WO2020181874A1 - 空调抑霜控制方法及装置 - Google Patents

空调抑霜控制方法及装置 Download PDF

Info

Publication number
WO2020181874A1
WO2020181874A1 PCT/CN2019/127443 CN2019127443W WO2020181874A1 WO 2020181874 A1 WO2020181874 A1 WO 2020181874A1 CN 2019127443 W CN2019127443 W CN 2019127443W WO 2020181874 A1 WO2020181874 A1 WO 2020181874A1
Authority
WO
WIPO (PCT)
Prior art keywords
frosting
unit
frequency
target
frost
Prior art date
Application number
PCT/CN2019/127443
Other languages
English (en)
French (fr)
Inventor
刘华
王伟
梁士民
孙育英
段德星
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/438,255 priority Critical patent/US20220186961A1/en
Priority to EP19919025.7A priority patent/EP3940305A4/en
Publication of WO2020181874A1 publication Critical patent/WO2020181874A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the present disclosure relates to the technical field of air conditioners, and in particular to an air conditioner frost suppression control method and device.
  • Air source heat pump is an energy-saving technology that has attracted much attention worldwide in recent years. As a renewable energy technology, it has become an important form of building energy and is widely used in cold and hot summer and cold (warm) areas in winter. Application space and value.
  • the air source heat pump uses ambient air as the heat source, and its main features are: 1Use ambient air as the heat source, which exists everywhere in space; in time, available from time to time; in quantity, as needed; 2will not be directly applied
  • the low-quality heat energy is converted into high-quality heat energy that can be directly used for air-conditioning and domestic hot water; 3 part of the heat lost to the atmosphere through the building envelope is recovered, and energy recycling is realized.
  • an air conditioner frost suppression control method including: determining the average defrost frequency of the unit in the current climate; determining the target defrost frequency according to the average defrost frequency; determining according to the target defrost frequency The heat exchange temperature difference, the control unit operates according to the heat exchange temperature difference.
  • the step of determining the average defrost frequency of the unit in the current climate includes: obtaining the meteorological parameters of the area where the unit is located; calculating the average defrost frequency of the unit according to the meteorological parameters and the frosting map determined by the unit.
  • the abscissa of the frosting map is air temperature, and the ordinate is air relative humidity;
  • the frosting map includes: dew condensation area, non-frosting area, and frosting area; frosting area includes constant rate frosting curve ,
  • the frosting area is divided into different frosting zones according to the frosting rate.
  • the frosting zone includes at least one of the following: light frosting zone, general frosting zone and heavy frosting zone; among them, each frosting zone corresponds to a defrosting zone. Frost frequency.
  • the step of calculating the average defrost frequency according to the frosting map computer group includes: obtaining the defrosting frequency of each frosting zone; calculating the proportion of operating conditions for each frosting zone; The proportion of the working conditions of the zone and the corresponding defrost frequency determine the average defrost frequency of the unit.
  • the step of determining the target defrosting frequency according to the average defrosting frequency includes: obtaining the defrosting frequency of each frosting zone; comparing the defrosting frequency of each frosting zone with the average defrosting frequency to determine In the defrosting frequency of the frosting zone, all defrosting frequencies that are less than the average defrosting frequency, and one of the defrosting frequencies is determined as the target defrosting frequency among all the defrosting frequencies that are less than the average defrosting frequency.
  • the step of determining the heat exchange temperature difference according to the target defrosting frequency includes: establishing a mathematical model of the heat exchange temperature difference and the change in the frosting rate according to the frosting map of the area where the unit is located; determining the corresponding temperature difference according to the target defrosting frequency Frost rate change amount: Substituting the frosting rate change amount into the mathematical model to calculate the heat exchange temperature difference.
  • the step of determining the corresponding frosting rate change amount according to the target defrosting frequency includes: determining the frosting rate of the unit under standard frosting conditions according to the frosting map; determining the target defrosting frequency. Frost zone, and determine the frosting rate corresponding to the frosting zone; the difference between the frosting rate of the computer group under the standard frosting condition and the frosting rate corresponding to the frosting zone is used as the frosting rate change of the unit .
  • the air conditioner frost suppression control method further includes: judging whether the unit has reached the frost suppression control target, and if so, the control unit continues to operate according to the heat exchange temperature difference; otherwise, adjust the heat exchange Temperature difference, control the unit to operate according to the adjusted heat exchange temperature difference until the unit reaches the frost suppression control target.
  • the step of judging whether the unit has reached the frost suppression control target includes: correcting the frosting map according to the heat exchange temperature difference; correcting the corrected average defrost frequency of the computer group based on the corrected frosting map; judging the corrected average Whether the defrost frequency is less than or equal to the target defrost frequency; if it is, it is determined that the frost suppression control target is reached, otherwise it is determined that the frost suppression control target is not reached.
  • the step of adjusting the heat exchange temperature difference includes: adjusting the frosting rate change of the unit; substituting the adjusted frosting rate change of the unit into the mathematical model to calculate the adjusted heat exchange temperature difference.
  • an air conditioner frost suppression control device including: a calculation module for determining the average defrosting frequency of the unit in the current climate; a determining module for determining the average defrosting frequency according to the Target defrost frequency; control module, used to determine the heat exchange temperature difference according to the target defrost frequency, and control the unit to operate according to the heat exchange temperature difference.
  • an air conditioning unit including the air conditioner frost suppression control device as in the above-mentioned embodiment.
  • a computer device including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor implements the air conditioner as in the above-mentioned embodiment when the program is executed. Frost suppression control method.
  • a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute the air conditioner defrost control method as in the above-mentioned embodiments when executed by a computer processor.
  • Figure 1 is a flowchart of some embodiments of the air conditioner frost suppression control method of the present disclosure
  • FIG. 2 is a schematic diagram of a frosting map of sub-regions according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a revised frosting map of sub-regions according to an embodiment of the present disclosure
  • Fig. 5 is a structural block diagram of some embodiments of the air conditioner defrost control device of the present disclosure.
  • the performance of the air source heat pump under nominal operating conditions is satisfactory.
  • the air source heat pump operates under nominal operating conditions (dry bulb temperature 7°C, wet bulb temperature).
  • nominal operating conditions dry bulb temperature 7°C, wet bulb temperature.
  • 1.9-2.6 times lower heat should be drawn from the ambient air and 2.9-3.6 times higher heat should be provided to users.
  • the outdoor side heat exchanger is often in frosting conditions, it will face frequent frosting, which affects its actual operating performance, resulting in a substantial increase in building energy consumption, which seriously restricts the air source heat pump Application and development.
  • no effective solutions have yet been proposed.
  • the present disclosure provides an air conditioner frost suppression control method and device to at least solve the problem of frequent frost formation of air conditioners in the prior art.
  • the frost suppression control method of the air conditioner based on the frosting map of the embodiment of the present disclosure determines the defrosting frequency of the unit based on the frosting map by region, and draws up the frost suppression target, and then calculates the heat exchange temperature difference under the frost suppression target to control the air conditioner Take control.
  • the above method can improve the amount of frosting during the operation of the unit, reduce the frequency of defrosting, improve the actual operating performance of the unit, and effectively solve the problem of frequent frosting of the air source heat pump.
  • FIG. 1 illustrates a flowchart of some embodiments of the air conditioner frost suppression control method.
  • the air conditioner frost suppression control method includes the following steps S102-S106:
  • S102 Determine the average defrost frequency of the unit in the current climate
  • S104 Determine the target defrost frequency according to the average defrost frequency
  • S106 Determine the heat exchange temperature difference according to the target defrosting frequency, and control the unit to operate according to the heat exchange temperature difference.
  • an air conditioning suppression method based on the frost map is provided. Based on the regional frost map, the defrost frequency of the unit is determined, the frost suppression target is drawn, and the heat transfer under the frost suppression target is calculated. The temperature difference controls the air conditioner.
  • the above method can improve the amount of frosting during the operation of the unit, reduce the frequency of defrosting, improve the actual operating performance of the unit, and effectively solve the problem of frequent frosting of the air source heat pump.
  • the step of determining the average defrost frequency of the unit in the current climate includes:
  • the average defrost frequency of the computer group According to the meteorological parameters and the frost map determined by the unit, the average defrost frequency of the computer group.
  • the method of the present disclosure is based on a frosting map, also called a regional frosting map, which is a frosting distribution map.
  • Figure 2 shows the frosting distribution of a typical unit under typical annual meteorological conditions.
  • the abscissa of the frost map is the air temperature, and the ordinate is the relative humidity of the air;
  • the frost map includes: dew area, non-frost area and frost area;
  • the critical dew line divides the entire map into two parts, the critical dew line The lower side of is the non-frosting zone, and the upper side of the critical dew line is parallel to the ordinate and the lower end is the critical dew line; above the critical dew line, the left side of the critical dew line is Frost zone, on the right is the dew zone.
  • the frosting zone contains 3 constant-rate frosting curves, which are divided into different frosting zones according to the frosting rate, light frosting zone, general frosting zone and heavy frosting zone; among them, each frosting zone corresponds to one
  • the frequency of defrosting, the frosting rate in each area is similar.
  • the light frost zone and the general frost zone there is a constant rate of frosting curve.
  • the light frost is divided into zone I and zone II, and the general frost zone is also divided into zone I and zone II. In this way, as shown in Figure 1.
  • the frosting area in the frosting map is divided into 5 frosting areas in total, and the frosting rate of each constant rate frosting curve is shown in the legend in Figure 1.
  • the steps of the average defrost frequency of the frost map computer group include:
  • the steps of determining the target defrost frequency according to the average defrost frequency include:
  • the corresponding frosting rate of this typical unit is 1.4mm/h at (2/1°C), and the unit is positioned at standard frosting conditions.
  • different frost suppression targets are designed according to user needs and economic factors (the lower the defrosting frequency is, the more conducive to energy saving). According to different frost suppression targets, by reducing frosting in the machine component area The frosting area of the map can intuitively reflect the frost suppression of the unit, and clearly reflect the actual frosting degree of the unit under full working conditions.
  • the step of determining the heat exchange temperature difference according to the target defrosting frequency includes:
  • the step of determining the corresponding frost rate change amount according to the target defrosting frequency includes:
  • the difference between the frosting rate of the computer group under the standard frosting condition and the frosting rate corresponding to the frosting zone is used as the change of the frosting rate of the unit.
  • the preliminary frost suppression control has been completed, that is, the operating parameters of the air conditioning unit are determined according to the frost suppression target.
  • the embodiments of the present disclosure further verify whether the above frost suppression control method reaches the frost suppression target, that is, whether it is effective, and perform the next step according to the verification result.
  • the frost suppression control method of the present disclosure further includes:
  • the steps to determine whether the unit has reached the frost suppression control target include:
  • the relationship between the frost suppression target and the frosting area in the frosting map is established, and the frosting map is corrected to quantify the actual frosting range and defrosting frequency of the unit after frost suppression, and intuitive Reflecting the actual degree of frosting, this method has the characteristics of simple control and strong practicability.
  • the step of adjusting the heat exchange temperature difference includes:
  • the frosting map is corrected based on the target heat transfer temperature difference.
  • the corrected map is shown in Figure 3.
  • the frosting area is reduced, and the frosting area only includes light frost.
  • the standard frosting work Under this condition, the corresponding frosting rate is 0.1mm/h, which is in line with the reduced value of frosting rate.
  • the present disclosure is an air source heat pump suppression method based on a regional frosting map.
  • a mathematical calculation model for the increase in heat exchange temperature difference and the increase in frosting rate is established, and determined according to typical annual meteorological parameters
  • the defrosting frequency of the unit considering the economic cost, draw up the frost suppression target and select the frosting rate adjustment value, the calculation model calculates the heat transfer temperature difference under the frost suppression target, corrects the frosting map, and determines the defrosting frequency under the corrected map. Make a judgment.
  • the frost suppression control method of the present disclosure specifically includes the following steps:
  • the first step is to establish a mathematical calculation model for the change in the heat exchange temperature difference and the change in the frosting rate based on the regional frosting map.
  • a mathematical calculation model for the change in the heat exchange temperature difference and the change in the frosting rate based on the regional frosting map.
  • four equal-rate frosting lines were determined, namely 0.2mm/h, 0.5mm/h, 0.9mm/h, 1.3mm/h, and the corresponding heat exchange temperature difference, and the amount of heat exchange temperature difference change was established
  • the second step is to calculate the defrost frequency f1 in the typical year climate based on the regional typical year meteorological parameters (hourly temperature and humidity), combined with the regional frost map.
  • the defrosting frequency is based on the defrosting time. It is considered that the defrosting time point corresponding to each area is one frosting, unit: times/h, according to the research frosting map from heavy frosting area, general frosting area (I , II) and light frost zone (I, II), the defrost frequency is 2, 1.3, 1, 0.4, 0.25 times/h.
  • the third step is to formulate frost suppression goals.
  • the defrosting frequency f1 of the unit in the typical annual climate of the region considering the economic cost, the achievable defrosting frequency f0, namely the target defrosting frequency, is drawn up.
  • the fourth step is to calculate the heat transfer temperature difference based on the calculation model and correct the frosting map.
  • the frost rate adjustment value v0' under the proposed target is calculated based on the above calculation model, and ⁇ T' is calculated to determine the heat exchange temperature difference, and then determine the offset of the critical line and dew line of the frosting map of the sub-region, and modify it Frosting map.
  • the fifth step is to determine the realization of the frost suppression target. Based on the revised frosting map, the computer group's defrosting frequency f2 in a typical year climate is compared with the frost suppression target f0. If f2 ⁇ f0, the frost suppression target is reached, otherwise, readjust the frosting rate v′ and recalculate , Until the frost suppression target is reached, and frost suppression is achieved.
  • an air conditioning suppression method based on the frost map is provided. Based on the regional frost map, the defrost frequency of the unit is determined, the frost suppression target is drawn, and the heat transfer under the frost suppression target is calculated. The temperature difference controls the air conditioner.
  • the above method can improve the amount of frosting during the operation of the unit, reduce the frequency of defrosting, improve the actual operating performance of the unit, and effectively solve the problem of frequent frosting of the air source heat pump.
  • Figure 5 illustrates a structural block diagram of some embodiments of the air conditioner frost suppression control device, including:
  • the calculation module 502 is used to determine the average defrost frequency of the unit in the current climate
  • the determination module 504 connected to the calculation module 502, is used to determine the target defrost frequency according to the average defrost frequency;
  • the control module 506, connected to the determination module 504, is used to determine the heat exchange temperature difference according to the target defrosting frequency, and control the unit to operate according to the heat exchange temperature difference.
  • an air conditioner suppression control device based on a frost map is provided. Based on the regional frost map, the defrost frequency of the unit is determined, and the frost suppression target is drawn up, and then the conversion under the frost suppression target is calculated. The thermal temperature difference controls the air conditioner.
  • the above method can improve the amount of frosting during the operation of the unit, reduce the frequency of defrosting, improve the actual operating performance of the unit, and effectively solve the problem of frequent frosting of the air source heat pump.
  • the calculation module 502 includes: a meteorological parameter acquisition unit for acquiring the meteorological parameters of the unit in the area; and an average defrost frequency determining unit for determining the frosting map according to the meteorological parameters and the unit, and the computer group The average defrost frequency.
  • the abscissa of the frosting map is the air temperature, and the ordinate is the relative humidity of the air; the frosting map includes: dew area, non-frost area and frost area; frost area contains constant rate frost curve, which will frost
  • the zone is divided into different frosting zones according to the frosting rate.
  • the frosting zone includes at least one of the following: light frosting zone, general frosting zone and heavy frosting zone; among them, each frosting zone corresponds to a defrosting frequency.
  • the calculation module 502 includes: a first obtaining unit for obtaining the defrosting frequency of each frosting zone; a first calculation unit for calculating the proportion of operating conditions for each frosting zone; and The first determining unit is used to determine the average defrosting frequency of the unit according to the proportion of operating conditions of each frosting zone and the corresponding defrosting frequency.
  • the determining module 504 includes: a second acquiring unit for acquiring the defrosting frequency of each frosting zone; and a second determining unit for comparing the defrosting frequency of each frosting zone with the average defrosting frequency Compare the frost frequencies, determine all defrost frequencies less than the average defrost frequency in the defrost frequency of the frosting zone, and determine one of the defrost frequencies as the target defrost frequency among all the defrost frequencies less than the average defrost frequency.
  • control module 506 includes: a modeling unit for establishing a mathematical model of the heat exchange temperature difference and frosting rate change according to the frosting map of the area where the unit is located; a third determining unit for defrosting according to the target The frequency determines the corresponding frosting rate change; and the second calculating unit is used to substitute the frosting rate change into the mathematical model to calculate the heat exchange temperature difference.
  • the third determining unit includes: a first determining subunit for determining the frosting rate of the unit under standard frosting conditions according to the frosting map; a second determining subunit for determining the target defrosting rate The frosting zone where the frost frequency is located, and the frosting rate corresponding to the frosting zone is determined; and the calculation subunit is used for the computer group between the frosting rate under the standard frosting condition and the frosting rate corresponding to the frosting zone The difference of is used as the change of the frosting rate of the unit.
  • the frost suppression control device of the air conditioner further includes: a judgment module for judging whether the unit has reached the frost suppression control target after the control unit operates according to the heat exchange temperature difference; the maintenance module is used when the unit reaches the frost suppression control target , The control unit continues to operate according to the heat exchange temperature difference; and the adjustment module is used to adjust the heat exchange temperature difference when the unit does not reach the frost suppression control target, and the control unit operates according to the adjusted heat exchange temperature difference until the unit reaches the frost suppression control target.
  • the judgment module includes: a correction unit for correcting the frosting map according to the heat exchange temperature difference; a third calculation unit for calculating the corrected average defrosting frequency of the computer group based on the corrected frosting map; and a judgment unit for Determine whether the corrected average defrost frequency is less than or equal to the target defrost frequency; and the result determination unit is used to determine whether the corrected average defrost frequency is less than or equal to the target defrost frequency to determine that the defrost control target is reached, and the corrected average The defrosting frequency is greater than the target defrosting frequency. It is determined that the defrosting control target is not reached.
  • the adjustment module includes: an adjustment unit for adjusting the frosting rate change of the unit; and a third calculation unit for substituting the adjusted frosting rate change of the unit into the mathematical model to calculate the adjusted The heat exchange temperature difference.
  • an embodiment of the present disclosure also provides an air conditioner unit including the air conditioner frost suppression control device as described above.
  • an air conditioning unit which determines the defrost frequency of the unit based on the regional frosting map, and draws up a frost suppression target, and then calculates the heat exchange temperature difference under the frost suppression target to control the air conditioner.
  • the above method can improve the amount of frosting during the operation of the unit, reduce the frequency of defrosting, improve the actual operating performance of the unit, and effectively solve the problem of frequent frosting of the air source heat pump.
  • the embodiment of the present disclosure also provides a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the above-mentioned air conditioner defrost control method is realized when the air conditioner executes the program.
  • an air conditioner suppression control method based on the frosting map is provided. Based on the regional frosting map, the defrosting frequency of the unit is determined, and the frost suppression target is drawn up, and then the conversion under the frost suppression target is calculated. The thermal temperature difference controls the air conditioner.
  • the above method can improve the amount of frosting during the operation of the unit, reduce the frequency of defrosting, improve the actual operating performance of the unit, and effectively solve the problem of frequent frosting of the air source heat pump.
  • the embodiments of the present disclosure also provide a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute the above-mentioned Frost suppression control method for air conditioner.
  • an air conditioner suppression control method based on the frosting map is provided. Based on the regional frosting map, the defrosting frequency of the unit is determined, and the frost suppression target is drawn up, and then the conversion under the frost suppression target is calculated. The thermal temperature difference controls the air conditioner.
  • the above method can improve the amount of frosting during the operation of the unit, reduce the frequency of defrosting, improve the actual operating performance of the unit, and effectively solve the problem of frequent frosting of the air source heat pump.

Abstract

一种空调抑霜控制方法及装置,其中,所述空调抑霜控制方法包括:获取机组的结霜图谱和所在地区的气象条件,根据结霜图谱计算机组的平均除霜频率;根据平均除霜频率确定目标除霜频率;根据目标除霜频率确定换热温差,控制机组按照换热温差运行。上述方法可以改善机组运行中的结霜量,降低除霜频率,提高机组实际运行性能,有效解决了空气源热泵频繁结霜的问题。

Description

空调抑霜控制方法及装置
本公开是以申请号为 201910189938.5,申请日为 2019年3月13日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空调技术领域,具体而言,涉及一种空调抑霜控制方法及装置。
背景技术
“空气源热泵”是近年来全世界倍受关注的节能技术,其作为可再生能源技术,已成为重要的建筑能源形式,并广泛用于寒冷和夏热冬冷(暖)地区,具有广阔的应用空间和价值。
空气源热泵以环境空气为热源,其主要特点是:①以环境空气为热源,在空间上,处处存在;在时间上,时时可得;在数量上,随需而取;②将不能直接应用的低品质热能转化成可直接应用的高品质热能,以供空调与生活热水使用;③回收了一部分通过建筑物围护结构散失到大气的热量,实现了能量的循环利用。
发明人所知晓的相关技术中,空气源热泵在冬季运行时,室外侧换热器有时会处于结霜工况。
发明内容
根据本公开实施例的一个方面,提供了一种空调抑霜控制方法,包括:确定机组在当前气候下的平均除霜频率;根据平均除霜频率确定目标除霜频率;根据目标除霜频率确定换热温差,控制机组按照换热温差运行。
在一些实施例中,确定机组在当前气候下的平均除霜频率的步骤包括:获取机组在所在地区的气象参数;根据气象参数和机组确定的结霜图谱,计算机组的平均除霜频率。
在一些实施例中,结霜图谱的横坐标为空气温度,纵坐标为空气相对湿度;结霜图谱包括:结露区、非结霜区和结霜区;结霜区包含等速率结霜曲线,将结霜区按照结霜速率分为不同的结霜分区,结霜分区至少包括以下之一:轻霜区、一般结霜区和 重霜区;其中,每个结霜分区分别对应一个除霜频率。
在一些实施例中,根据结霜图谱计算机组的平均除霜频率的步骤包括:获取每个结霜分区的除霜频率;分别计算每个结霜分区的工况占比;根据每个结霜分区的工况占比和对应的除霜频率确定机组的平均除霜频率。
在一些实施例中,根据平均除霜频率确定目标除霜频率的步骤包括:获取每个结霜分区的除霜频率;将每个结霜分区的除霜频率与平均除霜频率进行对比,确定结霜分区的除霜频率中小于平均除霜频率的所有除霜频率,并在小于平均除霜频率的所有除霜频率中确定其中一个除霜频率作为目标除霜频率。
在一些实施例中,根据目标除霜频率确定换热温差的步骤包括:根据机组所在地区的结霜图谱建立换热温差与结霜速率变化量的数学模型;根据目标除霜频率确定对应的结霜速率变化量;将结霜速率变化量代入数学模型计算得到换热温差。
在一些实施例中,数学模型为:ΔT′=A×v′+B,其中,ΔT′为换热温差,v′为结霜速率变化量,A为第一系数,B为第二系数。
在一些实施例中,根据目标除霜频率确定对应的结霜速率变化量的步骤包括:根据结霜图谱,确定机组在标准结霜工况下的结霜速率;确定目标除霜频率所在的结霜分区,并确定结霜分区对应的结霜速率;计算机组在标准结霜工况下的结霜速率与结霜分区对应的结霜速率之间的差值,作为机组的结霜速率变化量。
在一些实施例中,在控制机组按照换热温差运行之后,空调抑霜控制方法还包括:判断机组是否达到抑霜控制目标,如果是,则控制机组继续按照换热温差运行;否则调节换热温差,控制机组按照调节后的换热温差运行,直至机组达到抑霜控制目标。
在一些实施例中,判断机组是否达到抑霜控制目标的步骤包括:根据换热温差修正结霜图谱;根据修正后的结霜图谱计算机组的修正后的平均除霜频率;判断修正后的平均除霜频率是否小于等于目标除霜频率;如果是,则确定达到抑霜控制目标,否则确定没有达到抑霜控制目标。
在一些实施例中,调节换热温差的步骤包括:调节机组的结霜速率变化量;将调节后的机组的结霜速率变化量代入数学模型计算得到调节后的换热温差。
根据本公开实施例的另一方面,提供了一种空调抑霜控制装置,包括:计算模块,用于确定机组在当前气候下的平均除霜频率;确定模块,用于根据平均除霜频率确定目标除霜频率;控制模块,用于根据目标除霜频率确定换热温差,控制机组按照换热温差运行。
根据本公开实施例的又一方面,提供了一种空调机组,包括如上述实施例的空调抑霜控制装置。
根据本公开实施例的又一方面,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如上述实施例的空调抑霜控制方法。
根据本公开实施例的又一方面,提供了一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行如上述实施例的空调抑霜控制方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开空调抑霜控制方法的一些实施例的流程图;
图2是本公开实施例的分区域结霜图谱的一种示意图;
图3是本公开实施例的修正后的分区域结霜图谱的一种示意图;
图4是本公开空调抑霜控制方法的另一些实施例的流程图;以及
图5是本公开空调抑霜控制装置的一些实施例的结构框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在发明人所知晓的相关技术中,空气源热泵在名义工况下的性能令人满意,例如,在一些标准中所规定的,空气源热泵在名义工况(干球温度7℃,湿球温度6℃)下运行,每消耗1度电,应从环境空气中吸取1.9~2.6倍的低位热量,并为用户提供2.9~3.6倍的高位热量。但是,空气源热泵在冬季运行中,由于室外侧换热器常处于结霜工况,会面临频繁结霜的问题,影响其实际运行性能,致使建筑能耗大幅增加,严重制约了空气源热泵的应用与发展。针对相关技术中空调机组频繁结霜的问题,目前尚未提出 有效地解决方案。
有鉴于此,本公开提供了一种空调抑霜控制方法及装置,以至少解决现有技术中空调机组频繁结霜的问题。
本公开实施例的基于结霜图谱的空调抑霜控制方法,基于分区域结霜图谱,确定机组的除霜频率,并拟定抑霜目标,进而通过计算抑霜目标下的换热温差,对空调进行控制。上述方法可以改善机组运行中的结霜量,降低除霜频率,提高机组实际运行性能,有效解决了空气源热泵频繁结霜的问题。
本公开的实施例提供了一种空调抑霜控制方法,该抑霜控制方法直接应用至各种空调机组上,例如,空气源热泵机组;或者应用至具有空调部分功能的其他装置上,具体实现时,通过在空调机组或其他装置安装软件、APP或者写入控制器相应的程序的方式来实现。具体来说,图1示意出该空调抑霜控制方法的一些实施例的流程图,如图1所示,该空调抑霜控制方法包括如下步骤S102-S106:
S102:确定机组在当前气候下的平均除霜频率;
S104:根据平均除霜频率确定目标除霜频率;
S106:根据目标除霜频率确定换热温差,控制机组按照换热温差运行。
在上述实施方式中,提供了一种基于结霜图谱的空调抑霜方法,基于分区域结霜图谱,确定机组的除霜频率,并拟定抑霜目标,进而通过计算抑霜目标下的换热温差,对空调进行控制。上述方法能够改善机组运行中的结霜量,降低除霜频率,提高机组实际运行性能,有效解决了空气源热泵频繁结霜的问题。
在一些实施例中,确定机组在当前气候下的平均除霜频率的步骤包括:
获取机组所在地区的气象参数;
根据气象参数和机组确定的结霜图谱,计算机组的平均除霜频率。
本公开的方法基于结霜图谱,也称为分区域结霜图谱,是一种结霜分布图,图2为典型机组在典型年气象条件下的结霜分布情况,如图2所示,结霜图谱的横坐标为空气温度,纵坐标为空气相对湿度;结霜图谱包括:结露区、非结霜区和结霜区;临界结露线将整个图谱分为两部分,临界结露线的下侧为非结霜区,临界结露线的上侧有一条与纵坐标平行且下端终于临界结露线的临界结霜线;在临界结露线上面,临界结霜线的左侧为结霜区,右侧为结露区。
结霜区包含3条等速率结霜曲线,将结霜区按照结霜速率分为不同的结霜分区,轻霜区、一般结霜区和重霜区;其中,每个结霜分区对应一个除霜频率,每个区域内 的结霜速率相似。在轻霜区和一般结霜区内又都包含一条等速率结霜曲线,将轻霜区分为Ⅰ区和Ⅱ区,将一般结霜区也分为Ⅰ区和Ⅱ区,如此,图1中的结霜图谱中的结霜区总共分为5个结霜区,各等速率结霜曲线的结霜速率见图1的图例所示。
通过分区域结霜图谱,可以清晰的体现出机组在不同地域气候下的实际结霜程度,有利于确定下一步的抑霜目标。
在上述结霜图谱的基础之上,根据结霜图谱计算机组的平均除霜频率的步骤包括:
获取每个结霜分区的除霜频率;
分别计算每个结霜分区的工况占比;
根据每个结霜分区的工况占比和对应的除霜频率确定机组的平均除霜频率。
基于图2,分别计算出每个结霜区的工况占比,并结合各分区除霜频率,计算出整个供暖季的除霜频率即平均除霜频率f1=0.16次/h。
其中,根据平均除霜频率确定目标除霜频率的步骤包括:
获取每个结霜分区的除霜频率;
将每个结霜分区的除霜频率与平均除霜频率进行对比,确定结霜分区的除霜频率中小于平均除霜频率的所有除霜频率,并在小于平均除霜频率的所有除霜频率中确定其中一个除霜频率作为目标除霜频率。
根据结霜图谱,该典型机组在(2/1℃)下,对应的结霜速率是1.4mm/h,机组抑霜定位在标准结霜工况下机组轻微结霜,轻微结霜对应的结霜速率为0.1mm/h,除霜频率f0=0.01次/h。
在本公开的实施例中,根据用户的需求,同时考虑经济因素(除霜频率越低越有利于节能)设计不同的抑霜目标,根据不同的抑霜目标,通过减小机组分区域结霜图谱的结霜区域,能够直观的反映机组的抑霜情况,并清晰体现出机组全工况下的实际结霜程度。
在一些实施例中,根据目标除霜频率确定换热温差的步骤包括:
根据机组所在地区的结霜图谱建立换热温差与结霜速率变化量的数学模型;
根据目标除霜频率确定对应的结霜速率变化量;
将结霜速率变化量代入数学模型计算得到换热温差。
在一些实施例中,数学模型为:ΔT′=A×v′+B,其中,ΔT′为换热温差,v′为结霜速率变化量,A为第一系数,B为第二系数。机组在抑霜定位下(轻微结霜) 的结霜速率是0.1mm/h,结霜速率下降值为v′=1.3mm/h,按照ΔT′=A×v′+B,计算出目标换热温差ΔT=3℃。
在一些实施例中,根据目标除霜频率确定对应的结霜速率变化量的步骤包括:
根据结霜图谱,确定机组在标准结霜工况下的结霜速率;
确定目标除霜频率所在的结霜分区,并确定结霜分区对应的结霜速率;
计算机组在标准结霜工况下的结霜速率与结霜分区对应的结霜速率之间的差值,作为机组的结霜速率变化量。
在上述实施方式中,已完成初步的抑霜控制,即根据抑霜目标确定了空调机组的运行参数。在空调机组按照运行参数运行之后,本公开的实施例还对于上述抑霜控制方法是否达到抑霜目标,即是否有效进行了进一步的验证,并根据验证结果进行下一步处理。在控制机组按照换热温差运行之后,本公开的抑霜控制方法还包括:
判断机组是否达到抑霜控制目标,如果是,则控制机组继续按照换热温差运行;否则调节换热温差,控制机组按照调节后的换热温差运行,直至机组达到抑霜控制目标。
其中,判断机组是否达到抑霜控制目标的步骤包括:
根据换热温差修正结霜图谱;
根据修正后的结霜图谱计算机组的修正后的平均除霜频率;
判断修正后的平均除霜频率是否小于等于目标除霜频率,如果是,则确定达到抑霜控制目标,否则确定没有达到抑霜控制目标。
根据分区域结霜图谱和抑霜目标,建立了抑霜目标和结霜图谱中结霜区域的关系,修正结霜图谱,实现量化机组抑霜后的实际结霜范围及除霜频率,并直观的反映实际的结霜程度,该方法具有控制简单和实用性强的特点。
在一些实施例中,调节换热温差的步骤包括:
调节机组的结霜速率变化量;
将调节后的机组的结霜速率变化量代入数学模型计算得到调节后的换热温差。
基于目标换热温差修正结霜图谱,修正后的图谱如图3所示,结霜区范围减小,结霜区仅包括轻霜达,同时从修正后的图谱上看,在标准结霜工况下对应的结霜速率为0.1mm/h,吻合结霜速率降低值,根据新图谱计算出除霜频率f2=0.01次/h,满足设计的抑霜目标。
为了验证该方法,在标准结霜工况下,进行了现场测试验证。通过调整机组压缩 机和风机的运行关系,使得机组是外侧换热器的换热温差达到3℃,保持机组稳定运行一个结除霜循环,通过测试该循环机组的化霜水量,计算出结霜速率为0.15mm/h,略大于目标结霜速率,考虑到化霜时的测试误差,该测试结果达到了抑霜目标,验证了该抑霜方法的准确性和有效性。
本公开是一种基于分区域结霜图谱的空气源热泵抑霜方法,基于分区域结霜图谱,建立换热温差增量和结霜速率增量的数学计算模型,按照典型年气象参数,确定机组的除霜频率,考虑经济性成本问题,拟定抑霜目标并选取结霜速率调整值,计算模型计算抑霜目标下的换热温差,修正结霜图谱,确定修正图谱下的除霜频率,进行判别。
在另一些实施例中,如图4所示,本公开的抑霜控制方法具体包括如下步骤:
第一步,基于分区域结霜图谱,建立换热温差变化量和结霜速率变化量的数学计算模型。根据分区域结霜图谱分别确定4条等速率结霜线,即0.2mm/h、0.5mm/h、0.9mm/h、1.3mm/h,对应的换热温差,建立换热温差变化量量和结霜速率变化量的数学计算模型,即ΔT′=A×v′+B。
第二步,根据地域的典型年气象参数(逐时的温度和湿度),结合分区域结霜图谱,计算机组典型年气候下的除霜频率f1。其中,除霜频率以除霜时间为准,认为结霜进行到各区域对应除霜时间点为结霜一次,单位:次/h,根据研究结霜图谱从重霜区、一般结霜区(Ⅰ、Ⅱ)和轻霜区(Ⅰ、Ⅱ),除霜频率依次是2、1.3、1、0.4、0.25次/h。
第三步,拟定抑霜目标。根据机组在该地区典型年气候下的除霜频率f1,考虑经济性成本问题,拟定可以实现的除霜频率f0,即目标除霜频率。
第四步,基于计算模型计算换热温差,修正结霜图谱。拟定目标下的结霜速率调整值v0′,基于上述计算模型,计算出ΔT′,确定换热温差,进而确定分区域结霜图谱的临界线结霜线和结露线的偏移量,修正结霜图谱。
第五步,确定抑霜目标的实现。基于修正后的结霜图谱,计算机组在典型年气候下的除霜频率f2,对比抑霜目标f0,若f2≤f0,则达到抑霜目标,反之,重新调整结霜速率v′进行重新计算,直至达到抑霜目标,实现抑制结霜。
在上述实施方式中,提供了一种基于结霜图谱的空调抑霜方法,基于分区域结霜图谱,确定机组的除霜频率,并拟定抑霜目标,进而通过计算抑霜目标下的换热温差,对空调进行控制。上述方法可以改善机组运行中的结霜量,降低除霜频率,提高机组 实际运行性能,有效解决了空气源热泵频繁结霜的问题。
基于上述实施例中提供的抑霜控制方法,本公开还提供了一种空调抑霜控制装置,图5示意出了该空调抑霜控制装置的一些实施例的结构框图,包括:
计算模块502,用于确定机组在当前气候下的平均除霜频率;
确定模块504,与计算模块502连接,用于根据平均除霜频率确定目标除霜频率;和
控制模块506,与确定模块504连接,用于根据目标除霜频率确定换热温差,控制机组按照换热温差运行。
在上述实施方式中,提供了一种基于结霜图谱的空调抑霜控制装置,基于分区域结霜图谱,确定机组的除霜频率,并拟定抑霜目标,进而通过计算抑霜目标下的换热温差,对空调进行控制。上述方法可以改善机组运行中的结霜量,降低除霜频率,提高机组实际运行性能,有效解决了空气源热泵频繁结霜的问题。
在一些实施例中,计算模块502包括:气象参数获取单元,用于获取机组在所在地区的气象参数;和平均除霜频率确定单元,用于根据气象参数和机组确定的结霜图谱,计算机组的平均除霜频率。
其中,结霜图谱的横坐标为空气温度,纵坐标为空气相对湿度;结霜图谱包括:结露区、非结霜区和结霜区;结霜区包含等速率结霜曲线,将结霜区按照结霜速率分为不同的结霜分区,结霜分区至少包括以下之一:轻霜区、一般结霜区和重霜区;其中,每个结霜分区分别对应一个除霜频率。
在一些实施例中,计算模块502包括:第一获取单元,用于获取每个结霜分区的除霜频率;第一计算单元,用于分别计算每个结霜分区的工况占比;和第一确定单元,用于根据每个结霜分区的工况占比和对应的除霜频率确定机组的平均除霜频率。
在一些实施例中,确定模块504包括:第二获取单元,用于获取每个结霜分区的除霜频率;和第二确定单元,用于将每个结霜分区的除霜频率与平均除霜频率进行对比,确定结霜分区的除霜频率中小于平均除霜频率的所有除霜频率,并在小于平均除霜频率的所有除霜频率中确定其中一个除霜频率作为目标除霜频率。
在一些实施例中,控制模块506包括:建模单元,用于根据机组所在地区的结霜图谱建立换热温差与结霜速率变化量的数学模型;第三确定单元,用于根据目标除霜频率确定对应的结霜速率变化量;和第二计算单元,用于将结霜速率变化量代入数学模型计算得到换热温差。
其中,数学模型为:ΔT′=A×v′+B,其中,ΔT′为换热温差,v′为结霜速率变化量,A为第一系数,B为第二系数。
在一些实施例中,第三确定单元包括:第一确定子单元,用于根据结霜图谱,确定机组在标准结霜工况下的结霜速率;第二确定子单元,用于确定目标除霜频率所在的结霜分区,并确定结霜分区对应的结霜速率;和计算子单元,用于计算机组在标准结霜工况下的结霜速率与结霜分区对应的结霜速率之间的差值,作为机组的结霜速率变化量。
在一些实施例中,本空调抑霜控制装置还包括:判断模块,用于在控制机组按照换热温差运行之后判断机组是否达到抑霜控制目标;维持模块,用于机组达到抑霜控制目标时,控制机组继续按照换热温差运行;和调节模块,用于机组未达到抑霜控制目标时,调节换热温差,控制机组按照调节后的换热温差运行,直至机组达到抑霜控制目标。
其中,判断模块包括:修正单元,用于根据换热温差修正结霜图谱;第三计算单元,用于根据修正后的结霜图谱计算机组的修正后的平均除霜频率;判断单元,用于判断修正后的平均除霜频率是否小于等于目标除霜频率;和结果确定单元,用于在修正后的平均除霜频率小于等于目标除霜频率确定达到抑霜控制目标,并在修正后的平均除霜频率大于目标除霜频率确定没有达到抑霜控制目标。
在一些实施例中,调节模块包括:调节单元,用于调节机组的结霜速率变化量;和第三计算单元,用于将调节后的机组的结霜速率变化量代入数学模型计算得到调节后的换热温差。
关于上述实施例中的空调抑霜控制装置,其中各个单元、模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
基于上述实施例提供的空调抑霜控制装置,本公开的实施例还提供了一种空调机组,包括如上述的空调抑霜控制装置。
在上述实施方式中,提供了一种空调机组,基于分区域结霜图谱,确定机组的除霜频率,并拟定抑霜目标,进而通过计算抑霜目标下的换热温差,对空调进行控制。上述方法可以改善机组运行中的结霜量,降低除霜频率,提高机组实际运行性能,有效解决了空气源热泵频繁结霜的问题。
基于上述实施例提供的空调抑霜控制方法,在本公开的实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序, 所述处理器执行所述程序时实现如上述的空调抑霜控制方法。
在上述实施方式中,提供了一种基于结霜图谱的空调抑霜控制方法,基于分区域结霜图谱,确定机组的除霜频率,并拟定抑霜目标,进而通过计算抑霜目标下的换热温差,对空调进行控制。上述方法可以改善机组运行中的结霜量,降低除霜频率,提高机组实际运行性能,有效解决了空气源热泵频繁结霜的问题。
基于上述实施例提供的空调抑霜控制方法,本公开的实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如上述的空调抑霜控制方法。
在上述实施方式中,提供了一种基于结霜图谱的空调抑霜控制方法,基于分区域结霜图谱,确定机组的除霜频率,并拟定抑霜目标,进而通过计算抑霜目标下的换热温差,对空调进行控制。上述方法可以改善机组运行中的结霜量,降低除霜频率,提高机组实际运行性能,有效解决了空气源热泵频繁结霜的问题。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种空调抑霜控制方法,包括:
    确定机组在当前气候下的平均除霜频率;
    根据所述平均除霜频率确定目标除霜频率;
    根据所述目标除霜频率确定换热温差,控制所述机组按照所述换热温差运行。
  2. 根据权利要求1所述的空调抑霜控制方法,其中确定机组在当前气候下的平均除霜频率的步骤包括:
    获取机组在所在地区的气象参数;
    根据所述气象参数和所述机组确定的结霜图谱,计算所述机组的平均除霜频率。
  3. 根据权利要求2所述的空调抑霜控制方法,其中所述结霜图谱的横坐标为空气温度,纵坐标为空气相对湿度;所述结霜图谱包括:结露区、非结霜区和结霜区;所述结霜区包含等速率结霜曲线,将所述结霜区按照结霜速率分为不同的结霜分区,所述结霜分区至少包括以下之一:轻霜区、一般结霜区和重霜区;其中,每个结霜分区分别对应一个除霜频率。
  4. 根据权利要求3所述的空调抑霜控制方法,其中根据所述结霜图谱计算所述机组的平均除霜频率的步骤包括:
    获取每个所述结霜分区的除霜频率;
    分别计算每个所述结霜分区的工况占比;
    根据每个所述结霜分区的工况占比和对应的除霜频率确定所述机组的平均除霜频率。
  5. 根据权利要求3所述的空调抑霜控制方法,其中根据所述平均除霜频率确定目标除霜频率的步骤包括:
    获取每个所述结霜分区的除霜频率;
    将每个所述结霜分区的除霜频率与所述平均除霜频率进行对比,确定所述结霜分区的除霜频率中小于所述平均除霜频率的所有除霜频率,并在小于所述平均除霜频率的所有除霜频率中确定其中一个除霜频率作为所述目标除霜频率。
  6. 根据权利要求5所述的空调抑霜控制方法,其中根据所述目标除霜频率确定换热温差的步骤包括:
    根据机组所在地区的结霜图谱建立换热温差与结霜速率变化量的数学模型;
    根据所述目标除霜频率确定对应的结霜速率变化量;
    将所述结霜速率变化量代入所述数学模型计算得到所述换热温差。
  7. 根据权利要求6所述的抑霜控制方法,其中所述数学模型为:
    ΔT′=A×v′+B,其中,ΔT′为换热温差,v′为结霜速率变化量,A为第一系数,B为第二系数。
  8. 根据权利要求6所述的空调抑霜控制方法,其中根据所述目标除霜频率确定对应的结霜速率变化量的步骤包括:
    根据所述结霜图谱,确定所述机组在标准结霜工况下的结霜速率;
    确定所述目标除霜频率所在的结霜分区,并确定所述结霜分区对应的结霜速率;
    计算所述机组在标准结霜工况下的结霜速率与所述结霜分区对应的结霜速率之间的差值,作为所述机组的结霜速率变化量。
  9. 根据权利要求6所述的空调抑霜控制方法,其中在控制所述机组按照所述换热温差运行之后,还包括:
    判断所述机组是否达到抑霜控制目标,如果是,则控制所述机组继续按照所述换热温差运行;否则调节所述换热温差,控制所述机组按照调节后的换热温差运行,直至所述机组达到抑霜控制目标。
  10. 根据权利要求9所述的空调抑霜控制方法,其中判断所述机组是否达到抑霜控制目标的步骤包括:
    根据所述换热温差修正所述结霜图谱;
    根据修正后的结霜图谱计算所述机组的修正后的平均除霜频率;
    判断所述修正后的平均除霜频率是否小于等于所述目标除霜频率,如果是,则确定达到抑霜控制目标,否则确定没有达到抑霜控制目标。
  11. 根据权利要求9所述的空调抑霜控制方法,其中调节所述换热温差的步骤包括:
    调节所述机组的结霜速率变化量;
    将调节后的所述机组的结霜速率变化量代入所述数学模型计算得到调节后的换热温差。
  12. 一种空调抑霜控制装置,包括:
    计算模块,被配置为确定机组在当前气候下的平均除霜频率;
    确定模块,被配置为根据所述平均除霜频率确定目标除霜频率;和
    控制模块,被配置为根据所述目标除霜频率确定换热温差,控制所述机组按照所述换热温差运行。
  13. 一种空调机组,包括如权利要求12所述的空调抑霜控制装置。
  14. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至11中任一项所述的空调抑霜控制方法。
  15. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1至11中任一项所述的空调抑霜控制方法。
PCT/CN2019/127443 2019-03-13 2019-12-23 空调抑霜控制方法及装置 WO2020181874A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/438,255 US20220186961A1 (en) 2019-03-13 2019-12-23 Air conditioner anti-frosting control method and apparatus
EP19919025.7A EP3940305A4 (en) 2019-03-13 2019-12-23 AIR CONDITIONER ANTI-ICING METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910189938.5 2019-03-13
CN201910189938.5A CN109915999B (zh) 2019-03-13 2019-03-13 基于结霜图普的空调抑霜方法及装置

Publications (1)

Publication Number Publication Date
WO2020181874A1 true WO2020181874A1 (zh) 2020-09-17

Family

ID=66964648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127443 WO2020181874A1 (zh) 2019-03-13 2019-12-23 空调抑霜控制方法及装置

Country Status (4)

Country Link
US (1) US20220186961A1 (zh)
EP (1) EP3940305A4 (zh)
CN (1) CN109915999B (zh)
WO (1) WO2020181874A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766019A (zh) * 2017-03-17 2017-05-31 珠海格力电器股份有限公司 空调化霜控制系统和空调化霜控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109915999B (zh) * 2019-03-13 2020-11-06 珠海格力电器股份有限公司 基于结霜图普的空调抑霜方法及装置
CN111189268B (zh) * 2020-01-14 2021-07-06 广东芬尼能源技术有限公司 一种变频热泵除霜控制方法
CN113203182B (zh) * 2021-04-26 2022-12-27 广东美的暖通设备有限公司 空调器的化霜控制方法、装置、空调器和存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627484A (en) * 1984-01-09 1986-12-09 Visual Information Institute, Inc. Heat pump control system with defrost cycle monitoring
CN101793429A (zh) * 2010-02-26 2010-08-04 广东美的电器股份有限公司 一种分体机空调器智能除霜控制方法
CN102853502A (zh) * 2012-09-29 2013-01-02 广东美的制冷设备有限公司 一种热泵空调机组的化霜控制方法
DE102014102078A1 (de) * 2014-02-19 2015-08-20 Halla Visteon Climate Control Corporation Verfahren zum Abtauen eines Wärmeübertragers einer Klimaanlage eines Kraftfahrzeuges
CN104930771A (zh) * 2015-06-24 2015-09-23 广东美的暖通设备有限公司 热泵系统的控制方法
CN105716340A (zh) * 2016-03-09 2016-06-29 北京工业大学 一种基于多区域结霜图谱的空气源热泵除霜控制方法
CN106482408A (zh) * 2016-03-09 2017-03-08 北京工业大学 一种适于预测空气源热泵结霜程度的多区域结霜图谱的开发方法
CN106766019A (zh) * 2017-03-17 2017-05-31 珠海格力电器股份有限公司 空调化霜控制系统和空调化霜控制方法
CN109631440A (zh) * 2018-12-26 2019-04-16 西安建筑科技大学 一种基于结霜时空分布的空气源热泵有效抑霜方法
CN109915999A (zh) * 2019-03-13 2019-06-21 珠海格力电器股份有限公司 基于结霜图普的空调抑霜方法及装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850204A (en) * 1987-08-26 1989-07-25 Paragon Electric Company, Inc. Adaptive defrost system with ambient condition change detector
US4884414A (en) * 1987-08-26 1989-12-05 Paragon Electric Company, Inc. Adaptive defrost system
US5319940A (en) * 1993-05-24 1994-06-14 Robert Yakaski Defrosting method and apparatus for a refrigeration system
US5415005A (en) * 1993-12-09 1995-05-16 Long Island Lighting Company Defrost control device and method
JPH07260326A (ja) * 1994-03-24 1995-10-13 Toshiba Corp 冷蔵庫の除霜制御装置
US5515689A (en) * 1994-03-30 1996-05-14 Gas Research Institute Defrosting heat pumps
JP2845315B2 (ja) * 1995-10-31 1999-01-13 中野冷機株式会社 ショーケースの除霜制御方法
US5727395A (en) * 1997-02-14 1998-03-17 Carrier Corporation Defrost control for heat pump
US5797273A (en) * 1997-02-14 1998-08-25 Carrier Corporation Control of defrost in heat pump
US5927083A (en) * 1998-03-09 1999-07-27 Carrier Corporation Compressor cycle dependent defrost control
US6318095B1 (en) * 2000-10-06 2001-11-20 Carrier Corporation Method and system for demand defrost control on reversible heat pumps
US6981385B2 (en) * 2001-08-22 2006-01-03 Delaware Capital Formation, Inc. Refrigeration system
US6715304B1 (en) * 2002-12-05 2004-04-06 Lyman W. Wycoff Universal refrigerant controller
US9068771B2 (en) * 2006-01-20 2015-06-30 Carrier Corporation Method for automatically adjusting the defrost interval in a heat pump system
JP2009210161A (ja) * 2008-02-29 2009-09-17 Sanyo Electric Co Ltd 機器制御システム、制御装置及び制御プログラム
US9032751B2 (en) * 2009-10-21 2015-05-19 Diehl Ako Stiftung & Co. Kg Adaptive defrost controller for a refrigeration device
US10018400B2 (en) * 2013-08-13 2018-07-10 Lennox Industries Inc. Defrost operation management in heat pumps
US10746446B2 (en) * 2015-12-21 2020-08-18 Lennox Industries Inc. Intelligent defrost control method
US10598418B2 (en) * 2017-02-06 2020-03-24 Ut-Battelle, Llc Method and device for controlling heat pump
US11613232B2 (en) * 2019-01-10 2023-03-28 Toyota Jidosha Kabushiki Kaisha Defrosting control system, non-transitory computer readable medium storing defrosting control program, and vehicle control module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627484A (en) * 1984-01-09 1986-12-09 Visual Information Institute, Inc. Heat pump control system with defrost cycle monitoring
CN101793429A (zh) * 2010-02-26 2010-08-04 广东美的电器股份有限公司 一种分体机空调器智能除霜控制方法
CN102853502A (zh) * 2012-09-29 2013-01-02 广东美的制冷设备有限公司 一种热泵空调机组的化霜控制方法
DE102014102078A1 (de) * 2014-02-19 2015-08-20 Halla Visteon Climate Control Corporation Verfahren zum Abtauen eines Wärmeübertragers einer Klimaanlage eines Kraftfahrzeuges
CN104930771A (zh) * 2015-06-24 2015-09-23 广东美的暖通设备有限公司 热泵系统的控制方法
CN105716340A (zh) * 2016-03-09 2016-06-29 北京工业大学 一种基于多区域结霜图谱的空气源热泵除霜控制方法
CN106482408A (zh) * 2016-03-09 2017-03-08 北京工业大学 一种适于预测空气源热泵结霜程度的多区域结霜图谱的开发方法
CN106766019A (zh) * 2017-03-17 2017-05-31 珠海格力电器股份有限公司 空调化霜控制系统和空调化霜控制方法
CN109631440A (zh) * 2018-12-26 2019-04-16 西安建筑科技大学 一种基于结霜时空分布的空气源热泵有效抑霜方法
CN109915999A (zh) * 2019-03-13 2019-06-21 珠海格力电器股份有限公司 基于结霜图普的空调抑霜方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3940305A4 *
ZHU, J. H. ET AL.: "Developing a new frosting map to guide defrosting control for air-source heat pump units", APPLIED THERMAL ENGINEERING, vol. 90, 8 July 2015 (2015-07-08), pages 782 - 791, XP055732247, ISSN: 1359-4311, DOI: 20200310141911A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766019A (zh) * 2017-03-17 2017-05-31 珠海格力电器股份有限公司 空调化霜控制系统和空调化霜控制方法

Also Published As

Publication number Publication date
CN109915999A (zh) 2019-06-21
US20220186961A1 (en) 2022-06-16
EP3940305A4 (en) 2022-04-20
CN109915999B (zh) 2020-11-06
EP3940305A1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
WO2020181874A1 (zh) 空调抑霜控制方法及装置
CN107084491B (zh) 空调室外机电加热器的控制方法及装置
CN108895719B (zh) 一种热泵机组及其供暖控制方法
Bagarella et al. Sizing strategy of on–off and modulating heat pump systems based on annual energy analysis
CN104110768B (zh) 空调器电子膨胀阀控制方法及控制电路
WO2019042042A1 (zh) 一种空调的控制方法及装置
CN105222361B (zh) 一种热泵热水器控制方法、装置和热泵热水器
CN107606725B (zh) 蓄热化霜控制方法、控制装置和空调器
CN108168026A (zh) 防止空调凝露的方法及空调器
CN107192089B (zh) 空调器的控制方法、控制系统、空调器和计算机设备
CN109458683B (zh) 干式辐射热泵与单元式分户空调一体机及其控制方法
CN105571068A (zh) 空调器工作控制方法及装置
CN204730410U (zh) 一种组合式空调箱的全工况自适应控制装置
WO2020133845A1 (zh) 空调器及其控制方法
CN205102269U (zh) 露点温度除霜型冷暖分体空调器
CN107120809A (zh) 一种空调系统的控制方法、装置及空调系统
CN109737558A (zh) 空调器、化霜控制方法和计算机可读存储介质
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN108692426B (zh) 空调器除霜控制方法
CN207081105U (zh) 空调器室内机及空调器
CN104949192A (zh) 变频热泵热水器地板辐射采暖系统节能的控制方法
CN108592297B (zh) 空调器除霜控制方法
WO2019184408A1 (zh) 电化学制冷窗式空调除霜控制方法及控制系统、空调
CN109282522A (zh) 基于比例调节阀的温度控制方法及具有其的空气热源泵
CN110822635B (zh) 毛细管辐射空调制冷时电子膨胀阀的动态控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019919025

Country of ref document: EP

Effective date: 20211013