WO2019052540A1 - 变频空调的制热控制方法与装置 - Google Patents

变频空调的制热控制方法与装置 Download PDF

Info

Publication number
WO2019052540A1
WO2019052540A1 PCT/CN2018/105786 CN2018105786W WO2019052540A1 WO 2019052540 A1 WO2019052540 A1 WO 2019052540A1 CN 2018105786 W CN2018105786 W CN 2018105786W WO 2019052540 A1 WO2019052540 A1 WO 2019052540A1
Authority
WO
WIPO (PCT)
Prior art keywords
fans
control method
compressor
heating control
air conditioner
Prior art date
Application number
PCT/CN2018/105786
Other languages
English (en)
French (fr)
Inventor
刘卫兵
耿宝寒
朱辉
徐中华
张千
贾淑玲
李存恒
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019052540A1 publication Critical patent/WO2019052540A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of refrigeration, and in particular relates to a heating control method and device for an inverter air conditioner.
  • the inverter air conditioner usually calculates the real-time running frequency of the compressor according to the indoor target temperature set by the remote controller, the indoor ambient temperature, and the outdoor ambient temperature.
  • some air conditioner indoor units are currently provided with two evaporators in parallel and two fans to achieve multiple modes of air supply. Therefore, it is often the case that only one fan is turned on.
  • the evaporator corresponding to the unopened fan has no blower for heat dissipation, which will result in higher coil temperature, excessive refrigerant pressure, and excessive compressor power, causing the air conditioner to operate at an overload. Therefore, how to accurately control the operating frequency of the compressor, so that the air conditioner not only meets the heating demand, but also avoids the overload of the refrigerant circulation system, has become an urgent problem to be solved.
  • An object of the present invention is to overcome the above-mentioned drawbacks of the prior art, and to provide a heating control method and device for an inverter air conditioner, which realizes precise control of the operating frequency of the compressor, so that the air conditioner can meet the heating demand and can Avoid overload operation of the refrigerant circulation system.
  • a further object of the present invention is to improve the intelligence of the air supply of the air conditioner, to achieve on-demand air supply and gentle air supply, and to enhance user comfort.
  • the present invention provides a heating control method for an inverter air conditioner, wherein the indoor unit of the air conditioner includes two evaporators arranged in parallel, two fans respectively corresponding to the two evaporators, and each of the fans corresponds to at least one air outlet.
  • heating control methods include:
  • the indoor target temperature Ta, the indoor ambient temperature Tb, the outdoor ambient temperature Tc, and the coil temperatures of the two evaporators are detected, and the higher temperature values of the two coil temperatures are recorded as Td;
  • the operating frequency of the compressor is determined according to the temperature difference range of Ta-Tb and the values of Ta, Tb, and Tc.
  • T1 52 ° C
  • T2 58 ° C
  • T3 7 ° C
  • T4 13 ° C
  • each air outlet is provided with: a vertical swinging leaf group, comprising a plurality of vertical pendulum leaves extending vertically and installed at the air outlet, the plurality of vertical swinging leaves being synchronously pivoted to adjust the left and right winds And a yaw group comprising a plurality of yaw leaves extending horizontally, which are mounted behind the vertical pendulum, and the plurality of yaw blades are pivoted synchronously to adjust the up and down direction of the wind.
  • a vertical swinging leaf group comprising a plurality of vertical pendulum leaves extending vertically and installed at the air outlet, the plurality of vertical swinging leaves being synchronously pivoted to adjust the left and right winds
  • a yaw group comprising a plurality of yaw leaves extending horizontally, which are mounted behind the vertical pendulum, and the plurality of yaw blades are pivoted synchronously to adjust the up and down direction of the wind.
  • one fan corresponds to two air outlets, and the other fan corresponds to one air outlet; and three air outlets are arranged in a straight line.
  • both fans are cross-flow fans.
  • both evaporators are finned evaporators and share the same set of fins, the coils of the two evaporators respectively matching the two halves of the set of fins.
  • a heating control apparatus for an inverter air conditioner includes a memory and a processor, wherein a control program is stored in the memory, and the control program is used by the processor to implement any of the above Heating control method for inverter air conditioner.
  • both evaporators used as condensers during heating
  • the compressor frequency is corrected according to the coil temperature of the evaporator.
  • the operating frequency is normally calculated according to the above function; when the coil temperature satisfies T1 ⁇ Td ⁇ T2, it is maintained Run at a fixed frequency to avoid further increase in coil temperature.
  • the compressor When the coil temperature Td>T2, the compressor is controlled to reduce frequency and reduce the evaporator pressure to avoid overload operation of the compressor.
  • the pressure When only one fan is operated, in order to avoid excessive pressure of the evaporator which is not covered by the wind of the fan, the pressure is too high, and the correction coefficient b of less than 1 is calculated according to the temperature difference Ta-Tb, and the operating frequency of the compressor is reduced. Avoid overloading the compressor. It can be seen from the above that the invention accurately controls the operating frequency of the compressor, so that the air conditioner not only meets the heating demand, but also avoids the overload operation of the refrigerant circulation system.
  • the air conditioner indoor unit is provided with two evaporators, two fans and a plurality of air outlets, and the number of wind turbines, the wind speed and the refrigerant flow rate of the evaporator can be adjusted according to the heating demand of the user, and the air volume and the cooling capacity/heat generation can be realized.
  • the intelligent adjustment makes the air volume and cooling capacity/heating more match the indoor demand, saving energy consumption of the air conditioner.
  • FIG. 1 is a schematic structural view of a portion of an indoor unit of an air conditioner according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view showing the air blowing structure of the air conditioning indoor unit shown in Figure 1;
  • FIG. 3 is a schematic structural view of an evaporator of an air conditioner indoor unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a heating control method of an air conditioner according to an embodiment of the present invention.
  • Figure 5 is a flow chart showing a heating control method of an air conditioner according to an embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a heating control device for an inverter air conditioner according to an embodiment of the present invention.
  • Embodiments of the present invention provide a heating control method for an inverter air conditioner.
  • 1 is a schematic structural view of a portion of an air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of an air supply structure of the air conditioner indoor unit shown in FIG. 1
  • FIG. 3 is an evaporator of an air conditioner indoor unit according to an embodiment of the present invention; Schematic diagram of the structure. Figure 3 separates the two evaporators by dotted lines.
  • the indoor unit of the inverter air conditioner includes a housing, two evaporators 551, 552, two fans 410, 420, a plurality of air outlets 112, 114, 116, and a plurality of swinging vane assemblies.
  • the evaporator 551, the fan 410 and the air outlets 112, 114 are matched.
  • the evaporator 552, the fan 420 and the air outlet 116 are matched. 1 shows only the front panel 110 of the housing.
  • the front panel 110 is provided with the aforementioned air outlets 112, 114, 116, and the rear side of the housing is not shown with an air inlet.
  • the outdoor air enters the casing from the air inlet, passes through two evaporators 551 and 552 driven by the fan, and exchanges heat with the evaporators 551 and 552, and then blows into the room from the corresponding air outlets 112, 114, and 116 to realize the indoor environment. Refrigeration / heating.
  • the air outlet areas of the three air outlets 112, 114, and 116 can be set to be the same, and the number of air outlets 112 and 114 matched by the evaporator 551 and the fan 410 is large, and evaporation is performed.
  • the heat exchange capacity of the heater 551 and the air blowing capability of the fan 410 are greater than the evaporator 552 and the fan 420.
  • the two evaporators 551, 552 can be used in the same heat exchange condition, the heat exchange amount of the evaporator 551 is twice that of the evaporator 552, so that the two fans are at the same speed, and the air volume of the fan 410 is the fan 420. Twice.
  • the two fans 410, 420 may both be cross-flow fans.
  • the motor 411 of the fan 410 may be located at the top thereof, and the motor 421 of the fan 420 is located at the bottom thereof.
  • a bearing may be disposed between the two fans 410, 420.
  • a plurality of swinging leaf assemblies (eg, a plurality of vertical pendulum blades 312 at the air outlet 112 and a plurality of yaw blades 322 forming a pendulum blade assembly) are matched with the plurality of air outlets 112, 114, 116 for adjusting each The wind direction of an outlet.
  • the air conditioning indoor unit may further include a duct assembly that is erected between the fan 410, the fan 420 and the front panel 110, and includes a housing 120 and a plurality of partitions 121 defining a wind guide chamber that is open at the front and the rear.
  • a plurality of partitions are vertically arranged in the outer casing to separate the air guiding chambers from the plurality of air passages 123, 124, 125 isolated from each other, each air passage matching an air outlet for guiding the wind of the wind turbine to the air duct
  • the air outlets and the winds flowing to the plurality of air outlets 112, 114, and 116 do not interfere with each other.
  • each pendulum assembly includes a pendulum group and a yaw group.
  • the vertical pendulum group includes a plurality of vertical pendulum leaves 312, 314, 316 vertically extending and installed at the air outlets 112, 114, 116, and the plurality of vertical pendulum leaves can be pivoted synchronously to adjust the left and right direction of the wind.
  • the yaw group includes a plurality of yaw leaves 324, 324, 326 extending horizontally, which are installed in the air ducts 123, 124, 125, and the plurality of yaw leaves are synchronously pivoted to adjust the up and down direction of the wind.
  • a motor to drive a yaw leaf (or vertical pendulum) to rotate, a hinge to the yaw leaf (or vertical pendulum) and the rest of the yaw leaf (or vertical pendulum) to achieve full horizontal Synchronous pivoting of the pendulum (or vertical pendulum).
  • the yaw leaf can also be placed at the air outlet, and the vertical swing leaf can be placed in the air duct.
  • the air conditioner includes a compressor 510, a condenser 520, a three-way pipe 530, two electronic expansion valves 541, 542, and two evaporators 551, 552, wherein the inlet of the three-way pipe 530 is connected to the outlet of the condenser 520.
  • the two outlets of the tee 530 communicate with the inlets of the two electronic expansion valves 541, 542, respectively.
  • the outlets of the two electronic expansion valves 541, 542 communicate with the inlets of the evaporator 551 and the evaporator 552, respectively.
  • the evaporator 551 and the outlet of the evaporator 552 communicate with the inlet of the compressor 510.
  • the throttle element 541 is provided with a liquid separator 561, and the electronic expansion valve 542 is provided with a liquid separator 562, which is used to divide the refrigerant into multiple channels to improve the heat exchange efficiency of the evaporator.
  • the refrigerant flows through the coils of the two evaporators 551, 552, and then merges into the header 580, and then flows from the inside of the header 580 to the compressor 510.
  • the evaporator 551 and the evaporator 552 are finned evaporators, and the two evaporators 551, 552 share the same fin set 501, and the coil 502 of the evaporator 551 is mounted on The upper portion of the fin group 501 and the coil 503 of the evaporator 552 are attached to the lower portion of the fin group 501.
  • the embodiment can facilitate the manufacture and installation of the evaporators 551, 552, and also save the internal space of the casing.
  • the evaporator In the process of heating the inverter air conditioner, the evaporator is used as a condenser, and the internal refrigerant pressure (condensation pressure) is high. If the pressure is too high, the power of the compressor will rise, resulting in overload operation of the compressor, causing problems such as compressor shutdown.
  • the heating control method of the embodiment of the present invention avoids overload operation of the compressor by the following steps. By reducing the compressor frequency at the appropriate time, the condensing pressure can be reduced and the compressor power can be reduced.
  • Fig. 4 is a schematic view showing a heating control method of an air conditioner according to an embodiment of the present invention. As shown in FIG. 4, the heating control method of the present invention may include the following steps:
  • Step S402 when the air conditioner is operating in the heating mode, detecting the indoor target temperature Ta (set by the user), the indoor ambient temperature Tb, the outdoor ambient temperature Tc, and the coil temperatures of the two evaporators 551, 552, the two coil temperatures The higher temperature value is recorded as Td.
  • the above temperature can be detected by setting a temperature sensor.
  • Step S404 detecting the on state of the two fans 410, 420, that is, determining that the air conditioner indoor unit has turned on several fans. If both of the fans 410, 420 are turned on, step S406 is performed. If only one fan is turned on, step S408 is performed.
  • step S406 the operating frequency of the compressor 510 is determined according to the temperature range in which Td is located and the values of Ta, Tb, and Tc.
  • Step S408 determining the operating frequency of the compressor according to the temperature difference range in which the Ta-Tb is located and the values of Ta, Tb, and Tc.
  • Fig. 5 is a flow chart showing a heating control method of an air conditioner according to an embodiment of the present invention.
  • the air conditioner is in the heating mode and can be controlled using the following steps.
  • Step S501 when the air conditioner is operating in the heating mode, detecting the indoor target temperature Ta (set by the user), the indoor ambient temperature Tb, the outdoor ambient temperature Tc, and the coil temperatures of the two evaporators 551, 552, the two coil temperatures The higher temperature value is Td.
  • Step S502 detecting the on state of the two fans 410, 420, that is, determining that the air conditioner indoor unit has turned on several fans. If both of the fans 410 and 420 are turned on, step S504 is performed. If only one fan is turned on, step S509 is performed.
  • step S504 it is determined whether Td ⁇ T1 is established. If yes, step S505 is executed, and if not, step S506 is performed.
  • step S505 Td ⁇ T1 is established.
  • the basic idea is to increase the frequency f of the compressor 510 as the temperature difference between Ta and Tb increases, and increase as Tc increases.
  • the specific calculation method is the same as the calculation method of the compressor frequency in which only one fan and one evaporator are set in the prior art, and will not be described in detail herein.
  • step S506 it is judged whether T1 ⁇ Td ⁇ T2 is satisfied. If yes, step S507 is executed, and if it is not established, step S508 is performed.
  • step S507 T1 ⁇ Td ⁇ T2 is established.
  • step S508 T1 ⁇ Td ⁇ T2 is not established, that is, Td>T2 is established.
  • the compressor 510 is controlled to operate down frequency such that its frequency f ⁇ f (Ta1, Tb1, Tc1). Therefore, when Td>T2, the coil temperature is already too high. To avoid overload operation of the compressor 510, the compressor 510 needs to be down-converted as soon as possible to reduce the condensing pressure and the power of the compressor 510.
  • both of the evaporators 551, 552 can obtain good heat dissipation.
  • the frequency of the compressor 510 is corrected in accordance with the coil temperature of the evaporators 551, 552, so that the air conditioner not only satisfies the heating demand, but also prevents the refrigerant circulation system from being overloaded.
  • the value of b can be determined according to the temperature interval in which Ta-Tb is located.
  • T3 7 ° C
  • T4 13 ° C
  • b1 0.5
  • b2 0.8
  • b3 0.9.
  • FIG. 6 is a schematic block diagram of a heating control device for an inverter air conditioner according to an embodiment of the present invention.
  • the control device 15 of the present embodiment may include a memory 151 and a processor 153, wherein the memory 151 stores therein a control program 152 for performing the heating of the inverter air conditioner of any of the above embodiments when executed by the processor 153. Control Method.

Abstract

一种变频空调的制热控制方法与装置,空调室内机包括并联设置的两个蒸发器(551、552),分别与两个蒸发器(551、552)对应的两个风机(410、420)以及对应的两个出风口组,每个出风口组包括至少一个出风口(112、114、116),制热控制方法包括:空调以制热模式运行时,检测室内目标温度Ta、室内环境温度Tb、室外环境温度Tc以及两个蒸发器的盘管温度,两个盘管温度中较高的温度值记为Td(S402);检测两个风机的开启状态(S404);若两个风机均开启,根据Td所处的温度范围以及Ta、Tb、Tc的值确定压缩机的运行频率(S406);若仅一个风机开启,根据Ta-Tb所处的温差范围以及Ta、Tb、Tc的值确定压缩机的运行频率(S408)。通过对压缩机的运行频率进行精确控制,使空调既满足制热需求,又能避免冷媒循环系统出现过负荷运行。

Description

变频空调的制热控制方法与装置 技术领域
本发明涉及制冷技术领域,特别涉及一种变频空调的制热控制方法与装置。
背景技术
变频空调通常根据遥控器设定的室内目标温度、室内环境温度、室外环境温度来计算得到压缩机的实时运行频率。但目前一些空调的室内机设置有并联的两个蒸发器以及两个风机,以实现多种模式送风。因此常常会出现仅仅开启一个风机的情况。
在制热时,未开启的风机对应的蒸发器因没有风机进行吹风散热,将导致盘管温度较高,冷媒压力过大,压缩机功率过大,使空调过负荷运转。因此,如何对压缩机的运行频率进行精确控制,使空调既满足制热需求,又能避免冷媒循环系统出现过负荷,成为亟待解决的问题。
发明内容
本发明的一个目的是要克服现有技术的上述缺陷,提供一种变频空调的制热控制方法与装置,实现了对压缩机的运行频率进行精确控制,使空调既满足制热需求,又能避免冷媒循环系统出现过负荷运行。
本发明的进一步的目的是要提升空调送风的智能化,实现按需送风和柔和送风,增强用户的舒适性。
特别地,本发明提供了一种变频空调的制热控制方法,空调的室内机包括并联设置的两个蒸发器,分别与两个蒸发器对应的两个风机,每个风机对应至少一个出风口,制热控制方法包括:
变频空调以制热模式运行时,检测室内目标温度Ta、室内环境温度Tb、室外环境温度Tc以及两个蒸发器的盘管温度,两个盘管温度中较高的温度值记为Td;
检测两个风机的开启状态;
若两个风机均开启,根据Td所处的温度范围以及Ta、Tb、Tc的值确定变频空调的压缩机的运行频率;
若仅一个风机开启,根据Ta-Tb所处的温差范围以及Ta、Tb、Tc的值确定压缩机的运行频率。可选地,两个风机均开启时,按以下方式确定压缩机的运行频率:当Td<T1时,控制压缩机变频运行,频率f=f(Ta,Tb,Tc);当T1≤Td≤T2,控制压缩机定频运行,频率f=f(Ta1,Tb1,Tc1),式中,Ta1、Tb1和Tc1分别为Td达到T1时的室内目标温度、室内环境温度以及室外环境温度;当Td>T2时,控制压缩机降频运行,使其频率f<f(Ta1,Tb1,Tc1)。
可选地,仅一个风机开启时,按以下方式确定压缩机的运行频率:根据温差Ta-Tb计算频率修正系数b=b(Ta-Tb),控制压缩机的运行频率f=b*f(Ta,Tb,Tc),式中b<1。
可选地,当Ta-Tb<T3时,b=b1;当T3≤Ta-Tb≤T4时,b=b2;当Ta-Tb>T4时,b=b3,式中b1<b2<b3。
可选地,T1=52℃,T2=58℃,T3=7℃,T4=13℃,b1=0.5,b2=0.8,b3=0.9。
可选地,每个出风口处设置有:竖摆叶组,其包括竖向延伸且安装于出风口处的多个竖摆叶,多个竖摆叶可同步枢转以调节出风的左右方向;以及横摆叶组,其包括水平延伸的多个横摆叶,其安装在竖摆叶后方,多个横摆叶可同步枢转以调节出风的上下方向。
可选地,一个风机对应两个出风口,另一风机对应一个出风口;且三个出风口沿直线排列。
可选地,两个风机均为贯流风机。
可选地,两个蒸发器均为翅片式蒸发器且共用同一翅片组,两个蒸发器的盘管分别匹配翅片组的两个半部。
根据本发明的另一个方面还提供了一种变频空调的制热控制装置,其包括存储器以及处理器,其中存储器内存储有控制程序,控制程序被处理器执行时用于实现上述任一种的变频空调的制热控制方法。
本发明的变频空调的制热控制方法中,先根据室内目标温度、室内环境温度以及室外环境温度来初定压缩机的运行频率f=f(Ta,Tb,Tc)。当两个风机均运行时,两个蒸发器(制热时作为冷凝器使用)均能获得良好的散热,出现过大压力的可能性较小。此时,根据蒸发器的盘管温度来对压缩机频率进行修正,在盘管温度低于T1时,按上述函数正常计算运行频率;在盘管温度满足T1≤Td≤T2时,使其保持定频运行,避免盘管温度进一步升高。 当盘管温度Td>T2时,控制压缩机降频运行,降低蒸发器压力,避免压缩机过负荷运行。而当仅一个风机运行时,为避免未被该风机的风覆盖的蒸发器部分换热不利导致压力过高,根据温差Ta-Tb计算小于1的修正系数b,减小压缩机的运行频率,避免压缩机过负荷运行。由上可见,本发明对压缩机的运行频率进行精确控制,使空调既满足制热需求,又能避免冷媒循环系统出现过负荷运行。
进一步地,空调室内机设置两个蒸发器、两个风机以及多个出风口,可根据用户的制热需求调节风机开启的数量、风速以及蒸发器的冷媒流量,实现风量和制冷量/制热量的智能调节,使风量和制冷量/制热量更加匹配室内需求,节约了空调能耗。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是本发明一个实施例的空调室内机部分结构示意图;
图2是图1所示空调室内机的送风结构的分解示意图;
图3是本发明一个实施例的空调室内机的蒸发器的结构示意图;
图4是本发明一个实施例的空调的制热控制方法的示意图;
图5是本发明一个实施例的空调的制热控制方法的流程图;以及
图6是根据本发明一个实施例的变频空调的制热控制装置的示意性框图。
具体实施方式
本发明实施例提供了一种变频空调的制热控制方法。图1是本发明一个实施例的空调室内机部分结构示意图;图2是图1所示空调室内机的送风结构的分解示意图;图3是本发明一个实施例的空调室内机的蒸发器的结构示意图.图3用虚线区分开两个蒸发器。
如图1至图3所示,变频空调的室内机包括壳体,两个蒸发器551、552,两个风机410、420,多个出风口112、114、116以及多个摆叶组件。蒸发器 551、风机410和出风口112、114相匹配。蒸发器552、风机420和出风口116相匹配。图1仅示意出壳体的前面板110,前面板110上开设有前述的出风口112、114、116,壳体未显示出的后侧开设有进风口。室外空气从进风口进入壳体,在风机的驱动下经过两个蒸发器551、552,与蒸发器551、552换热后从对应的出风口112、114、116吹向室内,实现对室内环境的制冷/制热。
在图1至图3所示的实施例中,三个出风口112、114、116的出风面积可设置为相同,因蒸发器551和风机410匹配的出风口112、114数量较多,蒸发器551的换热能力和风机410的送风能力大于蒸发器552以及风机420。例如,可使两个蒸发器551、552在相同换热工况下,蒸发器551的换热量为蒸发器552的两倍,使两个风机在相同转速下,风机410的风量为风机420的两倍。
两个风机410、420可均为贯流风机,为使贯流风机与壳体之间的连接更加稳固,可使风机410的电机411位于其顶部,风机420的电机421位于其底部。两个风机410、420之间可设置有轴承。
多个摆叶组件(例如,出风口112处的多个竖摆叶312以及多个横摆叶322构成一个摆叶组件)与多个出风口112、114、116一一匹配,用于调节每个出风口的风向。
空调室内机还可包括风道组件,风道组件竖立在风机410、风机420与前面板110之间,其包括外壳120和多个隔板121,外壳120限定出前后敞开的导风腔室,多个隔板竖向排列在外壳内,以将导风腔室分隔出彼此隔离的多个风道123、124、125,每个风道匹配一个出风口,用于将风机的风引流至该出风口,且使流向多个出风口112、114、116的风互不干扰。
并且,每个摆叶组件包括竖摆叶组和横摆叶组。其中,竖摆叶组包括竖向延伸且安装于出风口112、114、116处的多个竖摆叶312、314、316,多个竖摆叶可同步枢转以调节出风的左右方向。横摆叶组包括水平延伸的多个横摆叶324、324、326,其安装在风道123、124、125内,多个横摆叶可同步枢转以调节出风的上下方向。可通过设置一个电机带动一个横摆叶(或竖摆叶)转动,通过一连杆铰接于该横摆叶(或竖摆叶)与其余的横摆叶(或竖摆叶),实现全部横摆叶(或竖摆叶)的同步枢转。当然,也可将横摆叶设置在出风口出,将竖摆叶设置在风道内。
如图2,空调包括压缩机510、冷凝器520、三通管530、两个电子膨胀阀541、542以及两个蒸发器551、552,其中三通管530的进口连接冷凝器520的出口,三通管530的两个出口分别连通两个电子膨胀阀541、542的进口。两个电子膨胀阀541、542的出口分别连通蒸发器551和蒸发器552的进口。蒸发器551和蒸发器552的出口连通压缩机510的进口。
如图1,节流元件541后设置有分液器561,电子膨胀阀542后设置有分液器562,均用于将冷媒分为多路,提高蒸发器的换热效率。在制冷时,冷媒流经两个蒸发器551、552的盘管后,均汇合至集气管580内,再从集气管580内流向压缩机510。
在一些实施例中,如图4所示,蒸发器551和蒸发器552为翅片式蒸发器,且两个蒸发器551、552共用同一翅片组501,蒸发器551的盘管502安装于翅片组501的上部,蒸发器552的盘管503安装于翅片组501的下部。相比于两个蒸发器独立、各制作自安装的方案,本实施例可方便蒸发器551、552的制作和安装,同时也节约了壳体内部空间。
变频空调制热过程中,蒸发器作为冷凝器使用,内部冷媒压力(冷凝压力)较高,压力过高将导致压缩机的功率升高,导致压缩机过负荷运行,引发压缩机停机等问题。为此,本发明实施例的制热控制方法通过下述步骤避免压缩机过负荷运转。通过在适当时刻降低压缩机频率能够降低冷凝压力,也能降低压缩机功率。
图4是本发明一个实施例的空调的制热控制方法的示意图。如图4所示,本发明的制热控制方法可包括以下步骤:
步骤S402,空调以制热模式运行时,检测室内目标温度Ta(由用户设定)、室内环境温度Tb、室外环境温度Tc以及两个蒸发器551、552的盘管温度,两个盘管温度中较高的温度值记为Td。可通过设置温度传感器检测上述温度。
步骤S404,检测两个风机410、420的开启状态,即确定空调室内机开启了几个风机。若两个风机410、420均开启,执行步骤S406。若仅一个风机开启,执行步骤S408。
步骤S406,根据Td所处的温度范围以及Ta、Tb、Tc的值确定压缩机510的运行频率。
步骤S408,根据Ta-Tb所处的温差范围以及Ta、Tb、Tc的值确定压缩 机的运行频率。
图5是本发明一个实施例的空调的制热控制方法的流程图。在一些实施例中,空调处于制热模式下,可采用下述步骤进行控制。
步骤S501,空调以制热模式运行时,检测室内目标温度Ta(由用户设定)、室内环境温度Tb、室外环境温度Tc以及两个蒸发器551、552的盘管温度,两个盘管温度中较高的温度值为Td。
步骤S502,检测两个风机410、420的开启状态,即确定空调室内机开启了几个风机。若两个风机410、420均开启,执行步骤S504。若仅一个风机开启,执行步骤S509。
步骤S504,判断Td<T1是否成立,若成立,执行步骤S505,若不成立执行步骤S506。
步骤S505,Td<T1成立。控制压缩机510变频运行,频率f=f(Ta,Tb,Tc)。即频率f为Ta,Tb,Tc的函数。基本思路是使压缩机510的频率f随Ta与Tb之间的温差的增大而增大,随Tc的增大而增大。具体的计算方式与现有技术仅设置一个风机以及一个蒸发器的压缩机频率的计算方式相同,在此不再详细说明。
步骤S506,判断T1≤Td≤T2是否成立,若成立,执行步骤S507,若不成立执行步骤S508。
步骤S507,T1≤Td≤T2成立。控制压缩机510定频运行,频率f=f(Ta1,Tb1,Tc1),式中,Ta1、Tb1和Tc1分别为Td刚好达到T1时的室内目标温度、室内环境温度以及室外环境温度。因Td已经达到或超过T1,因此需要压缩机保持频率,使盘管温度不再继续升高。
步骤S508,T1≤Td≤T2不成立,也就是Td>T2成立。控制压缩机510降频运行,使其频率f<f(Ta1,Tb1,Tc1)。因此时Td>T2,盘管温度已经过高,为避免压缩机510过负荷运转,需尽快对压缩机510进行降频,降低冷凝压力和压缩机510功率。
在上述步骤中,可根据压缩机510的承载能力,通过实验确定T1与T2的值,例如使T1=52℃,T2=58℃。
在上述步骤中,因两个风机410、420均运行时,两个蒸发器551、552均能得到良好的散热。根据蒸发器551、552的盘管温度来对压缩机510的频率进行修正,使空调既满足制热需求,又能避免冷媒循环系统出现过负荷 运行。
步骤S509,仅一个风机开启时,根据Ta-Tb所处的温差范围以及Ta、Tb、Tc的值确定压缩机510的运行频率。具体地,根据温差Ta-Tb计算频率修正系数b=b(Ta-Tb),控制压缩机510的运行频率f=b*f(Ta,Tb,Tc),式中b<1。
具体地,可根据Ta-Tb所处的温度区间来确定b的值。当Ta-Tb<T3时,b=b1;当T3≤Ta-Tb≤T4时,b=b2;当Ta-Tb>T4时,b=b3,式中b1<b2<b3。在一些实施例中,T3=7℃,T4=13℃,b1=0.5,b2=0.8,b3=0.9。
上述实施例中,仅一个风机运行时,为避免未被该风机的风覆盖的蒸发器部分换热不利导致压力过高,上述实施例通过使b<1,减小压缩机510的运行频率,避免压缩机510过负荷运行。
图6是根据本发明一个实施例的变频空调的制热控制装置的示意性框图。本实施例的控制装置15可以包括存储器151以及处理器153,其中存储器151内存储有控制程序152,控制程序152被处理器153执行时用于实现上述任一种实施例的变频空调的制热控制方法。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种变频空调的制热控制方法,所述空调的室内机包括并联设置的两个蒸发器,分别与两个所述蒸发器对应的两个风机,每个所述风机对应至少一个出风口,所述制热控制方法包括:
    所述变频空调以制热模式运行时,检测室内目标温度Ta、室内环境温度Tb、室外环境温度Tc以及两个所述蒸发器的盘管温度,两个所述盘管温度中较高的温度值记为Td;
    检测两个所述风机的开启状态;
    若两个所述风机均开启,根据Td所处的温度范围以及Ta、Tb、Tc的值确定所述变频空调的压缩机的运行频率;
    若仅一个所述风机开启,根据Ta-Tb所处的温差范围以及Ta、Tb、Tc的值确定所述压缩机的运行频率。
  2. 根据权利要求1所述的制热控制方法,其中
    两个所述风机均开启时,按以下方式确定所述压缩机的运行频率:
    当Td<T1时,控制所述压缩机变频运行,运行频率f=f(Ta,Tb,Tc);
    当T1≤Td≤T2,控制所述压缩机定频运行,运行频率f=f(Ta1,Tb1,Tc1),式中,Ta1、Tb1和Tc1分别为Td达到T1时的室内目标温度、室内环境温度以及室外环境温度;
    当Td>T2时,控制所述压缩机降频运行,使其频率f<f(Ta1,Tb1,Tc1)。
  3. 根据权利要求2所述的制热控制方法,其中
    仅一个所述风机开启时,按以下方式确定所述压缩机的运行频率:
    根据温差Ta-Tb计算频率修正系数b=b(Ta-Tb),控制所述压缩机的运行频率f=b*f(Ta,Tb,Tc),式中b<1。
  4. 根据权利要求3所述的制热控制方法,其中
    当Ta-Tb<T3时,b=b1;
    当T3≤Ta-Tb≤T4时,b=b2;
    当Ta-Tb>T4时,b=b3,式中b1<b2<b3。
  5. 根据权利要求4所述的制热控制方法,其中
    T1=52℃,T2=58℃,T3=7℃,T4=13℃,b1=0.5,b2=0.8,b3=0.9。
  6. 根据权利要求1所述的制热控制方法,其中每个所述出风口处设置有:
    竖摆叶组,其包括竖向延伸且安装于所述出风口处的多个竖摆叶,所述多个竖摆叶可同步枢转以调节出风的左右方向;以及
    横摆叶组,其包括水平延伸的多个横摆叶,其安装在所述竖摆叶后方,所述多个横摆叶可同步枢转以调节出风的上下方向。
  7. 根据权利要求1所述的制热控制方法,其中
    一个所述风机对应两个所述出风口,另一所述风机对应一个所述出风口;且
    三个所述出风口沿直线排列。
  8. 根据权利要求1所述的制热控制方法,其中
    两个所述风机均为贯流风机。
  9. 根据权利要求1所述的制热控制方法,其中
    两个所述蒸发器均为翅片式蒸发器且共用同一翅片组,所述两个蒸发器的盘管分别匹配所述翅片组的两个半部。
  10. 一种变频空调的制热控制装置,其包括存储器以及处理器,其中所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据权利要求1至9中任一项所述的变频空调的制热控制方法。
PCT/CN2018/105786 2017-09-18 2018-09-14 变频空调的制热控制方法与装置 WO2019052540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710840433.1A CN107781946B (zh) 2017-09-18 2017-09-18 变频空调的制热控制方法
CN201710840433.1 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019052540A1 true WO2019052540A1 (zh) 2019-03-21

Family

ID=61438224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105786 WO2019052540A1 (zh) 2017-09-18 2018-09-14 变频空调的制热控制方法与装置

Country Status (2)

Country Link
CN (1) CN107781946B (zh)
WO (1) WO2019052540A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107781946B (zh) * 2017-09-18 2019-12-31 青岛海尔空调器有限总公司 变频空调的制热控制方法
CN110848898B (zh) * 2019-10-11 2021-02-12 珠海格力电器股份有限公司 一种防止空调负荷转换停机的控制方法、计算机可读存储介质及空调
CN111649439B (zh) * 2020-05-08 2021-12-31 宁波奥克斯电气股份有限公司 一种空调控制方法
CN113669855B (zh) * 2020-05-13 2022-09-16 广东美的制冷设备有限公司 高温除菌控制方法、双贯流空调器及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050047623A (ko) * 2003-11-18 2005-05-23 엘지전자 주식회사 일체형 공기조화기
CN103629739A (zh) * 2012-08-22 2014-03-12 珠海格力电器股份有限公司 多出风口空调器室内机
CN103822332A (zh) * 2014-03-14 2014-05-28 四川长虹空调有限公司 基于睡眠状态调节温度的空调及其控制方法
CN104697109A (zh) * 2014-12-22 2015-06-10 青岛海尔空调器有限总公司 制冷控制方法、控制装置及变频空调
CN105066353A (zh) * 2015-08-07 2015-11-18 广东美的制冷设备有限公司 一种变频空调的风速控制方法及空调器
CN107781946A (zh) * 2017-09-18 2018-03-09 青岛海尔空调器有限总公司 变频空调的制热控制方法
CN107781945A (zh) * 2017-09-18 2018-03-09 青岛海尔空调器有限总公司 变频空调的制冷控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979646A (ja) * 1995-09-14 1997-03-28 Toshiba Corp 空気調和装置
JP2001141293A (ja) * 1999-11-10 2001-05-25 Zaza International:Kk 空気調和装置
KR101166380B1 (ko) * 2006-10-17 2012-07-23 삼성전자주식회사 공기조화기 및 그 제어방법
CN104006485B (zh) * 2013-02-21 2017-02-08 广东美的制冷设备有限公司 空调器在制热模式下的室内风机转速的控制方法
CN105091238B (zh) * 2015-08-26 2017-11-28 珠海格力电器股份有限公司 空调系统及空调器制热防高温控制方法和装置
CN106594974B (zh) * 2016-11-14 2019-10-25 珠海格力电器股份有限公司 空调系统的控制方法和控制装置、空调器以及空调系统
CN106885340A (zh) * 2017-03-16 2017-06-23 青岛海尔空调器有限总公司 空调器室内机分区送风的控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050047623A (ko) * 2003-11-18 2005-05-23 엘지전자 주식회사 일체형 공기조화기
CN103629739A (zh) * 2012-08-22 2014-03-12 珠海格力电器股份有限公司 多出风口空调器室内机
CN103822332A (zh) * 2014-03-14 2014-05-28 四川长虹空调有限公司 基于睡眠状态调节温度的空调及其控制方法
CN104697109A (zh) * 2014-12-22 2015-06-10 青岛海尔空调器有限总公司 制冷控制方法、控制装置及变频空调
CN105066353A (zh) * 2015-08-07 2015-11-18 广东美的制冷设备有限公司 一种变频空调的风速控制方法及空调器
CN107781946A (zh) * 2017-09-18 2018-03-09 青岛海尔空调器有限总公司 变频空调的制热控制方法
CN107781945A (zh) * 2017-09-18 2018-03-09 青岛海尔空调器有限总公司 变频空调的制冷控制方法

Also Published As

Publication number Publication date
CN107781946A (zh) 2018-03-09
CN107781946B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2019052541A1 (zh) 变频空调的制冷控制方法与装置
WO2019011178A1 (zh) 立式空调的控制方法
WO2019052540A1 (zh) 变频空调的制热控制方法与装置
CN1325849C (zh) 一种出风温度恒定的空调器及其控制方法
US20120303165A1 (en) Control system and method for both energy saving and comfort control in an air conditioning system
EP2806223A1 (en) Air-conditioning system that adjusts temperature and humidity
CN110715466A (zh) 一种多联式空调系统及其控制方法
JP6309739B2 (ja) 空気調和機
US11959652B2 (en) Machine learning apparatus, air conditioning system, and machine learning method
US11609020B2 (en) Air conditioning system
CN109556249B (zh) 一拖多空调器及其室内末端装置出风温度调节方法
JP5984964B2 (ja) 空気調和システム
CN102213470A (zh) 一种辐射及新风混合空调系统
JP2006029734A (ja) 空気調和機
WO2023029596A1 (zh) 空调及其控制方法
CN101915450A (zh) 一种多联机室内机风侧旁通容量控制方法及其装置
CN216897624U (zh) 空调式油烟机及其空调模块
CN109253495A (zh) 一种单元式分户空调机组及控制方法
KR20070113894A (ko) 루버부를 구비한 공기조화기
JP2014126336A (ja) 空気調和機
CN207540031U (zh) 空调室外机和空调器
WO2018141150A1 (zh) 一种空调的控制方法、装置及空调
CN110736142A (zh) 一种空调器及其不降温快速除湿控制方法
US20200072486A1 (en) Air conditioning system
CN219913230U (zh) 室内机和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855309

Country of ref document: EP

Kind code of ref document: A1