WO2020114148A1 - 一种精确控温型热泵热风炉控制系统及控制方法 - Google Patents

一种精确控温型热泵热风炉控制系统及控制方法 Download PDF

Info

Publication number
WO2020114148A1
WO2020114148A1 PCT/CN2019/113638 CN2019113638W WO2020114148A1 WO 2020114148 A1 WO2020114148 A1 WO 2020114148A1 CN 2019113638 W CN2019113638 W CN 2019113638W WO 2020114148 A1 WO2020114148 A1 WO 2020114148A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
adjustment
difference
frequency
compressor
Prior art date
Application number
PCT/CN2019/113638
Other languages
English (en)
French (fr)
Inventor
王天舒
王玉军
吴小网
刘军
李�柱
王颖
Original Assignee
江苏天舒电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天舒电器有限公司 filed Critical 江苏天舒电器有限公司
Publication of WO2020114148A1 publication Critical patent/WO2020114148A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/06Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/001Drying-air generating units, e.g. movable, independent of drying enclosure
    • F26B21/002Drying-air generating units, e.g. movable, independent of drying enclosure heating the drying air indirectly, i.e. using a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure

Definitions

  • the invention belongs to the field of grain drying, and in particular relates to a control system and a control method of an accurate temperature control type heat pump hot blast stove.
  • an automatic temperature-controlled hot blast stove which includes a furnace outlet, a lower temperature detection device, an upper temperature detection device, a feed port, a discharge port, an automatic heating device, and a manual valve , Electric valve, flow meter, electric heating belt with precise temperature control system, automatic hot air furnace; feeding furnace outlet is located inside the column-shaped heating furnace at the upper position with upper temperature detection device, feeding port is located in the column At the top of the body-shaped heating furnace, there are spirally arranged pipes inside the automatic hot air furnace, and the side of the automatic hot air furnace is equipped with an electric heating belt with a precise temperature control system.
  • the application for the invention number 2018101585190 discloses "a low-grade waste heat recovery system", including a slag water heat exchange unit, a slag water heat exchange unit, a hot blast stove heat extraction unit, a boiler flue gas heat extraction unit, and temperature control Water tank, flash evaporator, circulating water pump and seawater desalination evaporator; slag water heat exchange unit, slag water heat exchange unit, hot blast stove heat extraction unit, boiler flue gas heat extraction unit, temperature control water tank, flash evaporator and circulating water pump Sub-series, and the outlet of the circulating water pump is connected to the inlet of the slag water heat exchange unit, and the outlet of the flash evaporator is connected to the seawater desalination evaporator.
  • the heat source of the slag water heat exchange unit is the slag water and the slag water heat exchange unit
  • the heat source is slag flushing steam
  • the heat source of the hot blast stove heating unit is hot blast stove flue gas
  • the heat source of the boiler flue gas heating unit is boiler flue gas.
  • the present invention provides an accurate temperature control type heat pump hot air furnace control system and control method, and the technical solutions are as follows:
  • a temperature detection unit, a constant temperature adjustment unit and an air supply unit are provided in the control system;
  • a basic adjustment end and an auxiliary adjustment end are formed in the constant temperature adjustment unit;
  • the control system supplies hot air matching the set temperature through the cooperation of the temperature detection unit and the constant temperature adjustment unit;
  • a first basic adjusting end and a second basic adjusting end are formed on the basic adjusting end of the constant temperature adjusting unit;
  • the horizontal adjustment based on the basic adjustment end is formed by the thermostatic adjustment unit, and the longitudinal adjustment based on the auxiliary adjustment end is combined with the thermostatic adjustment unit; Two-dimensional adaptive control.
  • the defrosting units form respective defrosting ends at the first base adjusting end, the second base adjusting end, and the auxiliary adjusting end of the base adjusting end, respectively.
  • a liquid spray cooling unit is also provided in the control system.
  • the liquid spray cooling unit cooperates with the constant temperature adjustment unit to form an adjustment of the exhaust temperature in the constant temperature adjustment unit that is too high.
  • the first basic regulating end is composed of a first fixed frequency compressor (1-1), a first condenser (1-2), a first filter (1-3), and a first electronic expansion valve (1 -4), the first evaporator (1-5), the first vapor-liquid separator (1-6);
  • the second basic regulating end is composed of a first inverter compressor (2-1), a second condenser (2-2), a second filter (2-3), and a second electronic expansion valve (2- 4). Composition of the second evaporator (2-5) and the second vapor-liquid separator (2-6);
  • a longitudinal adjustment composed of a first auxiliary adjustment end, a second auxiliary adjustment end, and a third auxiliary adjustment end is formed in the auxiliary adjustment end;
  • the thermostatic adjustment unit is implemented based on the lateral adjustment formed by the basic adjustment end, through the fixed frequency adjustment of the first basic adjustment end in combination with the frequency conversion adjustment of the second basic adjustment end.
  • the first auxiliary regulating end is composed of a second fixed frequency compressor (3-1), a third condenser (3-2), a third filter (3-3), and a third electronic expansion valve (3 -4), the structure of the third evaporator (3-5) and the third vapor-liquid separator (3-6);
  • the second auxiliary regulating end is composed of a third fixed frequency compressor (4-1), a third condenser (3-2), a fourth filter (4-3), and a fourth electronic expansion valve (4 -4), the composition of the fourth evaporator (4-5) and the fourth vapor-liquid separator (4-6);
  • the third auxiliary regulating end is composed of a fourth fixed frequency compressor (5-1), a fourth condenser (4-2), a fifth filter (5-3), and a fifth electronic expansion valve (5 -4).
  • the fifth evaporator (5-5) and the fifth vapor-liquid separator (5-6) are constructed.
  • the fourth defrosting operation is formed based on the second auxiliary adjustment end
  • the fifth defrosting operation is formed based on the third auxiliary regulating end
  • the defrosting unit Based on the first defrosting operation, the second defrosting operation, the third defrosting operation, the fourth defrosting operation, and the fifth defrosting operation, the defrosting unit is established: the defrosting conditions of five defrosting operations are detected at the same time. Sequence control forms a defrosting operation mode that puts one defrosting operation at a time.
  • Adjusted based on the second end section is formed with a frequency set based on the frequency, both the temperature difference range segment is set based on the difference with the temperature difference between the actual air temperature T set;
  • the second base adjustment end According to the temperature difference interval section and the frequency section, the second base adjustment end
  • the second frequency conversion adjustment mode established according to the frequency section
  • the third frequency conversion adjustment mode established according to the frequency section.
  • the electric heating unit constitutes an auxiliary adjustment to the constant temperature adjustment unit.
  • the liquid spray cooling unit includes a first liquid spray cooling unit and a second liquid spray cooling unit;
  • the first liquid spray cooling unit passes through: a first injection connected between the refrigerant inlet of the first condenser (1-2) and the refrigerant inlet of the first gas-liquid separator (1-6) through a pipeline
  • the liquid valve (1-7) and the first liquid injection capillary (1-8) constitute;
  • the second liquid spray cooling unit passes through: a second injection pipe connected between the refrigerant inlet of the third condenser (3-2) and the refrigerant inlet of the third gas-liquid separator (3-6)
  • the liquid valve (2-7) and the second liquid injection capillary (2-8) constitute.
  • a precise temperature control type heat pump hot blast stove control method characterized by:
  • a basic adjustment end and an auxiliary adjustment end are formed in the constant temperature adjustment unit;
  • a first basic adjustment end and a second basic adjustment end are formed at the basic adjustment end;
  • a first auxiliary adjustment end, a second auxiliary adjustment end and a third auxiliary adjustment end are formed on the auxiliary adjustment end;
  • the first auxiliary adjustment terminal When the difference between the set temperature and the current outlet temperature is greater than 10, the first auxiliary adjustment terminal is turned on;
  • the third auxiliary adjustment terminal is turned on.
  • the frequency conversion adjustment at the end includes the following steps:
  • the temperature difference interval segment includes successively formed A, B, C, D, E, F, G, and H, a total of 8 interval segments;
  • the frequency bands include F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, and F13 set in sequence, for a total of 14 frequency bands;
  • the F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13 frequency bands, the corresponding frequencies are: 0, 30, 37, 45, 50, 55 , 60, 65, 70, 75, 80, 90, 100, 110;
  • the A, B, C, D, E, F, G, and H temperature difference interval segments, the corresponding temperature difference intervals in the temperature drop mode are: [8, 10), [4, 8), [1, 4 ), [0.5, 1), [0.3, 0.5), [0, 0.3), [-0.3, 0), (- ⁇ , -0.3);
  • the A, B, C, D, E, F, G, and H temperature difference intervals, the corresponding temperature difference intervals in the temperature difference rising mode are: [8, 10), [5.5, 8), [3.5, 5.5 ), [1.5, 3.5), [0.8, 1.5), [0.3, 0.8), [-0.5, 0.3), (- ⁇ , -0.5);
  • Step S11 is specifically: when the difference T difference is operated in the temperature difference rising mode within the temperature difference interval section, the first frequency conversion adjustment mode adjustment is formed according to the frequency increase by one gear/interval;
  • step S12 The specific steps of step S12 are as follows:
  • step S122 is entered;
  • step S123 is entered;
  • S122 Form the adjustment of the second variable frequency adjustment mode according to the frequency down by one gear/interval
  • S123 Maintain the frequency corresponding to the current frequency segment until the temperature difference difference T difference falls within the F temperature difference interval segment, and form a second frequency conversion adjustment mode adjustment according to the frequency down by one step/interval;
  • step S13 The specific steps of step S13 are as follows:
  • the defrosting unit is provided to form a first defrosting operation at the first base adjustment end, a second defrosting operation at the second base adjustment end, a third defrosting operation at the first auxiliary adjustment end, and a second auxiliary operation
  • the fourth defrost operation is formed on the adjustment end
  • the fifth defrost operation is formed on the third auxiliary adjustment end, based on the first defrost operation, the second defrost operation, the third defrost operation, the fourth defrost operation, and the fifth Establish the defrosting unit in the defrosting unit: detect the defrosting conditions of the five defrosting operations at the same time, and control the sequence to form a defrosting operation mode with one defrosting operation at a time.
  • a first fixed frequency compressor, a first variable frequency compressor, and a second fixed frequency are provided at the first basic regulating end, the second basic regulating end, the first auxiliary regulating end, the second auxiliary regulating end, and the third auxiliary regulating end, respectively Compressor, third fixed frequency compressor, fourth fixed frequency compressor;
  • the first variable frequency compressor is frequency-converted and adjusted in the manner of "10 seconds 5 Hz";
  • the frequency conversion adjustment of the first variable frequency compressor is performed in the manner of "10 seconds 3 Hz" ;
  • the reference descent rate is 1 interval/2 minutes.
  • the constant temperature difference mode is: the temperature difference is within the same temperature difference interval of greater than or equal to 3 min.
  • step S134 if the temperature difference drops by 0.5°C within 3 minutes, the frequency difference will decrease by 0.5°C, and the frequency will be adjusted in a way that the frequency drops by one gear
  • the operating frequency of the G temperature difference interval is [F1, F3].
  • the electric heating unit constitutes an auxiliary adjustment to the constant temperature adjustment unit to control the temperature of the outlet air to match the set value.
  • the first fixed frequency compressor is a high temperature 12HP fixed frequency setting
  • the second inverter compressor is set to 8HP DC inverter
  • the second fixed frequency compressor, the third fixed frequency compressor, and the fourth fixed frequency compressor are all 6HP fixed frequency settings.
  • the precise temperature control type heat pump hot blast stove control system and control method of the present invention address the particularity of the operation of the grain drying heat pump system, and solve the temperature change of the heat pump hot blast stove in the external environment, the heat pump inlet air temperature change, and the fin frost During various changing working conditions such as and defrosting, through the innovative design and intelligent control logic of the system, the input selection of multi-level different heating capacity and the precisely controlled DC variable frequency adjustment system are realized to ensure that the heat pump guarantees the heat pump during normal operation.
  • the temperature of the outlet air is controlled within ⁇ 0.3 degrees from the set temperature to ensure the quality and amount of dried materials.
  • Adopt multi-determination and one-variation technology through the combination of fixed-variation and automatic adjustment of the operating mode, which saves the cost of the unit, and at the same time can meet the purpose of precise control of the outlet temperature under different working conditions.
  • the first inverter compressor adopts DC full DC inverter technology, stepless precise control, and the frequency can be reduced to 10HZ.
  • the high-temperature compression system is adopted for the first base adjustment end, which can ensure that the outlet temperature can reach a maximum of 85 degrees.
  • each heat pump unit can also make heat while defrosting. According to the frosting situation and the effect of defrosting, the flow distribution of heat and defrosting is reasonably adjusted.
  • Exhaust spray liquid temperature removal technology is set to ensure that the exhaust temperature is not too high and the lubricating oil will not be carbonized at high temperature, which will damage the compressor.
  • FIG. 1 is a schematic block diagram of the structure of the control system in the present invention.
  • FIG. 2 is a schematic diagram of control steps of the control method in the present invention.
  • FIG. 3 is a schematic diagram of a control step sequence of a second basic regulating end in the control method of the present invention
  • FIG. 5 is a schematic diagram of the control steps of the second basic regulating end in the constant temperature difference mode in the present invention.
  • FIG. 6 is a schematic diagram of the steps of the defrosting operation mode in the control method of the present invention.
  • FIG. 8 is a schematic diagram of a system structure in an embodiment of the present invention.
  • 1-1 is the first fixed frequency compressor
  • 1-4 is the first electronic expansion valve
  • 1-6 is the first vapor-liquid separator
  • 3-1 is the second fixed frequency compressor
  • 3-3 is the third filter
  • 3-4 is the third electronic expansion valve
  • 4-1 is the third fixed frequency compressor
  • 4-3 is the fourth filter
  • 4-4 is the fourth electronic expansion valve
  • 5-1 is the fourth fixed frequency compressor
  • 4-2 is the fourth condenser
  • 5-3 is the fifth filter
  • 5-4 is the fifth electronic expansion valve
  • 5-5 is the fifth evaporator
  • 5-6 is the fifth vapor-liquid separator
  • 1-8 is the first injection capillary
  • 2-8 is the second injection capillary.
  • a temperature detection unit, a constant temperature adjustment unit and an air supply unit are provided in the control system;
  • a basic adjustment end and an auxiliary adjustment end are formed in the constant temperature adjustment unit;
  • the control system supplies hot air matching the set temperature through the cooperation of the temperature detection unit and the constant temperature adjustment unit;
  • a first basic adjusting end and a second basic adjusting end are formed on the basic adjusting end of the constant temperature adjusting unit;
  • the horizontal adjustment based on the basic adjustment end is formed by the thermostatic adjustment unit, and the longitudinal adjustment based on the auxiliary adjustment end is combined with the thermostatic adjustment unit; Two-dimensional adaptive control.
  • the defrosting units form respective defrosting ends at the first base adjusting end, the second base adjusting end, and the auxiliary adjusting end of the base adjusting end, respectively.
  • a liquid spray cooling unit is also provided in the control system.
  • the liquid spray cooling unit cooperates with the constant temperature adjustment unit to form an adjustment of the exhaust temperature in the constant temperature adjustment unit that is too high.
  • the first basic regulating end is composed of a first fixed frequency compressor (1-1), a first condenser (1-2), a first filter (1-3), and a first electronic expansion valve (1 -4), the first evaporator (1-5), the first vapor-liquid separator (1-6);
  • the second basic regulating end is composed of a first inverter compressor (2-1), a second condenser (2-2), a second filter (2-3), and a second electronic expansion valve (2- 4). Composition of the second evaporator (2-5) and the second vapor-liquid separator (2-6);
  • a longitudinal adjustment composed of a first auxiliary adjustment end, a second auxiliary adjustment end, and a third auxiliary adjustment end is formed in the auxiliary adjustment end;
  • the thermostatic adjustment unit is implemented based on the lateral adjustment formed by the basic adjustment end, through the fixed frequency adjustment of the first basic adjustment end in combination with the frequency conversion adjustment of the second basic adjustment end.
  • the first auxiliary regulating end is composed of a second fixed frequency compressor (3-1), a third condenser (3-2), a third filter (3-3), and a third electronic expansion valve (3 -4), the structure of the third evaporator (3-5) and the third vapor-liquid separator (3-6);
  • the second auxiliary regulating end is composed of a third fixed frequency compressor (4-1), a third condenser (3-2), a fourth filter (4-3), and a fourth electronic expansion valve (4 -4), the composition of the fourth evaporator (4-5) and the fourth vapor-liquid separator (4-6);
  • the third auxiliary regulating end is composed of a fourth fixed frequency compressor (5-1), a fourth condenser (4-2), a fifth filter (5-3), and a fifth electronic expansion valve (5 -4).
  • the fifth evaporator (5-5) and the fifth vapor-liquid separator (5-6) are constructed.
  • the fourth defrosting operation is formed based on the second auxiliary adjustment end
  • the fifth defrosting operation is formed based on the third auxiliary regulating end
  • the defrosting unit Based on the first defrosting operation, the second defrosting operation, the third defrosting operation, the fourth defrosting operation, and the fifth defrosting operation, the defrosting unit is established: the defrosting conditions of five defrosting operations are detected at the same time. Sequence control forms a defrosting operation mode that puts one defrosting operation at a time.
  • Adjusted based on the second end section is formed with a frequency set based on the frequency, both the temperature difference range segment is set based on the difference with the temperature difference between the actual air temperature T set;
  • the second base adjustment end According to the temperature difference interval section and the frequency section, the second base adjustment end
  • the second frequency conversion adjustment mode established according to the frequency section
  • the third frequency conversion adjustment mode established according to the frequency section.
  • the electric heating unit constitutes an auxiliary adjustment to the constant temperature adjustment unit.
  • the liquid spray cooling unit includes a first liquid spray cooling unit and a second liquid spray cooling unit;
  • the first liquid spray cooling unit passes through: a first injection connected between the refrigerant inlet of the first condenser (1-2) and the refrigerant inlet of the first gas-liquid separator (1-6) through a pipeline
  • the liquid valve (1-7) and the first injection capillary (1-8) constitute;
  • the second liquid spray cooling unit passes through: a second injection pipe connected between the refrigerant inlet of the third condenser (3-2) and the refrigerant inlet of the third gas-liquid separator (3-6)
  • the liquid valve (2-7) and the second liquid injection capillary (2-8) constitute.
  • an accurate temperature control type heat pump hot air furnace control method through the cooperation of the temperature detection unit and the constant temperature adjustment unit, supplies hot air matching the set temperature in the air supply unit;
  • a basic adjustment end and an auxiliary adjustment end are formed in the constant temperature adjustment unit;
  • a first basic adjustment end and a second basic adjustment end are formed at the basic adjustment end;
  • a first auxiliary adjustment end, a second auxiliary adjustment end and a third auxiliary adjustment end are formed on the auxiliary adjustment end;
  • the first auxiliary adjustment terminal When the difference between the set temperature and the current outlet temperature is greater than 10, the first auxiliary adjustment terminal is turned on;
  • the third auxiliary adjustment terminal is turned on.
  • the frequency conversion adjustment at the end includes the following steps (as shown in Figure 3):
  • the temperature difference interval segment includes successively formed A, B, C, D, E, F, G, and H, a total of 8 interval segments;
  • the frequency bands include F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, and F13 set in sequence, for a total of 14 frequency bands;
  • the F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13 frequency bands, the corresponding frequencies are: 0, 30, 37, 45, 50, 55 , 60, 65, 70, 75, 80, 90, 100, 110;
  • the A, B, C, D, E, F, G, and H temperature difference interval segments, the corresponding temperature difference intervals in the temperature drop mode are: [8, 10), [4, 8), [1, 4 ), [0.5, 1), [0.3, 0.5), [0, 0.3), [-0.3, 0), (- ⁇ , -0.3);
  • the A, B, C, D, E, F, G, and H temperature difference intervals, the corresponding temperature difference intervals in the temperature difference rising mode are: [8, 10), [5.5, 8), [3.5, 5.5 ), [1.5, 3.5), [0.8, 1.5), [0.3, 0.8), [-0.5, 0.3), (- ⁇ , -0.5);
  • Step S11 is specifically as follows: when the difference T difference is operated in the temperature difference rising mode within the temperature difference interval section, the first frequency conversion adjustment mode adjustment is formed according to the frequency increase by one gear/interval;
  • step S12 The specific steps of step S12 are as follows (as shown in FIG. 4):
  • step S122 is entered;
  • step S123 is entered;
  • S122 Form the adjustment of the second variable frequency adjustment mode according to the frequency down by one gear/interval
  • S123 Maintain the frequency corresponding to the current frequency segment until the temperature difference difference T difference falls within the F temperature difference interval segment, and form a second frequency conversion adjustment mode adjustment according to the frequency down by one step/interval;
  • step S13 The specific steps of step S13 are as follows (as shown in FIG. 5):
  • the defrosting unit is provided to form a first defrosting operation at the first base adjustment end, a second defrosting operation at the second base adjustment end, a third defrosting operation at the first auxiliary adjustment end, and a second auxiliary operation
  • the fourth defrost operation is formed on the adjustment end
  • the fifth defrost operation is formed on the third auxiliary adjustment end, based on the first defrost operation, the second defrost operation, the third defrost operation, the fourth defrost operation, and the fifth Establish the defrosting unit in the defrosting unit: detect the defrosting conditions of the five defrosting operations at the same time, and control the sequence to form a defrosting operation mode with one defrosting operation at a time.
  • a first fixed frequency compressor, a first variable frequency compressor, and a second fixed frequency are provided at the first basic regulating end, the second basic regulating end, the first auxiliary regulating end, the second auxiliary regulating end, and the third auxiliary regulating end, respectively Compressor, third fixed frequency compressor, fourth fixed frequency compressor;
  • the first variable frequency compressor is frequency-converted and adjusted in the manner of "10 seconds 5 Hz";
  • the frequency conversion adjustment of the first variable frequency compressor is performed in the manner of "10 seconds 3 Hz" ;
  • the reference descent rate is 1 interval/2 minutes.
  • the constant temperature difference mode is: the temperature difference is within the same temperature difference interval of greater than or equal to 3 min.
  • step S134 if the temperature difference drops by 0.5°C within 3 minutes, the frequency difference will decrease by 0.5°C, and the frequency will be adjusted in a way that the frequency drops by one gear
  • the operating frequency of the G temperature difference interval is [F1, F3].
  • the electric heating unit constitutes an auxiliary adjustment to the constant temperature adjustment unit to control the temperature of the outlet air to match the set value.
  • the first fixed frequency compressor is a high temperature 12HP fixed frequency setting
  • the second inverter compressor is set to 8HP DC inverter
  • the second fixed frequency compressor, the third fixed frequency compressor, and the fourth fixed frequency compressor are all 6HP fixed frequency settings.
  • compressor sucks low-temperature and low-pressure gas refrigerant, and after compression work, it changes into high-temperature and high-pressure gas, enters condenser all the way, and enters defrosting solenoid valve.
  • the temperature is reduced by the condenser to become liquid, and the heat dissipated is transferred to the heated air, enters the electronic expansion valve for throttling and depressurization, and the refrigerant after throttling and decompression flows into the evaporator, and absorbs the air in the evaporator.
  • the heat changes into a gaseous refrigerant and flows into the vapor-liquid fraction, which is then sucked into the compressor port, thus forming a closed thermal cycle system.
  • the fresh air is heated in multiple stages in series through condensers one, two, three, and four, and is sent into the drying tower by the blower.
  • the injection valve is opened to lower the temperature of the liquid injection.
  • the defrost solenoid valve is opened to bypass the defrost with hot gas, and the defrost equalization mode is carried out at the same time. Only one unit is allowed to defrost. , Realize automatic waiting defrost function.
  • the first inverter compressor uses an 8HP DC inverter compressor
  • the second, third, and fourth fixed frequency compressors use a 6HP fixed frequency compressor
  • the first fixed frequency compressor uses a high temperature 12HP compressor.
  • the control logic diagram of the specific operation flow of the unit is shown in Figure 7.
  • the controller controls the operating frequency of the compressor according to the temperature difference section control method, which divides the entire operating frequency range into 13 frequency sections, and the upper frequency limit of each frequency band is determined by the data table.
  • A-E Increase the current frequency by one gear (the current frequency is unchanged when F13)
  • the first inverter compressor When the first inverter compressor is defrosting, if there is a compressor in a stopped state at this time, the corresponding compressor is immediately put into operation. If the compressors are in a working state, this jumps by 4 gears on the basis of the original frequency gear. Until the highest grade, then press the 5HZ up and down frequency for 10 seconds to operate until it reaches the highest grade. If the requirements can not be met, auxiliary electric heating is put in to ensure the temperature of the wind.
  • the precise temperature control type heat pump hot blast stove control system and control method of the present invention address the particularity of the operation of the grain drying heat pump system, and solve the temperature change of the heat pump hot blast stove in the external environment, the heat pump inlet air temperature change, and the fin frost During various changing working conditions such as and defrosting, through the innovative design and intelligent control logic of the system, the input selection of multi-level different heating capacity and the precisely controlled DC variable frequency adjustment system are realized to ensure that the heat pump guarantees the heat pump during normal operation.
  • the temperature of the outlet air is controlled within ⁇ 0.3 degrees from the set temperature to ensure the quality and amount of dried materials.
  • Adopt multi-determination and one-variation technology through the combination of fixed-variation and automatic adjustment of the operating mode, which saves the cost of the unit, and at the same time can meet the purpose of precise control of the outlet temperature under different working conditions.
  • the first inverter compressor adopts DC full DC inverter technology, stepless precise control, and the frequency can be reduced to 10HZ.
  • the high-temperature compression system is adopted for the first base adjustment end, which can ensure that the outlet temperature can reach a maximum of 85 degrees.
  • each heat pump unit can also make heat while defrosting. According to the frosting situation and the effect of defrosting, the flow distribution of heat and defrosting is reasonably adjusted.
  • Exhaust spray liquid temperature removal technology is set to ensure that the exhaust temperature is not too high and the lubricating oil will not be carbonized at high temperature, which will damage the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

精确控温型热泵热风炉控制系统及控制方法,于控制系统内设有温度检测单元、恒温调节单元及送风单元;控制系统通过温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风。该控制系统及控制方法,针对粮食烘干热泵系统运行的特殊性,通过系统设计和智能控制逻辑,解决热泵热风炉在外界环境温度变化、热泵进风温度变化、翅片结霜和化霜等变化工况时,实现多级不同制热能力投入选择和精确控制直流变频调节系统,使热泵在正常运行时,保证出风温度控制在与设定温度差值维持在±0.3度之内,保证烘干物料的品质和烘干量。

Description

一种精确控温型热泵热风炉控制系统及控制方法 技术领域
本发明属于粮食烘干领域,具体涉及一种精确控温型热泵热风炉控制系统及控制方法。
背景技术
近年来,我国粮食烘干机械设备行业获得快速的发展,但整体上还是处于市场比较混乱,产品技术落后,企业创新能力差、研发能力较弱,一次性购置成本偏高等阶段,亟需从政策法规、市场层面、技术层面等,推动烘干机行业持续健康和有序发展。现有的粮食烘干技术有自然风干,晒干、燃烧化学燃料烘干、电加热、红外,微波干燥等,热泵产品无任何燃烧排放物,制冷剂选用环保制冷剂,对臭氧层零污染,是较好的环保型产品;设备全自动控制,无需人员蹲守,节省了人力成本。但是,现在市场上的热泵热风炉处于刚推广阶段,还有许多技术需要创新和突破。
目前市场上使用的热泵热风炉仍存在问题:1.系统冬季运行时,室外环境温度低,蒸发温度降低,蒸发器表面易结上厚厚的霜层,从而导致机组出风温度也随之下降,达不到烘干的温度要求。2.现在市场上销售的产品基本上都是由多个压缩机组成,当热泵热风炉的进风温度变化时,自动加载或卸载压缩机来达到设定的出风温度需求,但是每加卸载一台压缩机,从而会出现出风温度有8度左右的温度波动,从而导致粮食烘干温度不均匀,有的时段,烘干效果差。3.环境温度低时,机组因为需要化霜,化霜出风温度也会降低,从而影响出风的温度的稳定性。
申请号为201711235733.3的发明申请,公开了“一种自动化控温的热风炉”,包括加热炉出料口,下部温度检测装置,上部温度检测装置,加料口,排放口,自动加热装置,手动阀门,电动阀,流量计,带有精准温控系统的电加热带,自动热风炉;加料炉出料口位于柱体状加热炉侧面内部靠上的位置带有上部温度检测装置,加料口位于柱体状加热炉顶端,自动热风炉内部带有螺旋状布设的管道,自动热风炉的侧面带有精准温控系统的电加热带。
申请号为2018101585190的发明申请,公开了“一种低品位余热回收系统”,包括冲渣水换热单元、冲渣蒸汽换热单元、热风炉取热单元、锅炉烟气取热单元、控温水箱、 闪蒸器、循环水泵和海水淡化蒸发器;冲渣水换热单元、冲渣蒸汽换热单元、热风炉取热单元、锅炉烟气取热单元、控温水箱、闪蒸器和循环水泵顺次串联,且循环水泵的出口与冲渣水换热单元的进口连接,闪蒸器的出口与海水淡化蒸发器连接,冲渣水换热单元的热源为冲渣水,冲渣蒸汽换热单元的热源为冲渣蒸汽,热风炉取热单元的热源为热风炉烟气,锅炉烟气取热单元的热源为锅炉烟气。
发明内容
为解决以上问题,本发明提供了一种精确控温型热泵热风炉控制系统及控制方法,其技术方案具体如下:
一种精确控温型热泵热风炉控制系统,其特征在于:
于所述控制系统内设有温度检测单元、恒温调节单元及送风单元;
于所述恒温调节单元内形成有基础调节端及辅助调节端;
所述控制系统通过温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风;
于恒温调节单元的基础调节端形成有第一基础调节端及第二基础调节端;
通过第一基础调节端的定频调节、配合第二基础调节端的变频调节、构成恒温调节单元基于基础调节端形成的横向调节,结合恒温调节单元基于辅助调节端形成的纵向调节;形成控制系统内的二维适配型控制。
根据本发明的一种精确控温型热泵热风炉控制系统,其特征在于:
于所述控制系统内还设有化霜单元,
所述化霜单元于基础调节端的第一基础调节端、基础调节端的第二基础调节端、辅助调节端,分别形成各自的化霜端。
根据本发明的一种精确控温型热泵热风炉控制系统,其特征在于:
于所述控制系统内还设有喷液降温单元,所述喷液降温单元通过与恒温调节单元的协作,形成对恒温调节单元内排气温度过高的调节。
根据本发明的一种精确控温型热泵热风炉控制系统,其特征在于:
所述第一基础调节端由依次连接的第一定频压缩机(1-1)、第一冷凝器(1-2)、第一过滤器(1-3)、第一电子膨胀阀(1-4)、第一蒸发器(1-5)、第一汽液分离器(1-6)构成;
所述第二基础调节端由依次连接的第一变频压缩机(2-1)、第二冷凝器(2-2)、第二过滤器(2-3)、第二电子膨胀阀(2-4)、第二蒸发器(2-5)、第二汽液分离器(2-6) 构成;
于所述辅助调节端内形成有由第一辅助调节端、第二辅助调节端及第三辅助调节端构成的纵向调节;
所述的恒温调节单元基于基础调节端形成的横向调节、通过第一基础调节端的定频调节结合第二基础调节端的变频调节实现。
根据本发明的一种精确控温型热泵热风炉控制系统,其特征在于:
所述第一辅助调节端由依次连接的第二定频压缩机(3-1)、第三冷凝器(3-2)、第三过滤器(3-3)、第三电子膨胀阀(3-4)、第三蒸发器(3-5)、第三汽液分离器(3-6)构成;
所述第二辅助调节端由依次连接的第三定频压缩机(4-1)、第三冷凝器(3-2)、第四过滤器(4-3)、第四电子膨胀阀(4-4)、第四蒸发器(4-5)、第四汽液分离器(4-6)构成;
所述第三辅助调节端由依次连接的第四定频压缩机(5-1)、第四冷凝器(4-2)、第五过滤器(5-3)、第五电子膨胀阀(5-4)、第五蒸发器(5-5)、第五汽液分离器(5-6)构成。
根据本发明的一种精确控温型热泵热风炉控制系统,其特征在于:
基于第一基础调节端形成第一化霜作业、
基于第二基础调节端形成第二化霜作业、
基于第一辅助调节端形成第三化霜作业、
基于第二辅助调节端形成第四化霜作业、
基于第三辅助调节端形成第五化霜作业,
基于第一化霜作业、第二化霜作业、第三化霜作业、第四化霜作业、第五化霜作业,建立化霜单元内:同时检测五个化霜作业的化霜条件、按序控制形成一次投入一个化霜作业的化霜运行模式。
根据本发明的一种精确控温型热泵热风炉控制系统,其特征在于:
于第二基础调节端形成有基于频率设置的频率段、基于设定温度与实际出风温度两者的差值T 设置的温差区间段;
所述第二基础调节端根据温差区间段与频率段,
形成按温差区间段内的温差上升模式、依据频率段建立的第一变频调节模式;
按温差区间段内的温差下降模式、依据频率段建立的第二变频调节模式;
按温差区间段内的温差恒定模式、依据频率段建立的第三变频调节模式。
根据本发明的一种精确控温型热泵热风炉控制系统,其特征在于:
于所述控制系统内还设有电加热单元,
所述电加热单元构成对恒温调节单元的辅助调节。
根据本发明的一种精确控温型热泵热风炉控制系统,其特征在于:
所述喷液降温单元包括有第一喷液降温单元与第二喷液降温单元;
所述的第一喷液降温单元通过:于第一冷凝器(1-2)的冷媒进口与第一气液分离器(1-6)的冷媒进口之间,通过管路连接的第一注液阀(1-7)及第一注液毛细管(1-8)构成;
所述的第二喷液降温单元通过:于第三冷凝器(3-2)的冷媒进口与第三气液分离器(3-6)的冷媒进口之间,通过管路连接的第二注液阀(2-7)及第二注液毛细管(2-8)构成。
一种精确控温型热泵热风炉控制方法,其特征在于:
通过设置的温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风;
于恒温调节单元形成有基础调节端及辅助调节端;
于基础调节端形成有第一基础调节端及第二基础调节端;
于辅助调节端形成有第一辅助调节端、第二辅助调节端及第三辅助调节端;
所述的“通过设置的温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风”,具体包括如下步骤:
S1:开启第一基础调节端,通过温度检测单元实时检测当前出风温度;
并将实时检测的当前出风温度与设定温度进行比较,
当设定温度与当前出风温度的差值小于等于零时;只维系第一基础调节端的开启;
当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
当设定温度与当前出风温度的差值大于10时,开启第一辅助调节端;
S2:在开启第一辅助调节端的基础上,通过温度检测单元实时检测当前出风温度,并将实时检测的当前出风温度与设定温度进行比较,
当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
当设定温度与当前出风温度的差值大于10时,开启第二辅助调节端;
S3:在开启第二辅助调节端的基础上,通过温度检测单元实时检测当前出风温度, 并将实时检测的当前出风温度与设定温度进行比较,
当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
当设定温度与当前出风温度的差值大于10时,开启第三辅助调节端。
根据本发明的一种精确控温型热泵热风炉控制方法,其特征在于:
于第二基础调节端形成有基于频率设置的频率段、基于设定温度与实际出风温度两者的差值T 设置的温差区间段;并根据温差区间段与频率段形成第二基础调节端的变频调节,具体包括如下步骤:
S11:当差值T 在温差区间段内按温差上升模式运行时,依据频率段建立第一变频调节模式;
S12:当差值T 在温差区间段内按温差下降模式运行时,依据频率段建立第二变频调节模式;
S13:当差值T 在温差区间段内按温差恒定模式运行时,依据频率段建立第三变频调节模式。
根据本发明的一种精确控温型热泵热风炉控制方法,其特征在于:
所述温差区间段包括依次连续形成的A、B、C、D、E、F、G、H,共计8个区间段;
所述频率段包括依次设置的F0、F1、F2、F3、F4、F5、F6、F7、F8、F9、F10、F11、F12、F13,共计14个频率段;
所述的F0、F1、F2、F3、F4、F5、F6、F7、F8、F9、F10、F11、F12、F13频率段,对应的频率分别为:0、30、37、45、50、55、60、65、70、75、80、90、100、110;
所述的A、B、C、D、E、F、G、H温差区间段,在温差下降模式下对应的温差区间分别为:[8,10)、[4,8)、[1,4)、[0.5,1)、[0.3,0.5)、[0,0.3)、[-0.3,0)、(-∞,-0.3);
所述的A、B、C、D、E、F、G、H温差区间段,在温差上升模式下对应的温差区间分别为:[8,10)、[5.5,8)、[3.5,5.5)、[1.5,3.5)、[0.8,1.5)、[0.3,0.8)、[-0.5,0.3)、(-∞,-0.5);
步骤S11具体为:当差值T 在温差区间段内按温差上升模式运行时,依据频率上升一档/区间形成第一变频调节模式的调节;
步骤S12具体步骤如下:
S121:检测当前温差差值T 的下降速率,并将下降速率与参考下降速率值进行比 较,
当当前温差差值T 的下降速率大于等于参考下降速率时,进入步骤S122;
当当前温差差值T 的下降速率小于参考下降速率时,进入步骤S123;
S122:依据频率下降一档/区间形成第二变频调节模式的调节;
S123:维持当前频率段所对应的频率,直至温差差值T 落入F温差区间段后,依据频率下降一档/区间形成第二变频调节模式的调节;
步骤S13具体步骤如下:
S131:当差值T 在温差区间段内按温差恒定模式运行时,检测当前差值T 所在的温差区间;
S132:当当前差值T 处于A-E温差区间时,按“将当前频率依照频率段顺序上升一档”的调节方式进行;
S133:当当前差值T 处于F温差区间时,维系当前频率不变;
S134:当当前差值T 处于G温差区间时,按“下降一档”的方式进行变频调节;
S135:当当前差值T 处于H温差区间时,关闭第二基础调节端。
根据本发明的一种精确控温型热泵热风炉控制方法,其特征在于:
通过设置的化霜单元,于第一基础调节端形成第一化霜作业、于第二基础调节端形成第二化霜作业、于第一辅助调节端形成第三化霜作业、于第二辅助调节端形成第四化霜作业、于第三辅助调节端形成第五化霜作业,基于第一化霜作业、第二化霜作业、第三化霜作业、第四化霜作业、第五化霜作业建立化霜单元内:同时检测五个化霜作业的化霜条件、按序控制形成一次投入一个化霜作业的化霜运行模式,
于第一基础调节端、第二基础调节端、第一辅助调节端、第二辅助调节端、第三辅助调节端分别设有第一定频压缩机、第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机;
所述的化霜运行模式具体步骤如下:
S21:检测当前投入运行的化霜作业,
S22:当当前投入运行的为第一化霜作业时,于第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中,检测投入运行情况,
若第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中有未投入运行的压缩机,则开启相应压缩机;
若第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机全部投入运行,则按“10秒5Hz”的方式对第一变频压缩机进行变频调节;
S23:当当前投入运行的为第二化霜作业时,于第一定频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中,检测投入运行情况,
若第二定频压缩机、第一定频压缩机、第三定频压缩机、第四定频压缩机中有未投入运行的压缩机,则开启相应压缩机;
若第二定频压缩机、第一定频压缩机、第三定频压缩机、第四定频压缩机全部投入运行,则按“10秒3Hz”的方式对第一变频压缩机进行变频调节;
S24:当当前投入运行的为第三化霜作业、或第四化霜作业、或第五化霜作业时,于相应的其余压缩机中检测投入运行情况,
当其余压缩机中有未投入运行的压缩机,则开启相应压缩机;
若其余压缩机全部投入运行,则先按照“当前频率段+4个档”的方式进行频率段的调节(若基于当前频率段不能形成“当前频率段+4个档”的调节方式,则直接在F13频率段进行变频调节),然后按“10秒5Hz”的方式对第一变频压缩机进行变频调节。
根据本发明的一种精确控温型热泵热风炉控制方法,其特征在于:
所述的参考下降速率为1区间/2分钟。
根据本发明的一种精确控温型热泵热风炉控制方法,其特征在于:
所述的温差恒定模式为:温差处于同一温差区间大于等于3min。
根据本发明的一种精确控温型热泵热风炉控制方法,其特征在于:
步骤S134中,若3min内温差下降达0.5℃,则温差每下降0.5℃,按频率下降一档的方式进行调频;
所述G温差区间的运行频率为[F1,F3]。
根据本发明的一种精确控温型热泵热风炉控制方法,其特征在于:
于所述控制系统内还设有电加热单元,
所述电加热单元构成对恒温调节单元的辅助调节,用以控制出风温度与设定值匹配。
根据本发明的一种精确控温型热泵热风炉控制方法,其特征在于:
所述的第一定频压缩机为高温12HP定频设置;
所述的第二变频压缩机为8HP直流变频设置;
所述的第二定频压缩机、第三定频压缩机、第四定频压缩机,均为6HP定频设置。
本发明的一种精确控温型热泵热风炉控制系统及控制方法,针对粮食烘干热泵系统运行的特殊性,解决了热泵热风炉在外界环境温度变化、热泵进风温度变化、翅片结霜和化霜等各种变化工况时,通过系统的创新型设计和智能控制逻辑,实现多级不同制热 能力的投入选择和精确控制的直流变频调节系统,实现热泵在正常运行时,保证热泵的出风温度控制在与设定温度的差值维持在±0.3度之内,保证烘干物料的品质和烘干量。
其通过自身调节和控制,提高在低环境温度和机组除霜时的制热能力,同时也能在变工况时精确控制热泵热风炉的出风温度,保证烘干的品质和节约产品的运行费用。
综述,本发明的一种精确控温型热泵热风炉控制系统及控制方法,
1、采用多定一变技术,通过定变组合,自动调节运行模式,即节约了机组的成本,同时又可以满足不同工况条件下,出风温度精确控制的目的。
2、第一变频压缩机采用直流全直流变频技术,无级精确控制,频率可最降到10HZ。
3、第一基础调节端采用高温压缩系统,可以保证出风温度最高可达到85度。
4、采用热气旁通化霜技术,每个热泵机组在化霜的同时,还可以进行制热,根据结霜的情况和化霜的效果,合理调配制热和化霜的流量分配。
5、设置排气喷液除温技术,保证不会出现排气温度过高,润滑油不会高温碳化,从而损坏压缩机。
6、创新出热泵热风炉直流变频控制技术,保证出风温快速达到设定温度,同时又能保证出风温度达到设定的温度±0.3度。
7、通过变频调节,可以保证机组在翅片结霜时,还能达到出风设定温度的要示。
附图说明
图1为本发明中控制系统的结构示意框图;
图2为本发明中控制方法的控制步序示意图;
图3为本发明的控制方法中的第二基础调节端的控制步序示意图;
图4为本发明中第二基础调节端在温差下降模式下的控制步序示意图;
图5为本发明中第二基础调节端在温差恒定模式下的控制步序示意图;
图6为本发明的控制方法中的化霜运行模式的步序示意图;
图7为本发明实施例中的控制逻辑图;
图8为本发明实施例中的系统结构示意图。
图中,
1-1为第一定频压缩机;
1-2为第一冷凝器;
1-3为第一过滤器;
1-4为第一电子膨胀阀;
1-5为第一蒸发器;
1-6为第一汽液分离器;
2-1为第一变频压缩机;
2-2为第二冷凝器;
2-3为第二过滤器;
2-4为第二电子膨胀阀;
2-5为第二蒸发器;
2-6为第二汽液分离器;
3-1为第二定频压缩机;
3-2为第三冷凝器;
3-3为第三过滤器;
3-4为第三电子膨胀阀;
3-5为第三蒸发器;
3-6为第三汽液分离器;
4-1为第三定频压缩机;
4-3为第四过滤器;
4-4为第四电子膨胀阀;
4-5为第四蒸发器;
4-6为第四汽液分离器;
5-1为第四定频压缩机;
4-2为第四冷凝器;
5-3为第五过滤器;
5-4为第五电子膨胀阀;
5-5为第五蒸发器;
5-6为第五汽液分离器;
1-7为第一注液阀;
1-8为第一注液毛细管;
2-7为第二注液阀;
2-8为第二注液毛细管。
具体实施方式
下面,根据说明书附图和具体实施方式对本发明的一种精确控温型热泵热风炉控制系统及控制方法作进一步具体说明。
如图1所示的一种精确控温型热泵热风炉控制系统,
于所述控制系统内设有温度检测单元、恒温调节单元及送风单元;
于所述恒温调节单元内形成有基础调节端及辅助调节端;
所述控制系统通过温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风;
于恒温调节单元的基础调节端形成有第一基础调节端及第二基础调节端;
通过第一基础调节端的定频调节、配合第二基础调节端的变频调节、构成恒温调节单元基于基础调节端形成的横向调节,结合恒温调节单元基于辅助调节端形成的纵向调节;形成控制系统内的二维适配型控制。
其中,
于所述控制系统内还设有化霜单元,
所述化霜单元于基础调节端的第一基础调节端、基础调节端的第二基础调节端、辅助调节端,分别形成各自的化霜端。
其中,
于所述控制系统内还设有喷液降温单元,所述喷液降温单元通过与恒温调节单元的协作,形成对恒温调节单元内排气温度过高的调节。
其中,
所述第一基础调节端由依次连接的第一定频压缩机(1-1)、第一冷凝器(1-2)、第一过滤器(1-3)、第一电子膨胀阀(1-4)、第一蒸发器(1-5)、第一汽液分离器(1-6)构成;
所述第二基础调节端由依次连接的第一变频压缩机(2-1)、第二冷凝器(2-2)、第二过滤器(2-3)、第二电子膨胀阀(2-4)、第二蒸发器(2-5)、第二汽液分离器(2-6)构成;
于所述辅助调节端内形成有由第一辅助调节端、第二辅助调节端及第三辅助调节端构成的纵向调节;
所述的恒温调节单元基于基础调节端形成的横向调节、通过第一基础调节端的定频调节结合第二基础调节端的变频调节实现。
其中,
所述第一辅助调节端由依次连接的第二定频压缩机(3-1)、第三冷凝器(3-2)、 第三过滤器(3-3)、第三电子膨胀阀(3-4)、第三蒸发器(3-5)、第三汽液分离器(3-6)构成;
所述第二辅助调节端由依次连接的第三定频压缩机(4-1)、第三冷凝器(3-2)、第四过滤器(4-3)、第四电子膨胀阀(4-4)、第四蒸发器(4-5)、第四汽液分离器(4-6)构成;
所述第三辅助调节端由依次连接的第四定频压缩机(5-1)、第四冷凝器(4-2)、第五过滤器(5-3)、第五电子膨胀阀(5-4)、第五蒸发器(5-5)、第五汽液分离器(5-6)构成。
其中,
基于第一基础调节端形成第一化霜作业、
基于第二基础调节端形成第二化霜作业、
基于第一辅助调节端形成第三化霜作业、
基于第二辅助调节端形成第四化霜作业、
基于第三辅助调节端形成第五化霜作业,
基于第一化霜作业、第二化霜作业、第三化霜作业、第四化霜作业、第五化霜作业,建立化霜单元内:同时检测五个化霜作业的化霜条件、按序控制形成一次投入一个化霜作业的化霜运行模式。
其中,
于第二基础调节端形成有基于频率设置的频率段、基于设定温度与实际出风温度两者的差值T 设置的温差区间段;
所述第二基础调节端根据温差区间段与频率段,
形成按温差区间段内的温差上升模式、依据频率段建立的第一变频调节模式;
按温差区间段内的温差下降模式、依据频率段建立的第二变频调节模式;
按温差区间段内的温差恒定模式、依据频率段建立的第三变频调节模式。
其中,
于所述控制系统内还设有电加热单元,
所述电加热单元构成对恒温调节单元的辅助调节。
其中,
所述喷液降温单元包括有第一喷液降温单元与第二喷液降温单元;
所述的第一喷液降温单元通过:于第一冷凝器(1-2)的冷媒进口与第一气液分离器(1-6)的冷媒进口之间,通过管路连接的第一注液阀(1-7)及第一注液毛细管(1-8) 构成;
所述的第二喷液降温单元通过:于第三冷凝器(3-2)的冷媒进口与第三气液分离器(3-6)的冷媒进口之间,通过管路连接的第二注液阀(2-7)及第二注液毛细管(2-8)构成。
如图2所示的一种精确控温型热泵热风炉控制方法,通过设置的温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风;
于恒温调节单元形成有基础调节端及辅助调节端;
于基础调节端形成有第一基础调节端及第二基础调节端;
于辅助调节端形成有第一辅助调节端、第二辅助调节端及第三辅助调节端;
所述的“通过设置的温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风”,具体包括如下步骤:
S1:开启第一基础调节端,通过温度检测单元实时检测当前出风温度;
并将实时检测的当前出风温度与设定温度进行比较,
当设定温度与当前出风温度的差值小于等于零时;只维系第一基础调节端的开启;
当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
当设定温度与当前出风温度的差值大于10时,开启第一辅助调节端;
S2:在开启第一辅助调节端的基础上,通过温度检测单元实时检测当前出风温度,并将实时检测的当前出风温度与设定温度进行比较,
当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
当设定温度与当前出风温度的差值大于10时,开启第二辅助调节端;
S3:在开启第二辅助调节端的基础上,通过温度检测单元实时检测当前出风温度,并将实时检测的当前出风温度与设定温度进行比较,
当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
当设定温度与当前出风温度的差值大于10时,开启第三辅助调节端。
其中,
于第二基础调节端形成有基于频率设置的频率段、基于设定温度与实际出风温度两者的差值T 设置的温差区间段;并根据温差区间段与频率段形成第二基础调节端的变频调节,具体包括如下步骤(如图3所示):
S11:当差值T 在温差区间段内按温差上升模式运行时,依据频率段建立第一变频调节模式;
S12:当差值T 在温差区间段内按温差下降模式运行时,依据频率段建立第二变频调节模式;
S13:当差值T 在温差区间段内按温差恒定模式运行时,依据频率段建立第三变频调节模式。
其中,
所述温差区间段包括依次连续形成的A、B、C、D、E、F、G、H,共计8个区间段;
所述频率段包括依次设置的F0、F1、F2、F3、F4、F5、F6、F7、F8、F9、F10、F11、F12、F13,共计14个频率段;
所述的F0、F1、F2、F3、F4、F5、F6、F7、F8、F9、F10、F11、F12、F13频率段,对应的频率分别为:0、30、37、45、50、55、60、65、70、75、80、90、100、110;
所述的A、B、C、D、E、F、G、H温差区间段,在温差下降模式下对应的温差区间分别为:[8,10)、[4,8)、[1,4)、[0.5,1)、[0.3,0.5)、[0,0.3)、[-0.3,0)、(-∞,-0.3);
所述的A、B、C、D、E、F、G、H温差区间段,在温差上升模式下对应的温差区间分别为:[8,10)、[5.5,8)、[3.5,5.5)、[1.5,3.5)、[0.8,1.5)、[0.3,0.8)、[-0.5,0.3)、(-∞,-0.5);
步骤S11具体为:当差值T 在温差区间段内按温差上升模式运行时,依据频率上升一档/区间形成第一变频调节模式的调节;
步骤S12具体步骤如下(如图4所示):
S121:检测当前温差差值T 的下降速率,并将下降速率与参考下降速率值进行比较,
当当前温差差值T 的下降速率大于等于参考下降速率时,进入步骤S122;
当当前温差差值T 的下降速率小于参考下降速率时,进入步骤S123;
S122:依据频率下降一档/区间形成第二变频调节模式的调节;
S123:维持当前频率段所对应的频率,直至温差差值T 落入F温差区间段后,依据频率下降一档/区间形成第二变频调节模式的调节;
步骤S13具体步骤如下(如图5所示):
S131:当差值T 在温差区间段内按温差恒定模式运行时,检测当前差值T 所在的 温差区间;
S132:当当前差值T 处于A-E温差区间时,按“将当前频率依照频率段顺序上升一档”的调节方式进行;
S133:当当前差值T 处于F温差区间时,维系当前频率不变;
S134:当当前差值T 处于G温差区间时,按“下降一档”的方式进行变频调节;
S135:当当前差值T 处于H温差区间时,关闭第二基础调节端。
其中,
通过设置的化霜单元,于第一基础调节端形成第一化霜作业、于第二基础调节端形成第二化霜作业、于第一辅助调节端形成第三化霜作业、于第二辅助调节端形成第四化霜作业、于第三辅助调节端形成第五化霜作业,基于第一化霜作业、第二化霜作业、第三化霜作业、第四化霜作业、第五化霜作业建立化霜单元内:同时检测五个化霜作业的化霜条件、按序控制形成一次投入一个化霜作业的化霜运行模式,
于第一基础调节端、第二基础调节端、第一辅助调节端、第二辅助调节端、第三辅助调节端分别设有第一定频压缩机、第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机;
所述的化霜运行模式具体步骤如下:
S21:检测当前投入运行的化霜作业,
S22:当当前投入运行的为第一化霜作业时,于第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中,检测投入运行情况,
若第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中有未投入运行的压缩机,则开启相应压缩机;
若第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机全部投入运行,则按“10秒5Hz”的方式对第一变频压缩机进行变频调节;
S23:当当前投入运行的为第二化霜作业时,于第一定频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中,检测投入运行情况,
若第二定频压缩机、第一定频压缩机、第三定频压缩机、第四定频压缩机中有未投入运行的压缩机,则开启相应压缩机;
若第二定频压缩机、第一定频压缩机、第三定频压缩机、第四定频压缩机全部投入运行,则按“10秒3Hz”的方式对第一变频压缩机进行变频调节;
S24:当当前投入运行的为第三化霜作业、或第四化霜作业、或第五化霜作业时,于相应的其余压缩机中检测投入运行情况,
当其余压缩机中有未投入运行的压缩机,则开启相应压缩机;
若其余压缩机全部投入运行,则先按照“当前频率段+4个档”的方式进行频率段的调节(若基于当前频率段不能形成“当前频率段+4个档”的调节方式,则直接在F13频率段进行变频调节),然后按“10秒5Hz”的方式对第一变频压缩机进行变频调节。
其中,
所述的参考下降速率为1区间/2分钟。
其中,
所述的温差恒定模式为:温差处于同一温差区间大于等于3min。
其中,
步骤S134中,若3min内温差下降达0.5℃,则温差每下降0.5℃,按频率下降一档的方式进行调频;
所述G温差区间的运行频率为[F1,F3]。
其中,
于所述控制系统内还设有电加热单元,
所述电加热单元构成对恒温调节单元的辅助调节,用以控制出风温度与设定值匹配。
其中,
所述的第一定频压缩机为高温12HP定频设置;
所述的第二变频压缩机为8HP直流变频设置;
所述的第二定频压缩机、第三定频压缩机、第四定频压缩机,均为6HP定频设置。工作原理及实施例
制冷系统工作流程:压缩机吸入低温低压的气态制冷剂,通过压缩做功后变为高温高压的气态,一路进入冷凝器,另一进入化霜电磁阀。通过冷凝器降温变成液态,散发的热量转移到被加热的空气中,进入电子膨胀阀进行节流降压,节流降压后的制冷剂流入到蒸发器中,通过蒸发器吸收空气中的热量变为气态制冷剂流入到汽液分中,再被压缩机口吸入,如此形成一个闭式热力循环系统。
热泵热风系统工作流程:新风通过冷凝器一、二、三、四进行多级串联加热,由送风机送入到烘干塔中。当第一基础调节端、第一辅助调节端的排气温度超过110度时,打开注液阀,进行喷液降温。当蒸发器的翅片温度达到化霜进入的条件时,打开化霜电磁阀进行热气旁通化霜,同时进行化霜均衡模式,只允许一台机组化霜,当同时两台机 组达到化霜条件时,实现自动等待除霜功能。第一变频压缩机采用8HP直流变频压缩机,第二、三、四定频压缩机采用6HP定频压缩机,第一定频压缩机采用高温12HP压缩机。机组具体动作流程的控制逻辑图如图7所示。
第一变频压缩机的直流变频控制方式:
压缩机的频率序列
控制器对压缩机的运行频率控制采用根据温差分段控制方法,将整个运行频率范围分为13个频率段,各频段频率上限值由数据表确定。
序列代号 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13
制热频率 0 30 37 45 50 55 60 65 70 75 80 90 100 110
3.2.1压缩机频率控制
按设定度度和出风温度温差按下图所示频率启动:
3.2.1.1启动目标频率控制
Figure PCTCN2019113638-appb-000001
3.2.1.2运行频率控制
压缩机启动后,按以下规则进行运行:
a.运行过程中,当温差按下图区间向上变化时,按频率上升一档/区间运行(频率处理都以当前实际频率来处理)。
温差区间向下变化时:若温差以超过1区间/2分钟的速率下降,则按频率下降
一档/区间运行,否则保持到E区以下再按频率下降一档/区间运行。(频率处理都以当前实际频率来处理)。
Figure PCTCN2019113638-appb-000002
b.运行过程中,当温差处于同一区间达3min时,按以下规则变化频率:(频率处理都以当前实际频率来处理)
A-—E:把当前频率上升一档运行(当前频率是F13时不变)
F:频率保持不变
G:频率下降一档,直至F1,若3分钟内温差下降达0.5℃,则温差每下降0.5℃,频率下降一档,直至F1。G区最高运行频率不超过F3。
H:停压缩机
C、升降频速率,F9-F13 2Hz/分;F4-F8 1Hz/分;F1-F3 0.5Hz/分;
化霜控制逻辑:
第一定频压缩机化霜时,这时如果有压缩机处于停止状态,则立即投入相应的压缩机,如果压缩机都处于工作状态,此按10秒5HZ升降频率动作,直至最高档,如还不能满足要求,则投入辅助电加热,保证出风温度。
第二、三、四定频压缩机化霜时,这时如果有压缩机处于停止状态,则立即投入相应的压缩机,如果压缩机都处于工作状态,此按10秒3HZ升降频率动作,直至最高档,如还不能满足要求,则投入辅助电加热,保证出风温度。
第一变频压缩机化霜时,这时如果有压缩机处于停止状态,则立即投入相应的压缩机,如果压缩机都处于工作状态,此在原有的频率档的基础上跳升4个档,直到最高档,然后按此按10秒5HZ升降频率动作,直至最高档,如还不能满足要求,则投入辅助电加热,保证出风温度。
本发明的一种精确控温型热泵热风炉控制系统及控制方法,针对粮食烘干热泵系统运行的特殊性,解决了热泵热风炉在外界环境温度变化、热泵进风温度变化、翅片结霜 和化霜等各种变化工况时,通过系统的创新型设计和智能控制逻辑,实现多级不同制热能力的投入选择和精确控制的直流变频调节系统,实现热泵在正常运行时,保证热泵的出风温度控制在与设定温度的差值维持在±0.3度之内,保证烘干物料的品质和烘干量。
其通过自身调节和控制,提高在低环境温度和机组除霜时的制热能力,同时也能在变工况时精确控制热泵热风炉的出风温度,保证烘干的品质和节约产品的运行费用。
综述,本发明的一种精确控温型热泵热风炉控制系统及控制方法,
1、采用多定一变技术,通过定变组合,自动调节运行模式,即节约了机组的成本,同时又可以满足不同工况条件下,出风温度精确控制的目的。
2、第一变频压缩机采用直流全直流变频技术,无级精确控制,频率可最降到10HZ。
3、第一基础调节端采用高温压缩系统,可以保证出风温度最高可达到85度。
4、采用热气旁通化霜技术,每个热泵机组在化霜的同时,还可以进行制热,根据结霜的情况和化霜的效果,合理调配制热和化霜的流量分配。
5、设置排气喷液除温技术,保证不会出现排气温度过高,润滑油不会高温碳化,从而损坏压缩机。
6、创新出热泵热风炉直流变频控制技术,保证出风温快速达到设定温度,同时又能保证出风温度达到设定的温度±0.3度。
7、通过变频调节,可以保证机组在翅片结霜时,还能达到出风设定温度的要示。

Claims (18)

  1. 一种精确控温型热泵热风炉控制系统,其特征在于:
    于所述控制系统内设有温度检测单元、恒温调节单元及送风单元;
    于所述恒温调节单元内形成有基础调节端及辅助调节端;
    所述控制系统通过温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风;
    于恒温调节单元的基础调节端形成有第一基础调节端及第二基础调节端;
    通过第一基础调节端的定频调节、配合第二基础调节端的变频调节、构成恒温调节单元基于基础调节端形成的横向调节,结合恒温调节单元基于辅助调节端形成的纵向调节;形成控制系统内的二维适配型控制。
  2. 根据权利要求1所述的一种精确控温型热泵热风炉控制系统,其特征在于:
    于所述控制系统内还设有化霜单元,
    所述化霜单元于基础调节端的第一基础调节端、基础调节端的第二基础调节端、辅助调节端,分别形成各自的化霜端。
  3. 根据权利要求1所述的一种精确控温型热泵热风炉控制系统,其特征在于:
    于所述控制系统内还设有喷液降温单元,所述喷液降温单元通过与恒温调节单元的协作,形成对恒温调节单元内排气温度过高的调节。
  4. 根据权利要求1所述的一种精确控温型热泵热风炉控制系统,其特征在于:
    所述第一基础调节端由依次连接的第一定频压缩机(1-1)、第一冷凝器(1-2)、第一过滤器(1-3)、第一电子膨胀阀(1-4)、第一蒸发器(1-5)、第一汽液分离器(1-6)构成;
    所述第二基础调节端由依次连接的第一变频压缩机(2-1)、第二冷凝器(2-2)、第二过滤器(2-3)、第二电子膨胀阀(2-4)、第二蒸发器(2-5)、第二汽液分离器(2-6)构成;
    于所述辅助调节端内形成有由第一辅助调节端、第二辅助调节端及第三辅助调节端构成的纵向调节;
    所述的恒温调节单元基于基础调节端形成的横向调节、通过第一基础调节端的定频调节结合第二基础调节端的变频调节实现。
  5. 根据权利要求4所述的一种精确控温型热泵热风炉控制系统,其特征在于:
    所述第一辅助调节端由依次连接的第二定频压缩机(3-1)、第三冷凝器(3-2)、 第三过滤器(3-3)、第三电子膨胀阀(3-4)、第三蒸发器(3-5)、第三汽液分离器(3-6)构成;
    所述第二辅助调节端由依次连接的第三定频压缩机(4-1)、第三冷凝器(3-2)、第四过滤器(4-3)、第四电子膨胀阀(4-4)、第四蒸发器(4-5)、第四汽液分离器(4-6)构成;
    所述第三辅助调节端由依次连接的第四定频压缩机(5-1)、第四冷凝器(4-2)、第五过滤器(5-3)、第五电子膨胀阀(5-4)、第五蒸发器(5-5)、第五汽液分离器(5-6)构成。
  6. 根据权利要求2和4所述的一种精确控温型热泵热风炉控制系统,其特征在于:
    基于第一基础调节端形成第一化霜作业、
    基于第二基础调节端形成第二化霜作业、
    基于第一辅助调节端形成第三化霜作业、
    基于第二辅助调节端形成第四化霜作业、
    基于第三辅助调节端形成第五化霜作业,
    基于第一化霜作业、第二化霜作业、第三化霜作业、第四化霜作业、第五化霜作业,建立化霜单元内:同时检测五个化霜作业的化霜条件、按序控制形成一次投入一个化霜作业的化霜运行模式。
  7. 根据权利要求1所述的一种精确控温型热泵热风炉控制系统,其特征在于:
    于第二基础调节端形成有基于频率设置的频率段、基于设定温度与实际出风温度两者的差值T 设置的温差区间段;
    所述第二基础调节端根据温差区间段与频率段,
    形成按温差区间段内的温差上升模式、依据频率段建立的第一变频调节模式;
    按温差区间段内的温差下降模式、依据频率段建立的第二变频调节模式;
    按温差区间段内的温差恒定模式、依据频率段建立的第三变频调节模式。
  8. 根据权利要求1所述的一种精确控温型热泵热风炉控制系统,其特征在于:
    于所述控制系统内还设有电加热单元,
    所述电加热单元构成对恒温调节单元的辅助调节。
  9. 根据权利要求3和5所述的一种精确控温型热泵热风炉控制系统,其特征在于:
    所述喷液降温单元包括有第一喷液降温单元与第二喷液降温单元;
    所述的第一喷液降温单元通过:于第一冷凝器(1-2)的冷媒进口与第一气液分离器(1-6)的冷媒进口之间,通过管路连接的第一注液阀(1-7)及第一注液毛细管(1-8) 构成;
    所述的第二喷液降温单元通过:于第三冷凝器(3-2)的冷媒进口与第三气液分离器(3-6)的冷媒进口之间,通过管路连接的第二注液阀(2-7)及第二注液毛细管(2-8)构成。
  10. 一种精确控温型热泵热风炉控制方法,其特征在于:
    通过设置的温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风;
    于恒温调节单元形成有基础调节端及辅助调节端;
    于基础调节端形成有第一基础调节端及第二基础调节端;
    于辅助调节端形成有第一辅助调节端、第二辅助调节端及第三辅助调节端;
    所述的“通过设置的温度检测单元与恒温调节单元的协作,于送风单元内供入与设定温度匹配的热风”,具体包括如下步骤:
    S1:开启第一基础调节端,通过温度检测单元实时检测当前出风温度;
    并将实时检测的当前出风温度与设定温度进行比较,
    当设定温度与当前出风温度的差值小于等于零时;只维系第一基础调节端的开启;
    当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
    当设定温度与当前出风温度的差值大于10时,开启第一辅助调节端;
    S2:在开启第一辅助调节端的基础上,通过温度检测单元实时检测当前出风温度,并将实时检测的当前出风温度与设定温度进行比较,
    当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
    当设定温度与当前出风温度的差值大于10时,开启第二辅助调节端;
    S3:在开启第二辅助调节端的基础上,通过温度检测单元实时检测当前出风温度,并将实时检测的当前出风温度与设定温度进行比较,
    当设定温度与当前出风温度的差值大于零且小于等于10时,开启第二基础调节端并根据设定进行相应调节;
    当设定温度与当前出风温度的差值大于10时,开启第三辅助调节端。
  11. 根据权利要求10所述的一种精确控温型热泵热风炉控制方法,其特征在于:
    于第二基础调节端形成有基于频率设置的频率段、基于设定温度与实际出风温度两者的差值T 设置的温差区间段;并根据温差区间段与频率段形成第二基础调节端的变 频调节,具体包括如下步骤:
    S11:当差值T 在温差区间段内按温差上升模式运行时,依据频率段建立第一变频调节模式;
    S12:当差值T 在温差区间段内按温差下降模式运行时,依据频率段建立第二变频调节模式;
    S13:当差值T 在温差区间段内按温差恒定模式运行时,依据频率段建立第三变频调节模式。
  12. 根据权利要求11所述的一种精确控温型热泵热风炉控制方法,其特征在于:
    所述温差区间段包括依次连续形成的A、B、C、D、E、F、G、H,共计8个区间段;
    所述频率段包括依次设置的F0、F1、F2、F3、F4、F5、F6、F7、F8、F9、F10、F11、F12、F13,共计14个频率段;
    所述的F0、F1、F2、F3、F4、F5、F6、F7、F8、F9、F10、F11、F12、F13频率段,对应的频率分别为:0、30、37、45、50、55、60、65、70、75、80、90、100、110;
    所述的A、B、C、D、E、F、G、H温差区间段,在温差下降模式下对应的温差区间分别为:[8,10)、[4,8)、[1,4)、[0.5,1)、[0.3,0.5)、[0,0.3)、[-0.3,0)、(-∞,-0.3);
    所述的A、B、C、D、E、F、G、H温差区间段,在温差上升模式下对应的温差区间分别为:[8,10)、[5.5,8)、[3.5,5.5)、[1.5,3.5)、[0.8,1.5)、[0.3,0.8)、[-0.5,0.3)、(-∞,-0.5);
    步骤S11具体为:当差值T 在温差区间段内按温差上升模式运行时,依据频率上升一档/区间形成第一变频调节模式的调节;
    步骤S12具体步骤如下:
    S121:检测当前温差差值T 的下降速率,并将下降速率与参考下降速率值进行比较,
    当当前温差差值T 的下降速率大于等于参考下降速率时,进入步骤S122;
    当当前温差差值T 的下降速率小于参考下降速率时,进入步骤S123;
    S122:依据频率下降一档/区间形成第二变频调节模式的调节;
    S123:维持当前频率段所对应的频率,直至温差差值T 落入F温差区间段后,依据频率下降一档/区间形成第二变频调节模式的调节;
    步骤S13具体步骤如下:
    S131:当差值T 在温差区间段内按温差恒定模式运行时,检测当前差值T 所在的温差区间;
    S132:当当前差值T 处于A-E温差区间时,按“将当前频率依照频率段顺序上升一档”的调节方式进行;
    S133:当当前差值T 处于F温差区间时,维系当前频率不变;
    S134:当当前差值T 处于G温差区间时,按“下降一档”的方式进行变频调节;
    S135:当当前差值T 处于H温差区间时,关闭第二基础调节端。
  13. 根据权利要求10所述的一种精确控温型热泵热风炉控制方法,其特征在于:
    通过设置的化霜单元,于第一基础调节端形成第一化霜作业、于第二基础调节端形成第二化霜作业、于第一辅助调节端形成第三化霜作业、于第二辅助调节端形成第四化霜作业、于第三辅助调节端形成第五化霜作业,基于第一化霜作业、第二化霜作业、第三化霜作业、第四化霜作业、第五化霜作业建立化霜单元内:同时检测五个化霜作业的化霜条件、按序控制形成一次投入一个化霜作业的化霜运行模式,
    于第一基础调节端、第二基础调节端、第一辅助调节端、第二辅助调节端、第三辅助调节端分别设有第一定频压缩机、第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机;
    所述的化霜运行模式具体步骤如下:
    S21:检测当前投入运行的化霜作业,
    S22:当当前投入运行的为第一化霜作业时,于第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中,检测投入运行情况,
    若第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中有未投入运行的压缩机,则开启相应压缩机;
    若第一变频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机全部投入运行,则按“10秒5Hz”的方式对第一变频压缩机进行变频调节;
    S23:当当前投入运行的为第二化霜作业时,于第一定频压缩机、第二定频压缩机、第三定频压缩机、第四定频压缩机中,检测投入运行情况,
    若第二定频压缩机、第一定频压缩机、第三定频压缩机、第四定频压缩机中有未投入运行的压缩机,则开启相应压缩机;
    若第二定频压缩机、第一定频压缩机、第三定频压缩机、第四定频压缩机全部投入运行,则按“10秒3Hz”的方式对第一变频压缩机进行变频调节;
    S24:当当前投入运行的为第三化霜作业、或第四化霜作业、或第五化霜作业时, 于相应的其余压缩机中检测投入运行情况,
    当其余压缩机中有未投入运行的压缩机,则开启相应压缩机;
    若其余压缩机全部投入运行,则先按照“当前频率段+4个档”的方式进行频率段的调节,然后按“10秒5Hz”的方式对第一变频压缩机进行变频调节。
  14. 根据权利要求12所述的一种精确控温型热泵热风炉控制方法,其特征在于:
    所述的参考下降速率为1区间/2分钟。
  15. 根据权利要求12所述的一种精确控温型热泵热风炉控制方法,其特征在于:
    所述的温差恒定模式为:温差处于同一温差区间大于等于3min。
  16. 根据权利要求16所述的一种精确控温型热泵热风炉控制方法,其特征在于:
    步骤S134中,若3min内温差下降达0.5℃,则温差每下降0.5℃,按频率下降一档的方式进行调频;
    所述G温差区间的运行频率为[F1,F3]。
  17. 根据权利要求14所述的一种精确控温型热泵热风炉控制方法,其特征在于:
    于所述控制系统内还设有电加热单元,
    所述电加热单元构成对恒温调节单元的辅助调节,用以控制出风温度与设定值匹配。
  18. 根据权利要求13所述的一种精确控温型热泵热风炉控制方法,其特征在于:
    所述的第一定频压缩机为高温12HP定频设置;
    所述的第一变频压缩机为8HP直流变频设置;
    所述的第二定频压缩机、第三定频压缩机、第四定频压缩机,均为6HP定频设置。
PCT/CN2019/113638 2018-12-05 2019-10-28 一种精确控温型热泵热风炉控制系统及控制方法 WO2020114148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811482659.XA CN109442753B (zh) 2018-12-05 2018-12-05 一种精确控温型热泵热风炉控制方法
CN201811482659.X 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020114148A1 true WO2020114148A1 (zh) 2020-06-11

Family

ID=65557056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113638 WO2020114148A1 (zh) 2018-12-05 2019-10-28 一种精确控温型热泵热风炉控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN109442753B (zh)
WO (1) WO2020114148A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460906A (zh) * 2020-11-20 2021-03-09 浙江工业大学 冷冻机组高效除霜启停管理方法
CN112460868A (zh) * 2020-11-20 2021-03-09 浙江工业大学 空气源热泵多模式精确除霜启停管理方法及系统
CN112460867A (zh) * 2020-11-20 2021-03-09 浙江正理生能科技有限公司 空气源热泵融霜启停管理系统及方法
CN112857022A (zh) * 2021-03-29 2021-05-28 河北博志热能设备有限公司 一种用来提高热泵烘干机组出风温度的加热组件装置及其控制方法
CN113686191A (zh) * 2021-07-27 2021-11-23 首钢京唐钢铁联合有限责任公司 一种钢铁厂高炉冲渣水换热自动控制方法
CN114353384A (zh) * 2021-12-18 2022-04-15 青岛海尔空调电子有限公司 空气源热泵机组及其控制方法和控制装置
CN114484935A (zh) * 2021-12-31 2022-05-13 青岛海尔空调电子有限公司 热泵机组及其控制方法和控制装置
CN115808022A (zh) * 2022-12-13 2023-03-17 珠海格力电器股份有限公司 燃气热水设备及其分段燃烧控制方法、装置和存储介质
CN116727203A (zh) * 2023-06-14 2023-09-12 盐城热歆阀门制造有限公司 一种阀门表面处理装置及处理工艺
CN117167916A (zh) * 2023-10-12 2023-12-05 东莞市净诺环境科技股份有限公司 用于恒温室的空调系统及其控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442753B (zh) * 2018-12-05 2021-10-01 江苏天舒电器有限公司 一种精确控温型热泵热风炉控制方法
CN110469958A (zh) * 2019-07-16 2019-11-19 青岛海尔空调器有限总公司 空调器控制方法、装置、计算机设备及存储介质
CN113739560B (zh) * 2020-05-29 2022-10-25 广东芬蓝环境科技有限公司 一种烘干系统控制方法、装置和烘干系统
CN113154848B (zh) * 2021-03-19 2023-03-17 贵州九鼎新能源科技开发有限公司 一种整体式内循环分级加热恒温出风热回收多级利用的空气能热泵烘干设备
CN113776319A (zh) * 2021-08-31 2021-12-10 常州恒创热管理有限公司 一种烘干机
CN113998864B (zh) * 2021-10-21 2023-06-27 杰瑞环保科技有限公司 一种烘干设备控制方法、模组、烘干设备和存储介质
CN114526597A (zh) * 2022-01-24 2022-05-24 南京农业大学 一种粮食干燥机的智能烘干控制系统
CN115523748B (zh) * 2022-08-09 2023-12-19 青岛海尔空调器有限总公司 基于回风口温度的热泵烘干机控制方法及装置
CN115682651B (zh) * 2022-10-26 2024-06-25 珠海格力电器股份有限公司 空气源热泵烘干机控制方法、装置及空气源热泵烘干机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3013820A1 (de) * 1980-04-10 1981-10-15 Jürgen Dipl.-Ing. 8026 Irschenhausen Lambrecht Trockenverfahren mit rueckgewinnung der zur trocknung erforderlichen energie
RU2376538C1 (ru) * 2008-05-26 2009-12-20 Кадир Сафиуллович Ихсанов Теплогенератор
RU2510479C1 (ru) * 2012-09-25 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") Способ управления процессами сушки и хранения зерна
CN104180439A (zh) * 2014-08-28 2014-12-03 广东申菱空调设备有限公司 高温型调温除湿机及其控制方法
CN107741150A (zh) * 2017-10-31 2018-02-27 江苏天舒电器股份有限公司 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法
CN109442753A (zh) * 2018-12-05 2019-03-08 江苏天舒电器有限公司 一种精确控温型热泵热风炉控制系统及控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534242A (zh) * 2003-04-02 2004-10-06 张沈杰 变容量中央空调
US20100072292A1 (en) * 2008-09-25 2010-03-25 Munro Mark S Indoor Space Heating Apparatus
CN106500495B (zh) * 2016-12-16 2022-03-25 江苏天舒电器股份有限公司 一种变频变容量热泵热风烘干系统及其控制方法
CN206724662U (zh) * 2017-04-28 2017-12-08 广东瑞星新能源科技有限公司 一种变频空气源高温烘干系统
CN206905292U (zh) * 2017-06-06 2018-01-19 广州泉能智能科技股份有限公司 一种低温环境空气源二级提热式热泵高温热风机组
CN208000031U (zh) * 2017-10-31 2018-10-23 江苏天舒电器股份有限公司 一种热泵热风炉结构
CN107764036B (zh) * 2017-10-31 2019-11-05 江苏天舒电器有限公司 一种无霜、多变量耦合型热泵热风炉系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3013820A1 (de) * 1980-04-10 1981-10-15 Jürgen Dipl.-Ing. 8026 Irschenhausen Lambrecht Trockenverfahren mit rueckgewinnung der zur trocknung erforderlichen energie
RU2376538C1 (ru) * 2008-05-26 2009-12-20 Кадир Сафиуллович Ихсанов Теплогенератор
RU2510479C1 (ru) * 2012-09-25 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") Способ управления процессами сушки и хранения зерна
CN104180439A (zh) * 2014-08-28 2014-12-03 广东申菱空调设备有限公司 高温型调温除湿机及其控制方法
CN107741150A (zh) * 2017-10-31 2018-02-27 江苏天舒电器股份有限公司 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法
CN109442753A (zh) * 2018-12-05 2019-03-08 江苏天舒电器有限公司 一种精确控温型热泵热风炉控制系统及控制方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460868B (zh) * 2020-11-20 2022-07-19 浙江工业大学 空气源热泵多模式精确除霜启停管理方法及系统
CN112460868A (zh) * 2020-11-20 2021-03-09 浙江工业大学 空气源热泵多模式精确除霜启停管理方法及系统
CN112460867A (zh) * 2020-11-20 2021-03-09 浙江正理生能科技有限公司 空气源热泵融霜启停管理系统及方法
CN112460906A (zh) * 2020-11-20 2021-03-09 浙江工业大学 冷冻机组高效除霜启停管理方法
CN112460867B (zh) * 2020-11-20 2022-08-05 浙江正理生能科技有限公司 空气源热泵融霜启停管理系统及方法
CN112857022A (zh) * 2021-03-29 2021-05-28 河北博志热能设备有限公司 一种用来提高热泵烘干机组出风温度的加热组件装置及其控制方法
CN113686191A (zh) * 2021-07-27 2021-11-23 首钢京唐钢铁联合有限责任公司 一种钢铁厂高炉冲渣水换热自动控制方法
CN113686191B (zh) * 2021-07-27 2024-06-07 首钢京唐钢铁联合有限责任公司 一种钢铁厂高炉冲渣水换热自动控制方法
CN114353384A (zh) * 2021-12-18 2022-04-15 青岛海尔空调电子有限公司 空气源热泵机组及其控制方法和控制装置
CN114353384B (zh) * 2021-12-18 2023-10-20 青岛海尔空调电子有限公司 空气源热泵机组及其控制方法和控制装置
CN114484935A (zh) * 2021-12-31 2022-05-13 青岛海尔空调电子有限公司 热泵机组及其控制方法和控制装置
CN114484935B (zh) * 2021-12-31 2023-09-26 青岛海尔空调电子有限公司 热泵机组及其控制方法和控制装置
CN115808022A (zh) * 2022-12-13 2023-03-17 珠海格力电器股份有限公司 燃气热水设备及其分段燃烧控制方法、装置和存储介质
CN115808022B (zh) * 2022-12-13 2024-05-14 珠海格力电器股份有限公司 燃气热水设备及其分段燃烧控制方法、装置和存储介质
CN116727203A (zh) * 2023-06-14 2023-09-12 盐城热歆阀门制造有限公司 一种阀门表面处理装置及处理工艺
CN117167916A (zh) * 2023-10-12 2023-12-05 东莞市净诺环境科技股份有限公司 用于恒温室的空调系统及其控制方法
CN117167916B (zh) * 2023-10-12 2024-04-26 东莞市净诺环境科技股份有限公司 用于恒温室的空调系统及其控制方法

Also Published As

Publication number Publication date
CN109442753A (zh) 2019-03-08
CN109442753B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2020114148A1 (zh) 一种精确控温型热泵热风炉控制系统及控制方法
CN109237925B (zh) 一种除湿烘干用热泵控制系统
CN109489402B (zh) 一种除湿烘干用热泵控制方法
CN107966011B (zh) 一种热泵干燥装置及其使用方法
CN110966813B (zh) 一种宽温工况风冷冷水机的冷凝压力控制方法
CN205561498U (zh) 一种全自动高效低温除湿联合热风干燥装置
CN107143973A (zh) 一种多联机低负荷制冷运行的控制方法
CN107120784A (zh) 空调系统及其室外风机的控制方法、装置
CN110981151B (zh) 一种负压型热泵闭式污泥干化控制系统及控制方法
CN105240962A (zh) 一种风温范围宽泛的水冷调温除湿机
CN109405283B (zh) 一种精确控温型热泵热风炉系统
CN114893851B (zh) 一种基于双蒸发温度制冷系统的实验室新风机组
CN103954062B (zh) 一种混合工质节流制冷机工况浓度控制系统及其方法
CN104864536A (zh) 高效节能多级热湿处理空调装置及其处理方法
CN110645646A (zh) 一种热回收型双冷源新风除湿机及其控制方法
US9950294B2 (en) Method and device for cool-drying a gas using a heat exchanger with closed cooling circuit
CN111288786B (zh) 带回热器的闭式变频热泵干燥设备及其控制方法
CN208000031U (zh) 一种热泵热风炉结构
WO2019080277A1 (zh) 变频热泵热水器动态加热压缩机频率优化方法
CN206803425U (zh) 一种水冷变容量空调机组
CN209639262U (zh) 一种精确控温型热泵热风炉结构
CN105371444A (zh) 一种自动调节冷凝热负荷的风冷调温除湿机
CN205641651U (zh) 冷暖型空调器
US9914092B2 (en) Method and device for cool drying a gas
CN215863787U (zh) 一种基于双循环结构的节能除湿机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893506

Country of ref document: EP

Kind code of ref document: A1