WO2020114351A1 - 水溶性天然多糖抗菌衍生物及其制备方法 - Google Patents

水溶性天然多糖抗菌衍生物及其制备方法 Download PDF

Info

Publication number
WO2020114351A1
WO2020114351A1 PCT/CN2019/122395 CN2019122395W WO2020114351A1 WO 2020114351 A1 WO2020114351 A1 WO 2020114351A1 CN 2019122395 W CN2019122395 W CN 2019122395W WO 2020114351 A1 WO2020114351 A1 WO 2020114351A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
water
preparation
natural polysaccharide
soluble natural
Prior art date
Application number
PCT/CN2019/122395
Other languages
English (en)
French (fr)
Inventor
牛忠伟
蒋士冬
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Publication of WO2020114351A1 publication Critical patent/WO2020114351A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom

Definitions

  • the present invention relates to the field of polysaccharides. More specifically, it relates to a water-soluble natural polysaccharide antibacterial derivative and a preparation method thereof.
  • Chitosan is the only alkaline natural polysaccharide in nature, usually white or light yellow flake solid or bluish white powder, hardly soluble in water, soluble in dilute acid solutions such as acetic acid and inorganic acids. Its chemical name is polyglucosamine, which is the product of deacetylation from chitin, a linear polymer.
  • Chitosan and its derivatives are important biologically active substances, with functions such as anti-tumor, anti-coagulation, anti-thrombotic, hypolipidemic, antibacterial and immune-enhancing.
  • Chitosan has broad application prospects in the fields of biomedicine, environmental science, agriculture, food, daily cosmetics, etc. It can be used as an additive for medical and health products, food, daily cosmetics, etc., as well as artificial skin and surgical sutures Important raw materials such as thread.
  • chitosan can undergo chemical reactions such as hydrolysis, alkylation, acylation, carboxymethylation, sulfonation, nitration, halogenation, oxidation, reduction, condensation, and complexation (J.Adv.Drug. Deliv. Rev. 2001, 50, 591.), can produce a variety of chitosan derivatives with different properties, thereby expanding the scope of application of chitosan, such as obtaining chitosan derivatives with certain bacteriostatic properties.
  • the first object of the present invention is to provide a water-soluble natural polysaccharide antibacterial derivative, which has a broad-spectrum bacteriostatic effect, and good bacteriostatic effect, at the same time has high biological safety, low cytotoxicity, environmental protection, Has a large range of applications.
  • Another object of the present invention is to provide a method for preparing water-soluble natural polysaccharide antibacterial derivatives.
  • the present invention provides a water-soluble natural polysaccharide antibacterial derivative, the molecular structure of which is represented by the following formula I:
  • x, y, n are natural numbers, 0 ⁇ x ⁇ 10 7 , 0 ⁇ y ⁇ 10 7 , 10 ⁇ n ⁇ 10 7 , and 0 ⁇ nxy ⁇ 10 7 ;
  • M is selected from Cl - or CH 3 COO -.
  • the present invention also provides a method for preparing a water-soluble natural polysaccharide antibacterial derivative.
  • step 4) Purify and dry the reaction solution obtained in step 3) to obtain the water-soluble natural polysaccharide antibacterial derivative.
  • the number average molecular weight of the chitosan is 10-10 7 and the degree of deacetylation is 50-100%; the concentration of the dilute acid aqueous solution of the chitosan is 0.001-0.1g/mL .
  • the preparation method is: dissolving chitosan in a dilute acid solution to obtain a dilute acid aqueous solution of chitosan; in the dilute acid solution, the concentration of dilute acid is 0.01-0.5mol/ L, dilute acid is selected from hydrochloric acid or acetic acid.
  • the dissolution conditions are: constant temperature stirring at a temperature of 60-110°C.
  • the molar ratio of monocyanamide or dicyandiamide to chitosan is 0.5-5:1.
  • the reaction conditions are: constant temperature stirring at 60-110°C for 6-48 hours.
  • the molar ratio of the thiourea trioxide in step 3) to the chitosan in step 1) is 0.5-5:1, and the feeding time of thiourea trioxide is 30-90 minutes.
  • the reaction conditions are: constant temperature stirring at a temperature of 20-80°C.
  • the purification includes filtration and dialysis with deionized water; during the dialysis with deionized water, the water is changed every 5-10 hours and the water is changed 6-8 times.
  • deionized water dialysis can not only remove small molecule by-products or impurities, and purify samples, but also avoid the disadvantages of impurity removal caused by alcohol precipitation.
  • the drying is microwave vacuum drying.
  • the microwave vacuum drying method is used to process the obtained sample.
  • the vacuum negative pressure reduces the boiling point of the solution sample, which not only avoids the reduction of the bacteriostatic group caused by high temperature decomposition during the traditional sample drying process, but also greatly improves the drying. effectiveness.
  • the water-soluble natural polysaccharide antibacterial derivative provided by the present invention improves the water solubility of chitosan while improving the broad-spectrum of chitosan's antibacterial performance. It includes but is not limited to Gram-positive bacteria, Gram-negative bacteria and Fungi (especially Candida albicans) have good antibacterial properties.
  • the water-soluble natural polysaccharide antibacterial derivative of the present invention has low cytotoxicity and high biological safety, and is more suitable for related health products of special groups such as infants and young children.
  • the operation is simple, and it can be prepared by feeding one pot reaction in batches in the reaction kettle.
  • the main raw material chitosan polysaccharide is a natural polymer chitin with abundant sources.
  • the deacetylated product is simple in equipment and high in safety, suitable for industrial production.
  • Example 1 shows the infrared spectrum (1) of the water-soluble natural polysaccharide antibacterial derivative prepared in Example 1 and the infrared spectrum (2) of the raw material chitosan used.
  • FIG. 2 shows a photograph of the results of the antibacterial performance test of the water-soluble natural polysaccharide antibacterial derivative prepared in Example 1 of the present invention against Staphylococcus aureus.
  • FIG. 3 shows the comparative experiment results of the toxicity of the water-soluble natural polysaccharide antibacterial derivative material prepared in Example 1 of the present invention and the commercial quaternary ammonium salt chitosan derivative antibacterial material on ME3T3-E1 cells.
  • the preparation reaction process of the water-soluble natural polysaccharide antibacterial derivative is as follows:
  • x, y, n are natural numbers, 0 ⁇ x ⁇ 10 7 , 0 ⁇ y ⁇ 10 7 , 10 ⁇ n ⁇ 10 7 , and 0 ⁇ nxy ⁇ 10 7 ;
  • M is selected from Cl - or CH 3 COO -.
  • the preparation method of the water-soluble natural polysaccharide antibacterial derivative includes the following steps:
  • FIG. 1 is an infrared spectrum of the polysaccharide raw material and the water-soluble natural polysaccharide antibacterial derivative prepared in this example.
  • the broad peak of the raw material chitosan at 3420cm -1 corresponds to the stretching vibration of -NH 2 and -OH
  • the broadening of the peak at this position also indicates that these -NH 2 and -OH have intramolecular and intermolecular hydrogen bonds with different strengths, and the difference in peak widths also reflects the strength of the hydrogen bonds.
  • Fig. 2 shows the antibacterial performance of the water-soluble natural polysaccharide antibacterial derivative prepared in Example 1 of the present invention against the Gram-positive bacteria-Staphylococcus aureus according to the pouring method in GB15979-2002 "Sanitary Standards for Disposable Hygiene Products" Results photo, the concentration used from left to right is 0.5mg/ml, 0.25mg/ml, 0.125mg/ml, the new natural polysaccharide antibacterial material prepared in this example (dissolved in neutral deionized water) and Antibacterial test results of bacterial solution and blank control group (without adding any antibacterial agent) after sampling and slab-plate, incubating in a 37°C constant temperature and humidity incubator for 36 hours. The result shows that the novel natural polysaccharide antibacterial derivative prepared in this example has good inhibition performance against Staphylococcus aureus.
  • FIG. 3 is a comparative experiment result of toxicity of the water-soluble natural polysaccharide antibacterial derivative material prepared in Example 1 of the present invention and the commercial quaternary ammonium salt chitosan derivative antibacterial material on ME3T3-E1 cells.
  • the experimental results show that the water-soluble natural polysaccharide antibacterial derivative material is less cytotoxic, that is, its biological safety is significantly better than the commercial quaternary ammonium salt chitosan derivative antibacterial material.
  • the preparation method of the water-soluble natural polysaccharide antibacterial derivative includes the following steps:
  • the preparation method of the water-soluble natural polysaccharide antibacterial derivative includes the following steps:
  • the preparation method of the water-soluble natural polysaccharide antibacterial derivative includes the following steps:
  • the preparation method of the water-soluble natural polysaccharide antibacterial derivative includes the following steps:
  • reaction liquid in the oil bath is cooled to 58°C, and 13.48 grams of thiourea trioxide; (the molar ratio of chitosan to thiourea trioxide is 1:2.5) in 60-90 minutes Slowly and evenly put the reaction solution into the reaction solution, and then continue to stir the reaction at a constant temperature for half an hour to stop heating and stirring; the reaction solution is cooled to room temperature and filtered, then loaded into a dialysis bag, and the ends of the dialysis bag are tightly placed into deionized water for dialysis treatment.
  • the water was changed every four hours, and after eight times of water exchange, the dialysate was put into a microwave vacuum dryer for treatment, and the dried water-soluble natural polysaccharide antibacterial derivative was obtained.
  • the specific structural formula is similar to Example 4 (Formula III).
  • the preparation method of the water-soluble natural polysaccharide antibacterial derivative includes the following steps:
  • the reaction was kept at 60°C for 48 hours; then the reaction liquid in the oil bath was cooled to 50°C, 23.11 grams of thiourea trioxide; (the molar ratio of chitosan to thiourea trioxide is 1:3) Put it into the reaction solution slowly and evenly within 60-90 minutes, and then continue to stir the reaction at a constant temperature for half an hour to stop heating and stirring; the reaction solution is cooled to room temperature and filtered, then put into a dialysis bag, tightly put both ends of the dialysis bag into deionization
  • the water is changed every four hours. After eight times of water change, the dialysate is placed in a microwave vacuum dryer for treatment, and the dried water-soluble natural polysaccharide antibacterial derivative (structure formula see formula IV) can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种水溶性天然多糖抗菌衍生物,其分子结构如下式I所示:其中:R 1为R 2为 x、y、n为自然数,0<x≦10 7,0<y≦10 7,10≦n≦10 7,且0<n-x-y≦10 7。该衍生物具有广谱的抗菌性能和良好的水溶性,且兼顾了其生物安全性,细胞毒性小,是一种绿色抗菌产品。本发明还公开了该水溶性天然多糖抗菌衍生物的制备方法。

Description

水溶性天然多糖抗菌衍生物及其制备方法 技术领域
本发明涉及多糖领域。更具体地,涉及一种水溶性天然多糖抗菌衍生物及其制备方法。
背景技术
壳聚糖是自然界中唯一的碱性天然多糖,通常为白色或淡黄色片状固物或青白色粉末,难溶于水,可溶于醋酸和无机酸等稀酸溶液。其化学名称为聚葡萄糖胺,是由线性聚合物甲壳质脱乙酰后的产物。
壳聚糖及其衍生物是重要的生物活性物质,具有抗肿瘤、抗凝血、抗血栓、降血脂、抗菌和增强免疫力等功能。壳聚糖在生物医学、环境科学、农业、食品、日用化妆品等领域都有着广阔的应用前景,可用作医药保健品、食品、日用化妆品等的添加剂,也可作为人造皮肤和手术缝合线等的重要原料。在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应(J.Adv.Drug.Deliv.Rev.2001,50,591.),可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用范围,比如获得具有一定抑菌性的壳聚糖衍生物。
然而现有的对壳聚糖的抑菌性的改善的研究中,都只能在某种程度上提高壳聚糖的抑菌性能,但是抑制作用仅针对特定的菌群,并不具有广谱性。
此外,随着社会生活水平的提高,人们更加关注婴幼儿相关产品的安全问题,因此,需要提供一种既具有广谱抑菌功能又具有较高生物安全性,尤其适用于婴幼儿产品的新型抗菌材料。
发明内容
本发明的第一个目的在于提供一种水溶性天然多糖抗菌衍生物,其具有广谱的抑菌性,且抑菌效果好,同时兼具高的生物安全性,细胞毒性小,绿色环保,具有较大的应用范围。
本发明的另一个目的在于提供一种水溶性天然多糖抗菌衍生物的制备方法。
为达到上述第一个目的,本发明提供一种水溶性天然多糖抗菌衍生物,其分子结构如下式I所示:
Figure PCTCN2019122395-appb-000001
其中:
R 1
Figure PCTCN2019122395-appb-000002
R 2
Figure PCTCN2019122395-appb-000003
x、y、n为自然数,0<x≦10 7,0<y≦10 7,10≦n≦10 7,且0<n-x-y≦10 7
M选自Cl -或CH 3COO -
为达到上述第二个目的,本发明还提供一种水溶性天然多糖抗菌衍生物的制备方法,该制备方法包括如下步骤:
1)配制壳聚糖的稀酸水溶液;
2)向所述壳聚糖的稀酸水溶液中加入单氰胺或双氰胺,进行反应;
3)向步骤2)得到的反应液中加入三氧化硫脲,进行反应;
4)将步骤3)得到的反应液净化、干燥后得所述水溶性天然多糖抗菌衍生物。
优选地,步骤1)中,所述壳聚糖的数均分子量为10-10 7,脱乙酰度为50-100%;所述壳聚糖的稀酸水溶液的浓度为0.001-0.1g/mL。
优选地,步骤1)中,配制的方法为:将壳聚糖溶解于稀酸溶液中,得壳聚糖的稀酸水溶液;所述稀酸溶液中,稀酸的浓度为0.01-0.5mol/L,稀酸选自盐酸或醋酸。
优选地,所述溶解的条件为:在60-110℃温度下恒温搅拌。
优选地,步骤2)中,所述单氰胺或双氰胺与壳聚糖的摩尔比为0.5-5:1。
优选地,步骤2)中,所述反应的条件为:在60-110℃之间恒温搅拌6-48小时。
优选地,步骤3)中所述三氧化硫脲与步骤1)中所述壳聚糖的摩尔比为0.5-5:1,三氧化硫脲的投料时间为30-90分钟。
优选地,步骤3)中,所述反应的条件为:在20-80℃温度下恒温搅拌。
优选地,步骤4)中,所述净化包括过滤、去离子水透析;所述去离子水透析的过程中,每5-10小时换水一次,换水6-8次。采用去离子水透析既可以去除小分子副产物或杂质、纯化样品,又避免了醇析法所造成的杂质去除不干净的缺点。
优选地,步骤4)中,所述干燥为微波真空干燥。采用微波真空干燥的方法来处理所得样品,真空负压降低了溶液样品沸点,既避免了传统样品烘干过程中抑菌基团因高温分解而导致的抑菌效果下降,还大幅度提高了干燥效率。
本发明的有益效果如下:
本发明提供的水溶性天然多糖抗菌衍生物,在提高壳聚糖水溶性的同时改善了壳聚糖抑菌性能的广谱性,对包括但不限于革兰氏阳性菌、革兰氏阴性菌和真菌(尤其是白色念珠菌)等均具有良好的抑菌性能。另外,相对于季铵盐改性壳聚糖来说,本发明的水溶性天然多糖抗菌衍生物细胞毒性小,生物安全性高,更适用于婴幼儿等特殊群体的相关卫生产品。
本发明提供的水溶性天然多糖抗菌衍生物的制备方法中,操作简单,可在反应釜内分次投料一锅反应制得,所用主要原料壳聚糖多糖为来源极为丰富的天然高分子甲壳素的脱乙酰产物,所需设备简单,安全性高,适合工业化生产。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出实施例1中制备得到的水溶性天然多糖抗菌衍生物的红外谱图(1)及使用的原料壳聚糖的红外谱图(2)。
图2示出本发明实施例1所制备的水溶性天然多糖抗菌衍生物对金色葡萄球菌抗菌性能测试的结果照片。
图3示出本发明实施例1制备的水溶性天然多糖抗菌衍生物材料和商品化季铵盐壳聚糖衍生物抗菌材料对ME3T3-E1细胞的毒性对比实验结果。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
本发明的实施方式中,水溶性天然多糖抗菌衍生物的制备反应过程如下式所示:
Figure PCTCN2019122395-appb-000004
其中,R 1
Figure PCTCN2019122395-appb-000005
R 2
Figure PCTCN2019122395-appb-000006
x、y、n为自然数,0<x≦10 7,0<y≦10 7,10≦n≦10 7,且0<n-x-y≦10 7
M选自Cl -或CH 3COO -
以下,提供一些具体实施例来进行说明:
实施例1
水溶性天然多糖抗菌衍生物的制备方法,包括如下步骤:
将0.5克分子量为5万脱乙酰度为98%以上的壳聚糖加入到100毫升浓度为0.1mol/L的稀盐酸中,60℃油浴条件下,机械搅拌半小时,以便壳聚糖溶解完全,从而得到壳聚糖 浓度为0.005g/mL的均匀溶液;将油浴升温至110℃,向壳聚糖溶液中一次性加入1.3克双氰胺,双氰胺与壳聚糖的摩尔比为5:1,保持恒温搅拌6小时;将反应液降温至60℃,然后将0.77克三氧化硫脲(壳聚糖与三氧化硫脲的摩尔比为1:2)在60-90分钟时间内缓慢均匀的投入反应液中,然后再恒温持续搅拌反应半小时;反应液过滤后装入透析袋,将透析袋两端扎紧放入去离子水中透析处理,每隔四小时换水一次,换水八次后将透析液放入微波真空干燥机处理,即可得干燥的所述水溶性天然多糖抗菌衍生物(结构式见式Ⅱ)。
Figure PCTCN2019122395-appb-000007
图1为多糖原料和本实施例制备得到的水溶性天然多糖抗菌衍生物的红外谱图。通过对比两条谱线可以看出,原料壳聚糖在3420cm -1处出现的宽峰对应着-NH 2和-OH的伸缩振动,而改性后得到的天然多糖抗菌衍生物该处峰位置发生红移且变宽。这个位置的峰变宽还说明,这些-NH 2和-OH存在着强弱不同的分子内和分子间氢键,峰宽的差异,又反映了氢键的强弱。而天然多糖抗菌衍生物谱图上峰位发生红移且变宽,意味着氢键消失,说明多糖链上发生了衍生化反应;同时原本在原料壳聚糖1597cm -1处出现的-NH 2-弯曲振动消失了,而改性后得到的产品谱图上在1641cm -1和1531cm -1处出现在的峰分别归属于C=N的伸缩振动峰和N-H的弯曲振动峰。二者谱图上的这些变化充分说明改性功能基团通过氨基成功的接枝到了多糖的分子链上。
图2为本发明实施例1所制备的水溶性天然多糖抗菌衍生物按照GB15979-2002《一次性卫生用品卫生标准》中浇板法对革兰氏阳性菌-金黄色葡萄球菌的抗菌性能测试的结果照片,从左到右所采用浓度依次是为0.5mg/ml、0.25mg/ml、0.125mg/ml,本实施例中制备的新型天然多糖抗菌材料(溶解在中性的去离子水中)与菌液作用以及空白对照组(不添加任何抗菌剂)取样浇板后,在37℃的恒温恒湿培养箱中培养36小时后的抗菌测试结果。该结果表明:本实施例制备的新型天然多糖抗菌衍生物对金黄色葡萄球菌具有良好抑制性能。
对本实施例制备的产品采用浇板法对金黄色葡萄球菌抑菌率的数据统计结果如下表:
表1 新型天然多糖抗菌衍生物对金黄色葡萄球菌抑菌性能测试结果
Figure PCTCN2019122395-appb-000008
Figure PCTCN2019122395-appb-000009
另外,采用同样的标准方法将实施例1制备的水溶性天然多糖抗菌衍生物材料对革兰氏阴性菌大肠杆菌和真菌白色念珠菌分别进行了抗菌性能测试,抑菌率统计结果分别见表2和表3:
表2 新型天然多糖抗菌衍生物对大肠杆菌抑菌性能测试结果
Figure PCTCN2019122395-appb-000010
表3 新型天然多糖抗菌衍生物对白色念珠菌抑菌性能测试结果
Figure PCTCN2019122395-appb-000011
从表2和表3中可以看出,实施例1制备的水溶性天然多糖抗菌衍生物材料对革兰氏阴性菌大肠杆菌和真菌白色念珠菌具有良好的抑制效果。
图3为本发明实施例1制备的水溶性天然多糖抗菌衍生物材料和商品化季铵盐壳聚糖衍生物抗菌材料对ME3T3-E1细胞的毒性对比实验结果。该实验结果说明:水溶性天然多糖抗菌衍生物材料细胞毒性较小,即其生物安全性明显优于商品化季铵盐壳聚糖衍生物抗菌材料。
以上各数据结果说明:实施例1制备得到的水溶性天然多糖抗菌衍生物不但具有良好 的广谱抗菌性能,而且在有效抑菌浓度下细胞正常生长,具有良好的生物安全性。
实施例2
水溶性天然多糖抗菌衍生物的制备方法,包括如下步骤:
将1.0克分子量为10万脱乙酰度为98%的壳聚糖加入到100毫升浓度为0.1mol/L的稀盐酸中,60℃的油浴条件下机械搅拌一小时,以便壳聚糖溶解完全,从而得到壳聚糖浓度为0.01g/mL的均匀溶液;将油浴升温至105℃,向壳聚糖溶液体系中一次加入1.05克单氰胺,单氰胺与壳聚糖的摩尔比4:1,恒温保持搅拌6小时;然后油浴内的反应液降温至55℃,将0.77克三氧化硫脲(壳聚糖与三氧化硫脲的摩尔比为1:1)在60-90分钟时间内缓慢均匀的投入反应液中,然后再恒温持续搅拌反应半小时停止加热和搅拌;反应液冷至室温后过滤装入透析袋,将透析袋两端扎紧放入去离子水中透析处理,每隔四小时换水一次,换水八次后将透析液放入微波真空干燥机处理,即可得干燥的所述水溶性天然多糖抗菌衍生物。具体结构式如下式III所示。
Figure PCTCN2019122395-appb-000012
实施例3
水溶性天然多糖抗菌衍生物的制备方法,包括如下步骤:
将2.0克分子量为20万脱乙酰度为95%的壳聚糖加入到100毫升浓度为0.15mol/L的稀盐酸中,60℃的油浴条件下机械搅拌一小时,以便壳聚糖溶解完全,从而得到壳聚糖浓度为0.02g/mL的均匀溶液;将油浴升温至100℃,向壳聚糖油浴液体系中一次加入2.08克双氰胺,双氰胺与壳聚糖的摩尔比2:1,100℃油浴条件下恒温搅拌12小时;然后油浴内的反应液降温至50℃,将3.08克三氧化硫脲;(壳聚糖与三氧化硫脲的摩尔比为1:2)在60-90分钟时间内缓慢均匀的投入反应液中,然后再恒温持续搅拌反应半小时停止加热和搅拌;反应液冷至室温过滤后装入透析袋,将透析袋两端扎紧放入去离子水中透析处理,每隔四小时换水一次,换水八次后将透析液放入微波真空干燥机处理,即可得干燥的所述水溶性天然多糖抗菌衍生物。具体结构式与实施例1(式Ⅱ)类似。
实施例4
水溶性天然多糖抗菌衍生物的制备方法,包括如下步骤:
将5.0克分子量为50万脱乙酰度为80%的壳聚糖加入到100毫升浓度为0.15mol/L的稀盐酸中,60℃的油浴条件下机械搅拌一小时,以便壳聚糖溶解完全,从而得到壳聚糖浓度为0.05g/mL的均匀溶液;油浴升温至80℃,向壳聚糖水溶液体系一次加入单氰胺3.91 克,单氰胺与壳聚糖的摩尔比3:1,80℃条件下反应保持24小时;然后油浴内的反应液降温至50℃,将5.78克三氧化硫脲;(壳聚糖与三氧化硫脲的摩尔比为1:1.5)在60-90分钟时间内缓慢均匀的投入反应液中,然后再恒温持续搅拌反应半小时停止加热和搅拌;反应液冷至室温过滤后装入透析袋,将透析袋两端扎紧放入去离子水中透析处理,每隔五小时换水一次,换水八次后将透析液放入微波真空干燥机处理,即可得干燥的所述水溶性天然多糖抗菌衍生物,结构式与实施例2(式III)类似。
实施例5
水溶性天然多糖抗菌衍生物的制备方法,包括如下步骤:
将7.0克分子量为50万脱乙酰度为80%的壳聚糖加入100毫升浓度为0.3mol/L的稀盐酸中,70℃的油浴条件下机械搅拌二小时,以便壳聚糖溶解完全,从而得到壳聚糖浓度为0.07g/mL的均匀溶液;70℃的油浴条件下,向壳聚糖水溶液体系中一次加入单氰胺1.83克,单氰胺与壳聚糖的摩尔比1:1,恒温保持36小时;然后油浴内的反应液降温至58℃,将13.48克三氧化硫脲;(壳聚糖与三氧化硫脲的摩尔比为1:2.5)在60-90分钟时间内缓慢均匀的投入反应液中,然后再恒温持续搅拌反应半小时停止加热和搅拌;反应液冷至室温过滤后装入透析袋,将透析袋两端扎紧放入去离子水中透析处理,每隔四小时换水一次,换水八次后将透析液放入微波真空干燥机处理,即可得干燥的所述水溶性天然多糖抗菌衍生物。具体结构式与实施例4(式Ⅲ)类似。
实施例6
水溶性天然多糖抗菌衍生物的制备方法,包括如下步骤:
将10克分子量为100万脱乙酰度为50%的壳聚糖加入到100毫升浓度为0.5mol/L的稀醋酸中,60℃的油浴条件下机械搅拌两小时,以便壳聚糖溶解完全,从而得到壳聚糖浓度为0.1g/mL的均匀溶液;60℃的油浴条件下,向壳聚糖水溶液体系中一次加入双氰胺2.61克,双氰胺与壳聚糖的摩尔比0.5:1,60℃条件下反应保持48小时;然后油浴内的反应液降温至50℃,将23.11克三氧化硫脲;(壳聚糖与三氧化硫脲的摩尔比为1:3)在60-90分钟时间内缓慢均匀的投入反应液中,然后再恒温持续搅拌反应半小时停止加热和搅拌;反应液冷至室温过滤后装入透析袋,将透析袋两端扎紧放入去离子水中透析处理,每隔四小时换水一次,换水八次后将透析液放入微波真空干燥机处理,即可得干燥的所述水溶性天然多糖抗菌衍生物(结构式见式Ⅳ)。
Figure PCTCN2019122395-appb-000013
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (9)

  1. 一种水溶性天然多糖抗菌衍生物,其特征在于,其分子结构如下式I所示:
    Figure PCTCN2019122395-appb-100001
    其中:
    R 1
    Figure PCTCN2019122395-appb-100002
    R 2
    Figure PCTCN2019122395-appb-100003
    x、y、n为自然数,0<x≦10 7,0<y≦10 7,10≦n≦10 7,且0<n-x-y≦10 7
    M选自Cl -或CH 3COO -
  2. 如权利要求1所述的水溶性天然多糖抗菌衍生物的制备方法,其特征在于,包括如下步骤:
    1)配制壳聚糖的稀酸水溶液;
    2)向所述壳聚糖的稀酸水溶液中加入单氰胺或双氰胺,进行反应;
    3)向步骤2)得到的反应液中加入三氧化硫脲,进行反应;
    4)将步骤3)得到的反应液净化、干燥后得所述水溶性天然多糖抗菌衍生物。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤1)中,所述壳聚糖的数均分子量为10-10 7,脱乙酰度为50-100%;所述壳聚糖的稀酸水溶液的浓度为0.001-0.1g/mL。
  4. 根据权利要求2所述的制备方法,其特征在于,步骤1)中,配制的方法为:将壳聚糖溶解于稀酸溶液中,得壳聚糖的稀酸水溶液;所述稀酸溶液中,稀酸的浓度为0.01-0.5mol/L,稀酸选自盐酸或醋酸。
  5. 根据权利要求4所述的制备方法,其特征在于,所述溶解的条件为:在60-110℃温度下恒温搅拌。
  6. 根据权利要求2所述的制备方法,其特征在于,步骤2)中,所述单氰胺或双氰胺与壳聚糖的摩尔比为0.5-5:1;优选地,步骤2)中,所述反应的条件为:在60-110℃之间恒温搅拌6-48小时。
  7. 根据权利要求2所述的制备方法,其特征在于,步骤3)中所述三氧化硫脲与步骤1)中所述壳聚糖的摩尔比为0.5-5:1,三氧化硫脲的投料时间为30-90分钟;优选地,步骤3)中,所述反应的条件为:在20-80℃温度下恒温搅拌。
  8. 根据权利要求2所述的制备方法,其特征在于,步骤4)中,所述净化包括过滤、去离子水透析;所述去离子水透析的过程中,每5-10小时换水一次,换水6-8次。
  9. 根据权利要求2所述的制备方法,其特征在于,步骤4)中,所述干燥为微波真空干燥。
PCT/CN2019/122395 2018-12-03 2019-12-02 水溶性天然多糖抗菌衍生物及其制备方法 WO2020114351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811466760.6A CN111253502A (zh) 2018-12-03 2018-12-03 水溶性天然多糖抗菌衍生物及其制备方法
CN201811466760.6 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020114351A1 true WO2020114351A1 (zh) 2020-06-11

Family

ID=70946606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122395 WO2020114351A1 (zh) 2018-12-03 2019-12-02 水溶性天然多糖抗菌衍生物及其制备方法

Country Status (2)

Country Link
CN (1) CN111253502A (zh)
WO (1) WO2020114351A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233102A (ja) * 1984-05-07 1985-11-19 Dainichi Seika Kogyo Kk キトサン誘導体の製造方法
CN101033264A (zh) * 2007-04-24 2007-09-12 武汉大学 壳聚糖双胍盐酸盐及其制备方法和用途
CN101638445A (zh) * 2009-09-04 2010-02-03 东华大学 壳聚糖双胍盐酸盐的微波合成方法
CN102977227A (zh) * 2012-12-11 2013-03-20 杭州绿岛科技有限责任公司 一种壳聚糖类高效絮凝剂的制备方法
CN106995502A (zh) * 2016-01-25 2017-08-01 中国科学院理化技术研究所 双功能基团改性壳聚糖衍生物及其制备方法
CN107043432A (zh) * 2016-02-05 2017-08-15 中国科学院理化技术研究所 一种两性羧甲基壳聚糖胍盐衍生物及其制备方法
CN107383236A (zh) * 2017-07-10 2017-11-24 中国科学院理化技术研究所 一种新型水溶性天然多糖抗菌材料及其制备方法
CN107496206A (zh) * 2016-06-14 2017-12-22 中国科学院理化技术研究所 一种壳聚糖衍生物基儿童专用免水洗手液及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233102A (ja) * 1984-05-07 1985-11-19 Dainichi Seika Kogyo Kk キトサン誘導体の製造方法
CN101033264A (zh) * 2007-04-24 2007-09-12 武汉大学 壳聚糖双胍盐酸盐及其制备方法和用途
CN101638445A (zh) * 2009-09-04 2010-02-03 东华大学 壳聚糖双胍盐酸盐的微波合成方法
CN102977227A (zh) * 2012-12-11 2013-03-20 杭州绿岛科技有限责任公司 一种壳聚糖类高效絮凝剂的制备方法
CN106995502A (zh) * 2016-01-25 2017-08-01 中国科学院理化技术研究所 双功能基团改性壳聚糖衍生物及其制备方法
CN107043432A (zh) * 2016-02-05 2017-08-15 中国科学院理化技术研究所 一种两性羧甲基壳聚糖胍盐衍生物及其制备方法
CN107496206A (zh) * 2016-06-14 2017-12-22 中国科学院理化技术研究所 一种壳聚糖衍生物基儿童专用免水洗手液及其制备方法
CN107383236A (zh) * 2017-07-10 2017-11-24 中国科学院理化技术研究所 一种新型水溶性天然多糖抗菌材料及其制备方法

Also Published As

Publication number Publication date
CN111253502A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2019011061A1 (zh) 一种新型水溶性天然多糖抗菌材料及其制备方法
CN106995502B (zh) 双功能基团改性壳聚糖衍生物及其制备方法
JP2011052226A5 (zh)
CN108752501B (zh) 一种含有机酸盐的壳聚糖季铵盐及其制备方法和应用
WO2019052321A1 (zh) 一种水溶性壳聚糖抗菌衍生物及其制备方法
CN103450369B (zh) 聚乙二醇单甲醚-壳聚糖衍生物的制备方法
CN106674982A (zh) 一种聚氨酯抗菌型生物医用复合材料及其制备方法
CN112851951B (zh) 一种接枝ε-聚赖氨酸的双醛基壳聚糖及其制备方法和应用
WO1987007618A1 (en) Acid decrystallization of aminopolysaccharides and derivatives thereof
CN107281541A (zh) 一种医用温敏性水凝胶的制备方法
CN115181195B (zh) 一种含喹啉基团的壳寡糖季铵盐衍生物及制备方法和应用
CN107043432A (zh) 一种两性羧甲基壳聚糖胍盐衍生物及其制备方法
CN103936885B (zh) O-富马酯-n-三甲基壳聚糖季铵盐及其制法与应用
Omer et al. Preparation of Isatin/chitosan schiff base as novel antibacterial biomaterials
CN114478834B (zh) 一种胍基透明质酸抗菌聚合物及其制备方法和应用
CN107602726B (zh) 低分子量c6-羧基甲壳素及其制备方法
CN101139404A (zh) 壳聚糖乳酸盐的制备方法
WO1994026788A1 (en) Process for the preparation of iodinated biopolymers having disinfectant and cicatrizing activity, and the iodinated biopolymers obtainable thereby
WO2020114351A1 (zh) 水溶性天然多糖抗菌衍生物及其制备方法
CN111303413A (zh) 一种四氢嘧啶基阳离子抗菌聚合物、其制备方法及应用
WO2019213833A1 (zh) 一种具有抗菌作用的生物基材料及用途
CN110229249B (zh) 一种季铵化壳聚糖-端羧基呫吨酮复合抗菌材料的制备方法
CN110183546B (zh) 一种凝胶多糖水溶性抗菌衍生物及其制备方法
CN110628049B (zh) 一种光响应抗菌的自修复胶原凝胶及其制备方法
CN109627357B (zh) 一种双席夫碱壳聚糖衍生物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893179

Country of ref document: EP

Kind code of ref document: A1