WO2020113952A1 - 泵送机械液压系统 - Google Patents

泵送机械液压系统 Download PDF

Info

Publication number
WO2020113952A1
WO2020113952A1 PCT/CN2019/093777 CN2019093777W WO2020113952A1 WO 2020113952 A1 WO2020113952 A1 WO 2020113952A1 CN 2019093777 W CN2019093777 W CN 2019093777W WO 2020113952 A1 WO2020113952 A1 WO 2020113952A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pumping
pressure oil
inlet
hydraulic
Prior art date
Application number
PCT/CN2019/093777
Other languages
English (en)
French (fr)
Inventor
李永久
戴献军
连彬
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2020113952A1 publication Critical patent/WO2020113952A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors

Definitions

  • This application relates to the field of construction machinery, and more specifically, to a hydraulic system for pumping machinery.
  • the application fields of pumping equipment such as concrete delivery pumps are becoming more and more extensive, and their main performance parameters such as output displacement and outlet pressure are getting higher and higher.
  • the filling pump used in coal mines that has been developed gradually has a horizontal transmission distance of more than 5000 meters and an output displacement of more than 300m/h, which requires a larger pumping mechanism.
  • a higher demand is placed on the flow of hydraulic oil driving the pumping mechanism.
  • a large-diameter, large-flow hydraulic valve block is required.
  • This application aims to solve at least one of the technical problems in the prior art.
  • the purpose of this application is to provide a pumping mechanical hydraulic system.
  • a pumping mechanical hydraulic system including: an oil tank; a pressure oil source; a pumping hydraulic actuator; at least two directional valve groups, each directional valve group pressure
  • the oil inlets are connected to the pressure oil source through an oil inlet branch, the oil return port of each directional valve group is connected to the oil tank, and each directional valve group has two working oil ports.
  • the two working oil ports of the directional valve group are respectively connected to the two oil return ports of the pumping hydraulic actuator through two oil return and return branches.
  • each directional valve group After the hydraulic oil flowing out of the working oil ports of each directional valve group merges, they jointly drive the hydraulic actuators to carry out the material transportation, so as to meet the needs of large displacement and large flow, and reduce the single directional valve group
  • the size of a single directional valve group can be a conventional directional valve group, reducing the cost of manufacturing, installation and maintenance of the directional valve group, and the components corresponding to the directional valve group (such as hydraulic directional valve , Electromagnetic directional valve, pipe joints, connectors) can use conventional specifications, thereby reducing the cost of accessories.
  • the pumping mechanical hydraulic system provided by the above technical solution of the present application also has the following additional technical features:
  • the pumping mechanical hydraulic system further includes: a reversing controller, which is connected to the control end of each of the reversing valve groups to control the operation of each of the reversing valve groups.
  • the directional controller is connected to each directional valve group separately, that is, each directional valve group is connected to the directional controller separately. Therefore, the directional controller independently controls each directional valve group, and each directional valve group It can work alone, or at least two directional valve groups work simultaneously, and when at least two directional valve groups work simultaneously, the flow of hydraulic oil flowing through the inlet branch where the at least two directional valve groups are located can be The same or different.
  • Each directional valve group can work independently. When a single directional valve group fails, other directional valve groups can still work, especially for emergency situations, which can improve the reliability of pumping machinery.
  • the directional valve group is a three-position four-way directional valve.
  • each of the oil inlet branches is provided with an oil inlet check valve, and/or, the oil inlet and return branches are provided with a hydraulic control check valve or an electronically controlled check valve.
  • An oil inlet check valve is provided on each oil inlet branch to ensure the independence between the oil inlet branches, to control the direction of the hydraulic oil, and to prevent the hydraulic oil from colliding between the oil inlet branches.
  • At least one hydraulic control one-way valve or electric control one-way valve is provided on each inlet and return oil branch line, which further improves the reliability of the work of pumping hydraulic actuators.
  • the hydraulic control check valve is a valve that can reverse the flow of the check valve by controlling the fluid pressure. This valve occupies a more important position in the hydraulic support equipment of coal mine machinery.
  • the difference between the hydraulic control check valve and the ordinary check valve is that there is an additional control oil path K.
  • the hydraulic control check valve works like a normal check valve. It only flows from the oil inlet to the oil outlet, not reverse flow.
  • the piston rod moves to the right under the action of pressure oil, and the check valve is opened with the rod to make the inlet and outlet ports connected. If the oil outlet is larger than the oil inlet, the oil flow can be reversed.
  • the electronically controlled check valve includes electromagnets, push rods, poppet valves, pilot control valves and pilot controlled ball valves.
  • the hydraulic control check valve or electric control check valve on the first inlet and return branch line (for convenience of description, the hydraulic control check valve or electronic control check valve on the first inlet and return branch line Named as the first hydraulic control check valve or the first electronically controlled check valve) No control pressure oil or no opening, one-way communication, hydraulic control check valve or electronically controlled check valve on the second inlet and return oil branch (
  • the hydraulic control check valve or the electronic control check valve on the second inlet and return branch is named as the second hydraulic control check valve or the second electronic control check valve. Conducted to facilitate oil return to the directional valve block.
  • the second hydraulic control check valve or the second electronic control check valve has no control pressure oil or does not open, and the one-way guide, the first hydraulic control check valve or the first electronic control check valve is controlled Pressure oil or open, bi-directional conduction, in order to return oil to the directional valve group.
  • the number of the pressure oil sources is at least two, and each of the pressure oil sources is connected in parallel.
  • the pressure oil source provides hydraulic oil for the directional valve group.
  • the number of pressure oil sources is at least two, and each pressure oil source is connected in parallel, and the hydraulic oil output from each pressure oil source merges and flows To the entrance of each oil inlet branch.
  • the pumping machine hydraulic system further includes: a pressure oil source controller, which is connected to the control end of each of the pressure oil sources to control the action of each pressure oil source, that is, to control Opening and closing of multiple pressure oil sources.
  • the pressure oil source controller is connected to each pressure oil source separately, that is, each pressure oil source is connected to the pressure oil source controller separately. Therefore, the pressure oil source controller independently controls each pressure oil source, and each pressure oil source can be Working alone, it is also possible to work at least two pressure oil sources simultaneously.
  • the pressure oil source includes a driving part and a hydraulic oil pump connected with the driving part, and the driving part is used to drive the hydraulic oil pump to work.
  • each pressure oil source is connected to the inlet of the oil inlet branch through a first connecting branch, and the first connecting branch is provided with pressure oil Source check valve.
  • the pumping machine hydraulic system further includes at least two first connection branches, each pressure oil source is connected to the oil inlet branch through a first connection branch, each first connection branch is connected in parallel, and each A connecting branch is provided with at least one pressure oil source check valve to ensure the independence between the first connecting branches, to control the direction of the hydraulic oil, and to prevent the hydraulic oil from colliding between the first connecting branches .
  • the number of the pumping hydraulic actuators is at least two.
  • the number of pumping hydraulic actuators may be one or more, and the hydraulic oil flowing out of the hydraulic oil outlet of each oil return and return branch joins together and flows to each pumping hydraulic actuator.
  • the pumping machine further includes: an actuator controller, which is respectively connected to the control ends of the pumping hydraulic actuators to control the actions of the pumping hydraulic actuators, namely Control the start and stop of multiple pumping hydraulic actuators.
  • the actuator controller is connected to each pumping hydraulic actuator separately, that is, each pumping hydraulic actuator is connected to the actuator controller separately, and the actuator controller independently controls each pumping hydraulic actuator and each pumping hydraulic actuator is executed.
  • the components can work individually or at least two pumping hydraulic actuators can work simultaneously.
  • the two oil inlet and return ports of each pumping hydraulic actuator are respectively connected to the two oil inlet and return oil branches through two second connecting branches.
  • the pumping mechanical hydraulic system further includes at least two second connecting branches, one oil inlet and return port of each pumping hydraulic actuator is connected to the first oil inlet and return oil branch through a second connecting branch, and the other inlet
  • the oil return port is connected to the second oil inlet and return oil branch through another second connection branch, and each second connection branch is provided with at least one pumping check valve to ensure that between the second connection branches Independence.
  • FIG. 1 is a schematic structural diagram of a pumping mechanical hydraulic system according to an embodiment of the present application, wherein the direction of the arrow indicates the flow direction of hydraulic oil in a positive pumping state;
  • FIG. 2 is a schematic structural diagram of a pumping mechanical hydraulic system according to an embodiment of the present application, where the direction of the arrow indicates the flow direction of hydraulic oil in a reverse suction state;
  • FIG. 3 is a schematic structural diagram of a pressure oil source according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of connection of a pressure oil source according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a directional valve group according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a pumping machine according to an embodiment of the present application.
  • a pumping mechanical hydraulic system provided according to an embodiment of the present application includes an oil tank 33, a pressure oil source 3, a pumping hydraulic actuator 4, four reversing valve groups 2, and a pumping hydraulic actuator 4 is the main cylinder driving the delivery cylinder and/or the swing valve cylinder driving the distribution valve.
  • the pressure oil source 3 is used to output hydraulic oil; the pressure oil inlet of each directional valve group 2 is connected to the pressure oil source 3 through an oil inlet branch 1, and the oil return port of each directional valve group 2 Connected to the oil tank, each directional valve group has two working oil ports, and the two working oil ports of each directional valve group are respectively connected to the pumping through two oil return and return branches 71, 72 Two inlet and return ports of the hydraulic actuator 4.
  • the single directional valve group 2 can be a conventional directional valve group, reducing the cost of manufacturing, installation and maintenance of the directional valve group, and the connecting parts corresponding to the directional valve group 2 (For example, pipe joints, connectors, etc.) can use conventional specifications, thereby reducing the cost of accessories.
  • the number of directional valve groups 2 is two, and two directional valve groups are provided to decompose the unconventional large-sized directional valve groups originally required into two conventional-sized directional valve groups.
  • the reversing valve group 2 is mainly composed of a hydraulic control reversing device 21, an electromagnetic reversing device 22, a valve block 23, an overflow valve 24, a hose and a joint 25.
  • the reversing valve group 2 may be a conventional reversing valve group used in pumping machinery at present.
  • the valve block 23 is provided with a plurality of hydraulic oil channels for the flow of hydraulic oil.
  • the hydraulically-controlled reversing device 21 and the electromagnetic reversing device 22 are used to control the movement of the valve core, thereby controlling the opening and closing of the hydraulic oil channel, and the overflow valve 24 is used to Improve the safety of the directional valve group.
  • each directional valve group 2 The flow direction of the hydraulic oil in each directional valve group 2 is controlled separately, so each directional valve group 2 can work independently or simultaneously.
  • the pumping mechanical hydraulic system further includes: a reversing controller, which is respectively connected to the control end of each reversing valve group 2 to control the action of each reversing valve group 2, specifically, can be controlled separately The opening and closing of each directional valve group 2 and/or the flow rate of hydraulic oil flowing through the plurality of directional valve groups 2.
  • the directional controller is connected to each directional valve group 2, that is, each directional valve group 2 is connected to the directional controller separately. Therefore, the directional controller independently controls each directional valve group 2 and each directional valve Valve group 2 can work alone, or at least two directional valve groups 2 can work at the same time, and when at least two directional valve groups 2 work at the same time, flow through the inlet branch where at least two directional valve groups 2 are located
  • the hydraulic oil flow rate of 1 can be the same or different.
  • Each directional valve group 2 can work independently. When a single directional valve group 2 fails, other directional valve groups 2 can still work, especially for emergency situations, which can improve the reliability of the pumping machine.
  • each oil inlet branch 1 is provided with an oil inlet check valve 11 to control the direction of the hydraulic oil to ensure the independence between the oil inlet branches 1 and prevent the hydraulic oil from entering the oil
  • the collusion between the branches 1 further improves the reliability of the pumping hydraulic actuator 4.
  • the hydraulic control check valve or electric control check valve on the first inlet and return branch 71 (for convenience of description, the hydraulic control check valve or electric control on the first inlet and return branch 71
  • the control check valve is named the first hydraulic control check valve 73 or the first electronically controlled check valve) without control pressure oil or does not open, one-way pilot, the second control return valve on the oil branch 72
  • electronically controlled check valve (for convenience of description, the hydraulically controlled check valve or electrically controlled check valve on the second inlet and return branch 72 is named the second hydraulic controlled check valve 74 or the second electrically controlled check valve
  • the valve is controlled by pressure oil or opened, bidirectionally connected to facilitate oil return to the directional valve group.
  • the second hydraulic control check valve 74 or the second electronic control check valve will only open in one direction if there is no control pressure oil.
  • the control valve When the control valve has control pressure oil, it will open in both directions, and the two-way guide will return the oil to the directional valve group.
  • the pressure oil source 3 is mainly composed of a frame 31, an electric motor or engine 32, an oil tank 33, an oil pump 34, a hose, and accessories 35.
  • the motor or engine 32 drives the main shaft of the oil pump 34 to rotate and output pressure oil, that is, the oil pump 34 is driven by the motor or the engine 32 to provide hydraulic oil for the directional valve group 2; it is delivered to the directional valve group 2 through a hose and an accessory 35.
  • the inlets of the oil pumps are connected, the oil tank 33 provides storage of hydraulic oil for the system, and the pressure oil source frame 31 provides support for the entire pressure oil source 3.
  • the number of pressure oil sources 3 is one or more (as shown in Figure 4, multiple pressure oil sources are represented by pressure oil source 1, pressure oil source 2, pressure oil source 3... pressure oil source N, where N is greater than Natural number of 2), so the pressure oil source 3 may be one motor or engine 32 driving the oil pump 34, or multiple motors or engines 32 driving the oil pump 34, and then confluence of hydraulic oil, as shown in FIG.
  • the pumping machine hydraulic system further includes a pressure oil source controller, which is connected to the control end of each pressure oil source 3 to control the action of each pressure oil source 3, specifically, can be controlled separately The opening and closing or displacement of each pressure oil source 3.
  • a pressure oil source controller which is connected to the control end of each pressure oil source 3 to control the action of each pressure oil source 3, specifically, can be controlled separately The opening and closing or displacement of each pressure oil source 3.
  • the pressure oil source controller is connected to each pressure oil source 3 separately, that is, each pressure oil source 3 is separately connected to the pressure oil source controller. Therefore, the pressure oil source controller independently controls the multiple pressure oil sources 3 respectively.
  • the pressure oil source 3 can work alone or at least two pressure oil sources 3 can work simultaneously.
  • each pressure oil source 3 is provided with a pressure oil source check valve 51, and the pressure oil source check valve 51 is located at the confluence point of multiple pressure oil sources (as shown in FIG. 4) Point B).
  • the pumping machine hydraulic system further includes a plurality of first connection branches 5, each pressure oil source 3 is connected to the oil inlet branch 1 through a first connection branch 5, and the plurality of first connection branches 5 are connected in parallel , And each first connecting branch 5 is provided with at least one pressure oil source check valve 51 to ensure the independence between each first connecting branch 5 to control the direction of hydraulic oil and prevent hydraulic oil from The collusion between the first connecting branch 5.
  • the pumping machine is mainly composed of two main oil cylinders 41, a water tank 42, two conveying cylinders 43, a piston head 44, a swing system 45, a distribution valve 46, a stirring system 47, and a hopper 48.
  • the main oil cylinder 41 is a hydraulic actuator, and the distribution valve 46 swings left and right under the drive of the swing system 45, so that the two conveying cylinders 43 alternately communicate with the hopper 48, and continuously suck the medium (material) in the hopper 48 into the conveying cylinder 43 .
  • the piston head 44 outputs the medium in the delivery cylinder 43 from the distribution valve 46 to the external pipeline under the thrust of the master cylinder 41.
  • the main oil cylinder 41 may also be four or more, and the number of delivery cylinders 43 is adapted to the number of main oil cylinders 41.
  • the pumping machine decomposes the original unconventional large-size directional valve group into a plurality of directional valve groups of conventional specifications.
  • the hydraulic oil is output from the pressure oil source, it passes The branch is diverted to multiple directional valve groups.
  • An oil inlet check valve is established at the front end of the multiple directional valve groups, and a hydraulic control check valve or electromagnetic one-way valve is provided at the rear end of the multiple directional valve groups.
  • Multiple directional valve groups are independently controlled, and hydraulic oil is controlled by the directional controller. After the rear end is output, the main oil cylinder is driven by the confluence to drive the back and forth movement of the piston head to convey the material.
  • connection means two or more; unless otherwise specified or stated, the terms “connected”, “fixed”, etc. should be broadly defined It is understood that, for example, “connection” may be a fixed connection, a detachable connection, or an integral connection, or an electrical connection; it may be directly connected, or may be indirectly connected through an intermediary. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种泵送机械液压系统,包括油箱(33)、压力油源(3)、泵送液压执行部件(4)、至少两个换向阀组(2);压力油源(3)用于输出液压油;每个换向阀组(2)的压力入油口分别通过一个进油支路(1)连接至所述压力油源(3),每个换向阀组(2)的回油口连接至所述油箱(33),每个换向阀组(2)具有两个工作油口,每个换向阀组(2)的两个工作油口均分别通过两个进回油支路(71、72)连接至所述泵送液压执行部件(4)的两个进回油口;该泵送机械液压系统,在满足大排量和大流量需求的同时,可以减小单个换向阀组的尺寸,使得单个换向阀组可以为常规使用的换向阀组,减小了换向阀组的加工制造、安装维护成本,而且与换向阀组相对应的部件都可以采用常规规格,从而降低了附件成本。

Description

泵送机械液压系统
本申请要求于2018年12月3日提交中国专利局、申请号为2018114656989、发明名称为“泵送机械液压系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及工程机械领域,更具体而言,涉及一种泵送机械液压系统。
背景技术
目前泵送设备如混凝土输送泵的应用领域越来越广泛,且对其主要性能参数如输出排量和出口压力等要求越来越高。如目前已逐步发展起来的煤矿使用的充填泵,其水平输送距离超过5000米,输出排量超过300m/h,从而需要更大规格的泵送机构。对于驱动泵送机构的液压油的流量提出了更高的需求,为了满足这一要求,则需要大通径、大流量的液压阀组。
而对于大流量的煤矿充填工程,目前常规的混凝土输送泵的液压阀组存在以下缺点:
1)因阀组的流量大、通径大,目前常规的阀组难以满足大流量的通流能力,导致压力损失大,液压系统发热多,流速快,极易导致液压故障,甚至出现液压系统失效。
2)为了满足大流量的使用,则需要增加通流面积,加大阀组的尺寸,这样会导致阀组尺寸过度增加,甚至出现一些非常规的尺寸及加工要求,使得加工生产变得困难,生产制造成本增加。
3)非常规大尺寸的阀组,其对应的液压换向部件,电磁换向部件,管接头,连接件(如法兰,胶管)等都会变成非常规规格,这样使得附件成本也增加。
4)非常规大尺寸的阀组,对于产品整体的安装也带来了一定的困难。
因此,如何解决:1)液压阀组大流量通流能力的问题;2)非常规大尺寸阀组的加工、制造、安装成本高的问题;3)非常规大尺寸阀组的配套附件使用成本增加的问题,是本领域技术人员需要解决的技术问题。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请的目的在于提供一种泵送机械液压系统。
为实现上述目的,本申请的技术方案提供了一种泵送机械液压系统,包括:油箱;压力油源;泵送液压执行部件;至少两个换向阀组,每个换向阀组的压力入油口分别通过一个进油支路连接至所述压力油源,每个换向阀组的回油口连接至所述油箱,每个换向阀组具有两个工作油口,每个换向阀组的两个工作油口均分别通过两个进回油支路连接至所述泵送液压执行部件的两个进回油口。
本申请上述技术方案提供的泵送机械液压系统,液压油从压力油源输出后,流入进油支路的入口,进而流至换向阀组,在泵送时,液压油从换向阀组的工作油口流出,流入一进回油支路(为方便描述将此进回油支路命名为第一进回油支路),再进入泵送液压执行部件的一进回油口,再从另一进回油口进入另一进回油支路(为方便描述将此进回油支路命名为第二进回油支路),以便回油到换向阀组;在反向吸料时,液压油从换向阀组的工作油口流出,流入第二进回油支路,再进入泵送液压执行部件的一进回油口,再从另一进回油口进入第一进回油支路,以便回油到换向阀组。
各个换向阀组的工作油口流出的液压油合流后,共同驱动泵送液压执行部件,进行物料的输送,从而在满足大排量和大流量需求的同时,可以减小单个换向阀组的尺寸,使得单个换向阀组可以为常规使用的换向阀组,减小了换向阀组的加工制造、安装维护成本,而且与换向阀组相对应的部件(例如液压换向阀,电磁换向阀,管接头,连接件)都可以采用常规规格,从而降低了附件成本。
另外,本申请上述技术方案提供的泵送机械液压系统还具有如下附加技术特征:
上述技术方案中,优选地,所述泵送机械液压系统还包括:换向控制器,与各个所述换向阀组的控制端分别连接,以分别控制各个所述换向阀组动作。
换向控制器与各个换向阀组分别连接,即每一换向阀组与换向控制器单独连接,因此,换向控制器对各个换向阀组分别独立控制,各个换向阀组既可以单独工作,也可以至少两个换向阀组同时工作,而且当至少两个换向阀组同时工作时,流经所述至少两个换向阀组所在进油支路的液压油流量可以相同,也可以不同。
各个换向阀组可以单独工作,单一换向阀组出现故障时,其它换向阀组仍能工作,尤其用于紧急情况,可以提高泵送机械的可靠性。
上述技术方案中,优选地,所述换向阀组为三位四通换向阀。
上述技术方案中,优选地,每一所述进油支路上设置有进油单向阀,和/或,所述进回油支路上设有液控单向阀或电控单向阀。
在每一进油支路上设置进油单向阀,以保证各进油支路之间的独立性,以控制液压油的方向,防止液压油在各进油支路之间的串通。每一进回油支路上设有至少一个液控单向阀或电控单向阀,进一步提高泵送液压执行部件工作的可靠性。
液控单向阀是依靠控制流体压力,可以使单向阀反向流通的阀。这种阀在煤矿机械的液压支护设备中占有较重要的地位。液控单向阀与普通单向阀不同之处是多了一个控制油路K,当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。当控制油路有控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。示例性的,电控单向阀包括电磁铁、推杆、锥阀、先导控制阀和导控球阀等主要元件。
正向泵送时,第一进回油支路上的液控单向阀或电控单向阀(为方便描述,将第一进回油支路上的液控单向阀或电控单向阀命名为第一液控单向阀或第一电控单向阀)无控制压力油或不开启,单向导通,第二进回油支路上的液控单向阀或电控单向阀(为方便描述,将第二进回油支路上的液控单向阀或电控单向阀命名为第二液控单向阀或第二电控单向阀)有控制压力油或开启,双向导通,以方便回油到换向阀组。
反向吸料时,第二液控单向阀或第二电控单向阀无控制压力油或不开启,单向导通,第一液控单向阀或第一电控单向阀有控制压力油或开启,双向导通,以便回油到换向阀组。
上述技术方案中,优选地,所述压力油源的数量为至少两个,且各个所述压力油源并联连接。
压力油源为换向阀组提供液压油,为了满足大流量大功率系统的需求,压力油源的数量为至少两个,且各个压力油源并联,各个压力油源输出的液压油合流后流至各进油支路的入口。
上述技术方案中,优选地,所述泵送机械液压系统还包括:压力油源控制器,与各个所述压力油源的控制端分别连接,以分别控制各个所述压力油源动作,即控制多个压力油源的开闭。
压力油源控制器与各个压力油源分别连接,即每一压力油源与压力油源控制器单独连接,因此,压力油源控制器对各个压力油源分别独立控制,各个压力油源既可以单独工作,也可以至少两个压力油源同时工作。
压力油源包括驱动件和与驱动件相连接的液压油泵,驱动件用于驱动液压油泵工作。
上述技术方案中,优选地,每一所述压力油源的压力油出口端通过第一连接支路与所述进油支路的入口相连接,且所述第一连接支路上设有压力油源单向阀。
泵送机械液压系统还包括至少两个第一连接支路,每一压力油源分别通过一第一连接支路与进油支路相连接,各个第一连接支路相并联,且每一第一连接支路上设有至少一个压力油源单向阀,以保证各第一连接支路之间的独立性,以控制液压油的方向,防止液压油在各第一连接支路之间的串通。
上述技术方案中,优选地,所述泵送液压执行部件的数量为至少两个。
泵送液压执行部件的数量可以为一个或多个,各个进回油支路的液压油出口端流出的液压油合流后,流至各个泵送液压执行部件。
上述技术方案中,优选地,所述泵送机械还包括:执行部件控制器,与各个所述泵送液压执行部件的控制端分别连接,以分别控制各个所述泵送液压执行部件动作,即控制多个泵送液压执行部件的启停。
执行部件控制器与各个泵送液压执行部件分别连接,即每一泵送液压执行部件与执行部件控制器单独连接,执行部件控制器对各个泵送液压执行部件分别独立控制,各个泵送液压执行部件既可以单独工作,也可以至少两个泵送液压执行部件同时工作。
上述技术方案中,优选地,每一所述泵送液压执行部件的两个所述进回油口分别通过两个第二连接支路与两个所述进回油支路相连接。
泵送机械液压系统还包括至少两个第二连接支路,每一泵送液压执行部件的一进回油口通过一第二连接支路与第一进回油支路相连接,另一进回油口通过另一第二连接支路与第二进回油支路相连接,且每一第二连接支路上设有至少一个泵送单向阀,以保证各第二连接支路之间的独立性。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请的一个实施例所述的泵送机械液压系统的结构示意图,其中箭头方向示意正向泵送状态液压油的流向;
图2是本申请的一个实施例所述的泵送机械液压系统的结构示意图,其中箭头方向示意反向吸料状态液压油的流向;
图3是本申请的一个实施例所述的压力油源的结构示意图;
图4是本申请的一个实施例所述的压力油源的连接示意图;
图5是本申请的一个实施例所述的换向阀组的结构示意图;
图6是本申请的一个实施例所述的泵送机械的结构示意图。
其中,图1至图6中附图标记与部件名称之间的对应关系为:
1进油支路,11进油单向阀,2换向阀组,21液控换向阀,22电磁换向阀,23阀块,24液压溢流阀,25胶管及接头,3压力油源,31压力油源框架,32电动机或发动机,33油箱,34油泵,35胶管及附件,4泵送液压执行部件,41主油缸,42水箱,43输送缸,44活塞头,45摇摆系统, 46分配阀,47搅拌系统,4.8料斗,5第一连接支路,51压力油源单向阀,71第一进回油支路,72第二进回油支路,73第一液控单向阀,74第二液控单向阀。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照附图描述根据本申请一些实施例的泵送机械。
如图1所示,根据本申请实施例提供的一种泵送机械液压系统,包括油箱33、压力油源3、泵送液压执行部件4、两个换向阀组2,泵送液压执行部件4为驱动输送缸的主油缸和/或驱动分配阀的摆阀油缸。
压力油源3用于输出液压油;每个换向阀组2的压力入油口分别通过一个进油支路1连接至所述压力油源3,每个换向阀组2的回油口连接至所述油箱,每个换向阀组具有两个工作油口,每个换向阀组的两个工作油口均分别通过两个进回油支路71、72连接至所述泵送液压执行部件4的两个进回油口。
本申请上述实施例提供的泵送机械液压系统,液压油从压力油源输出后,流入进油支路1的入口,进而流至两个换向阀组2,如图1所示,在正向泵送时,液压油从换向阀组的工作油口流出,流入一进回油支路(为方便描述将此进回油支路命名为第一进回油支路71),再进入泵送液压执行部件的一进回油口,再从另一进回油口进入另一进回油支路(为方便描述将此进回油支路命名为第二进回油支路72),以便回油到换向阀组;如图2所示,在反向吸料时,液压油从换向阀组的工作油口流出,流入第二进回油支路72,再进入泵送液压执行部件的一进回油口,再从另一进回油口进入第一进回油支路71,以便回油到换向阀组。
两个换向阀组的工作油口流出的液压油合流后,共同驱动泵送液压执行部 件4,进行物料的输送,从而在满足大排量和大流量需求的同时,可以减小单个换向阀组2的尺寸,使得单个换向阀组2可以为常规规格的换向阀组,减小了换向阀组的加工制造、安装维护成本,而且与换向阀组2相对应的连接部件(例如管接头,连接件等)都可以采用常规规格,从而降低了附件成本。
如图1所示,换向阀组2的数量为两个,设置两个换向阀组将原本需要的非常规大尺寸换向阀组分解为两个常规尺寸的换向阀组。
如图5所示,换向阀组2主要由液控换向装置21、电磁换向装置22、阀块23、溢流阀24、胶管及接头25组成。该换向阀组2可以为目前泵送机械中使用过的常规换向阀组。阀块23中设置多个供液压油流动的液压油通道,液控换向装置21、电磁换向装置22用于控制阀芯动作,进而控制液压油通道的通断,溢流阀24用于提高换向阀组使用的安全性。
各个换向阀组2内的液压油的流向是单独控制的,故各个换向阀组2既可以单独工作,也可以同时工作。优选地,泵送机械液压系统还包括:换向控制器,换向控制器与各个换向阀组2的控制端分别连接,以分别控制各个换向阀组2动作,具体的,可以分别控制各个换向阀组2的开闭和/或流经多个换向阀组2的液压油的流量。
换向控制器与各个换向阀组2分别连接,即每一换向阀组2与换向控制器单独连接,因此,换向控制器对各个换向阀组2分别独立控制,各个换向阀组2既可以单独工作,也可以至少两个换向阀组2同时工作,而且当至少两个换向阀组2同时工作时,流经至少两个换向阀组2所在进油支路1的液压油流量可以相同,也可以不同。
各个换向阀组2可以单独工作,单一换向阀组2出现故障时,其它换向阀组2仍能工作,尤其用于紧急情况,可以提高泵送机械的可靠性。
如图1所示,每一进油支路1上设有进油单向阀11,以控制液压油的方向,保证各进油支路1之间的独立性,防止液压油在各进油支路1之间的串通,进一步提高泵送液压执行部件4工作的可靠性。
正向泵送时,第一进回油支路71上的液控单向阀或电控单向阀(为方便描述,将第一进回油支路71上的液控单向阀或电控单向阀命名为第一液控单 向阀73或第一电控单向阀)无控制压力油或不开启,单向导通,第二进回油支路72上的液控单向阀或电控单向阀(为方便描述,将第二进回油支路72上的液控单向阀或电控单向阀命名为第二液控单向阀74或第二电控单向阀)有控制压力油或开启,双向导通,以方便回油到换向阀组。
反向吸料时,第二液控单向阀74或第二电控单向阀无控制压力油则只单向开启,单向导通,第一液控单向阀73或第一电控单向阀有控制压力油则双向开启,双向导通,以便回油到换向阀组。
如图3所示,压力油源3主要由框架31、电动机或发动机32、油箱33、油泵34、胶管及附件35组成。电动机或发动机32带动油泵34的主轴旋转,输出压力油,即由电机或发动机32驱动油泵34,为换向阀组2提供液压油;通过胶管及附件35输送到换向阀组2,油箱与油泵的入口相连通,油箱33为系统提供液压油的储存,压力油源框架31为整个压力油源3提供支撑。
压力油源3数量为一个或多个(如图4所示,多个压力油源分别以压力油源1、压力油源2、压力油源3……压力油源N表示,其中N为大于2的自然数),因此该压力油源3可以是一台电动机或发动机32驱动油泵34,或者是由多台电动机或发动机32驱动油泵34,再进行液压油的合流,如图4中,多个压力油源输出的液压油合流后流向各进油支路的入口;为了满足大流量大功率系统的需求,压力油源3的数量为多个,且多个压力油源3并联连接,多个压力油源3合流后与每一进油支路1的入口相连接,从而多个压力油源3输出的液压油合流后流至各进油支路1的入口。
优选地,泵送机械液压系统还包括:压力油源控制器,压力油源控制器与各个压力油源3的控制端分别连接,以分别控制各个压力油源3动作,具体的,可以分别控制各个压力油源3的开闭或排量。
压力油源控制器与各个压力油源3分别连接,即每一压力油源3与压力油源控制器单独连接,因此,压力油源控制器对多个压力油源3分别独立控制,多个压力油源3既可以单独工作,也可以至少两个压力油源3同时工作。
如图4所示,优选地,每一压力油源3的后端设有压力油源单向阀51,且压力油源单向阀51位于多个压力油源的合流点(如图4中B点)的前端。
泵送机械液压系统还包括多个第一连接支路5,每一压力油源3分别通过一第一连接支路5与进油支路1相连接,多个第一连接支路5相并联,且每一第一连接支路5上设有至少一个压力油源单向阀51,以保证各第一连接支路5之间的独立性,以控制液压油的方向,防止液压油在各第一连接支路5之间的串通。
如图6所示,泵送机械主要由两个主油缸41、水箱42、两个输送缸43、活塞头44、摇摆系统45、分配阀46、搅拌系统47、料斗48组成。主油缸41为液压执行部件,分配阀46在摇摆系统45的驱动作用下左右摆动,从而使两个输送缸43交替与料斗48连通,不断将料斗48内的介质(物料)吸入到输送缸43。活塞头44在主油缸41的推力下,将输送缸43内的介质从分配阀46输出到外界管道。
上述泵送机械中,为了适应大流量的液压油和增加泵送机械的排量,主油缸41也可以是四个或更多个,输送缸43的数量与主油缸41的数量相适应。
综上所述,本申请实施例提供的泵送机械,将原先的非常规大尺寸换向阀组分解成多个常规规格尺寸的换向阀组,当液压油从压力油源输出后,通过支路,分流到多个换向阀组,在多个换向阀组的前端设立了进油单向阀,在多个换向阀组的后端设有液控单向阀或电磁单向阀,以控制液压油的方向,防止液压油串通。多个换向阀组分别独立控制,通过换向控制器对液压油进行控制,在后端输出后通过合流,共同驱动主油缸,以驱动活塞头的来回运动,进行物料的输送。
在本申请的描述中,除非另有明确的规定和限定,术语“多个”是指两个或两个以上;除非另有规定或说明,术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定 的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种泵送机械液压系统,其中,包括:
    油箱;
    压力油源;
    泵送液压执行部件;
    至少两个换向阀组,每个换向阀组的压力入油口分别通过一个进油支路连接至所述压力油源,每个换向阀组的回油口连接至所述油箱,每个换向阀组具有两个工作油口,每个换向阀组的两个工作油口均分别通过两个进回油支路连接至所述泵送液压执行部件的两个进回油口。
  2. 根据权利要求1所述的泵送机械液压系统,其中,还包括:
    换向控制器,与各个所述换向阀组的控制端分别连接,以分别控制各个所述换向阀组动作。
  3. 根据权利要求1所述的泵送机械液压系统,其中,
    所述换向阀组为三位四通换向阀。
  4. 根据权利要求1所述的泵送机械液压系统,其中,
    每一所述进油支路上设置有进油单向阀,和/或,所述进回油支路上设有液控单向阀或电控单向阀。
  5. 根据权利要求1至4中任一项所述的泵送机械液压系统,其中,
    所述压力油源的数量为至少两个,且各个所述压力油源并联连接。
  6. 根据权利要求5所述的泵送机械液压系统,其中,还包括:
    压力油源控制器,与各个所述压力油源的控制端分别连接,以分别控制各个所述压力油源动作。
  7. 根据权利要求5所述的泵送机械液压系统,其中,
    每一所述压力油源的压力油出口端通过一个第一连接支路与所述进油支路的入口相连接,且每一所述第一连接支路上设有压力油源单向阀。
  8. 根据权利要求1至4中任一项所述的泵送机械液压系统,其中,
    所述泵送液压执行部件的数量为至少两个。
  9. 根据权利要求8所述的泵送机械液压系统,其中,还包括:
    执行部件控制器,与各个所述泵送液压执行部件的控制端分别连接,以分别控制各个所述泵送液压执行部件动作。
  10. 根据权利要求8所述的泵送机械液压系统,其中,
    每一所述泵送液压执行部件的两个所述进回油口分别通过两个第二连接支路与两个所述进回油支路相连接。
PCT/CN2019/093777 2018-12-03 2019-06-28 泵送机械液压系统 WO2020113952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811465698.9A CN109340199A (zh) 2018-12-03 2018-12-03 泵送机械液压系统
CN201811465698.9 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020113952A1 true WO2020113952A1 (zh) 2020-06-11

Family

ID=65320118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093777 WO2020113952A1 (zh) 2018-12-03 2019-06-28 泵送机械液压系统

Country Status (2)

Country Link
CN (1) CN109340199A (zh)
WO (1) WO2020113952A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800211C1 (ru) * 2022-10-26 2023-07-19 Общество с ограниченной ответственностью "МАСТЕРНЕФТЬ-СЕРВИС" Модульная насосная станция (МНС) с поршневым водяным насосом и гидравлическим приводом

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109340199A (zh) * 2018-12-03 2019-02-15 三汽车制造有限公司 泵送机械液压系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138837A (en) * 1990-02-26 1992-08-18 Mannesmann Rexroth Gmbh Load independent valve control for a plurality of hydraulic users
JP2004324741A (ja) * 2003-04-23 2004-11-18 Kobelco Contstruction Machinery Ltd 油圧バルブ装置及びその組立方法
CN101109398A (zh) * 2007-08-01 2008-01-23 太原理工大学 泵阀复合流量匹配进出油口独立控制电液系统
CN201547049U (zh) * 2009-11-23 2010-08-11 石家庄煤矿机械有限责任公司 大流量多泵多阀合流系统
CN204003763U (zh) * 2014-08-27 2014-12-10 中联重科股份有限公司 一种混凝土泵送机械液压系统及混凝土泵送机械
CN206175353U (zh) * 2016-11-15 2017-05-17 东华机械有限公司 一种液压合流油路系统
CN109340199A (zh) * 2018-12-03 2019-02-15 三汽车制造有限公司 泵送机械液压系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650303A (zh) * 2011-02-24 2012-08-29 中联重科股份有限公司 混凝土泵送设备的动力驱动装置和混凝土泵送设备
CN202628647U (zh) * 2012-05-31 2012-12-26 飞翼股份有限公司 活塞式工业泵大流量液压系统换向阀组系统
CN103603840B (zh) * 2013-11-26 2016-03-23 三一汽车制造有限公司 集成液压阀组及液压驱动系统及混凝土泵
DE102014218884B4 (de) * 2014-09-19 2020-12-10 Voith Patent Gmbh Hydraulischer Antrieb mit Eilhub und Lasthub
CN104329306B (zh) * 2014-10-31 2016-08-17 徐州徐工施维英机械有限公司 一种液压控制系统、方法和泵
CN104564862B (zh) * 2015-01-06 2018-08-07 浙江大学 一种组合式泵控缸电液控制系统
CN209083709U (zh) * 2018-12-03 2019-07-09 三一汽车制造有限公司 泵送机械液压系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138837A (en) * 1990-02-26 1992-08-18 Mannesmann Rexroth Gmbh Load independent valve control for a plurality of hydraulic users
JP2004324741A (ja) * 2003-04-23 2004-11-18 Kobelco Contstruction Machinery Ltd 油圧バルブ装置及びその組立方法
CN101109398A (zh) * 2007-08-01 2008-01-23 太原理工大学 泵阀复合流量匹配进出油口独立控制电液系统
CN201547049U (zh) * 2009-11-23 2010-08-11 石家庄煤矿机械有限责任公司 大流量多泵多阀合流系统
CN204003763U (zh) * 2014-08-27 2014-12-10 中联重科股份有限公司 一种混凝土泵送机械液压系统及混凝土泵送机械
CN206175353U (zh) * 2016-11-15 2017-05-17 东华机械有限公司 一种液压合流油路系统
CN109340199A (zh) * 2018-12-03 2019-02-15 三汽车制造有限公司 泵送机械液压系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800211C1 (ru) * 2022-10-26 2023-07-19 Общество с ограниченной ответственностью "МАСТЕРНЕФТЬ-СЕРВИС" Модульная насосная станция (МНС) с поршневым водяным насосом и гидравлическим приводом

Also Published As

Publication number Publication date
CN109340199A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
CN102606472A (zh) 一种泵送系统的分配阀、泵送系统及工程机械
WO2016008295A1 (zh) 一种活塞式工业输送泵
CN101619583A (zh) 用于挖掘机的液压控制回路
JP2011163072A (ja) コンクリートポンプ車両
CN204163138U (zh) 超大吨位挖掘机直线行走液压系统
CN104590370B (zh) 铰接式车辆的辅助转向系统
CN102220863B (zh) 水平定向钻机阀控自动合流液压系统
WO2020113952A1 (zh) 泵送机械液压系统
CN203048476U (zh) 液压卷扬控制系统和工程机械
US7788920B2 (en) Hydraulic pump with control system
CN102667015B (zh) 工程设备的泵控制运转系统
CN209083709U (zh) 泵送机械液压系统
CN202645987U (zh) 一种泵送系统的分配阀、泵送系统及工程机械
WO2024001145A1 (zh) 液压动力系统、作业机械及液压动力系统的控制方法
CN105114687A (zh) 一种多液动蝶阀启闭控制液压控制系统
CN104454737B (zh) 一种用于小型挖掘机的片式多路阀液压系统
CN108730370A (zh) 一种液压控制系统及汽车
CN1266011C (zh) 浆料输送设备
CN202090904U (zh) 水平定向钻机阀控自动合流液压系统
CN102022612B (zh) 一种流体流向控制阀及阀组系统
CN105569111B (zh) 挖掘机液压系统
CN109458384B (zh) 盾构掘进机串联连接双活塞杆对称液压油缸推进系统
CN208935054U (zh) 天井钻机多功能液压集成阀组
CN116538061B (zh) 一种集成柱塞泵及其工作方法
CN105035959B (zh) 使用安全的自航钢耙抓斗挖泥船液压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892720

Country of ref document: EP

Kind code of ref document: A1