WO2019052321A1 - 一种水溶性壳聚糖抗菌衍生物及其制备方法 - Google Patents

一种水溶性壳聚糖抗菌衍生物及其制备方法 Download PDF

Info

Publication number
WO2019052321A1
WO2019052321A1 PCT/CN2018/101849 CN2018101849W WO2019052321A1 WO 2019052321 A1 WO2019052321 A1 WO 2019052321A1 CN 2018101849 W CN2018101849 W CN 2018101849W WO 2019052321 A1 WO2019052321 A1 WO 2019052321A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
polyethylene glycol
water
monomethyl ether
glycol monomethyl
Prior art date
Application number
PCT/CN2018/101849
Other languages
English (en)
French (fr)
Inventor
牛忠伟
朱萌
蒋士冬
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Publication of WO2019052321A1 publication Critical patent/WO2019052321A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • A01N47/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —N=CX2 groups, e.g. isothiourea
    • A01N47/44Guanidine; Derivatives thereof

Definitions

  • the invention relates to the field of antibacterial materials, in particular to a water-soluble chitosan antibacterial derivative and a preparation method thereof.
  • Chitin is the second most abundant natural renewable resource in nature and can be isolated from the exoskeleton, fungi, insects and annelids of arthropods.
  • the chitin is deacetylated until it can be dissolved in a dilute acid solution to form a transparent aqueous solution, and the polymer at this time is chitosan.
  • a large number of free amino groups give chitosan a relatively high solubility and low crystallinity, which leads to a certain increase in the application space.
  • chitosan in addition to good biodegradability and biocompatibility, chitosan also has certain anti-inflammatory and promotes the absorption and absorption of drugs on the surface of biofilms, so it can be widely used in medicine, food, and chemical industry. And environmental protection and other industries.
  • chitosan due to the regular structure, partial crystallization and poor solubility of water, chitosan has greatly limited its extensive and in-depth application in many fields.
  • PEG Polyethylene glycol
  • FDA US Food and Drug Administration
  • PEG can be dissolved in tissue fluid in human body, with good biocompatibility and no toxic side effects.
  • PEG When PEG is combined with other hydrophobic polymer segments, the hydrophilic properties of the material can be improved.
  • the type of end groups directly determines which materials can be chemically bonded or reacted with.
  • PEG end groups are generally hydroxyl groups, which can be converted into other functional groups by terminal modification, such as amino groups, carboxyl groups, etc., which are easier to carry out chemical bonding reactions, and thus have broader application prospects in the field of biomedicine.
  • Ji et al. modified the amino group in chitosan into an active carboxyl group, and then grafted the alanine-polyethylene glycol block copolymer to the chitosan side chain to obtain an environmentally sensitive polymer sensitive to temperature and pH.
  • sulfhydryl is the most positively charged bioactive organic base found in nature, which can be protonated under physiological pH conditions and can form positively charged groups in a wide pH range.
  • the thiol functional group has anti-inflammatory, antihypertensive, anti-viral, anti-tumor and other biological activities, and has strong alkalinity, strong stability and easy formation of hydrogen chains.
  • Sulfhydryl compounds are widely found in natural products, have strong solubility, strong alkalinity and positive charge, and thus have excellent antibacterial properties, and are widely used in medicine, agriculture, construction, clothing, and chemical industries.
  • the research group modified the chitosan by using sulfhydryl and amino acid bifunctional groups to ensure the water solubility and antibacterial properties while taking into account the biosafety.
  • the present inventors continued to explore a preparation method of a bifunctional modified chitosan derivative, which can more effectively and flexibly regulate the antibacterial property and biosafety of the sample while maintaining good water solubility. Sex.
  • the present invention provides a water-soluble chitosan antibacterial derivative and a preparation method thereof, and successfully grafts a short-chain polyethylene glycol (PEG) and a thiolation reagent onto a chitosan molecule.
  • PEG polyethylene glycol
  • a bifunctional group-modified water-soluble chitosan antibacterial derivative was obtained, which can efficiently and flexibly balance the antibacterial property and biosafety of the sample under the premise of effectively maintaining the water solubility of the chitosan derivative. Make it more suitable for industrial production and meet market needs.
  • a water-soluble chitosan antibacterial derivative comprising a chitosan skeleton and a bifunctional group for modifying an amino group on a chitosan skeleton, the bifunctional group being a thiol group and a carbonyl polyethylene glycol Methyl ether.
  • the polyethylene glycol segment of carboxy polyethylene glycol monomethyl ether is more flexible for regulating molecular hydrophilicity, and
  • the modification order of the bifunctional group was adjusted to first modify the carboxy polyethylene glycol monomethyl ether and then the sulfhydryl group, which effectively avoided the amino group in the sulfhydryl group grafted in the first step. Therefore, the density of the positive charge in the water-soluble chitosan antibacterial derivative is ensured, and the obtained water-soluble chitosan antibacterial derivative has better antibacterial effect.
  • the water-soluble chitosan antibacterial derivative has the following structural formula:
  • m+n is related to the molecular weight of the selected chitosan, 6 ⁇ m+n ⁇ 6000; n is related to the degree of deacetylation of the selected chitosan, 0.50 ⁇ n /(m+n) ⁇ 0.99;x is related to the molecular weight of carboxypolyethylene glycol monomethyl ether, 10 ⁇ x ⁇ 200; y is related to the grafting rate of carbonyl polyethylene glycol monomethyl ether, 0.10 ⁇ y/( m+n) ⁇ 0.50.
  • the invention also provides a preparation method of the above water-soluble chitosan antibacterial derivative, comprising the following steps:
  • a polyethylene glycol modified chitosan and a thiourea trioxide are subjected to a thiol modification reaction to obtain the water-soluble chitosan antibacterial derivative.
  • the thiol group modification is carried out by using thiourea trioxide. Compared with the cyanamide modification, the reaction conditions are milder, the reaction temperature is lower, and it is easy to control.
  • the chitosan is first reacted with carboxy polyethylene glycol monomethyl ether and then reacted with thiourea trioxide, so that the product obtained in each step can be singular without affecting the subsequent reaction;
  • the amino group participates in the subsequent reaction, effectively retaining the abundant positive charge contained in the sulfhydryl group, so that the positively charged amino group in the sulfhydryl group is not consumed by further reaction, thereby ensuring the positive charge in the water-soluble chitosan antibacterial derivative. Density, the obtained water-soluble chitosan antibacterial derivative has better antibacterial effect.
  • the chitosan in S1 is reacted with carboxy polyethylene glycol monomethyl ether, and then subjected to dialysis and vacuum freeze-drying to obtain polyethylene glycol modified chitosan; and polyethylene glycol modified shell polycondensation in S2
  • the sugar and the thiourea urea are subjected to a thiol modification reaction, and then subjected to dialysis and vacuum freeze-drying to obtain a polyethylene glycol-modified chitosan.
  • the dialysis uses a dialysis bag having a molecular weight cutoff of 8000-14000 Da, using deionized water as the dialysate.
  • the dialysis treatment can completely remove small molecular by-products and impurities, and purify the product.
  • the method of lyophilization is used to treat the sample, which avoids the bacteriostatic function or biosafety degradation of the modified functional group during the drying process of the traditional sample due to the temperature decomposition, and the lyophilization makes the sample have a three-dimensional macroporous network structure. It facilitates the rapid infiltration of solvent during the dissolution process and increases the dissolution rate of the sample.
  • the specific process of reacting chitosan in S1 with carboxy polyethylene glycol monomethyl ether is: firstly, carboxy polyethylene glycol monomethyl ether, N-hydroxysuccinimide (NHS) and 1-( 3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC ⁇ HCl) was added to 2-(N-morpholino)ethanesulfonic acid (MES) buffer for carboxyl activation; Subsequently, the mixed solution after activation of the carboxyl group is added to a dilute acid solution of chitosan to carry out a reaction, the reaction temperature is controlled at 0-35 ° C, and the reaction time is 12-72 hours; finally, the reaction is terminated by adding hydroxylamine hydrochloride.
  • the ratio of the amount of hydroxylamine hydrochloride to the carboxypolyethylene glycol monomethyl ether is 1:1.
  • the ratio of the amount of the substance of NHS, EDC ⁇ HCl and carboxyl polyethylene glycol monomethyl ether is 1:1: 0.2-2; the ratio of the amount of the substance of the carboxyl polyethylene glycol monomethyl ether to the chitosan It is 0.1-10:1.
  • the carboxyl group is activated at a temperature of from 0 to 35 ° C and an activation time of from 0.5 to 3 hours.
  • the dilute acid solution of the chitosan is formulated using MES buffer, wherein the dilute acid is hydrochloric acid or acetic acid, the concentration of the acid is 0.1-0.5 M, and the mass percentage of chitosan is 0.1%-50%.
  • the MES buffer has a concentration of 10-100 mM and a pH of 4.5-7.5.
  • the chitosan has a number average molecular weight of 10 3 -10 6 Da and a degree of deacetylation of 50-99%; and the carboxyl polyethylene glycol monomethyl ether has a number average molecular weight of 550-8000 Da.
  • the specific process of reacting the polyethylene glycol modified chitosan in S2 with thiourea trioxide is: preparing an aqueous solution of polyethylene glycol modified chitosan, heating to 20-80 ° C, at 10 The thiourea trioxide was added at -90 minutes and the reaction was continued for 10 to 60 minutes.
  • the mass percentage of the aqueous solution of the polyethylene glycol modified chitosan is 0.1-50%; the ratio of the amount of the sulfur trioxide urea to the polyethylene glycol modified chitosan is 0.1-10: 1.
  • x, y, m, and n are all natural numbers, 6 ⁇ m+n ⁇ 6000; 0.50 ⁇ n/(m+n) ⁇ 0.99; 10 ⁇ x ⁇ 200; 0.10 ⁇ y/(m+n) ⁇ 0.50 .
  • the water-soluble chitosan antibacterial derivative provided by the invention not only improves the solubility of chitosan, but also ensures the antibacterial and antibacterial properties of the product due to the introduction of the mercapto functional group and the mild polyethylene glycol segment. Biosafety. Due to the introduction of hydrophilic and electropositive side chains, the crystallinity of the product is weakened and the water solubility is enhanced, so that the range of use thereof is widened, and it can be used under acidic to weakly alkaline conditions. In addition, the water-soluble chitosan antibacterial derivative of the invention has the advantages of good antibacterial effect, low cytotoxicity and high biosafety as a biodegradable material, and is a green and safe antibacterial product.
  • the preparation method of the water-soluble chitosan antibacterial derivative provided by the invention has the advantages of simple operation and mild conditions, and the main raw material chitosan used is obtained by deacetylation of the natural polymer chitin which is rich in source.
  • the required equipment is simple and suitable for industrial production. It is a high-quality natural polysaccharide modified antibacterial material, which has great market development and application prospects.
  • Example 1 is a nuclear magnetic resonance spectrum result of a polyethylene glycol modified chitosan prepared in the step (1) of Example 1.
  • Example 2 is a Fourier infrared spectrum of the polyethylene glycol modified chitosan and the water-soluble chitosan antibacterial derivative prepared in Example 1;
  • FIG. 3 is a graph showing the inhibition rate of aqueous solutions of water-soluble chitosan antibacterial derivatives prepared in Example 1 on Staphylococcus aureus;
  • Example 4 is a graph showing the inhibition rate of proliferation of human hepatocyte L-02 cells by aqueous solutions of water-soluble chitosan antibacterial derivatives prepared in Example 1.
  • the reaction was terminated by adding hydroxylamine hydrochloride in an amount of a substance such as carboxypolyethylene glycol monomethyl ether, and then the reaction solution was transferred to a dialysis bag having a molecular weight cutoff of 8000-14000 Da, and the dialysis bags were tight at both ends. It is placed in deionized water for dialysis treatment. Change water every 6 hours. After changing water for 6 times, put the dialysate into -20 °C for freezing overnight, then put it into vacuum freeze dryer until it is fully dried to constant weight to get poly A diol-modified water-soluble chitosan.
  • a substance such as carboxypolyethylene glycol monomethyl ether
  • the two ends of the dialysis bag were tightly placed in deionized water for dialysis treatment, and the water was changed every 6 hours, and the water was changed 6 times.
  • the dialyzate was frozen at -20 ° C overnight, and placed in a vacuum freeze dryer until sufficiently dried to a constant weight to obtain a water-soluble chitosan antibacterial derivative.
  • the two ends are tightly placed in deionized water for dialysis treatment, and the water is changed every 5 hours. After changing the water for 8 times, the dialyzate is frozen at -20 ° C overnight, and then placed in a vacuum freeze dryer until it is sufficiently dried to constant weight.
  • a polyethylene glycol modified water-soluble chitosan can be obtained.
  • the two ends of the dialysis bag were immersed in deionized water for dialysis treatment, and the water was changed every 10 hours, and the water was changed 5 times.
  • the dialyzate was frozen at -20 ° C overnight, and placed in a vacuum freeze dryer until sufficiently dried to a constant weight to obtain a water-soluble chitosan antibacterial derivative.
  • the reaction was continuously stirred at 35 ° C for 12 hours, wherein the ratio of the amount of chitosan, carboxyl polyethylene glycol monomethyl ether, NHS, EDC ⁇ HCl was 1:10:5:5; after the reaction, the carboxyl group was added.
  • the amount of the substance such as polyethylene glycol monomethyl ether is terminated by hydroxylamine hydrochloride, and then the reaction solution is transferred to a dialysis bag having a molecular weight cut off of 1000 Da, and the both ends of the dialysis bag are tightly placed in deionized water for dialysis treatment, every 10 times.
  • the water was changed once every hour. After changing the water for 5 times, the dialyzate was frozen at -20 ° C overnight, and then placed in a vacuum freeze dryer until sufficiently dried to a constant weight to obtain a polyethylene glycol-modified water-soluble chitosan.
  • the two ends of the dialysis bag were tightly placed in deionized water for dialysis treatment, and the water was changed every 5 hours. After changing the water for 8 times, the dialysate was placed in -20. After freezing at °C overnight, it is placed in a vacuum freeze dryer until it is sufficiently dried to a constant weight to obtain a water-soluble chitosan antibacterial derivative.
  • Example 1 50 mg of the polyethylene glycol modified chitosan obtained in the step (1) of Example 1 was dissolved in 0.6 mL of deuterated water, and tetramethylsilane (TMS) was used as an internal standard at room temperature 25 ° C in Varian UNITY.
  • TMS tetramethylsilane
  • the microstructure and chemical composition of water-soluble chitosan were determined on an INOVA-400MHz NMR spectrometer. The results obtained are shown in Figure 1.
  • the peak intensity at 2.0 ppm is weak, indicating that the obtained polyethylene glycol modified chitosan is more completely deacetylated.
  • the appearance of the chemical shift of the methylene CH 2 CH 2 proton hydrogen in the monomethyl ether polyethylene glycol near 3.65 ppm indicates that the polyethylene glycol segment has been successfully grafted by the preparation method in the step (1) of Example 1.
  • Example 2 The sufficiently dried sample of 2.0 mg of polyethylene glycol-modified chitosan, 2.0 mg of water-soluble chitosan antibacterial derivative and 100.0 mg of potassium bromide in Example 1 were separately placed in an agate mortar for further investigation. The mixture was uniformly mixed, and then the ground mixture was placed in a mold and pressed in a hydraulic press to obtain a translucent KBr sheet. The KBr sheet was used to test the infrared spectrum, and the scanning range was 4000-400 cm -1 . The results obtained are shown in Figure 2.
  • the thiol group has been modified into a polyethylene glycol modified chitosan molecule to obtain a corresponding water-soluble chitosan antibacterial derivative.
  • the water-soluble chitosan antibacterial derivative obtained in Example 1 was prepared in an aqueous solution having a concentration of 0.02, 0.20, and 2.00 mg/mL in sterilized water, respectively, and 5 mL each was added thereto, and the tryptone soy broth was added thereto to be cultured.
  • the water-soluble chitosan antibacterial derivative obtained in Example 1 was prepared into a solution having a concentration of 0.04, 0.40, 4.00, and 12.00 mg/mL, respectively, using PRIM 1640 cell culture medium containing no fetal bovine serum, and 0.05 mL each was added.
  • Each well contains 5000 PRIM 1640 (containing 10% fetal bovine serum, 1% penicillin, streptomycin) cell culture medium to log phase human liver cell L-02 96-well polystyrene culture plate, so that The final concentrations of the water-soluble chitosan antibacterial derivatives were 0.01, 0.10, 1.00, and 3.00 mg/mL, respectively.
  • the culture plate was placed in an incubator of 5% CO 2 at 37 ° C for 24 hours. After the medium was removed, the medium was aspirated and an equal amount of fresh medium was added, and 0.01 mL of CCK-8 solution was added to each well. After 4 hours, the absorbance of each well at 450 nm was measured by a multimode microplate reader, and cell viability was calculated by the following formula.
  • the results obtained are shown in Fig. 4, and the results showed that the survival rate of the L-02 cells treated with the water-soluble chitosan antibacterial derivative was high, and the biosafety of the water-soluble chitosan antibacterial derivative prepared by the inventive example 1 was high. better.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种水溶性壳聚糖抗菌衍生物及其制备方法,所述水溶性壳聚糖抗菌衍生物包括壳聚糖骨架和对壳聚糖骨架上的氨基进行改性的双功能基团,所述双功能基团为胍基和羰基聚乙二醇单甲醚。本发明在壳聚糖的侧链上同时修饰上胍基和短链聚乙二醇,赋予壳聚糖良好的抗菌性能和更高的生物安全性。本发明的制备方法,壳聚糖首先与羧基聚乙二醇单甲醚进行反应,充分改善了壳聚糖的水溶性,同时大大提高生物安全性;再与三氧化硫脲进行反应,有效避免了第一步若接枝胍基,其中的氨基参与后续反应,从而有效保留了胍基带有的丰富正电荷,保证了水溶性壳聚糖抗菌衍生物中的正电荷密度,使所得水溶性壳聚糖抗菌衍生物的抗菌效果更佳。

Description

一种水溶性壳聚糖抗菌衍生物及其制备方法 技术领域
本发明涉及抗菌材料领域,具体涉及一种水溶性壳聚糖抗菌衍生物及其制备方法。
背景技术
甲壳素是自然界储量第二丰富的天然可再生资源,能够从节肢动物的外骨骼、真菌、昆虫以及环节动物中分离得到。甲壳素经脱乙酰化处理直到能够在稀酸溶液中溶解成为透明水溶液,此时的聚合物即为壳聚糖。与甲壳素相比,大量的自由氨基赋予壳聚糖相对较高的溶解性、较低的结晶性,从而使其应用空间有了一定的提升。此外,除了具有良好的生物可降解性和生物相容性外,壳聚糖还具有一定的消炎及促进药物在生物膜表面被渗透吸收的作用,因此能够被广泛地应用于医药、食品、化工及环保等行业。然而由于壳聚糖结构规整、部分结晶、难溶于水,也极大地限制了其在以上诸多领域广泛而深入的应用。
由于壳聚糖分子中存在大量易于被修饰的羟基和氨基,可通过控制与羟基或氨基的反应条件,进行如酰基化、羧基化、醚化、烷基化、酯化、水解等反应[J.Adv.Drug.Deliv.Rev.2001,50,591.],引入其他基团破坏壳聚糖结晶结构,改变其物理化学性能,从而得到能够适应更多领域需要、具有更多的特定功能的水溶性壳聚糖衍生物。
聚乙二醇(PEG)是聚醚类高分子材料中应用最为广泛的聚合物。由于得到了美国食品与药物管理局(FDA)的认可,使其能够被用于生物医药等诸多领域。PEG在人体内能够溶于组织液中,生物相容性好,无毒副作用。当把PEG和其它疏水性聚合物链段结合时,可以提高材料的亲水性能。在PEG的应用中,其端基种类直接决定了可与哪些材料进行化学键连或反应。商业化的PEG端基一般为羟基,通过端基改性可使其转化为其它功能性基团,比如氨基、羧基等,更易于进行化学键连反应,从而在生物医药领域具有更广阔的应用前景。Ji等人将壳聚糖中的氨基改性成为活性羧基,再将丙氨酸-聚乙二醇嵌段共聚物接枝到壳聚糖侧链,得到温度、pH双重敏感的环境响应聚合物[Ji H,et.al.,J.Mater.Chem,2011,21,5484.]。
另一方面,胍基是目前自然界发现的正电性最强的生物活性有机碱,其在生理pH条件下能够质子化,在较宽pH范围内均能形成带正电的基团。胍基官能团具有抗炎症、降压降血脂、抗病毒、抗肿瘤等生物活性,同时具有强碱性、强稳定性并易于形成氢链。胍基化合物广泛存在于天然产物中,溶解性强,有很强的碱性和正电性,从而具有很好的抗菌 性能,被广泛用于医药、农业、建筑、服装、化工等领域。而壳聚糖上的氨基具有较高的反应活性,因此通过氨基对壳聚糖进行胍基化改性赋予其与胍类化合物类似的性能,进而提高壳聚糖的抑菌性能,这方面的研究国内外已有诸多报道[Hu Y.,et.al.,Carbohyd.Polym.2007,67,66;BioresourTechnol,2010,101,5693;Zhai X.,et.al.,J.Appl.Polym.Sci.2011,121,3569.]。但是,无论是壳聚糖的亲水修饰还是正电改性,这些工作都仅对壳聚糖进行单一功能化,提高了壳聚糖的抗菌性,降低了其生物安全性;或是提高了生物安全性而抗菌性却没有明显改善,这严重影响了其进一步应用。
本课题组在专利CN 201710556550.5中通过使用胍基和氨基酸双官能团对壳聚糖进行改性,在保证了水溶性与抗菌性的同时,兼顾了生物安全性。在此研究基础上,本发明人继续探索双官能团改性壳聚糖衍生物的制备方法,使其能够在保持良好的水溶性的同时,更加高效、灵活地调控样品的抗菌性及其生物安全性。
发明内容
基于以上背景技术,本发明提供了一种水溶性壳聚糖抗菌衍生物及其制备方法,成功的将短链聚乙二醇(PEG)和胍基化试剂接枝到壳聚糖分子上,得到了一种双功能基团改性的水溶性壳聚糖抗菌衍生物,在有效保持壳聚糖衍生物水溶性的前提下,能够高效、灵活地平衡样品的抗菌性及其生物安全性,使其更适合工业化生产、满足市场需要。
为达到上述目的,本发明采用以下技术方案:
一种水溶性壳聚糖抗菌衍生物,包括壳聚糖骨架和对壳聚糖骨架上的氨基进行改性的双功能基团,所述双功能基团为胍基和羰基聚乙二醇单甲醚。
与本课题组专利CN 201710556550.5中采用胍基与氨基酸对壳聚糖进行修饰相比,羧基聚乙二醇单甲醚的聚乙二醇链段用于调控分子亲水性更为灵活,且在前期探索试验中发现,将双功能基团改性顺序调整为先进行羧基聚乙二醇单甲醚改性再接胍基,有效避免了第一步接枝的胍基中的氨基参与后续反应,从而保证了水溶性壳聚糖抗菌衍生物中正电荷的密度,所得水溶性壳聚糖抗菌衍生物抗菌效果更佳。
优选地,所述水溶性壳聚糖抗菌衍生物具有以下结构式:
Figure PCTCN2018101849-appb-000001
其中,x、y、m、n均为自然数,m+n与选用的壳聚糖的分子量相关,6<m+n<6000;n与选用的壳聚糖的脱乙酰度相关,0.50<n/(m+n)<0.99;x与选用羧基聚乙二醇单甲醚的分子量相关,10<x<200;y与羰基聚乙二醇单甲醚接枝率相关,0.10<y/(m+n)<0.50。
本发明还提供上述水溶性壳聚糖抗菌衍生物的制备方法,包括以下步骤:
S1、壳聚糖与羧基聚乙二醇单甲醚进行反应,得到聚乙二醇改性的壳聚糖;
S2、聚乙二醇改性的壳聚糖与三氧化硫脲进行胍基改性反应,得到所述水溶性壳聚糖抗菌衍生物。选用三氧化硫脲进行胍基改性,与氰胺改性相比,反应条件更为温和,反应温度较低,易于控制。
壳聚糖首先与羧基聚乙二醇单甲醚进行反应,再与三氧化硫脲进行反应,能够使每一步得到的产物单一而不影响后续反应;避免了第一步接枝的胍基中的氨基参与后续反应,有效保留了胍基中带有的丰富正电荷,从而不会因为进一步反应而将胍基中的正电氨基消耗掉,保证了水溶性壳聚糖抗菌衍生物中正电荷的密度,所得水溶性壳聚糖抗菌衍生物抗菌效果更佳。
优选地,S1中壳聚糖与羧基聚乙二醇单甲醚进行反应后,经过透析和真空冷冻干燥得到聚乙二醇改性的壳聚糖;S2中聚乙二醇改性的壳聚糖与三氧化硫脲进行胍基改性反应后,经过透析和真空冷冻干燥得到聚乙二醇改性的壳聚糖。更优选地,所述透析使用截留分子量为8000-14000Da的透析袋,使用去离子水作为透析液。
透析处理可以将小分子副产物及杂质彻底去除,纯化产物。采用冷冻干燥的方法来处理样品,既避免了传统样品烘干过程改性功能基团因变温分解而导致的抑菌功能或生物安全性下降,同时,冷冻干燥使样品具有三维大孔网络结构,有利于溶解过程中溶剂的快速渗入从而提高了样品的溶解速度。
更优选地,S1中壳聚糖与羧基聚乙二醇单甲醚进行反应的具体过程为:首先将羧基聚乙二醇单甲醚、N-羟基琥珀酰亚胺(NHS)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC·HCl)加入到2-(N-吗啉代)乙烷磺酸(MES)缓冲液中进行羧基活化;随后,将羧基活化后的混合溶液加入壳聚糖的稀酸溶液中进行反应,反应温度控制在0-35℃,反应时间12-72小时;最后加入盐酸羟胺终止反应。优选地,盐酸羟胺与羧基聚乙二醇单甲醚的物质的量的比为1:1。
优选地,NHS、EDC·HCl与羧基聚乙二醇单甲醚的物质的量之比为1:1:0.2-2;羧基聚乙二醇单甲醚与壳聚糖的物质的量之比为0.1-10:1。
优选地,羧基活化的温度为0-35℃,活化时间为0.5-3小时。
优选地,使用MES缓冲液配制所述壳聚糖的稀酸溶液,其中稀酸为盐酸或醋酸,酸的浓度为0.1-0.5M,壳聚糖的质量百分比为0.1%-50%。
优选地,MES缓冲液的浓度为10-100mM,pH为4.5-7.5。
优选地,壳聚糖的数均分子量为10 3-10 6Da,脱乙酰度为50-99%;羧基聚乙二醇单甲醚的数均分子量为550-8000Da。
优选地,S2中聚乙二醇改性的壳聚糖与三氧化硫脲进行反应的具体过程为:配制聚乙二醇改性的壳聚糖的水溶液,加热至20-80℃,在10-90分钟加入三氧化硫脲,继续反应10-60分钟。
优选地,聚乙二醇改性的壳聚糖的水溶液的质量百分比为0.1-50%;三氧化硫脲与聚乙二醇改性的壳聚糖的物质的量之比为0.1-10:1。
本发明所述的化学反应过程如下所示:
Figure PCTCN2018101849-appb-000002
其中,x、y、m、n均为自然数,6<m+n<6000;0.50<n/(m+n)<0.99;10<x<200;0.10<y/(m+n)<0.50。
本发明的有益效果
本发明提供的水溶性壳聚糖抗菌衍生物,不但改善了壳聚糖的溶解性,而且由于胍基官能团以及温和的聚乙二醇链段的引入,同时保证了产物的抑菌抗菌性能和生物安全性。由于亲水性、正电性侧链的引入,产物的结晶性减弱水溶性增强,从而使其使用范围变宽,在酸性至弱碱性条件下均可使用。另外,本发明的水溶性壳聚糖抗菌衍生物作为生物可降解材料,抗菌效果好、细胞毒性低、生物安全性高,是一种绿色安全的抑菌产品。
本发明提供的水溶性壳聚糖抗菌衍生物的制备方法,操作简单、条件温和,所用主要原料壳聚糖为来源极为丰富的天然高分子甲壳素脱乙酰后所得。所需设备简单,适合工业化生产,是一种高品质的天然多糖改性抗菌材料,极具市场开发应用前景。
附图说明
图1为实施例1步骤(1)所制备的聚乙二醇改性的壳聚糖的核磁共振氢谱结果;
图2为实施例1所制备的聚乙二醇改性的壳聚糖及水溶性壳聚糖抗菌衍生物的傅里叶红外光谱;
图3为实施例1所制备的水溶性壳聚糖抗菌衍生物不同浓度水溶液对金黄色葡萄球菌的抑制率结果;
图4为实施例1所制备的水溶性壳聚糖抗菌衍生物不同浓度水溶液的对人肝细胞L-02细胞增殖抑制率结果。
具体实施方式
下面通过实施例对本发明进行具体描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据以上发明的内容做出一些非本质的改进和调整。在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例1:
(1)聚乙二醇改性的壳聚糖的制备
称取0.16克分子量2×10 5Da脱乙酰度99%的壳聚糖加入到10mLMES缓冲液(25mM,pH=4.90)中,并滴入0.1mL HCl室温下搅拌半小时,使壳聚糖完全溶解,从而得到质量体积百分比浓度为1.6%的均一溶液;然后将在室温下活化1小时的羧基聚乙二醇单甲醚、NHS和EDC·HCl的混合溶液(溶剂为25mM pH=4.90的MES缓冲溶液)20mL加入上述反应液中,于室温下持续搅拌反应24小时,其中壳聚糖、羧基聚乙二醇单甲醚、NHS、EDC·HCl的物质的量之比为1:1:2:2;反应结束后加入与羧基聚乙二醇单甲醚等物质的量的盐酸羟胺终止反应,随后将反应液转移至截留分子量为8000-14000Da的透析袋中,将透析袋两端扎紧置于去离子水中透析处理,每隔6小时换水一次,换水6次后将透析液放入-20℃冷冻过夜后,放入真空冷冻干燥机直至充分干燥至恒重即可得到聚乙二醇改性的水溶性壳聚糖。
(2)水溶性壳聚糖抗菌衍生物的制备
称取1.00克(1)中所得的水溶性壳聚糖加入到50mL去离子水中,室温下搅拌半小时,以使水溶性壳聚糖完全溶解,从而得到质量百分比为2%的均匀溶液;待温度升高至55℃,向水溶性壳聚糖溶液中缓慢加入三氧化硫脲,三氧化硫脲与壳聚糖的物质的量之比为3:1,投料用时30分钟,投料完毕后继续加热搅拌30分钟,随后将反应液转移至截留分子量为8000-14000Da的透析袋中,将透析袋两端扎紧置于去离子水中透析处理,每隔 6小时换水一次,换水6次后将透析液放入-20℃冷冻过夜后,放入真空冷冻干燥机中直至充分干燥至恒重即可得水溶性壳聚糖抗菌衍生物。
实施例2:
(1)聚乙二醇改性的壳聚糖的制备
称取0.10克分子量10 6Da脱乙酰度80%的壳聚糖加入到100mLMES缓冲液(10mM pH=7.50)中,并滴入0.4mL CH 3COOH室温下搅拌半小时,使壳聚糖完全溶解,从而得到质量体积百分比浓度为0.1%的均一溶液;然后将在冰水混合浴中活化3小时的羧基聚乙二醇单甲醚、NHS和EDC·HCl的混合溶液(溶剂为10mM,pH=7.50的MES缓冲溶液)20mL加入上述反应液中,于0℃下持续搅拌反应72小时,其中壳聚糖、羧基聚乙二醇单甲醚、NHS、EDC·HCl的物质的量之比为20:2:1:1;反应结束后加入与羧基聚乙二醇单甲醚等物质的量的盐酸羟胺终止反应,随后将反应液转移至截留分子量为8000-14000Da的透析袋中,将透析袋两端扎紧置于去离子水中透析处理,每隔5小时换水一次,换水8次后将透析液放入-20℃冷冻过夜后,放入真空冷冻干燥机直至充分干燥至恒重即可得到聚乙二醇改性的水溶性壳聚糖。
(2)水溶性壳聚糖抗菌衍生物的制备
称取0.10克(1)中所得的水溶性壳聚糖加入到100mL去离子水中,室温下搅拌半小时,以使水溶性壳聚糖完全溶解,从而得到质量百分比为0.1%的均匀溶液;待温度升高至80℃,向水溶性壳聚糖溶液中缓慢加入三氧化硫脲,三氧化硫脲与壳聚糖的物质的量之比为10:1,投料用时90分钟,投料完毕后继续加热搅拌60分钟,随后将反应液转移至截留分子量为8000-14000Da的透析袋中,将透析袋两端扎紧置于去离子水中透析处理,每隔10小时换水一次,换水5次后将透析液放入-20℃冷冻过夜后,放入真空冷冻干燥机中直至充分干燥至恒重即可得水溶性壳聚糖抗菌衍生物。
实施例3:
(1)聚乙二醇改性的壳聚糖的制备
称取5.00克分子量1000Da脱乙酰度50%的壳聚糖加入到10mLMES缓冲液(100mM pH=4.50)中,室温下搅拌半小时,使壳聚糖完全溶解,从而得到质量体积百分比浓度为50%的均一溶液;然后将在35℃下活化0.5小时的羧基聚乙二醇单甲醚、NHS和EDC·HCl的混合溶液(溶剂为100mM pH=4.50的MES缓冲溶液)50mL加入上述反应液中,于35℃下持续搅拌反应12小时,其中壳聚糖、羧基聚乙二醇单甲醚、NHS、EDC·HCl的物质的量之比为1:10:5:5;反应结束后加入与羧基聚乙二醇单甲醚等物质的量的盐酸羟胺终止反 应,随后将反应液转移至截留分子量为1000Da的透析袋中,将透析袋两端扎紧置于去离子水中透析处理,每隔10小时换水一次,换水5次后将透析液放入-20℃冷冻过夜后,放入真空冷冻干燥机直至充分干燥至恒重即可得到聚乙二醇改性的水溶性壳聚糖。
(2)水溶性壳聚糖抗菌衍生物的制备
称取5.00克(1)中所得的水溶性壳聚糖加入到10mL去离子水中,室温下搅拌半小时,以使水溶性壳聚糖完全溶解,从而得到质量百分比为50%的均匀溶液;20℃下向水溶性壳聚糖溶液中缓慢加入三氧化硫脲,三氧化硫脲与壳聚糖的物质的量之比为1:10,投料用时10分钟,投料完毕后继续加热搅拌10分钟,随后将反应液转移至截留分子量为1000Da的透析袋中,将透析袋两端扎紧置于去离子水中透析处理,每隔5小时换水一次,换水8次后将透析液放入-20℃冷冻过夜后,放入真空冷冻干燥机中直至充分干燥至恒重即可得水溶性壳聚糖抗菌衍生物。
实施例4:
聚乙二醇改性的壳聚糖的核磁共振氢谱
将50mg实施例1中步骤(1)所得的聚乙二醇改性的壳聚糖溶于0.6mL氘代水中,以四甲基硅烷(TMS)做内标,室温25℃下,在Varian UNITY INOVA-400MHz核磁共振波谱仪上测定水溶性壳聚糖的微结构与化学组成。所得结果如图1所示。
2.0ppm处的峰强较弱,表明所得聚乙二醇改性的壳聚糖脱乙酰化较彻底。3.65ppm附近单甲醚聚乙二醇中亚甲基CH 2CH 2质子氢化学位移的出现表明通过实施例1步骤(1)中的制备方法,已将聚乙二醇链段成功接枝到壳聚糖分子当中。
实施例5:
聚乙二醇改性的壳聚糖及水溶性壳聚糖抗菌衍生物的傅里叶红外光谱
分别取充分干燥的实施例1中的2.0mg聚乙二醇改性的壳聚糖、2.0mg水溶性壳聚糖抗菌衍生物和100.0mg溴化钾光谱纯放入玛瑙研钵中共同研细,混合均匀,然后将研磨好的混合物放入模具中,在油压机中压片,得到半透明的KBr片,用此KBr片测试红外光谱,扫描范围为4000-400cm -1。所得结果如图2所示。
与水溶性壳聚糖的红外光谱相比,水溶性壳聚糖抗菌衍生物中胍基在1651cm -1以及1539cm -1处C=N键的伸缩振动峰明显增强,表明通过实施例步骤(2)中的制备方法,已将胍基修饰到聚乙二醇改性的壳聚糖分子中,得到了相应的水溶性壳聚糖抗菌衍生物。
实施例6:
水溶性壳聚糖抗菌衍生物对金黄色葡萄球菌的抑制
将实施例1中所得的水溶性壳聚糖抗菌衍生物用灭菌水配制浓度分别为0.02、0.20、2.00mg/mL的水溶液,各取5mL并向其中加入经胰蛋白胨大豆肉汤培养至对数期且浓度为10 5CFU/mL的金黄色葡萄球菌菌液0.1mL,静置10分钟后,取充分作用后的样品-菌液混合液0.1mL均匀涂布于直径90mm的MH琼脂平板上并置于37℃培养箱中过夜。经5mL1×PBS(0.01M,pH=7.2-7.4)处理过的等量菌液涂布的MH琼脂平板作为对照。对琼脂平板上生长的菌落进行计数,并通过下式计算样品对金黄色葡萄球菌的抑菌率。所得结果如图3所示,结果表明按照实施例1步骤制备的水溶性壳聚糖抗菌衍生物水溶液能够在较宽浓度范围内对金黄色葡萄球菌有较强(>95%)的抑制作用。
Figure PCTCN2018101849-appb-000003
实施例7:
水溶性壳聚糖抗菌衍生物生物安全性评价
将实施例1中所得的水溶性壳聚糖抗菌衍生物用不含胎牛血清的PRIM 1640细胞培养基配制成浓度分别为0.04、0.40、4.00、12.00mg/mL的溶液,各取0.05mL加入每孔含5000个经PRIM 1640(含10%胎牛血清、1%青霉素、链霉素)细胞培养基培养至对数期的人肝细胞L-02的96孔聚苯乙烯培养板中,使水溶性壳聚糖抗菌衍生物的终浓度分别为0.01、0.10、1.00、3.00mg/mL。0.05mL 1×PBS(0.01M,pH=7.2-7.4)作用的细胞悬液作为对照组。将培养板置于5%CO 2、37℃的培养箱中继续培养24小时后,吸除各孔中培养基并添加等量新鲜培养基,并每孔加入CCK-8溶液0.01mL,培养2-4小时后通过多模式微孔板检测仪测定450nm处各孔的吸光值,并通过下式计算细胞存活率。所得结果如图4所示,结果表明经水溶性壳聚糖抗菌衍生物处理的L-02细胞存活率较高,通过本发明实施例1制备的水溶性壳聚糖抗菌衍生物的生物安全性较好。
Figure PCTCN2018101849-appb-000004
显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护范围。

Claims (10)

  1. 一种水溶性壳聚糖抗菌衍生物,包括壳聚糖骨架和对壳聚糖骨架上的氨基进行改性的双功能基团,其特征在于,所述双功能基团为胍基和羰基聚乙二醇单甲醚,具有以下结构式:
    Figure PCTCN2018101849-appb-100001
    其中,x、y、m、n均为自然数,6<m+n<6000,0.50<n/(m+n)<0.99,10<x<200;0.10<y/(m+n)<0.50。
  2. 一种如权利要求1所述的水溶性壳聚糖抗菌衍生物的制备方法,其特征在于,包括以下步骤:
    S1、壳聚糖与羧基聚乙二醇单甲醚进行反应,得到聚乙二醇改性的壳聚糖;
    S2、聚乙二醇改性的壳聚糖与三氧化硫脲进行胍基改性反应,得到所述水溶性壳聚糖抗菌衍生物。
  3. 根据权利要求2所述的方法,其特征在于,S1中壳聚糖与羧基聚乙二醇单甲醚进行反应后,经过透析和真空冷冻干燥得到聚乙二醇改性的壳聚糖;
    S2中聚乙二醇改性的壳聚糖与三氧化硫脲进行胍基改性反应后,经过透析和真空冷冻干燥得到聚乙二醇改性的壳聚糖;
    优选地,所述透析使用截留分子量为8000-14000Da的透析袋,使用去离子水作为透析液。
  4. 根据权利要求2所述的方法,其特征在于,S1中壳聚糖与羧基聚乙二醇单甲醚进行反应的具体过程为:首先将羧基聚乙二醇单甲醚、N-羟基琥珀酰亚胺和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐加入到2-(N-吗啉代)乙烷磺酸缓冲液中进行羧基活化;随后,将羧基活化后的混合溶液加入壳聚糖的稀酸溶液中进行反应,反应温度控制在0-35℃,反应时间12-72小时;最后加入盐酸羟胺终止反应;
    优选地,N-羟基琥珀酰亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐与羧基聚乙二醇单甲醚的物质的量之比为1:1:0.2-2;羧基聚乙二醇单甲醚与壳聚糖的物质的量之比为0.1-10:1;
    更优选地,盐酸羟胺与羧基聚乙二醇单甲醚的物质的量的比为1:1。
  5. 根据权利要求4所述的方法,其特征在于,羧基活化的温度为0-35℃,活化时间为0.5-3小时。
  6. 根据权利要求4所述的方法,其特征在于,使用2-(N-吗啉代)乙烷磺酸缓冲液配制所述壳聚糖的稀酸溶液,其中稀酸为盐酸或醋酸,酸的浓度为0.1-0.5M,壳聚糖的质量百分比为0.1%-50%。
  7. 根据权利要求4或6所述的方法,其特征在于,2-(N-吗啉代)乙烷磺酸缓冲液的浓度为10-100mM,pH为4.5-7.5。
  8. 根据权利要求4所述的方法,其特征在于,壳聚糖的数均分子量为10 3-10 6Da,脱乙酰度为50-99%;羧基聚乙二醇单甲醚的数均分子量为550-8000Da。
  9. 根据权利要求2所述的方法,其特征在于,S2中聚乙二醇改性的壳聚糖与三氧化硫脲进行反应的具体过程为:配制聚乙二醇改性的壳聚糖的水溶液,加热至20-80℃,在10-90分钟加入三氧化硫脲,继续反应10-60分钟。
  10. 根据权利要求9所述的方法,聚乙二醇改性的壳聚糖的水溶液的质量百分比为0.1-50%;三氧化硫脲与聚乙二醇改性的壳聚糖的物质的量之比为0.1-10:1。
PCT/CN2018/101849 2017-09-12 2018-08-23 一种水溶性壳聚糖抗菌衍生物及其制备方法 WO2019052321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710817411.3A CN109485747B (zh) 2017-09-12 2017-09-12 一种水溶性壳聚糖抗菌衍生物及其制备方法
CN201710817411.3 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019052321A1 true WO2019052321A1 (zh) 2019-03-21

Family

ID=65688097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101849 WO2019052321A1 (zh) 2017-09-12 2018-08-23 一种水溶性壳聚糖抗菌衍生物及其制备方法

Country Status (2)

Country Link
CN (1) CN109485747B (zh)
WO (1) WO2019052321A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386997B (zh) * 2019-08-19 2021-09-07 中国科学院理化技术研究所 一种具有抗菌功能的生物相容性壳聚糖衍生物及其制备方法
CN110483846B (zh) * 2019-08-20 2021-04-06 湖南工业大学 一种阻燃生物质基抗菌膜的制备工艺
CN110409192B (zh) * 2019-08-26 2021-08-20 安徽农业大学 一种纳米羧基壳聚糖原位涂层织物及其制备方法
CN112300408B (zh) * 2020-10-26 2022-10-04 广州大学 一种柔性高拉伸的温敏、湿敏水凝胶及其制备方法与应用
CN114288464B (zh) * 2021-11-24 2023-07-07 中国科学院理化技术研究所 一种抗菌促愈合水凝胶敷料及其制备方法和应用
CN114225098B (zh) * 2021-11-24 2023-04-11 中国科学院理化技术研究所 一种具有抗菌和促进伤口愈合的医用敷料
CN114634959B (zh) * 2022-04-02 2024-02-02 中国科学院兰州化学物理研究所 一种双功能仿生润滑剂及其制备方法和应用
CN115141284A (zh) * 2022-08-22 2022-10-04 安庆市嘉欣医疗用品科技股份有限公司 一种大分子衍生物、其制备方法和应用
CN116554363A (zh) * 2023-04-18 2023-08-08 珠海市自然之旅生物技术有限公司 一种托酚酮-壳聚糖衍生物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073034A2 (en) * 2003-02-12 2004-08-26 University Of Maryland College Park Controlled electrochemical deposition of polysaccharides, films and hydrogel and materials formed therefrom
CN101033264A (zh) * 2007-04-24 2007-09-12 武汉大学 壳聚糖双胍盐酸盐及其制备方法和用途
WO2010021930A1 (en) * 2008-08-16 2010-02-25 Synedgen, Inc. Prevention and treatment of mrsa infections with chitosan-derivatives

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812824B1 (ko) * 2006-09-27 2008-03-12 주식회사 제닉 키토산과 폴리에틸렌글리콜을 이용한 생체친화성 저독성필름
CN103524750B (zh) * 2013-10-25 2015-12-30 扬州大学 聚乙二醇壳聚糖自组装纳米粒的制备方法
CN104672346B (zh) * 2014-12-15 2018-05-25 四川吉百瑞生物医疗科技有限公司 胍基壳聚糖季胺盐的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073034A2 (en) * 2003-02-12 2004-08-26 University Of Maryland College Park Controlled electrochemical deposition of polysaccharides, films and hydrogel and materials formed therefrom
CN101033264A (zh) * 2007-04-24 2007-09-12 武汉大学 壳聚糖双胍盐酸盐及其制备方法和用途
WO2010021930A1 (en) * 2008-08-16 2010-02-25 Synedgen, Inc. Prevention and treatment of mrsa infections with chitosan-derivatives

Also Published As

Publication number Publication date
CN109485747A (zh) 2019-03-19
CN109485747B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2019052321A1 (zh) 一种水溶性壳聚糖抗菌衍生物及其制备方法
Pokhrel et al. Functionalization of chitosan polymer and their applications
WO2019011061A1 (zh) 一种新型水溶性天然多糖抗菌材料及其制备方法
Kundu et al. Cellulose hydrogels: Green and sustainable soft biomaterials
Vunain et al. Fundamentals of chitosan for biomedical applications
JP3993633B2 (ja) ポリ−β−1→4−N−アセチルグルコサミン
Sahoo et al. Chitosan: a new versatile bio-polymer for various applications
Li et al. Preparation and characterization of acid resistant double cross-linked hydrogel for potential biomedical applications
CN110386997B (zh) 一种具有抗菌功能的生物相容性壳聚糖衍生物及其制备方法
WO2009006780A1 (fr) Procédé pour la formation d&#39;un hydrogel biocompatible à gélification rapide et préparation d&#39;un agent de pulvérisation
CN106995502B (zh) 双功能基团改性壳聚糖衍生物及其制备方法
Teng From chitin to chitosan
Lu et al. Zwitterionic choline phosphate functionalized chitosan with antibacterial property and superior water solubility
CN104817660A (zh) 一种改性羧甲基壳聚糖纳米凝胶的制备
CN112358635B (zh) 一种聚乙烯醇基水凝胶膜及其制备方法
CN113999406B (zh) 一种多功能抗菌水凝胶敷料的制备方法及应用
CN107216408A (zh) 一种抗菌功能化壳聚糖衍生物的制备方法
CN107043432A (zh) 一种两性羧甲基壳聚糖胍盐衍生物及其制备方法
CN108403641B (zh) 一种载药纳米材料及其制备方法
CN114478834B (zh) 一种胍基透明质酸抗菌聚合物及其制备方法和应用
CN100494223C (zh) 季胺盐改性的壳聚糖亲核no供体的合成方法
Mali et al. Synthesis and characterization of citric acid crosslinked carboxymethyl tamarind gum-polyvinyl alcohol hydrogel films
CN115260337B (zh) 一种精氨酸接枝羧基化普鲁兰多糖及其制备方法和应用
CN109096910B (zh) 一种医用复合物涂层剂、其制备方法及应用
JP6360243B1 (ja) エモジンを担持するためのナノ粒子の新規な調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856534

Country of ref document: EP

Kind code of ref document: A1