WO2019080277A1 - 变频热泵热水器动态加热压缩机频率优化方法 - Google Patents

变频热泵热水器动态加热压缩机频率优化方法

Info

Publication number
WO2019080277A1
WO2019080277A1 PCT/CN2017/115119 CN2017115119W WO2019080277A1 WO 2019080277 A1 WO2019080277 A1 WO 2019080277A1 CN 2017115119 W CN2017115119 W CN 2017115119W WO 2019080277 A1 WO2019080277 A1 WO 2019080277A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
frequency
heat pump
water heater
Prior art date
Application number
PCT/CN2017/115119
Other languages
English (en)
French (fr)
Inventor
徐言生
张鸣
余华明
徐旭雁
张超
温春华
吴治将
翁雁归
Original Assignee
顺德职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顺德职业技术学院 filed Critical 顺德职业技术学院
Publication of WO2019080277A1 publication Critical patent/WO2019080277A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/235Temperature of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the invention relates to a heat pump water heater control method, in particular to a frequency optimization heat pump water heater dynamic heating compressor frequency optimization method.
  • variable-frequency heat pump water heaters Compared with fixed-frequency heat pump water heaters, variable-frequency heat pump water heaters have the advantages of large heat production and high energy efficiency, especially in low-temperature ambient temperature. However, the operating frequency of variable-frequency heat pump water heaters has a greater impact on the energy consumption of heat pump water heaters. In the case of meeting the total heat demand of the user, the energy efficiency of the heat pump water heater can be realized by dynamically optimizing the working frequency of the compressor during the whole operation of the heat pump water heater.
  • the Chinese patent announces a "frequency adjustment method for variable frequency air source heat pump water heater", the patent number is ZL201410759701.3, which can dynamically adjust the working frequency of the inverter compressor according to the user's heat demand and the outdoor temperature of the heat pump water heater and the temperature of the water tank;
  • the principle is to make the instantaneous energy efficiency ratio of the heat pump water heater at every moment in the whole operation process as close as possible to the optimal energy efficiency ratio under the operating condition, that is, the higher the instantaneous energy efficiency ratio at each moment, under the condition of obtaining the same total heating capacity.
  • the total energy consumption of the heat pump water heater during the whole operation process is smaller. However, this conclusion is established on the condition that the instantaneous heat generation of the heat pump must be equal throughout the operation.
  • the frequency adjustment method of the variable frequency heat pump water heater compressor proposed in the aforementioned patent document still needs to be optimized.
  • the frequency control method of the existing variable frequency heat pump water heater compressor is mainly based on the stable heating mode. During the heating operation, the water in the water tank is closed and heated, that is, the water tank does not discharge hot water or cold water enters during the process. The water temperature is always rising. In fact, in most cases, when the user is using water, the water tank will be replenished with cold water from the outside. The water temperature in the water tank will continuously decrease.
  • the water temperature of the water tank is a dynamic process of first falling and then rising, that is, dynamic heating, the US Department of Energy.
  • the relevant standards for energy efficiency testing of heat pump water heaters are also based on dynamic heating.
  • For the dynamic heating process of the variable frequency heat pump water heater it is necessary to consider the change of instantaneous heat generation, and also consider the situation of the water inlet and outlet of the water tank, and optimize the control of the compressor frequency to minimize the total energy consumption of the heat pump water heater during the whole operation process.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a frequency optimization method for a dynamic heating compressor of a variable frequency heat pump water heater, which can be used in the dynamic heating process of the heat pump water heater according to the outdoor environmental temperature of the heat pump water heater, the temperature of the water tank and the water consumption of the user.
  • the compressor operating frequency is optimized to minimize the total energy consumption during the entire dynamic heating operation of the heat pump water heater, thereby achieving energy saving purposes.
  • variable frequency heat pump water heater includes inverter compressor, gas-liquid separator, evaporator, throttle valve, outdoor ambient temperature sensor, controller, water tank temperature sensor, water tank, condenser, four-way valve and exhaust temperature sensor
  • the characteristic is that the variable frequency heat pump water heater performs dynamic heating operation, that is, the heat pump water heater simultaneously performs heating operation during the hot water process of the user, and during the whole dynamic heating operation, the working frequency of the compressor is optimally adjusted, so that the whole dynamic heating of the heat pump water heater is performed.
  • the total energy consumption of the operation process is minimum; the optimal adjustment method of the operating frequency of the compressor is as follows:
  • the frequency range of the stable operation of the inverter compressor is generally 20 Hz-100 Hz. If the temperature is less than 20 Hz in the actual operating frequency g i of the compressor in each temperature range obtained according to formula II, the compressor works in this temperature range. The frequency is operated at 20 Hz; if a temperature range greater than 100 Hz occurs, the operating frequency of the compressor in this temperature range is operated at 100 Hz.
  • the compressor is an AC variable frequency compressor or a DC variable speed compressor.
  • the main advantage of the invention is that during the dynamic heating process of the variable frequency heat pump water heater, the working frequency of the compressor is optimized, so that the total energy consumption of the whole operation process is minimized.
  • FIG. 1 is a schematic diagram of a variable frequency heat pump water heater system according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the temperature change of the water tank during the dynamic heating process of the variable frequency heat pump water heater according to the present invention.
  • the variable frequency heat pump water heater includes an inverter compressor 1, a gas-liquid separator 2, an evaporator 3, a throttle valve 4, an outdoor ambient temperature sensor 5, a controller 6, a water tank temperature sensor 7, a water storage tank 8, and condensation. 9, the four-way valve 10 and the exhaust temperature sensor 11; as shown in Fig. 2, the dynamic heating process of the heat pump water heater is as follows: at the beginning, the water temperature of the water tank 8 is the set upper limit temperature T S , and the user starts using the hot water from time t 1 When the water tank will replenish cold water from the outside, the water temperature in the water tank 8 starts to decrease, and the heat pump water heater also starts to heat up.
  • the water temperature in the water tank 8 continues to decrease, when the water temperature reaches the set temperature lower limit T X
  • the time is t 2 . Since the heat pump water heater only heats up, the user does not need hot water, and the water temperature starts to rise until the time t 3 reaches the set water temperature upper limit T S , the heat pump water heater stops working, time t 1 To t 3 is a complete dynamic heating process of the heat pump water heater; during the whole dynamic heating process, the working frequency optimization method of the compressor 1 is as follows:
  • the actual temperature T O outdoor ambient temperature is corrected in each tank segment corresponding to segment 8 of the operating frequency f i: the actual operating conditions of the compressor 1, the actual work
  • the heat pump water heater operates in the process of decreasing and rising the water temperature of the water tank 8, and the operating frequency of the compressor 1 is operated according to the actual working frequency g i calculated by the formula II;
  • the frequency range of the stable operation of the inverter compressor is generally 20 Hz-100 Hz. If the temperature is less than 20 Hz in the actual operating frequency g i of the compressor in each temperature range obtained according to the formula II, the temperature section of the compressor 1 The operating frequency is operated at 20 Hz; if a temperature range greater than 100 Hz occurs, the operating frequency of the compressor 1 in this temperature range is operated at 100 Hz.
  • the compressor 1 is an AC variable frequency compressor or a DC variable speed compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种变频热泵热水器动态加热压缩机频率优化方法,变频热泵热水器包括变频压缩机(1)、气液分离器(2)、蒸发器(3)、节流阀(4)、室外环境温度传感器(5)、控制器(6)、水箱温度传感器(7)、水箱(8)、冷凝器(9)、四通阀(10)及排气温度传感器(11)。变频热泵热水器进行动态加热运行,即在用户使用热水过程中热泵热水器同时加热运行,在整个动态加热运行过程中压缩机(1)的工作频率优化调节,根据水箱(8)中水温的温差分段情况,各温度段压缩机(1)的分段工作频率按等差数列分布,使热泵热水器整个动态加热运行过程的总能耗最小。

Description

变频热泵热水器动态加热压缩机频率优化方法 技术领域
本发明涉及热泵热水器控制方法,特别是一种变频热泵热水器动态加热压缩机频率优化方法。
背景技术
变频热泵热水器相比定频热泵热水器具有制热量大、能效高等优点,特别在低温环境温度下运行的优点更加明显,但变频热泵热水器压缩机的工作频率对热泵热水器的运行能耗影响较大,在满足用户总热量需要的情况下,可以通过对热泵热水器整个运行过程中压缩机工作频率的动态优化,实现热泵热水器运行节能。中国专利公告了一种“变频空气源热泵热水器频率调节方法”,专利号是ZL201410759701.3,其可根据用户用热需求和热泵热水器室外环境温度、水箱温度动态调节变频压缩机工作频率;其基本原理是使热泵热水器在整个运行过程中每一时刻瞬时能效比尽可能接近该运行工况下的最佳能效比,也即每一时刻瞬时能效比越高,在得到相同总制热量的条件下热泵热水器整个运行过程中总能耗越小。但这一结论成立的条件是整个运行过程中热泵瞬时制热量必须相等。实际上热泵热水器在运行过程中由于运行工况的变化以及压缩机频率的变化,导致热泵热水器瞬时制热量变化较大,因此前述专利文件提出的变频热泵热水器压缩机频率调节方法仍有待优化。此外,现有的变频热泵热水器压缩机频率调节方法主要基于稳定加热方式,热泵在加热运行过程中,水箱内的水是封闭加热的,即在此过程中水箱不放热水,也无冷水进入,水温始终处于上升状态。实际上大多数情况下用户在用水的时候水箱会从外部补充冷水,水箱内水温会不断下降,热泵在加热过程中水箱水温是一个先下降后上升的动态过程,也即动态加热,美国能源部热泵热水器能效测试相关标准也是按动态加热制定的。为此变频热泵热水器动态加热过程中,既要考虑瞬时制热量的变化,也要考虑水箱进出水的情况,对压缩机频率进行优化控制,才能使热泵热水器整个运行过程总能耗最小。
发明内容
本发明的目的是克服现有技术的不足而提供的一种变频热泵热水器动态加热压缩机频率优化方法,其可根据热泵热水器室外环境温度、水箱温度和用户用水情况,在热泵热水器动态加热过程中优化压缩机工作频率,使热泵热水器整个动态加热运行过程中的总能耗最小,达到节能目的。
为了达到上述目的,本发明是这样实现的,其是一种变频热泵热水器动态加热压缩 机频率优化方法,变频热泵热水器包括变频压缩机、气液分离器、蒸发器、节流阀、室外环境温度传感器、控制器、水箱温度传感器、水箱、冷凝器、四通阀及排气温度传感器;其特征在于:变频热泵热水器进行动态加热运行,即在用户用热水过程中热泵热水器同时进行加热运行,在整个动态加热运行过程中,压缩机的工作频率优化调节,使热泵热水器整个动态加热运行过程的总能耗最小;压缩机的工作频率优化调节方法如下:
(a)确定热泵热水器动态加热基准工况,包括室外环境温度TW及相对湿度φ,水箱的设定上限温度TS、下限温度TX、进冷水温度及用热水温度,额定用水量;
(b)分段设定压缩机的工作频率f:根据水箱的设定上限水温TS与下限水温TX之差,将这一温差分成n个温度段,n≥2,在各温度段压缩机(1)采用不同的分段工作频率fi
(c)根据水箱的温差分段情况,各温度段压缩机的分段工作频率fi按等差数列分布,得到各温升段的分段工作频率fi的计算公式I:fi=fg-(fg-fd)(i-1)/(n-1),计算公式I中,fg为整个运行过程中压缩机的最高频率值;fd为整个运行过程中压缩机的最低频率值;i表示从初始加热开始对应的各升温段,i=1,2,...,n;
(d)以热泵热水器整个动态运行过程中总能耗最小为目标,通过实验得到在基准工况下,压缩机的最高频率fg和最低频率fd,根据计算公式I得到各温度段对应的压缩机的分段工作频率fi
(e)当热泵热水器实际运行工况偏离基准工况时,根据实际室外环境温度TO来修正水箱各温度段对应的分段工作频率fi;实际运行工况压缩机(1)的实际工作频率gi按公式II:gi=kfi进行修正,不同的室外环境温度TO对应不同的k,通过实验得到;
(f)在水箱的水温下降和上升过程中,压缩机的工作频率均按公式II计算得到的实际工作频率gi工作;
(g)因变频压缩机稳定工作的频率范围一般为20Hz-100Hz,如按公式II得到的各温度段压缩机的实际工作频率gi中出现小于20Hz的温度段,该温度段压缩机的工作频率按20Hz运行;如出现大于100Hz的温度段,则该温度段压缩机的工作频率按100Hz运行。
在本技术方案中,在储水箱的各温升段,压缩机的分段工作频率fi可以按二次曲线分布,即公式III:fi=ai2+bi+c,公式III中a,b,c为通过实验得到的二次曲线的系数。
在本技术方案中,所述压缩机为交流变频压缩机或直流调速压缩机。
本发明与现有技术相比,其主要优点是:变频热泵热水器动态加热过程中,优化压缩机工作频率,使整个运行过程总能耗最小。
附图说明
图1是本发明实施的变频热泵热水器系统原理图;
图2是本发明实施的变频热泵热水器动态加热过程中水箱温度变化示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
如图1所示,变频热泵热水器包括变频压缩机1、气液分离器2、蒸发器3、节流阀4、室外环境温度传感器5、控制器6、水箱温度传感器7、储水箱8、冷凝器9、四通阀10及排气温度传感器11;如图2所示,热泵热水器动态加热过程如下:开始时水箱8的水温为设定上限温度TS,从时间t1用户开始用热水时,水箱会从外部补充冷水,水箱8中水温开始降低,热泵热水器也开始加热运行,由于用热水的热量大于热泵制热量,水箱8中水温继续降低,当水温达到设定温度下限TX时,用户停止用水,此时时间为t2,由于热泵热水器仅制热,用户不用热水,水温开始上升,直至时间t3达到设定水温上限TS时,热泵热水器停止工作,时间t1到t3为热泵热水器一个完整的动态加热过程;在整个动态加热过程中,压缩机1的工作频率优化方法如下:
(a)确定热泵热水器动态加热基准工况,包括室外环境温度TW及相对湿度φ,水箱8的设定上限温度TS、下限温度TX、进冷水温度及用热水温度,额定用水量;
(b)分段设定压缩机1的工作频率f:根据水箱8的设定上限水温TS与下限水温TX之差,将这一温差分成n个温度段,n≥2,在各温度段压缩机1采用不同的分段工作频率fi
(c)根据水箱8的温差分段情况,各温度段的分段工作频率fi按等差数列分布,得到各温升段的分段工作频率fi的计算公式I:fi=fg-(fg-fd)(i-1)/(n-1),计算公式I中,fg为整个运行过程中压缩机1的最高频率值;fd为整个运行过程中压缩机1的最低频率值;i表示从初始加热开始对应的各升温段,i=1,2,...,n;
(d)以热泵热水器整个动态运行过程中总能耗最小为目标,通过实验得到在基准工况下,压缩机1的最高频率fg和最低频率fd,根据计算公式I得到各温度段对应的压缩机1的分段工作频率fi
(e)当热泵热水器实际运行工况偏离基准工况时,根据实际室外环境温度TO来修正水箱8的各温度段对应的分段工作频率fi:实际运行工况压缩机1的实际工作频率gi按公式II:gi=kfi进行修正,不同的室外环境温度TO对应不同的k,通过实验得到;
(f)热泵热水器在水箱8的水温下降和上升过程中,压缩机1的工作频率均按公式II计算得到的实际工作频率gi工作;
(a)因变频压缩机稳定工作的频率范围一般为20Hz-100Hz,如按公式II得到的各温度段压缩机的实际工作频率gi中出现小于20Hz的温度段,该温度段压缩机1的工作频率按20Hz运行;如出现大于100Hz的温度段,则该温度段压缩机1的工作频率按100Hz运行。
在本实施例中,在储水箱8的各温升段,压缩机1的分段工作频率fi可以按二次曲线分布,即公式III:fi=ai2+bi+c,公式III中a,b,c为通过实验得到的二次曲线的系数。
在本实施例中,所述压缩机1为交流变频压缩机或直流调速压缩机。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换及变形,本发明的范围由权利要求及其等同物限定。

Claims (3)

  1. 一种变频热泵热水器动态加热压缩机频率优化方法,变频热泵热水器包括变频压缩机(1)、气液分离器(2)、蒸发器(3)、节流阀(4)、室外环境温度传感器(5)、控制器(6)、水箱温度传感器(7)、水箱(8)、冷凝器(9)、四通阀(10)及排气温度传感器(11);其特征在于:变频热泵热水器进行动态加热运行,即在用户用热水过程中热泵热水器同时进行加热运行,在整个动态加热运行过程中,压缩机(1)的工作频率优化调节,使热泵热水器整个动态加热运行过程的总能耗最小;压缩机(1)的工作频率优化调节方法如下:
    确定热泵热水器动态加热基准工况,包括室外环境温度TW及相对湿度φ,水箱(8)的设定上限温度TS、下限温度TX、进冷水温度及用热水温度,额定用水量;
    分段设定压缩机(1)的工作频率f:根据水箱(8)的设定上限水温TS与下限水温TX之差,将这一温差分成n个温度段,n≥2,在各温度段压缩机(1)采用不同的分段工作频率fi
    根据水箱(8)的温差分段情况,各温度段压缩机(1)的分段工作频率fi按等差数列分布,得到各温升段的分段工作频率fi的计算公式I:fi=fg-(fg-fd)(i-1)/(n-1),计算公式I中,fg为整个运行过程中压缩机(1)的最高频率值;fd为整个运行过程中压缩机(1)的最低频率值;i表示从初始加热开始对应的各升温段,i=1,2,...,n;
    以热泵热水器整个动态运行过程中总能耗最小为目标,通过实验得到在基准工况下,压缩机(1)的最高频率fg和最低频率fd,根据计算公式I得到各温度段对应的压缩机(1)的分段工作频率fi
    当热泵热水器实际运行工况偏离基准工况时,根据实际室外环境温度TO来修正水箱(8)各温度段对应的分段工作频率fi;实际运行工况压缩机(1)的实际工作频率gi按公式II:gi=kfi进行修正,不同的室外环境温度TO对应不同的k,通过实验得到;
    在水箱(8)的水温下降和上升过程中,压缩机(1)的工作频率均按公式II计算得到的实际工作频率gi工作;
    因变频压缩机稳定工作的频率范围一般为20Hz-100Hz,如按公式II得到的各温度段压缩机的实际工作频率gi中出现小于20Hz的温度段,该温度段压缩机(1)的工作频率按20Hz运行;如出现大于100Hz的温度段,则该温度段压缩机(1)的工作频率按100Hz运行。
  2. 根据权利要求1所述的变频热泵热水器动态加热压缩机频率优化方法,其特征在于在储水箱(8)的各温升段,压缩机(1)的分段工作频率fi可以按二次曲线分布,即公式III:fi=ai2+bi+c,公式III中a,b,c为通过实验得到的二次曲线的系数。
  3. 根据权利要求1所述的变频热泵热水器动态加热压缩机频率优化方法,其特征在于所述压缩机(1)为交流变频压缩机或直流调速压缩机。
PCT/CN2017/115119 2017-10-27 2017-12-08 变频热泵热水器动态加热压缩机频率优化方法 WO2019080277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711021830.2 2017-10-27
CN201711021830.2A CN107940842A (zh) 2017-10-27 2017-10-27 变频热泵热水器动态加热压缩机频率优化方法

Publications (1)

Publication Number Publication Date
WO2019080277A1 true WO2019080277A1 (zh) 2019-05-02

Family

ID=61935727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115119 WO2019080277A1 (zh) 2017-10-27 2017-12-08 变频热泵热水器动态加热压缩机频率优化方法

Country Status (2)

Country Link
CN (1) CN107940842A (zh)
WO (1) WO2019080277A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550956A (zh) * 2020-04-23 2020-08-18 广东纽恩泰新能源科技发展有限公司 一种热泵变频压缩机加卸载控制方法及系统
CN114383321A (zh) * 2021-12-30 2022-04-22 江苏恒信诺金科技股份有限公司 直热式热泵热水机出水温度节能控制系统及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141021A (zh) * 2018-11-02 2020-05-12 青岛经济技术开发区海尔热水器有限公司 一种浴缸注水控制方法及热水器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147542A (ja) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
CN103836789A (zh) * 2012-11-22 2014-06-04 珠海格力电器股份有限公司 提高热泵热水机最高出水温度的方法
CN104613651A (zh) * 2014-12-12 2015-05-13 顺德职业技术学院 一种变频热泵热水器频率调节方法
CN104633942A (zh) * 2014-12-12 2015-05-20 顺德职业技术学院 变频喷气增焓热泵热水器频率调节及控制方法
CN105444419A (zh) * 2014-08-18 2016-03-30 珠海格力电器股份有限公司 空气能热水器的压缩机频率控制的方法及装置
CN105823213A (zh) * 2016-05-13 2016-08-03 艾欧史密斯(中国)热水器有限公司 热泵热水器
CN106813399A (zh) * 2015-12-02 2017-06-09 青岛海尔新能源电器有限公司 热泵热水器的控制方法及其控制装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052186A (en) * 1990-09-21 1991-10-01 Electric Power Research Institute, Inc. Control of outdoor air source water heating using variable-speed heat pump
CN101957067B (zh) * 2010-11-01 2012-09-05 江苏天舒电器有限公司 一种热泵热水机的变频控制方法
CN103912990B (zh) * 2012-12-31 2016-11-02 广东美的暖通设备有限公司 一种热泵热水器的控制方法
CN104456963B (zh) * 2013-09-25 2018-02-27 珠海格力电器股份有限公司 压缩机工作频率的控制方法及装置
CN107270546A (zh) * 2017-07-04 2017-10-20 广东日出东方空气能有限公司 变频热泵热水器的控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147542A (ja) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
CN103836789A (zh) * 2012-11-22 2014-06-04 珠海格力电器股份有限公司 提高热泵热水机最高出水温度的方法
CN105444419A (zh) * 2014-08-18 2016-03-30 珠海格力电器股份有限公司 空气能热水器的压缩机频率控制的方法及装置
CN104613651A (zh) * 2014-12-12 2015-05-13 顺德职业技术学院 一种变频热泵热水器频率调节方法
CN104633942A (zh) * 2014-12-12 2015-05-20 顺德职业技术学院 变频喷气增焓热泵热水器频率调节及控制方法
CN106813399A (zh) * 2015-12-02 2017-06-09 青岛海尔新能源电器有限公司 热泵热水器的控制方法及其控制装置
CN105823213A (zh) * 2016-05-13 2016-08-03 艾欧史密斯(中国)热水器有限公司 热泵热水器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG JUAN ET AL.: "Experimental Study on variable Frequency Air Source Heat Pump Water Heater", CHINA HOUSEHOLD APPLIANCE TECHNOLOGY CONFERENCE MEMOIRS, 8 November 2016 (2016-11-08), pages 325 - 330 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550956A (zh) * 2020-04-23 2020-08-18 广东纽恩泰新能源科技发展有限公司 一种热泵变频压缩机加卸载控制方法及系统
CN114383321A (zh) * 2021-12-30 2022-04-22 江苏恒信诺金科技股份有限公司 直热式热泵热水机出水温度节能控制系统及其控制方法

Also Published As

Publication number Publication date
CN107940842A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
CN104633942B (zh) 变频喷气增焓热泵热水器频率调节及控制方法
CN104613651B (zh) 变频空气源热泵热水器频率调节方法
CN104501421B (zh) 一种变频双级压缩热泵热水器的控制方法
CN110715466A (zh) 一种多联式空调系统及其控制方法
WO2019153887A1 (zh) 空调系统控制方法及装置、空调系统
WO2018000515A1 (zh) 自适应变频热泵热水采暖系统节能控制方法
CN109458683B (zh) 干式辐射热泵与单元式分户空调一体机及其控制方法
CN111006425B (zh) 一种基于目标负荷控制的多并联二氧化碳热泵控制方法
WO2019080277A1 (zh) 变频热泵热水器动态加热压缩机频率优化方法
WO2023045287A1 (zh) 多联机热泵系统及其控制方法、计算机可读存储介质
CN108626778B (zh) 一种节能的变频采暖热泵的控制方法
CN107120809A (zh) 一种空调系统的控制方法、装置及空调系统
CN107401806A (zh) 中央空调冷冻站内主机及冷冻泵综合能效提升控制方法
WO2022127332A1 (zh) 热泵热水器及热泵热水器的控制方法
CN107560179A (zh) 变频喷气增焓热泵热水器动态加热压缩机频率优化方法
WO2019080276A1 (zh) 双级变频双级压缩热泵热水器动态加热频率优化及控制方法
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
WO2019080275A1 (zh) 变频喷气增焓热泵热水器频率动态优化及控制方法
WO2023024635A1 (zh) 一种烘干机组控制方法、可读存储介质及烘干机组
CN107906760A (zh) 变频热泵热水器压缩机频率动态优化方法
CN114459133A (zh) 一种中央空调系统节能控制方法及节能控制系统
CN110822634B (zh) 毛细管辐射空调制冷时压缩机的自适应动态控制方法
WO2019052540A1 (zh) 变频空调的制热控制方法与装置
CN111928410A (zh) 用于多联机空调机组的控制方法
CN110470076A (zh) 一种户式水机智能控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929477

Country of ref document: EP

Kind code of ref document: A1