもよい。
 応力測定ステップにおいて、3分力センサが、タイヤにかかる接地力と幅方向せん断応力と周方向せん断応力とを測定する場合には、タイヤ接地特性として接地力分布と幅方向せん断応力分布と周方向せん断応力分布とを算出することができる。
 本発明の一態様のタイヤ接地特性計測方法における、ドラム用駆動手段が前記回転ドラムを回転駆動すると共に、タイヤ用駆動手段が前記タイヤを回転駆動することによって、前記応力測定手段を、前記タイヤの前記トレッド表面の周方向の複数箇所に接触させ、前記応力測定手段が、前記複数箇所において前記タイヤにかかる応力を測定し、タイヤ側回転位置検出手段が、前記複数箇所のそれぞれに対応する前記タイヤの回転位置を検出し、タイヤ位置制御手段が前記回転ドラムに対する前記タイヤの位置を前記回転ドラムの回転軸方向に変化させながら、前記応力測定手段が、前記タイヤにかかる応力を繰り返し測定すると共に、前記タイヤ側回転位置検出手段が、前記タイヤの回転位置を繰り返し検出することによって、処理装置が、前記接地領域における接地力分布と幅方向せん断応力分布と周方向せん断応力分布とを算出し、前記処理装置は、前記接地領域内の各箇所おける接地力分布、幅方向せん断応力分布および/または周方向せん断応力分布を合成することによって、前記過渡的な変化が発生している期間中の各時点における前記タイヤ接地特性を算出してもよい。
 そのように応力測定手段がタイヤのトレッド表面の周方向の複数箇所に接触させられ、応力測定手段がタイヤにかかる応力を繰り返し測定し、処理装置が接地領域における接地力分布と幅方向せん断応力分布と周方向せん断応力分布とを算出し、処理装置が接地領域内の各箇所おける接地力分布、幅方向せん断応力分布および/または周方向せん断応力分布を合成する場合には、タイヤのトレッド表面の周方向の複数箇所における接地力分布、幅方向せん断応力分布および/または周方向せん断応力分布を得ることができる。
 本発明の一態様のタイヤ接地特性計測方法における、前記過渡的な変化を前記タイヤに再現する前記再現ステップでは、車両特性計測装置の架台装置の支持部が、前記車両特性計測装置に備えられている試験用車両の車体と車輪とを独立に変位させ、前記架台装置の計測器が、前記車体の変位量および/または作用力と、前記車輪の変位量および/または作用力とを計測し、前記車両特性計測装置に備えられている制御器が、前記支持部によって前記車体に付与される変位量と、前記支持部によって前記車輪に付与される変位量とを制御し、処理装置は、前記計測器の計測データを用いることによって実車の走行時の運動状態を予測し、予測された前記運動状態に基づいて、タイヤ姿勢の前記過渡的な変化を前記タイヤに再現してもよい。
 処理装置が計測器の計測データを用いることによって実車の走行時の運動状態を予測し、その運動状態に基づいて、タイヤ姿勢の過渡的な変化をタイヤに再現する場合には、計測器の計測データが用いられない場合とは異なり、例えばサスペンションなどの車両特性を反映させたタイヤ接地特性を得ることができるため、より実車に近い条件でタイヤの接地特性を計測することができる。
 本発明の一態様のタイヤ接地特性計測方法では、計測された応力および接地荷重を実車の挙動をシミュレーションする車両モデルに反映させることにより、タイヤの軸力などの車両特性を予測することができる。車両特性計測装置が、予測されたタイヤの軸力などの車両特性を試験用車両に反映し、計測器は、前記車両特性が反映された前記試験用車両の車体および車輪の変位量および/または作用力を計測し、車両特性が反映された前記計測器の計測データに基づいて、前記ドラム用駆動手段による前記回転ドラムの回転速度の変更、タイヤ位置制御手段による前記回転ドラムに対する前記タイヤの位置の変更、タイヤ用駆動手段による前記タイヤの回転速度の変更、および、タイヤ角制御手段による前記タイヤの角度の変更の少なくともいずれかが行われてもよい。
 前記実車挙動シミュレータによって予測されるタイヤの軸力などの車両特性が試験用車両に反映される場合には、車両特性が試験用車両に反映されない場合よりも高精度な車両特性を車両特性計測装置が計測することができる。
 本発明の一態様のタイヤ接地特性計測方法では、前記試験用車両の電子制御ユニットに対して、予測された前記車両特性に基づく指令を送信することにより前記試験用車両の電子制御ユニットに走行状態を認識させてもよい。
 試験用車両の電子制御ユニットに対して、予測された車両特性に基づく指令を送信することにより試験用車両の電子制御ユニットに走行状態を認識させる場合には、試験用車両の電子制御ユニットに走行状態を認識させない場合よりも高精度なタイヤ接地特性を得ることができる。
 本発明の一態様のタイヤ接地特性計測装置は、回転可能な回転ドラムと、前記回転ドラムを回転駆動するドラム用駆動手段と、前記回転ドラム上に埋設され、前記回転ドラムに当接するタイヤにかかる応力を測定する応力測定手段と、前記回転ドラムに対する前記タイヤの位置を制御するタイヤ位置制御手段と、前記タイヤを回転駆動するタイヤ用駆動手段と、前記回転ドラムに対する前記タイヤの角度を制御するタイヤ角制御手段と、前記応力測定手段によって測定された応力に基づいて、前記タイヤのトレッド表面のうちの前記回転ドラムに接触する接地領域における特性であるタイヤ接地特性を算出する処理装置とを備え、実車の走行時のタイヤ姿勢の過渡的な変化を前記タイヤに再現するように、前記ドラム用駆動手段と、前記タイヤ位置制御手段と、前記タイヤ用駆動手段と、前記タイヤ角制御手段とが動作し、前記処理装置は、前記過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応する前記タイヤ接地特性を算出する。
 つまり、本発明の一態様のタイヤ接地特性計測装置では、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応するタイヤのタイヤ接地特性が、処理装置によって算出される。
 そのため、本発明の一態様のタイヤ接地特性計測装置によれば、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応するタイヤ接地特性を得ることができる。
 本発明の一態様のタイヤ接地特性計測装置では、前記ドラム用駆動手段は、前記回転ドラムの回転速度を調整可能であり、前記タイヤ位置制御手段は、前記回転ドラムに対する前記タイヤの位置を前記回転ドラムの回転軸方向および/または径方向に調整可能であり、前記タイヤ用駆動手段は、前記タイヤの回転速度を調整可能であり、前記タイヤ角制御手段は、前記タイヤのキャンバ角、スリップ角および/または接地力を調整可能であってもよい。
 回転ドラムの回転速度が調整可能であり、回転ドラムに対するタイヤの位置が回転ドラムの回転軸方向および/または径方向に調整可能であり、タイヤの回転速度が調整可能であり、タイヤのキャンバ角、スリップ角および/または接地力が調整可能である場合には、それらのいずれかが調整できない場合よりも正確に、実車の走行時のタイヤ姿勢の過渡的な変化をタイヤに再現することができる。
 本発明の一態様のタイヤ接地特性計測装置では、前記応力測定手段は、前記タイヤにかかる接地力と幅方向せん断応力と周方向せん断応力とを測定可能な3分力センサであってもよい。
 応力測定手段が3分力センサである場合には、処理装置が、タイヤ接地特性として接地力分布と幅方向せん断応力分布と周方向せん断応力分布とを算出することができる。
 本発明の一態様のタイヤ接地特性計測装置は、前記タイヤの回転位置を検出するタイヤ側回転位置検出手段を更に備え、前記ドラム用駆動手段が前記回転ドラムを回転駆動すると共に、前記タイヤ用駆動手段が前記タイヤを回転駆動することによって、前記応力測定手段を、前記タイヤの前記トレッド表面の周方向の複数箇所に接触させ、前記応力測定手段は、前記複数箇所において前記タイヤにかかる応力を測定し、前記タイヤ側回転位置検出手段は、前記複数箇所のそれぞれに対応する前記タイヤの回転位置を検出し、前記タイヤ位置制御手段が前記回転ドラムに対する前記タイヤの位置を前記回転ドラムの回転軸方向に変化させながら、前記応力測定手段が、前記タイヤにかかる応力を繰り返し測定すると共に、前記タイヤ側回転位置検出手段が、前記タイヤの回転位置を繰り返し検出することによって、前記処理装置は、前記接地領域における接地力分布と幅方向せん断応力分布と周方向せん断応力分布とを算出し、前記処理装置は、前記接地領域内の各箇所おける接地力分布、幅方向せん断応力分布および/または周方向せん断応力分布を合成することによって、前記過渡的な変化が発生している期間中の各時点における前記タイヤ接地特性を算出してもよい。
 そのように応力測定手段がタイヤのトレッド表面の周方向の複数箇所に接触させられ、応力測定手段がタイヤにかかる応力を繰り返し測定し、処理装置が接地領域における接地力分布と幅方向せん断応力分布と周方向せん断応力分布とを算出し、処理装置が接地領域内の各箇所おける接地力分布、幅方向せん断応力分布および/または周方向せん断応力分布を合成する場合には、タイヤのトレッド表面の周方向の複数箇所における接地力分布、幅方向せん断応力分布および/または周方向せん断応力分布を得ることができる。
 本発明の一態様のタイヤ接地特性計測システムは、前記タイヤ接地特性計測装置と、車両特性計測装置と、実車挙動のシミュレータとを備えるタイヤ接地特性計測システムであって、前記車両特性計測装置は、車体と車輪とを有する試験用車両と、架台装置と、制御器とを備え、前記架台装置は、前記試験用車両が載置される支持部と、計測器とを備え、前記支持部は、前記車体と前記車輪とを独立に変位させることが可能であり、前記計測器は、前記車体の変位量および/または作用力と、前記車輪の変位量および/または作用力とを計測し、前記制御器は、前記支持部によって前記車体に付与される変位量と、前記支持部によって前記車輪に付与される変位量とを制御し、前記処理装置は、前記計測器の計測データを用いることによって実車の走行時の運動状態を予測し、予測された前記運動状態に基づいて、タイヤ姿勢の前記過渡的な変化を前記タイヤに再現する。
 つまり、本発明の一態様のタイヤ接地特性計測システムでは、処理装置が計測器の計測データを用いることによって実車の走行時の運動状態を予測し、その運動状態に基づいて、タイヤ姿勢の過渡的な変化をタイヤに再現する。
 そのため、本発明の一態様のタイヤ接地特性計測システムによれば、計測器の計測データが用いられない場合とは異なり、例えばサスペンションなどの車両特性を反映させたタイヤ接地特性を得ることができる。
 本発明の一態様のタイヤ接地特性計測システムにおける、前記車両特性計測装置は、前記処理装置によって算出される前記タイヤ接地特性から予測される車両特性を前記試験用車両に反映し、前記計測器は、前記車両特性が反映された前記試験用車両の前記車体および前記車輪の変位量および/または作用力を計測し、前記車両特性が反映された前記計測器の計測データに基づいて、前記ドラム用駆動手段による前記回転ドラムの回転速度の変更、前記タイヤ位置制御手段による前記回転ドラムに対する前記タイヤの位置の変更、前記タイヤ用駆動手段による前記タイヤの回転速度の変更、および、前記タイヤ角制御手段による前記タイヤの角度の変更の少なくともいずれかが行われてもよい。
 処理装置によって算出されるタイヤ接地特性から予測される車両特性が試験用車両に反映される場合には、処理装置によって算出されるタイヤ接地特性から予測される車両特性が試験用車両に反映されない場合よりも高精度な車両特性を車両特性計測装置が計測することができる。
 本発明の一態様のタイヤ接地特性計測システムでは、前記試験用車両の電子制御ユニットに対して、予測された前記車両特性に基づく指令を送信することにより前記試験用車両の電子制御ユニットに走行状態を認識させてもよい。
 試験用車両の電子制御ユニットに対して、予測された車両特性に基づく指令を送信することにより試験用車両の電子制御ユニットに走行状態を認識させる場合には、試験用車両の電子制御ユニットに走行状態を認識させない場合よりも高精度なタイヤ接地特性を得ることができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や各例を適宜組み合わせてもよい。
本発明のタイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システムを当該分野に適用することにより、実車の走行時のタイヤ姿勢の過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応するタイヤ接地特性を得ることができる。
1…回転ドラム
2…ドラム用駆動手段
2A…ドラム軸
3…応力測定手段
4…処理装置
5…タイヤ位置制御手段
5A…スピンドル軸
6…タイヤ用駆動手段
7…タイヤ角制御手段
8…ドラム側回転位置検出手段
9…タイヤ側回転位置検出手段
10…タイヤ空気圧変更手段
100…タイヤ接地特性計測装置
200…車両特性計測装置
201…試験用車両
202…車輪
203…車体
205…ステアリングホイール
210…架台装置
214…支持部
215…計測器
220…制御器
300…車両挙動シミュレーション装置
T…タイヤ
T1…トレッド表面
T1A…接地領域

Claims (14)

  1.  実車の走行時のタイヤ姿勢の過渡的な変化をタイヤに再現する再現ステップと、
     回転可能な回転ドラム上に埋設された応力測定手段が、回転駆動される前記回転ドラムに当接する前記タイヤにかかる応力を測定する応力測定ステップと、
     前記応力測定手段によって測定された応力に基づいて、前記タイヤのトレッド表面のうちの前記回転ドラムに接触する接地領域における特性であるタイヤ接地特性を算出する算出ステップとを含み、
     前記算出ステップにおいて算出されるタイヤ接地特性は、前記過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応する前記タイヤのタイヤ接地特性である、
     タイヤ接地特性計測方法。
  2.  前記応力測定ステップでは、
     前記回転ドラムの回転速度が、ドラム用駆動手段によって調整され、
     前記回転ドラムに対する前記タイヤの位置が、タイヤ位置制御手段によって前記回転ドラムの回転軸方向および/または径方向に調整され、
     前記タイヤの回転速度が、タイヤ用駆動手段によって調整され、
     前記タイヤのキャンバ角、スリップ角および/または接地力が、タイヤ角制御手段によって調整される、
     請求項1に記載のタイヤ接地特性計測方法。
  3.  前記応力測定ステップでは、前記応力測定手段としての3分力センサが、前記タイヤにかかる接地力と幅方向せん断応力と周方向せん断応力とを測定する、
     請求項1~2のいずれかに記載のタイヤ接地特性計測方法。
  4.  ドラム用駆動手段が前記回転ドラムを回転駆動すると共に、タイヤ用駆動手段が前記タイヤを回転駆動することによって、前記応力測定手段を、前記タイヤの前記トレッド表面の周方向の複数箇所に接触させ、
     前記応力測定手段が、前記複数箇所において前記タイヤにかかる応力を測定し、
     タイヤ側回転位置検出手段が、前記複数箇所のそれぞれに対応する前記タイヤの回転位置を検出し、
     タイヤ位置制御手段が前記回転ドラムに対する前記タイヤの位置を前記回転ドラムの回転軸方向に変化させながら、前記応力測定手段が、前記タイヤにかかる応力を繰り返し測定すると共に、前記タイヤ側回転位置検出手段が、前記タイヤの回転位置を繰り返し検出することによって、処理装置が、前記接地領域における接地力分布と幅方向せん断応力分布と周方向せん断応力分布とを算出し、
     前記処理装置は、前記接地領域内の各箇所おける接地力分布、幅方向せん断応力分布および/または周方向せん断応力分布を合成することによって、前記過渡的な変化が発生している期間中の各時点における前記タイヤ接地特性を算出する、
     請求項1~3のいずれかに記載のタイヤ接地特性計測方法。
  5.  前記過渡的な変化を前記タイヤに再現する前記再現ステップでは、
     車両特性計測装置の架台装置の支持部が、前記車両特性計測装置に備えられている試験用車両の車体と車輪とを独立に変位させ、
     前記架台装置の計測器が、前記車体の変位量および/または作用力と、前記車輪の変位量および/または作用力とを計測し、
     前記車両特性計測装置に備えられている制御器が、前記支持部によって前記車体に付与される変位量と、前記支持部によって前記車輪に付与される変位量とを制御し、
     処理装置は、
     前記計測器の計測データを用いることによって実車の走行時の運動状態を予測し、
     予測された前記運動状態に基づいて、タイヤ姿勢の前記過渡的な変化を前記タイヤに再現する、
     請求項1~4のいずれかに記載のタイヤ接地特性計測方法。
  6.  車両特性計測装置が、予測された車両特性を試験用車両に反映し、
     計測器は、前記車両特性が反映された前記試験用車両の車体および車輪の変位量および/または作用力を計測し、
     前記車両特性が反映された前記計測器の計測データに基づいて、ドラム用駆動手段による前記回転ドラムの回転速度の変更、タイヤ位置制御手段による前記回転ドラムに対する前記タイヤの位置の変更、タイヤ用駆動手段による前記タイヤの回転速度の変更、および、タイヤ角制御手段による前記タイヤの角度の変更の少なくともいずれかが行われる、
     請求項1~5のいずれかに記載のタイヤ接地特性計測方法。
  7.  前記試験用車両の電子制御ユニットに対して、予測された前記車両特性に基づく指令を送信することにより前記試験用車両の電子制御ユニットに走行状態を認識させる、
     請求項6に記載のタイヤ接地特性計測方法。
  8.  回転可能な回転ドラムと、
     前記回転ドラムを回転駆動するドラム用駆動手段と、
     前記回転ドラム上に埋設され、前記回転ドラムに当接するタイヤにかかる応力を測定する応力測定手段と、
     前記回転ドラムに対する前記タイヤの位置を制御するタイヤ位置制御手段と、
     前記タイヤを回転駆動するタイヤ用駆動手段と、
     前記回転ドラムに対する前記タイヤの角度を制御するタイヤ角制御手段と、
     前記応力測定手段によって測定された応力に基づいて、前記タイヤのトレッド表面のうちの前記回転ドラムに接触する接地領域における特性であるタイヤ接地特性を算出する処理装置とを備え、
     実車の走行時のタイヤ姿勢の過渡的な変化を前記タイヤに再現するように、前記ドラム用駆動手段と、前記タイヤ位置制御手段と、前記タイヤ用駆動手段と、前記タイヤ角制御手段とが動作し、
     前記処理装置は、前記過渡的な変化が発生している期間中の各時点における実車のタイヤ姿勢に対応する前記タイヤ接地特性を算出する、
     タイヤ接地特性計測装置。
  9.  前記ドラム用駆動手段は、前記回転ドラムの回転速度を調整可能であり、
     前記タイヤ位置制御手段は、前記回転ドラムに対する前記タイヤの位置を前記回転ドラムの回転軸方向および/または径方向に調整可能であり、
     前記タイヤ用駆動手段は、前記タイヤの回転速度を調整可能であり、
     前記タイヤ角制御手段は、前記タイヤのキャンバ角、スリップ角および/または接地力を調整可能である、
     請求項8に記載のタイヤ接地特性計測装置。
  10.  前記応力測定手段は、前記タイヤにかかる接地力と幅方向せん断応力と周方向せん断応力とを測定可能な3分力センサである、
     請求項8~9のいずれかに記載のタイヤ接地特性計測装置。
  11.  前記タイヤの回転位置を検出するタイヤ側回転位置検出手段を更に備え、
     前記ドラム用駆動手段が前記回転ドラムを回転駆動すると共に、前記タイヤ用駆動手段が前記タイヤを回転駆動することによって、前記応力測定手段を、前記タイヤの前記トレッド表面の周方向の複数箇所に接触させ、
     前記応力測定手段は、前記複数箇所において前記タイヤにかかる応力を測定し、
     前記タイヤ側回転位置検出手段は、前記複数箇所のそれぞれに対応する前記タイヤの回転位置を検出し、
     前記タイヤ位置制御手段が前記回転ドラムに対する前記タイヤの位置を前記回転ドラムの回転軸方向に変化させながら、前記応力測定手段が、前記タイヤにかかる応力を繰り返し測定すると共に、前記タイヤ側回転位置検出手段が、前記タイヤの回転位置を繰り返し検出することによって、前記処理装置は、前記接地領域における接地力分布と幅方向せん断応力分布と周方向せん断応力分布とを算出し、
     前記処理装置は、前記接地領域内の各箇所おける接地力分布、幅方向せん断応力分布および/または周方向せん断応力分布を合成することによって、前記過渡的な変化が発生している期間中の各時点における前記タイヤ接地特性を算出する、
     請求項8~10のいずれかに記載のタイヤ接地特性計測装置。
  12.  請求項8~11のいずれかに記載のタイヤ接地特性計測装置と、
     車両特性計測装置と、実車挙動のシミュレータとを備えるタイヤ接地特性計測システムであって、
     前記車両特性計測装置は、車体と車輪とを有する試験用車両と、架台装置と、制御器とを備え、
     前記架台装置は、前記試験用車両が載置される支持部と、計測器とを備え、
     前記支持部は、前記車体と前記車輪とを独立に変位させることが可能であり、
     前記計測器は、前記車体の変位量および/または作用力と、前記車輪の変位量および/または作用力とを計測し、
     前記制御器は、前記支持部によって前記車体に付与される変位量と、前記支持部によって前記車輪に付与される変位量とを制御し、
     前記処理装置は、
     前記計測器の計測データを用いることによって実車の走行時の運動状態を予測し、
     予測された前記運動状態に基づいて、タイヤ姿勢の前記過渡的な変化を前記タイヤに再現する、
     タイヤ接地特性計測システム。
  13.  前記車両特性計測装置は、前記処理装置によって算出される前記タイヤ接地特性から予測される車両特性を前記試験用車両に反映し、
     前記計測器は、前記車両特性が反映された前記試験用車両の前記車体および前記車輪の変位量および/または作用力を計測し、
     前記車両特性が反映された前記計測器の計測データに基づいて、前記ドラム用駆動手段による前記回転ドラムの回転速度の変更、前記タイヤ位置制御手段による前記回転ドラムに対する前記タイヤの位置の変更、前記タイヤ用駆動手段による前記タイヤの回転速度の変更、および、前記タイヤ角制御手段による前記タイヤの角度の変更の少なくともいずれかが行われる、
     請求項12に記載のタイヤ接地特性計測システム。
  14.  前記試験用車両の電子制御ユニットに対して、予測された前記車両特性に基づく指令を送信することにより前記試験用車両の電子制御ユニットに走行状態を認識させる、
     請求項13に記載のタイヤ接地特性計測システム。
PCT/JP2019/027524 2018-12-04 2019-07-11 タイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システム WO2020115940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/298,829 US20220034755A1 (en) 2018-12-04 2019-07-11 Tire ground contact characteristic measuring method, tire ground contact characteristic measuring portion, and tire ground contact characteristic measuring system
EP19893973.8A EP3892978A4 (en) 2018-12-04 2019-07-11 METHOD OF MEASURING THE GROUNDING PROPERTIES OF A TIRE, DEVICE FOR MEASURING THE GROUNDING PROPERTIES OF A TIRE AND SYSTEM FOR MEASURING THE GROUNDING PROPERTIES OF A TIRE
CN201980079688.8A CN113167686A (zh) 2018-12-04 2019-07-11 轮胎接地特性测量方法、轮胎接地特性测量装置以及轮胎接地特性测量系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018227656A JP7161389B2 (ja) 2018-12-04 2018-12-04 タイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システム
JP2018-227656 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020115940A1 true WO2020115940A1 (ja) 2020-06-11

Family

ID=70974229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027524 WO2020115940A1 (ja) 2018-12-04 2019-07-11 タイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システム

Country Status (5)

Country Link
US (1) US20220034755A1 (ja)
EP (1) EP3892978A4 (ja)
JP (1) JP7161389B2 (ja)
CN (1) CN113167686A (ja)
WO (1) WO2020115940A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060495B2 (ja) 2018-12-10 2022-04-26 株式会社ブリヂストン 車両動作シミュレーション方法および車両動作シミュレーションシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356106A (ja) * 2001-05-31 2002-12-10 Toyo Tire & Rubber Co Ltd コンピュータシミュレーションによるタイヤ設計方法及びタイヤ設計プログラム及びタイヤ設計装置
JP2003004596A (ja) * 2001-06-15 2003-01-08 Yokohama Rubber Co Ltd:The タイヤコーナリング特性測定方法
JP2009180715A (ja) * 2008-02-01 2009-08-13 Kobe Steel Ltd タイヤ試験装置及びタイヤ試験方法
JP2014021012A (ja) 2012-07-20 2014-02-03 Bridgestone Corp タイヤの接地特性の測定方法及び測定装置
JP2014145785A (ja) * 2014-05-07 2014-08-14 Bridgestone Corp タイヤの接地特性の測定方法及び測定装置
JP2017026468A (ja) * 2015-07-23 2017-02-02 住友ゴム工業株式会社 タイヤの接地特性の測定方法
KR20170142432A (ko) * 2016-06-17 2017-12-28 (주)제이.케이.에스 고속회전하는 타이어의 동적 접지자국 분석장치 및 그 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552711A (ja) * 1991-08-22 1993-03-02 Kobe Steel Ltd タイヤ走行試験機におけるキヤンバ付角装置
JP3216958B2 (ja) * 1994-07-25 2001-10-09 株式会社神戸製鋼所 タイヤ走行試験機のサイドフォース測定方法及び測定装置
US20040255661A1 (en) * 2001-07-26 2004-12-23 Masao Nagai Tire testing machine for real time evaluation of steering stability
JP2003294585A (ja) * 2002-04-01 2003-10-15 Yokohama Rubber Co Ltd:The タイヤ試験装置及び試験方法
JP4710500B2 (ja) * 2005-09-13 2011-06-29 横浜ゴム株式会社 タイヤ耐久試験方法
JP4005618B2 (ja) * 2006-04-14 2007-11-07 株式会社神戸製鋼所 タイヤの制動特性試験装置
JP5018116B2 (ja) * 2007-02-15 2012-09-05 横浜ゴム株式会社 タイヤの設計方法およびタイヤの設計装置
JP2011203207A (ja) * 2010-03-26 2011-10-13 Bridgestone Corp タイヤの接地特性の測定方法及び測定装置
CN102323068B (zh) * 2011-08-25 2013-03-27 吉林大学 爆胎瞬态特性测试方法及装置
JP2015040762A (ja) * 2013-08-21 2015-03-02 トヨタ自動車株式会社 車両の運動性能評価のためのシミュレーション装置
JP6634780B2 (ja) * 2015-11-10 2020-01-22 住友ゴム工業株式会社 タイヤの接地面応力測定方法
GB2544301B (en) * 2015-11-11 2019-05-22 Jaguar Land Rover Ltd Improvements in or relating to tyre testing procedures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356106A (ja) * 2001-05-31 2002-12-10 Toyo Tire & Rubber Co Ltd コンピュータシミュレーションによるタイヤ設計方法及びタイヤ設計プログラム及びタイヤ設計装置
JP2003004596A (ja) * 2001-06-15 2003-01-08 Yokohama Rubber Co Ltd:The タイヤコーナリング特性測定方法
JP2009180715A (ja) * 2008-02-01 2009-08-13 Kobe Steel Ltd タイヤ試験装置及びタイヤ試験方法
JP2014021012A (ja) 2012-07-20 2014-02-03 Bridgestone Corp タイヤの接地特性の測定方法及び測定装置
JP2014145785A (ja) * 2014-05-07 2014-08-14 Bridgestone Corp タイヤの接地特性の測定方法及び測定装置
JP2017026468A (ja) * 2015-07-23 2017-02-02 住友ゴム工業株式会社 タイヤの接地特性の測定方法
KR20170142432A (ko) * 2016-06-17 2017-12-28 (주)제이.케이.에스 고속회전하는 타이어의 동적 접지자국 분석장치 및 그 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3892978A4

Also Published As

Publication number Publication date
JP2020091160A (ja) 2020-06-11
EP3892978A1 (en) 2021-10-13
EP3892978A4 (en) 2022-09-07
CN113167686A (zh) 2021-07-23
JP7161389B2 (ja) 2022-10-26
US20220034755A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
JP4266818B2 (ja) 操縦安定性の実時間評価用タイヤ試験機
JP4005618B2 (ja) タイヤの制動特性試験装置
US8788116B2 (en) Autopilot system for use in a wind tunnel
US6427528B1 (en) Apparatus for the method of testing vehicle
KR101212584B1 (ko) 타이어 마모 분석 방법
JP4465506B2 (ja) タイヤhilシミュレータ
EP1354184B2 (en) A method of wear testing a tire
CN107209083B (zh) 用于在试验台上实施测试运行的方法和装置
JP7060495B2 (ja) 車両動作シミュレーション方法および車両動作シミュレーションシステム
WO2020115940A1 (ja) タイヤ接地特性計測方法、タイヤ接地特性計測装置およびタイヤ接地特性計測システム
JP6416006B2 (ja) シミュレーション装置
JP2009210317A (ja) タイヤ接地特性測定装置、タイヤ接地特性測定方法、及びタイヤ接地特性測定プログラム
JP5722144B2 (ja) 車両試験装置
JP6042844B2 (ja) タイヤの接地特性の測定方法及び測定装置
JP7432346B2 (ja) タイヤ接地特性計測装置、タイヤ接地特性計測システム及びタイヤ接地特性計測方法
JP4844207B2 (ja) タイヤのコーナリング動特性評価方法および装置
JP7326937B2 (ja) タイヤ試験システム
EP2267426A2 (en) A method of wear testing a tire
JP6401592B2 (ja) タイヤのトレッド剛性評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019893973

Country of ref document: EP

Effective date: 20210705