WO2018000515A1 - 自适应变频热泵热水采暖系统节能控制方法 - Google Patents

自适应变频热泵热水采暖系统节能控制方法 Download PDF

Info

Publication number
WO2018000515A1
WO2018000515A1 PCT/CN2016/092845 CN2016092845W WO2018000515A1 WO 2018000515 A1 WO2018000515 A1 WO 2018000515A1 CN 2016092845 W CN2016092845 W CN 2016092845W WO 2018000515 A1 WO2018000515 A1 WO 2018000515A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat pump
water supply
water
room
Prior art date
Application number
PCT/CN2016/092845
Other languages
English (en)
French (fr)
Inventor
徐言生
邹时智
Original Assignee
顺德职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顺德职业技术学院 filed Critical 顺德职业技术学院
Publication of WO2018000515A1 publication Critical patent/WO2018000515A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/254Room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency

Definitions

  • the invention relates to an energy-saving control method for an adaptive variable frequency heat pump hot water heating system.
  • variable frequency heat pump water heater has gradually begun to be applied in the floor radiant heating system due to its constant water supply temperature and high energy efficiency.
  • the water supply / return water temperature is generally 45 ° C / 35 ° C, room air temperature control mostly through the floor surface temperature or room air temperature control heat pump water heater start and stop. Because the energy efficiency of the heat pump water heater decreases with the increase of the water supply temperature, the outdoor environment temperature changes greatly during a heating cycle, and the outdoor ambient temperature changes greatly during one day. Therefore, the heating load is different in different time periods. The difference is large. When the outdoor ambient temperature is high, the required heating load is small, and the water supply temperature of the floor heating can be appropriately lowered, so that the energy efficiency of the heat pump water heater can be improved.
  • the heat pump can reduce the water supply temperature as much as possible under the premise of meeting the use requirements, but the determination of the water supply temperature depends on the required heating load, which is not only related to the outdoor ambient temperature and the indoor set temperature, but also It is related to the insulation performance of the building envelope and the heat exchanger coil.
  • the required heating load which is not only related to the outdoor ambient temperature and the indoor set temperature, but also It is related to the insulation performance of the building envelope and the heat exchanger coil.
  • the insulation performance of different buildings and the heat exchanger coils are different, and the temperature of different people is different. How to use a simple method to determine the optimal heat pump water supply temperature is to achieve heat pump operation. The key to energy saving.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an energy-saving control method for an adaptive variable frequency heat pump hot water heating system, which can determine the frequency conversion according to the change of the outdoor ambient temperature and the indoor set temperature and the insulation property of the building itself.
  • the optimal water supply temperature of the heat pump and adjust the operating frequency of the variable frequency heat pump to achieve energy saving of the variable frequency heat pump.
  • the present invention is achieved by an energy-saving control method for an adaptive variable frequency heat pump hot water heating system, characterized in that the variable frequency heat pump hot water heating system comprises a variable frequency heat pump water heater, a water storage tank, a circulating water pump, and a hot water.
  • a coil a control system, a water storage tank temperature sensor, a return water temperature sensor, a room air temperature sensor, and an outdoor ambient temperature sensor; wherein the water storage tank temperature sensor senses a temperature in the water storage tank, that is, an actual water supply temperature T gs , the return water The temperature sensor senses the water outlet temperature of the hot water coil, that is, the actual water temperature T hs , the room air temperature sensor senses the indoor temperature, that is, the room actual air temperature T ns , and the outdoor ambient temperature sensor senses the outdoor temperature, that is, the outdoor ambient temperature T w
  • the energy saving control method of the control system includes the following steps:
  • control system first establishes the basic functional formula between the heat pump water supply calculation temperature T gj and the indoor set temperature T sd and the outdoor ambient temperature T w according to the performance of the variable frequency heat pump water heater and the heat load characteristics of the typical heating room. ;
  • the control system determines the temperature difference between the heat pump water supply calculation temperature T gj and the return water actual temperature T hs , and corrects the heat pump water supply calculation temperature T gj on the basis of the basic function formula to obtain the corrected heat pump.
  • the first correction function of the water supply calculation temperature T gj is the first correction function of the water supply calculation temperature T gj ;
  • the control system (5) performs the heat pump water supply calculation temperature T gj again on the basis of the first correction function based on the deviation between the stabilized room actual air temperature T ns and the indoor set temperature T sd Correction, the second correction function formula (III) of the heat pump water supply calculation temperature T gj obtained again;
  • the control system can also automatically obtain the fixed average deviation of the room-realized air temperature T ns and the indoor set temperature T sd after the system is operated for 1 to 2 days, as the calculation of the second correction function formula (III). According to this, as long as the user sets the indoor set temperature T sd in the room, the control system can immediately obtain the heat pump water supply calculation temperature T gj , without waiting for the indoor temperature to stabilize and then according to the room actual air temperature T ns and the indoor set temperature T The deviation of sd is corrected.
  • the invention has the following advantages:
  • FIG. 1 is a schematic structural view of a heating system according to an embodiment of the present invention.
  • variable frequency heat pump hot water heating system includes a variable frequency heat pump water heater 1, a water storage tank 2, a circulating water pump 3, a hot water coil 4, and control.
  • the system 5 the water storage tank temperature sensor 6, the return water temperature sensor 7, the room air temperature sensor 8 and the outdoor ambient temperature sensor 9; wherein the water outlet of the hot water coil 4 is connected with the water return port of the water storage tank 2, the hot water tray
  • the water inlet of the pipe 4 is connected with the water outlet of the circulating water pump 3, the water inlet of the circulating water pump 3 is connected with the water outlet of the water storage tank 2, and the variable frequency heat pump water heater 1 heats the water storage tank 2;
  • the water storage tank temperature sensor 6 senses
  • the temperature in the water storage tank 2 is the actual water supply temperature T gs
  • the return water temperature sensor 7 senses the water outlet temperature of the hot water coil 4, that is, the actual water return temperature T hs
  • the room air temperature sensor 8 senses the indoor temperature, that is, the actual room.
  • the air temperature T ns , the outdoor ambient temperature sensor 9 senses the outdoor temperature, that is, the outdoor ambient temperature T w , and the steps of the energy saving control method of the control system 5
  • the control system 5 first establishes the heat pump water supply calculation temperature according to the performance of the variable frequency heat pump water heater 1 and the heat load characteristics of a typical heating room.
  • the coefficient a and the coefficient b are obtained by linear regression of the experimental data.
  • the value of the coefficient a is generally 20 ⁇ . 40, the value b is generally in the range of 0.5 to 2; because the ambient temperature T w varies greatly throughout the day, the heat pump water supply calculation temperature T gj can be recalculated every 0.5 hours according to the basic function formula I;
  • the control system 5 is based on the stabilized room actual air temperature T ns and the indoor set temperature T sd
  • the heat pump water supply calculation temperature T gj is corrected again, and the second correction function formula III of the heat pump water supply calculation temperature T gj obtained again is:
  • T gj a+b*(T sd -T w )+k*(T gs -T hs )+(T sd -T ns ), where k is the correction factor of the envelope structure, k and the insulation characteristics and circulation of the envelope structure
  • the circulation flow rate of the water pump 3 is generally 0.5;
  • the compressor speed of the variable frequency heat pump water heater 1 is adjusted, so that the actual calculated temperature T gs of the water supply and the heat pump water supply calculation are calculated.
  • the temperature T gj tends to be uniform.
  • control system 5 can automatically obtain a fixed average deviation between the room actual air temperature T ns and the indoor set temperature T sd after the system is operated for 1 to 2 days, as a second time. Correct the calculation formula of function formula III, so that as long as the user sets the indoor set temperature T sd in the room, the control system can immediately obtain the heat pump water supply calculation temperature T gj without waiting for the indoor temperature to stabilize and then according to the actual room air temperature T ns The deviation from the indoor set temperature T sd is corrected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

一种自适应变频热泵热水采暖系统节能控制方法,包括以下步骤:建立热泵供水计算温度T gj与室内设定温度T sd及室外环境温度T w之间的基础函数式,通过对热泵供水计算温度T gj与回水实际温度T hs的温差进行判断,在基础函数式的基础上,对热泵供水计算温度T gj进行修正;根据稳定后的房间实际空气温度T ns与室内设定温度T sd的偏差,在第一次修正函数式的基础上,对热泵供水计算温度T gj进行再次修正;根据供水实际温度T gs与第二次修正函数式得到的热泵供水计算温度T gj的差值,调节变频热泵热水器的压缩机转速,使供水实际计算温度T gs与热泵供水计算温度T gj趋于一致。其优点为:充分考虑了不同建筑物保温特性及热水盘管敷设的差别,在运行过程中自动判断修正,供水计算温度更加准确,节能效果也更加明显。

Description

自适应变频热泵热水采暖系统节能控制方法 技术领域
本发明涉及一种自适应变频热泵热水采暖系统节能控制方法。
背景技术
热泵热水器作为一种高效节能热水产品,越来越多的应用到采暖系统中。变频热泵热水器因具有供水温度恒定及能效高等优点也逐渐开始在地板辐射采暖系统中应用。
目前,无论是定频还是变频热泵热水器地暖系统设计,供水/回水温度一般为45℃/35℃,房间空气温度控制大多通过地板表面温度或房间空气温度控制热泵热水器开停来实现。因热泵热水器的能效随供水温度的升高而下降,而在一个供暖周期内室外环境温度变化较大,并且在一天内室外环境温度的变化也较大,因此,在不同时间段其供热负荷相差较大。当室外环境温度较高时,所需供热负荷较小,地暖的供水温度可以适当降低,这样热泵热水器的能效就可以提高。为实现热泵运行节能的目的,热泵在满足使用要求的前提下,尽可能降低供水温度,但供水温度的确定取决于所需供热负荷,它不仅与室外环境温度、室内设定温度有关,而且与建筑物围护结构的保温性能以及换热盘管敷设有关。但由于室外环境温度动态变化,不同建筑物的保温性能和换热盘管敷设差异较大以及不同人群的温感不同,如何采用一种简单的方法来确定最佳的热泵供水温度是实现热泵运行节能的关键。
发明内容
本发明的目的是克服现有技术的不足而提供一种自适应变频热泵热水采暖系统的节能控制方法,其可根据室外环境温度和室内设定温度的变化以及建筑物自身保温特性,确定变频热泵的最佳供水温度,并以此调节变频热泵的运行频率,实现变频热泵运行节能。
为了达到上述目的,本发明是这样实现的,其是一种自适应变频热泵热水采暖系统节能控制方法,其特征在于变频热泵热水采暖系统包括变频热泵热水器、储水箱、循环水泵、热水盘管、控制系统、储水箱温度传感器、回水温度传感器、房间空气温度传感器及室外环境温度传感器;其中所述储水箱温度传感器感应储水箱内的温度即供水实际温度Tgs,所述回水温度传感器感应热水盘管的出水温度即回水实际温度Ths,所述房间空气温度传感器感应室内温度即房间实际空气温度Tns,所述室外环境温度传感器感应室外温度即室外环境温度Tw,所述控制系统的节能控制方法包括步骤如下:
(一)在控制系统中设定室内的室内设定温度Tsd
(二)工作时,控制系统首先根据变频热泵热水器的性能和典型采暖房间的热负荷特性,建 立热泵供水计算温度Tgj与室内设定温度Tsd及室外环境温度Tw之间的基础函数式;
(三)所述控制系统通过对热泵供水计算温度Tgj与回水实际温度Ths的温差进行判断,在基础函数式的基础上,对热泵供水计算温度Tgj进行修正,得到修正后的热泵供水计算温度Tgj的第一次修正函数式;
(四)所述控制系统(5)根据稳定后的房间实际空气温度Tns与室内设定温度Tsd的偏差,在第一次修正函数式的基础上,对热泵供水计算温度Tgj进行再次修正,得到再次修正的热泵供水计算温度Tgj的第二次修正函数式(III);
(五)根据供水实际温度Tgs与第二次修正函数式得到的热泵供水计算温度Tgi的差值,调节变频热泵热水器的压缩机转速,使供水实际计算温度Tgs与热泵供水计算温度Tgi趋于一致。
所述控制系统还可以在系统工作1~2天后,自动获取室内稳定后的房间实际空气温度Tns与室内设定温度Tsd的固定平均偏差,作为第二次修正函数式(III)的计算依据,这样只要用户设定室内的室内设定温度Tsd,控制系统可立即得到热泵供水计算温度Tgj,而不需要待室内温度稳定后再根据房间实际空气温度Tns与室内设定温度Tsd的偏差进行修正。
本发明与现有技术相比,具有如下优点:
(1)当室外环境温度较高时,采暖系统供水温度可以适当降低,热泵热水器能效较高,实现运行节能;
(2)充分考虑了不同建筑物保温特性及热水盘管敷设的差别,在运行过程中自动判断修正,供水计算温度更加准确,节能效果也更加明显。
附图说明
图1是本发明实施的采暖系统结构原理图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
如图1所示,其是一种自适应变频热泵热水采暖系统的节能控制方法,变频热泵热水采暖系统包括变频热泵热水器1、储水箱2、循环水泵3、热水盘管4、控制系统5、储水箱温度传感器6、回水温度传感器7、房间空气温度传感器8及室外环境温度传感器9;其中所述热水盘管4的出水口与储水箱2的回水口连通,热水盘管4的入水口与循环水泵3的出水口连通,所述循环水泵3的入水口与储水箱2的出水口连通,变频热泵热水器1对储水箱2进行加热;所述储水箱温度传感器6感应储水箱2内的温度即供水实际温度Tgs,所述 回水温度传感器7感应热水盘管4的出水温度即回水实际温度Ths,所述房间空气温度传感器8感应室内温度即房间实际空气温度Tns,所述室外环境温度传感器9感应室外温度即室外环境温度Tw,所述控制系统5的节能控制方法的步骤如下:
(一)在控制系统5中设定室内的室内设定温度Tsd;控制系统5分自动模式和手动模式,自动模式下的室内设定温度Tsd默认为18℃,或根据实际情况,在自动模式下的室内设定温度Tsd默认为17℃、19℃或其它温度等,手动模式下的室内设定温度Tsd为人工设定;
(二)因室内及室外温度的变化大,对热泵供水温度的影响也最大;工作时,控制系统5首先根据变频热泵热水器1的性能和典型采暖房间的热负荷特性,建立热泵供水计算温度Tgj与室内设定温度Tsd及室外环境温度Tw之间的基础函数式I,热泵供水计算温度Tgj的基础函数式I为:Tgj=a+b*(Tsd-Tw),式中,模拟典型采暖房间的热负荷特性,通过具体变频热泵在不同室内及室外温差下的性能试验,对实验数据进行线性回归得到系数a及系数b,系数a的取值范围一般为20~40,系数b的取值范围一般为0.5~2;因全天室外环境温度Tw变化较大,可采用每0.5小时按基础函数式I重新计算热泵供水计算温度Tgj一次;
(三)因建筑物围护结构的保温性能不同,直接影响采暖房间的热负荷特性;所述控制系统5通过对热泵供水计算温度Tgj与回水实际温度Ths的温差进行判断,在基础函数式I的基础上,对热泵供水计算温度Tgj进行修正,得到修正后的热泵供水计算温度Tgj的第一次修正函数式II即为:Tgj=a+b*(Tsd-Tw)+k*(Tgs-Ths),式中,k为围护结构修正系数,k与围护结构保温特性及循环水泵3的循环流量有关,一般取0.5;
(四)因热水盘管4的敷设不同,要达到同样的室内设定温度,那么热泵供水温度不同;所述控制系统5根据稳定后的房间实际空气温度Tns与室内设定温度Tsd的偏差,在第一次修正函数式II的基础上,对热泵供水计算温度Tgj进行再次修正,得到再次修正的热泵供水计算温度Tgj的第二次修正函数式III即为:Tgj=a+b*(Tsd-Tw)+k*(Tgs-Ths)+(Tsd-Tns),式中,k为围护结构修正系数,k与围护结构保温特性及循环水泵3的循环流量有关,一般取0.5;
(五)根据供水实际温度Tgs与第二次修正函数式III得到的热泵供水计算温度Tgj的差值,调节变频热泵热水器1的压缩机转速,使供水实际计算温度Tgs与热泵供水计算温度Tgj趋于一致。
在本实施例中,所述控制系统5还可以在系统工作1~2天后,自动获取室内温度稳定后的房间实际空气温度Tns与室内设定温度Tsd的固定平均偏差,作为第二次修正函数式III的计算依据,这样只要用户设定室内的室内设定温度Tsd,控制系统可立即得到热泵供水 计算温度Tgj,而不需要待室内温度稳定后再根据房间实际空气温度Tns与室内设定温度Tsd的偏差进行修正。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换及变形,本发明的范围由权利要求及其等同物限定。

Claims (2)

  1. 一种自适应变频热泵热水采暖系统节能控制方法,其特征在于变频热泵热水采暖系统包括变频热泵热水器(1)、储水箱(2)、循环水泵(3)、热水盘管(4)、控制系统(5)、储水箱温度传感器(6)、回水温度传感器(7)、房间空气温度传感器(8)及室外环境温度传感器(9);其中所述储水箱温度传感器(6)感应储水箱(2)内的温度即供水实际温度Tgs,所述回水温度传感器(7)感应热水盘管(4)的出水温度即回水实际温度Ths,所述房间空气温度传感器(8)感应室内温度即房间实际空气温度Tns,所述室外环境温度传感器(9)感应室外温度即室外环境温度Tw,所述控制系统(5)的节能控制方法包括步骤如下:
    (一)在控制系统(5)中设定室内的室内设定温度Tsd
    (二)工作时,控制系统(5)首先根据变频热泵热水器(1)的性能和典型采暖房间的热负荷特性,建立热泵供水计算温度Tgj与室内设定温度Tsd及室外环境温度Tw之间的基础函数式(I);
    (三)所述控制系统(5)通过对热泵供水计算温度Tgj与回水实际温度Ths的温差进行判断,在基础函数式(I)的基础上,对热泵供水计算温度Tgj进行修正,得到修正后的热泵供水计算温度Tgj的第一次修正函数式(II);
    (四)所述控制系统(5)根据稳定后的房间实际空气温度Tns与室内设定温度Tsd的偏差,在第一次修正函数式(II)的基础上,对热泵供水计算温度Tgj进行再次修正,得到再次修正的热泵供水计算温度Tgj的第二次修正函数式(III);
    (五)根据供水实际温度Tgs与第二次修正函数式(III)得到的热泵供水计算温度Tgj的差值,调节变频热泵热水器(1)的压缩机转速,使供水实际计算温度Tgs与热泵供水计算温度Tgj趋于一致。
  2. 根据权利要求1所述的自适应变频热泵热水采暖系统节能控制方法,其特征在于所述控制系统(5)还可以在系统工作1~2天后,自动获取室内稳定后的房间实际空气温度Tns与室内设定温度Tsd的固定平均偏差,作为第二次修正函数式(III)的计算依据,这样只要用户设定室内的室内设定温度Tsd,控制系统(5)可立即得到热泵供水计算温度Tgj,而不需要待室内温度稳定后再根据房间实际空气温度Tns与室内设定温度Tsd的偏差进行修正。
PCT/CN2016/092845 2016-07-01 2016-08-02 自适应变频热泵热水采暖系统节能控制方法 WO2018000515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610506440.3 2016-07-01
CN201610506440.3A CN106016760B (zh) 2016-07-01 2016-07-01 自适应变频热泵热水采暖系统节能控制方法

Publications (1)

Publication Number Publication Date
WO2018000515A1 true WO2018000515A1 (zh) 2018-01-04

Family

ID=57105605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092845 WO2018000515A1 (zh) 2016-07-01 2016-08-02 自适应变频热泵热水采暖系统节能控制方法

Country Status (2)

Country Link
CN (1) CN106016760B (zh)
WO (1) WO2018000515A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165418A (zh) * 2018-08-01 2019-01-08 代傲表计(济南)有限公司 基于户用热量表数据的室温测量方法
CN110410854A (zh) * 2019-07-16 2019-11-05 合肥瑞纳节能工程有限公司 一种换热站运行特性曲线自动修正调控方法及系统
EP3845818A4 (en) * 2019-10-29 2021-09-29 Guangdong Phnix Eco-Energy Solution Ltd. WATER TEMPERATURE REGULATION PROCESS FOR HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM
CN113757788A (zh) * 2021-09-15 2021-12-07 河北工大科雅能源科技股份有限公司 一种站荷联动的二网平衡在线动态智能调控方法及系统
CN114811714A (zh) * 2022-04-26 2022-07-29 大连理工大学 一种基于模型预测控制的供暖房间室温控制方法
CN114963289A (zh) * 2021-06-23 2022-08-30 青岛海尔新能源电器有限公司 采暖系统的控制方法、装置、采暖系统及存储介质
CN115076766A (zh) * 2022-06-16 2022-09-20 临汾市热力供应有限公司 一种关于供热管网水力平衡的运行方法
CN115164270A (zh) * 2022-07-12 2022-10-11 韩城市热力有限公司 一种供热调度节能调整方法及系统

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931661B (zh) * 2017-03-27 2020-12-15 青岛海尔智能技术研发有限公司 热水器节能控制方法及节能热水器
CN107477652A (zh) * 2017-08-21 2017-12-15 海信(山东)空调有限公司 采暖系统及其控制方法
CN107763872A (zh) * 2017-10-27 2018-03-06 顺德职业技术学院 双级变频双级压缩热泵热水器动态加热频率优化及控制方法
CN107906760A (zh) * 2017-10-27 2018-04-13 顺德职业技术学院 变频热泵热水器压缩机频率动态优化方法
CN109724191A (zh) * 2018-10-01 2019-05-07 国熠 一种高频热源机的电控系统
CN109948824B (zh) * 2018-11-09 2021-09-07 北京华源热力管网有限公司 一种利用模式识别技术对热力站热负荷进行预测的方法
CN110894978B (zh) * 2019-04-10 2022-04-29 北京西门子西伯乐斯电子有限公司 空气源热泵供暖系统及其控制器和控制方法
CN112393320B (zh) * 2019-08-16 2022-09-02 广东Tcl智能暖通设备有限公司 基于热泵采暖机的压缩机转速控制方法和热泵采暖机
CN110543713B (zh) * 2019-08-27 2023-02-17 天津大学 考虑用户舒适度与建筑蓄热的热泵-地暖系统控制方法
CN110513931B (zh) * 2019-09-19 2021-04-23 四川虹美智能科技有限公司 一种确定空气源热泵的回水温度的目标值的方法及装置
CN110822699A (zh) * 2019-10-18 2020-02-21 华帝股份有限公司 一种壁挂炉的智能控制方法及壁挂炉
CN110953649B (zh) * 2019-12-18 2021-10-01 江苏舒适云信息技术有限公司 一种采暖温控阀分阶段温度设置的预期控制方法
CN111664500B (zh) * 2020-05-12 2022-06-03 深圳市合信达控制系统有限公司 采暖温度的控制方法、装置、计算机设备及可读存储介质
CN114576696B (zh) * 2020-11-30 2024-01-16 艾欧史密斯(中国)热水器有限公司 供暖温度控制方法及其供暖设备、系统
CN112594775A (zh) * 2020-12-11 2021-04-02 国网江苏省电力有限公司南通供电分公司 一种用于空气源供热回水温度的控制方法
CN113091119A (zh) * 2021-03-26 2021-07-09 山东艾克姆智能科技有限公司 换热机组供热温度控制系统及方法
CN114165825B (zh) * 2021-11-26 2023-03-31 南京国之鑫科技有限公司 一种换热站供热调控系统及方法
CN114857652A (zh) * 2022-05-31 2022-08-05 青岛海信日立空调系统有限公司 一种供暖系统及其控制方法
CN115451620B (zh) * 2022-09-26 2023-07-21 宁波奥克斯电气股份有限公司 一种热泵系统的控制方法及热泵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508806A2 (en) * 2011-04-07 2012-10-10 Mitsubishi Electric Corporation Heat pump system and heat pump unit controlling method
CN103277571A (zh) * 2013-06-19 2013-09-04 陈建平 动态回水温度流量调节阀
CN203629017U (zh) * 2012-12-25 2014-06-04 三菱电机株式会社 空气调节装置
CN103912914A (zh) * 2014-04-22 2014-07-09 珠海格力电器股份有限公司 一种地暖的控制方法
CN104949192A (zh) * 2015-07-13 2015-09-30 顺德职业技术学院 变频热泵热水器地板辐射采暖系统节能的控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344453A (zh) * 2014-11-03 2015-02-11 广州德能热源设备有限公司 一种变频空气源热泵地板采暖系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508806A2 (en) * 2011-04-07 2012-10-10 Mitsubishi Electric Corporation Heat pump system and heat pump unit controlling method
CN203629017U (zh) * 2012-12-25 2014-06-04 三菱电机株式会社 空气调节装置
US20140174117A1 (en) * 2012-12-25 2014-06-26 Mitsubishi Electric Corporation Air conditioning apparatus
CN103277571A (zh) * 2013-06-19 2013-09-04 陈建平 动态回水温度流量调节阀
CN103912914A (zh) * 2014-04-22 2014-07-09 珠海格力电器股份有限公司 一种地暖的控制方法
CN104949192A (zh) * 2015-07-13 2015-09-30 顺德职业技术学院 变频热泵热水器地板辐射采暖系统节能的控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165418A (zh) * 2018-08-01 2019-01-08 代傲表计(济南)有限公司 基于户用热量表数据的室温测量方法
CN109165418B (zh) * 2018-08-01 2023-08-01 代傲表计(济南)有限公司 基于户用热量表数据的室温测量方法
CN110410854A (zh) * 2019-07-16 2019-11-05 合肥瑞纳节能工程有限公司 一种换热站运行特性曲线自动修正调控方法及系统
CN110410854B (zh) * 2019-07-16 2023-08-04 合肥瑞纳智能能源管理有限公司 一种换热站运行特性曲线自动修正调控方法及系统
EP3845818A4 (en) * 2019-10-29 2021-09-29 Guangdong Phnix Eco-Energy Solution Ltd. WATER TEMPERATURE REGULATION PROCESS FOR HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM
CN114963289A (zh) * 2021-06-23 2022-08-30 青岛海尔新能源电器有限公司 采暖系统的控制方法、装置、采暖系统及存储介质
CN113757788A (zh) * 2021-09-15 2021-12-07 河北工大科雅能源科技股份有限公司 一种站荷联动的二网平衡在线动态智能调控方法及系统
CN113757788B (zh) * 2021-09-15 2023-02-28 河北工大科雅能源科技股份有限公司 一种站荷联动的二网平衡在线动态智能调控方法及系统
CN114811714A (zh) * 2022-04-26 2022-07-29 大连理工大学 一种基于模型预测控制的供暖房间室温控制方法
CN115076766A (zh) * 2022-06-16 2022-09-20 临汾市热力供应有限公司 一种关于供热管网水力平衡的运行方法
CN115164270A (zh) * 2022-07-12 2022-10-11 韩城市热力有限公司 一种供热调度节能调整方法及系统

Also Published As

Publication number Publication date
CN106016760A (zh) 2016-10-12
CN106016760B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2018000515A1 (zh) 自适应变频热泵热水采暖系统节能控制方法
CN106091103B (zh) 恒温供水定频热泵热水采暖系统节能控制方法
EP3564596B1 (en) Control method for a heating operation of an air-conditioner
WO2019042042A1 (zh) 一种空调的控制方法及装置
WO2020228549A1 (zh) 变频空调的控制方法
CN104613651B (zh) 变频空气源热泵热水器频率调节方法
CN104501421B (zh) 一种变频双级压缩热泵热水器的控制方法
CN108168031B (zh) 一种基于风阀位置重设定静压值的微调响应通风空调控制方法
CN104633942A (zh) 变频喷气增焓热泵热水器频率调节及控制方法
WO2018177080A1 (zh) 空调器制热控制方法和控制装置
CN104949192A (zh) 变频热泵热水器地板辐射采暖系统节能的控制方法
WO2020181874A1 (zh) 空调抑霜控制方法及装置
CN103912914B (zh) 一种地暖的控制方法
CN103471205A (zh) 一种室内温度调节方法及双温度控制阀
CN110822634B (zh) 毛细管辐射空调制冷时压缩机的自适应动态控制方法
CN203758141U (zh) 封闭式融霜冷风机
WO2013016883A1 (zh) 一种变流量循环式热泵热水器
CN110470076A (zh) 一种户式水机智能控制方法
WO2019080277A1 (zh) 变频热泵热水器动态加热压缩机频率优化方法
WO2018196577A1 (zh) 一种空调器制热控制方法
CN110822635B (zh) 毛细管辐射空调制冷时电子膨胀阀的动态控制方法
CN104864490B (zh) 智能位式控制方法
CN111059613A (zh) 一种建筑内的热水供暖系统及其气候补偿方法
WO2018177079A1 (zh) 空调器制热控制方法、控制装置及空调器
WO2018196579A1 (zh) 制热控制方法、控制装置和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906912

Country of ref document: EP

Kind code of ref document: A1