WO2020113786A1 - 一种锂空气电池用或锂铜电池用电解液 - Google Patents

一种锂空气电池用或锂铜电池用电解液 Download PDF

Info

Publication number
WO2020113786A1
WO2020113786A1 PCT/CN2019/072093 CN2019072093W WO2020113786A1 WO 2020113786 A1 WO2020113786 A1 WO 2020113786A1 CN 2019072093 W CN2019072093 W CN 2019072093W WO 2020113786 A1 WO2020113786 A1 WO 2020113786A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
battery
additive
air battery
Prior art date
Application number
PCT/CN2019/072093
Other languages
English (en)
French (fr)
Inventor
张涛
张晓平
孙壮
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Publication of WO2020113786A1 publication Critical patent/WO2020113786A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an electrolyte for a lithium-air battery or a lithium-copper battery containing a dual-function electrolyte additive, which belongs to the technical field of batteries.
  • the discharge principle of lithium-air batteries is based on the reaction of metallic lithium and oxygen.
  • the negative metal lithium loses electrons to form lithium ions and diffuses into the electrolyte.
  • oxygen gets electrons and lithium ions combine to form lithium oxides that are insoluble in the organic electrolyte and deposit on the surface of the air electrode.
  • the current lithium-air battery still has serious polarization phenomena, and thus the cycle performance is not ideal, the power performance is not ideal, and the corrosion of metal lithium anodes and other phenomena.
  • the object of the present invention is to provide an electrolyte for a lithium-air battery (or lithium copper battery) containing a dual-function electrolyte additive, which can suppress the contact between the redox intermediate and the lithium anode, thereby Inhibit the shuttle effect of redox intermediates, improve the stability of lithium anodes, and the utilization of soluble catalysts.
  • the present invention provides an electrolyte for a lithium air battery or a lithium copper battery.
  • the electrolyte includes a lithium salt, an organic solvent, and an additive.
  • the additive is an ionic organic halogen compound composed of halogen ions and organic cations.
  • the molar concentration of the additive in the electrolyte is 0.01-1 mol/L.
  • the ionic organic halogen additive can play the role of a dual-function electrolyte additive.
  • the first function is that the additive can release halogen ions at one end, which acts as a soluble catalyst and reduces the battery’s Overcharge potential; function two is that the other end of the additive can release organic cations.
  • the organic cations form a SEI protective film layer (such as TES + , NH 4 +, etc.) with the surface of the lithium anode.
  • Triethyl iodide is for example, the formation principle of the protective film is Li (metal) + TES + ⁇ DES (organic film component) + Li + + -C 2 H 5.
  • the resulting organic film can protect the lithium anode and improve the cycle performance of the battery.
  • the electrolyte for lithium-air battery or lithium-copper battery of the present invention can obtain a low-charge polarization electrolyte by adding the above-mentioned additives, wherein low-charge polarization means that the charging voltage platform is stabilized at ⁇ 3.5V, which has improved battery energy
  • low-charge polarization means that the charging voltage platform is stabilized at ⁇ 3.5V, which has improved battery energy
  • the additive may be selected from at least one of the compounds represented by formula (1)-formula (9) shown in FIG. 4, wherein X1, X2, X3, X4, X5, X6, X71, X72, X73 , X8, X9 are each independently selected from one of fluorine, chlorine, bromine, and iodine; R1, R2, R3 are each independently selected from hydrogen, C1-12 alkyl, phenyl, C1-C12 alkoxy, benzyl One of the group, hydroxyl group, amino group, C3-C12 epoxy group, ureido group, vinyloxy group, mercapto group, thio group, nitro group, piperidine, imidazole, sulfoxide; Y is nitrogen, sulfur, vanadium, iodine , One of platinum.
  • the organic solvent is ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dimethyl sulfoxide, tetraethylene glycol dimethyl ether, acetonitrile, tetrahydrofuran, At least one of ethylene carbonate, dimethyl carbonate, and diethyl carbonate.
  • the molar concentration of the additive in the electrolyte is 0.02-0.5mol/L.
  • the lithium salt may be at least one of lithium bistrifluoromethanesulfonimide, lithium trifluoromethanesulfonate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, and lithium bisoxalate borate.
  • the molar concentration of the lithium salt in the electrolyte may be 0.5-4 mol/L.
  • the water content of the organic solvent is less than or equal to 10 ppm.
  • the water content of the lithium salt may be 50 ppm or less, preferably 10 ppm or less.
  • the water content of the additive is less than or equal to 10 ppm.
  • the shuttle effect of the redox intermediate can be suppressed, and the stability of the lithium negative electrode can be improved.
  • FIG. 1 is a schematic diagram of the action of an electrolyte additive in an electrolyte for a lithium air battery according to an embodiment of the present invention
  • Figure 2(a) shows the cycle performance and the first charge-discharge curve of the lithium-air battery without the addition of triethyl iodide sulfur electrolyte additive
  • Figure 3 shows the coulombic efficiency comparison of lithium-copper batteries with triethyl iodide sulfur electrolyte additive added to the electrolyte and lithium-copper batteries with no triethyl iodide sulfur electrolyte additive added to the electrolyte;
  • Figure 5 shows the structural formula of the additives of Examples 1-8.
  • the invention relates to an electrolyte used for lithium salt, organic solvent and ionic organic halogen type bifunctional electrolyte additive, wherein the electrolyte additive is an ionic organic halogen, that is, an ion composed of halogen ions and organic cations
  • the electrolyte additive is an ionic organic halogen, that is, an ion composed of halogen ions and organic cations
  • the molar concentration of additives in the electrolyte is 0.01-1 mol/L.
  • one end of the dual-function electrolyte additive in the electrolyte can release halogen ions as a soluble catalyst, reducing the overcharge potential of the lithium-air battery; the other end can release organic cations ,
  • the organic cation is bonded to the surface of the lithium negative electrode to form a SEI protective film layer, which can inhibit the shuttle effect of the redox intermediate of the soluble catalyst in the lithium air battery, and at the same time inhibit the growth of lithium dendrites in the lithium air battery (or lithium copper battery) and improve the lithium air The cycling performance of the battery (or lithium copper battery).
  • the electrolyte of the present invention is simple to prepare, the resulting product has excellent performance, and is convenient for large-scale application.
  • the electrolyte for a lithium air battery or lithium copper battery according to the present invention will be schematically described using the electrolyte for a lithium air battery of an embodiment as an example.
  • the electrolyte for a lithium air battery of the present invention contains an organic solvent.
  • the organic solvent ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dimethyl sulfoxide, acetonitrile, Tetrahydrofuran, ethylene carbonate, dimethyl carbonate, diethyl carbonate, etc. Because it is stable to lithium metal anodes, has a stable oxidation resistance potential higher than 4V, is safe, low in cost, has low volatility and exhibits more excellent stability to oxygen reducing groups, the organic solvent is preferably ethylene glycol dimethyl ether .
  • the water content of the organic solvent is less than or equal to 10 ppm. Since water will cause side reactions with the negative lithium sheet and affect battery performance, it is necessary to control the water content of each component.
  • the organic solvent can be dried as follows: the organic solvent is dried under reflux at normal pressure or reduced pressure for 6-12 hours, and then dried with molecular sieve for 2 days to 4 days.
  • the electrolytic solution for a lithium air battery of the present invention contains a lithium salt as an electrolyte.
  • Examples of the anion constituting the lithium salt may be used BF 4 -, B (C 2 O 4) 2 -, PF 6 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, ClO 4 - and the like.
  • ClO 4 -, BF 4 -, PF 6 -, N (CF 3 SO 2) 2 - it is more preferable ClO 4 -, BF 4 -, PF 6 -, N (CF 3 SO 2) 2 -.
  • the lithium salt having these anions may be used alone, or two or more kinds may be used in combination.
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium perchlorate LiClO 4
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • lithium bisoxalate borate LiB(C 2 O 4 ) 2
  • lithium bis(trifluoromethanesulfonyl)imide LiN(CF 3 SO 2 ) 2 ; LiTFSI
  • LiTFSI can be preferably used.
  • the concentration of the lithium salt in the electrolyte for a lithium air battery of the present invention may be 0.5-4 mol/L, and this range has the advantages of high ion conductivity and good rate performance. If the concentration of the lithium salt is less than 0.5 mol/L, the electrical conductivity may be insufficient. If the concentration of the lithium salt exceeds 4 mol/L, the viscosity of the obtained electrolyte solution for lithium-air batteries increases and the impregnability decreases, and the electrical characteristics of the lithium-air battery may deteriorate.
  • the concentration of the lithium salt is preferably 0.8 to 3.5 mol/L.
  • the water content of the lithium salt may be 50 ppm or less, preferably 10 ppm or less.
  • the lithium salt can be evacuated at 120°C-180°C for 12h-24h.
  • the electrolyte for a lithium air battery of the present invention contains additives.
  • an ionic organic halogen-based bifunctional electrolyte additive (ionic organic halogen compound) can be used.
  • One end of the additive is a halogen element in the ionic organic halogen, and the other end is a bond that can be bonded to the surface of lithium metal. Organic cation.
  • the additive can be used in conventional lithium-air battery electrolytes.
  • the ionic organic halogen compound may be selected from at least one of the compounds represented by the formula (1)-formula (9) shown in FIG.
  • X1, X2, X3, X4, X5, X6, X71, X72 , X73, X8, and X9 may be halogen elements, preferably one of fluorine, chlorine, bromine, and iodine.
  • one end of the additive is made of fluorine, chlorine, bromine, and iodine.
  • R1, R2, R3 can be independently selected from hydrogen groups or other groups, other groups include C1-12 alkyl, phenyl, C1-C12 alkoxy, benzyl, hydroxyl, amino, C3-C12 epoxy Base, ureido, vinyloxy, mercapto, thio, nitro, piperidine, imidazole, sulfoxide, etc.; Y can be nitrogen, sulfur, vanadium, iodine, platinum, etc.
  • the other end of the additive can release organic cations, and the organic cations can react with the surface of metal lithium to form a SEI protective film.
  • the formation principle of the protective film is Li (metal) + TES + ⁇ DES (organic film component) + Li + + + -C 2 H 5 , protecting the lithium anode, suppressing the contact between the redox intermediate and the lithium anode, thereby suppressing the redox intermediate
  • the shuttle effect of the body improves the stability of the lithium anode and the utilization rate of the soluble catalyst.
  • the molar concentration of the additive in the electrolyte may be 0.01-1 mol/L, which has the advantage of less side reactions.
  • the concentration of the additive is preferably 0.02-0.5 mol/L.
  • the electrolyte for a lithium air battery of the present invention can be prepared by the following manufacturing method.
  • an electrolyte composed of a lithium salt is added to the above organic solvent, and stirred to confirm complete dissolution, and an additive is added, stirred to confirm complete dissolution.
  • the obtained electrolytic solution is dehydrated to reduce the water content in the electrolytic solution to 100 ppm or less, preferably 50 ppm or less, thereby obtaining a target electrolytic solution for a lithium air battery.
  • the viscosity of the electrolyte for a lithium air battery of the present invention at 25°C may be 20 cP or less.
  • a lithium-air battery having the electrolyte for a lithium-air battery of the present invention, an air electrode (positive electrode), and a negative electrode is also one of the present invention.
  • the lithium-air battery of the present invention may further include a separator, a battery case, and the like.
  • the air electrode may be a carbon nanotube coated on a substrate (such as carbon paper), porous carbon, a carbon material loaded with a catalyst, a non-carbon material, and the like.
  • the negative electrode may be metallic lithium.
  • the electrolyte the above-mentioned electrolyte for lithium air battery is used.
  • the amount of electrolyte added to the button can be 60-200ul.
  • the assembly of the lithium-air battery can include: for example, a button battery: the battery case is a 2032 type, the negative electrode case has an opening upward, and is placed flat on the panel; the spring piece is placed in the negative electrode case; the clamping pad is placed on the spring piece, and then taken Lithium film (diameter 12mm) is placed in the middle of the gasket; grip the diaphragm to cover the lithium film, use a pipette to drop 100 ul of electrolyte on the diaphragm; grip the positive electrode and place it in the center of the diaphragm, and use plastic tweezers to grip the porous positive electrode cover, Pressed with the button battery packaging machine.
  • a button battery the battery case is a 2032 type, the negative electrode case has an opening upward, and is placed flat on the panel; the spring piece is placed in the negative electrode case; the clamping pad is placed on the spring piece, and then taken Lithium film (diameter 12mm) is placed in the middle of the gas
  • the present invention by using the above-mentioned electrolyte for lithium-air batteries in a lithium-air battery, the occurrence of side reactions between the soluble catalyst and the lithium anode can be suppressed, the overcharge potential of the lithium-air battery can be reduced, and the growth of lithium dendrites of the lithium anode can be suppressed. , Improve the cycle life of lithium-air batteries.
  • the present invention also provides a lithium-copper battery including a positive electrode, a negative electrode, and an electrolyte (electrolyte for lithium-copper batteries).
  • the electrolyte contains a lithium salt, an organic solvent, and an ionic organic halogen compound as an additive.
  • the ionic organic halogen compound may be at least one selected from the compounds represented by the above formula (1) to formula (9).
  • the molar concentration of the ionic organic halogen compound in the electrolyte may be 0.01-1 mol/L.
  • the electrolytic solution for lithium copper batteries of the present invention contains an organic solvent.
  • organic solvent dimethyl sulfoxide, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or the like can be used.
  • the water content of the organic solvent is less than or equal to 10 ppm.
  • the electrolytic solution for a lithium copper battery of the present invention contains a lithium salt as an electrolyte.
  • lithium perchlorate, lithium bistrifluoromethanesulfonimide, lithium trifluoromethanesulfonate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium bisoxalate borate and the like can be used.
  • concentration of lithium salt in the electrolyte can be 0.5-4 mol/L, this range has the advantages of high ion conductivity and good rate performance.
  • the water content of the lithium salt may be 50 ppm or less, preferably 10 ppm or less.
  • the positive electrode of a lithium copper battery is metallic copper (for example, copper foil), and the negative electrode is metallic lithium.
  • the assembly of the lithium-copper battery may include: for example, a button battery: the battery case is a 2025 type, the negative electrode case has an upward opening and is placed flat on the panel; the spring piece is placed in the negative electrode case; the clamping pad is placed on the spring piece and then clipped Put the lithium sheet (diameter 12mm) in the middle of the gasket; clamp the diaphragm to cover the lithium sheet, use a pipette to drop 100 ul of electrolyte on the diaphragm; clamp the copper foil and place it in the center of the diaphragm, and use plastic tweezers to clamp the positive electrode cover to cover, use The button battery packaging machine is pressed.
  • FIG. 1 is a schematic diagram of the action of an electrolyte additive according to an embodiment of the present invention.
  • the halogen in the ionic organic halogen additive is removed and becomes a free halogen ion, which can be used as a soluble catalyst.
  • the ionic organic halogen The organic cation of the additive forms a SEI protective film layer on the surface of the metal lithium anode to protect the lithium anode.
  • the electrolyte of the present invention has an ionic organic halogen type bifunctional electrolyte additive.
  • the electrolyte additive is an ionic organic halogen, one end of which can release halogen ions in the electrolyte, as a soluble catalyst, can effectively achieve the decomposition of the discharge product of the lithium air battery and reduce the overpotential; the other end of the organic cation can be in the lithium anode
  • a SEI protective film layer is formed on the surface to inhibit the occurrence of shuttle reactions and the growth of lithium dendrites, thereby improving the battery cycle life.
  • the lithium air battery (or lithium copper battery) has good cycle performance and greater energy utilization efficiency.
  • the electrolyte of the present invention is simple and efficient to prepare, has strong operability, and is easy to popularize.
  • the invention provides an electrolyte containing an ionic organic halogen type bifunctional electrolyte additive.
  • the electrolyte additives in the electrolyte are ionic organic halogens, one end of which can release halogen X (fluorine, chlorine, bromine, iodine) ions in the electrolyte, and the halogen X ions are firstly oxidized electrochemically during the charging process to generate oxidation State X 2 , which undergoes a chemical oxidation reaction with the discharge product (such as lithium peroxide (Li 2 O 2 ), etc.) on the positive electrode side.
  • halogen X fluorine, chlorine, bromine, iodine
  • the oxidation state X 2 is reduced to achieve reversible catalysis and simultaneously achieve discharge
  • the decomposition of the product reduces the overpotential of the battery; the organic cation at the other end can form a SEI protective film layer on the surface of the lithium negative electrode, inhibiting the occurrence of shuttle reactions and the growth of lithium dendrites, thereby improving the battery cycle life.
  • the reagents, materials and instruments used are all conventional reagents, conventional materials and conventional instruments, and are commercially available unless otherwise specified.
  • the reagents involved can also be synthesized by conventional synthetic methods obtain.
  • electrolyte uses tetraethylene glycol dimethyl ether (water content 10 ppm) and lithium bistrifluoromethanesulfonimide (water content 50) ppm), add lithium bistrifluoromethanesulfonimide to tetraethylene glycol dimethyl ether, stir and confirm complete dissolution to obtain a basic electrolyte, of which lithium bistrifluoromethanesulfonimide is 1 mol/L;
  • the positive active material of the lithium-air battery is carbon nanotubes coated on carbon paper
  • the negative electrode is a round metal lithium sheet with a diameter of 12 mm
  • the battery case is of the 2032 type
  • the negative electrode case opens upwards and lays flat on the panel
  • Put the spring piece into the negative electrode case clamp the gasket on the spring piece, then clamp the lithium piece (diameter 12mm) in the middle of the gasket; clamp the diaphragm to cover the lithium piece, and use a pipette to drop 100ul of electrolyte on the diaphragm
  • the amount of electrolyte added to the button is 100ul; it contains dual functions.
  • An electrolyte-assembled lithium-air battery with an electrolyte additive is taken as Example 1, and a conventional electrolyte-assembled lithium-air battery without an electrolyte additive is selected as Comparative Example 1.
  • FIG. 1 is a schematic diagram of the action of the electrolyte additive of the present invention.
  • the iodine in the triethyl iodide is desorbed and becomes free iodide ion, which can be used as a soluble catalyst.
  • the organic cation in the triethyl iodide is formed on the surface of the lithium metal anode
  • the SEI protective film layer protects the lithium anode.
  • Example 2(a) and 2(b) show the lithium-air battery of Example 1 electrolyte with triethyl iodide sulfur electrolyte additive and Comparative Example 1 electrolyte without triethyl iodide sulfur electrolyte additive.
  • Comparison of chemical properties (cycle performance) ((a) not added; (b) added triethyl iodine sulfide), it can be seen from the results that the electrolyte added with additives for lithium-air batteries can greatly improve the charging polarization problem,
  • the charging platforms of lap 1 and lap 60 are both less than 4.0V, and the lithium-air battery without additives has obvious polarization, and the charging platform of lap 30 is greater than 4.0V.
  • the electrolyte uses a mixed system of tetraethylene glycol dimethyl ether (water content of 10 ppm) and lithium bistrifluoromethanesulfonimide (water content of 50 ppm). Lithium trifluoromethanesulfonimide, stirred and confirmed to be completely dissolved, to obtain a basic electrolyte, in which lithium bistrifluoromethanesulfonimide is 1 mol/L;
  • the positive electrode active material of the lithium copper battery is copper foil
  • the negative electrode is a round metal lithium sheet with a diameter of 12 mm.
  • the assembly of the lithium-copper battery may include: for example, a button battery: the battery case is a 2025 type, the negative electrode case has an opening upwards, and is placed flat on the panel; the spring piece is placed in the negative electrode case; the clip is placed on the spring piece, and then the clip Put the lithium sheet (diameter 12mm) in the middle of the gasket; clamp the diaphragm to cover the lithium sheet, use a pipette to drop 100 ul of electrolyte on the diaphragm; clamp the copper foil and place it in the center of the diaphragm, and use plastic tweezers to clamp the positive electrode cover to cover, use The button battery packaging machine is pressed.
  • a button-type lithium-copper battery was obtained, and the amount of electrolyte added to the button was 100 ul; a lithium-copper battery assembled with an electrolyte containing dual-function electrolyte additives was used as Example 8, and a conventional electrolyte without electrolyte additives was used. The assembled lithium-copper battery was used as Comparative Example 2.
  • Figure 3 shows the cycle performance comparison of the lithium-copper half-cell of Example 8 electrolyte with triethyl iodide sulfur electrolyte additive and Comparative Example 2 electrolyte without triethyl iodide sulfur electrolyte additive, as can be seen from the results
  • the electrolyte added with additives for lithium-copper half-cells has greatly improved Coulomb efficiency, and its cycle stability is also more excellent. After 80 laps, the coulombic efficiency is still as high as 87%, while the coulombic efficiency of lithium-copper half-cells without additives fluctuates significantly. , And after 80 laps, the Coulomb efficiency is only 50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种锂空气电池用或锂铜电池用电解液,所述电解液包括锂盐、有机溶剂以及添加剂,所述添加剂为由卤素离子和有机阳离子构成的离子型有机卤素化合物,所述添加剂在所述电解液中的摩尔浓度为0.01-1 mol/L。

Description

一种锂空气电池用或锂铜电池用电解液 技术领域
本发明涉及一种包含双功能电解液添加剂的锂空气电池用或锂铜电池用电解液,属于电池技术领域。
背景技术
电动汽车和便携电子设备的飞速发展,需要电源的功率和能量密度也随之快速增长。然而,目前已经产业化的二次电池能量密度均低于 150 Wh kg -1,使得二次能源储存和电动车行业的发展,受制于已有二次电池较低的能量密度。目前电动汽车的性能,特别是续航里程,还难以与使用内燃机的传统动力汽车相比。近几年来金属空气电池,特别是锂空气电池由于其超高的比能量引起了广泛的关注,而且有大规模应用的潜能,其能量密度达到11140 Wh kg -1,是常规锂离子电池的十倍,与汽油相当,因而被认为未来电动汽车二次电池的有力竞争者。
锂空气电池的放电原理是基于金属锂与氧气的反应。在有机电解液体系中,负极金属锂失去电子形成锂离子并扩散到电解液中,同时氧气得到电子与锂离子结合形成不溶于有机电解液的锂氧化物,沉积在空气电极表面。但是,目前的锂空气电池仍然存在严重的极化现象、进而循环性能不理想、功率性能不理想及金属锂负极的腐蚀等现象。针对锂空气电池的极化现象,利用可溶性催化剂在电解液中的快速扩散,可以有效降低电池的充电电位,但是随之带来的另一个问题就是在正极表面被氧化的催化剂会通过电解液扩散至锂负极表面,氧化金属锂,而不是正极的Li 2O 2,从而导致电池的自放电,这种现象被称之为氧化还原中间体的穿梭效应。
技术问题
针对现有技术的不足,本发明的目的在于提供一种包含双功能电解液添加剂的用于锂空气电池(或锂铜电池)的电解液,可抑制氧化还原中间体与锂负极的接触,从而抑制氧化还原中间体的穿梭效应,提高锂负极的稳定性,以及可溶性催化剂的利用率。
技术解决方案
一方面,本发明提供一种锂空气电池用或锂铜电池用电解液,所述电解液包括锂盐、有机溶剂以及添加剂,所述添加剂为由卤素离子和有机阳离子构成的离子型有机卤素化合物,所述添加剂在所述电解液中的摩尔浓度为0.01-1 mol/L。
本发明的锂空气电池用或锂铜电池用电解液中,离子型有机卤素类添加剂可发挥双功能电解液添加剂的作用,功能一为该添加剂一端可释放卤素离子,作为可溶性催化剂,降低电池的充电过电势;功能二为该添加剂另一端可释放有机阳离子,有机阳离子与锂负极表面形成SEI保护膜层(例如包括TES +, NH 4 +等),以三乙基碘代硫(TESI)为例,保护膜的生成原理是Li (金属) + TES + → DES (有机膜成分) + Li + + -C 2H 5,生成的有机膜可以保护锂负极,提高电池的循环性能。本发明的锂空气电池用或锂铜电池用电解液通过加入上述添加剂,一方面可得到低充电极化电解液,其中低充电极化是指充电电压平台稳定在~3.5V,具有提高电池能量效率的优点,将该电解液应用于锂空气电池(或锂铜电池)时,能较大程度上改善其充电极化问题以及抑制锂枝晶生长;同时可获得长循环寿命,长循环寿命是指循环大于50圈。
所述添加剂可选自结构式为图4所示式(1)-式(9)所示的化合物中的至少一种,其中,X1、X2、X3、X4、X5、X6、X71、X72、X73、X8、X9各自独立地选自氟、氯、溴、碘中的一种;R1、R2、R3各自独立地选自氢、C1~12烷基、苯基、C1~C12烷氧基、苄基、羟基、氨基、C3~C12环氧基、脲基、乙烯酰氧基、巯基、硫基、硝基、哌啶、咪唑、亚砜中的一种;Y为氮、硫、钒、碘、铂中的一种。
所述有机溶剂为乙二醇二甲基醚、二乙二醇二甲基醚、三乙二醇二甲基醚、二甲基亚砜、四乙二醇二甲基醚、乙腈、四氢呋喃、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯中的至少一种。
较佳地,所述添加剂在所述电解液中的摩尔浓度为0.02-0.5mol/L。
所述锂盐可以为双三氟甲烷磺酰亚胺锂、三氟甲基磺酸锂、六氟磷酸锂、四氟硼酸锂、高氯酸锂、双草酸硼酸锂中的至少一种。
所述锂盐在所述电解液中的摩尔浓度可以为0.5-4 mol/L。
较佳地,所述有机溶剂的含水量小于等于10ppm。
所述锂盐的含水量可以小于等于50ppm,优选小于等于10ppm。
较佳地,所述添加剂的含水量小于等于10ppm。
有益效果
根据本发明的电解液,可抑制氧化还原中间体的穿梭效应,提高锂负极的稳定性。
附图说明
图1为本发明一实施形态的锂空气电池用电解液中的电解液添加剂的作用示意图;
图2(a)示出电解液未添加三乙基碘代硫电解液添加剂的锂空气电池循环性能及第一次充放电曲线;
图2(b)示出实施例1中电解液添加三乙基碘代硫电解液添加剂的锂空气电池循环性能及第一次充放电曲线;
图3 示出电解液添加三乙基碘代硫电解液添加剂的锂-铜电池与电解液未添加三乙基碘代硫电解液添加剂的锂-铜电池库伦效率比较;
图4例示本发明的离子型有机卤素化合物的结构式;
图5示出实施例1-8添加剂的结构式。
本发明的最佳实施方式
以下结合附图和下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明涉及一种用于包含锂盐、有机溶剂以及离子型有机卤素类双功能电解液添加剂的电解液,其中电解液添加剂为离子型有机卤素类,即为由卤素离子和有机阳离子构成的离子型有机卤素化合物的一种或几种,添加剂在电解液中的摩尔浓度为0.01-1 mol/L。将该电解液应用于锂空气电池(或锂铜电池)时,电解液中的双功能电解液添加剂一端可释放卤素离子作为可溶性催化剂,降低锂空气电池的充电过电势;另一端可释放有机阳离子,有机阳离子与锂负极表面键合形成SEI保护膜层,可抑制锂空气电池可溶性催化剂氧化还原中间体的穿梭效应,同时抑制锂空气电池(或锂铜电池)锂枝晶的生长,提高锂空气电池(或锂铜电池)的循环性能。而且本发明的电解液制备简单,所得产品性能优良,便于大规模应用。
以下,以一实施形态的锂空气电池用电解液为例,示意性说明根据本发明的锂空气电池或锂铜电池用电解液。
(有机溶剂)
本发明的锂空气电池用电解液含有有机溶剂。
作为上述有机溶剂,可使用乙二醇二甲基醚、二乙二醇二甲基醚、三乙二醇二甲基醚、四乙二醇二甲基醚、二甲基亚砜、乙腈、四氢呋喃、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯等。由于对锂金属负极稳定,具有高于4V的抗氧化稳定电位,安全,成本低,具有低挥发性以及表现出对氧还原基更为优异的稳定性,有机溶剂优选乙二醇二甲基醚。
所述有机溶剂的含水量小于等于10ppm。由于水分会与负极锂片发生副反应,影响电池性能,因此需要控制各组成部分的含水量。实际操作时,可以采用如下方法对有机溶剂进行干燥:将有机溶剂在常压或减压下回流干燥6-12h,再用分子筛干燥2 天-4 天。
(锂盐)
本发明的锂空气电池用电解液含有锂盐作为电解质。
作为构成上述锂盐的阴离子,可使用BF 4 -、B(C 2O 4) 2 -、PF 6 -、CF 3SO 3 -、N(CF 3SO 2) 2 -、ClO 4 -等。其中,由于在上述有机溶剂中的溶解度高、电化学稳定性优异、制成电解液时可得到高离子传导率,因而更优选ClO 4 -、BF 4 -、PF 6 -、N(CF 3SO 2) 2 -。具有这些阴离子的锂盐可以单独使用,也可以将2种以上组合使用。例如可举出三氟甲基磺酸锂(LiCF 3SO 3)、高氯酸锂(LiClO 4)、六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、双草酸硼酸锂(LiB(C 2O 4) 2)、双(三氟甲烷磺酰基)酰亚胺锂(LiN(CF 3SO 22 ;LiTFSI)等,可优选使用LiTFSI。
本发明的锂空气电池用电解液中的锂盐的浓度可以为0.5-4mol/L,该范围具有离子传导率高、倍率性能好的优点。若上述锂盐的浓度小于0.5mol/L,则电导率有时不足。若上述锂盐的浓度超过4mol/L,则所得到的锂空气电池用电解液的粘度增大、浸渍性降低,锂空气电池的电特性有时会劣化。上述锂盐的浓度优选为0.8-3.5mol/L。
所述锂盐的含水量可以小于等于50ppm,优选小于等于10ppm。实际操作时,可以将锂盐在120℃ -180℃下抽真空处理12h-24h。
(添加剂)
本发明的锂空气电池用电解液含有添加剂。
作为上述添加剂,可使用离子型有机卤素类双功能电解液添加剂(离子型有机卤素化合物),该添加剂一端为离子型有机卤素中的卤族元素,另一端为可与金属锂表面发生键合的有机阳离子。该添加剂可用于常规锂空气电池电解液中。离子型有机卤素化合物可选自结构式为图4所示式(1)-式(9)所示的化合物中的至少一种,其中,X1、X2、X3、X4、X5、X6、X71、X72、X73、X8、X9可以为卤族元素,优选氟、氯、溴、碘中的一种。由此,使添加剂一端为氟、氯、溴、碘元素。R1、R2、R3可各自独立地选自氢基或其他基团,其他基团包括C1~12烷基、苯基、C1~C12烷氧基、苄基、羟基、氨基、C3~C12环氧基、脲基、乙烯酰氧基、巯基、硫基、硝基、哌啶、咪唑、亚砜等;Y可为氮、硫、钒、碘、铂等。由此,使添加剂的另一端可释放有机阳离子,有机阳离子可与金属锂表面发生反应,生成SEI保护膜。
采用有机氟,氯,溴,碘类双功能电解液添加剂,在锂负极表面形成一层保护膜(例如包括TES +, NH 4 +等),以三乙基碘代硫(TESI)为例,保护膜的生成原理是Li (金属) + TES + → DES (有机膜成分) + Li + + -C 2H 5,保护锂负极,抑制氧化还原中间体与锂负极的接触,从而抑制氧化还原中间体的穿梭效应,提高锂负极的稳定性,以及可溶性催化剂的利用率。
所述添加剂在电解液中的摩尔浓度可以为0.01-1 mol/L,该范围具有副反应少的优点。添加剂的浓度优选为0.02-0.5 mol/L。
(电解液的制备)
本发明的锂空气电池用电解液可以通过以下的制造方法进行制备。
即,在上述有机溶剂中加入由锂盐构成的电解质,进行搅拌并确认完全溶解,加入添加剂,进行搅拌并确认完全溶解。将所得到的电解液脱水,使电解液中的水分减少至100ppm以下、优选为50ppm以下,从而得到作为目标的锂空气电池用电解液。本发明的锂空气电池用电解液在25℃下的粘度可以为20cP以下。
通过使用如此制备的锂空气电池用电解液,能够制作锂空气电池,包括扣式电池、软包装电池、硬壳电池等。具有本发明的锂空气电池用电解液、空气电极(正极)、负极的锂空气电池也是本发明之一。本发明的锂空气电池还可以包括隔膜、电池外壳等。
空气电极可以为涂覆在基材(例如碳纸)的碳纳米管、多孔碳、负载了催化剂的碳材料以及非碳材料等。负极可以为金属锂。电解液使用上述锂空气电池用电解液。例如在扣式电池的情况下,电解液在扣电中的添加量可以为60-200ul。
锂空气电池的组装可以包括:例如扣式电池:电池壳为2032型,负极壳开口向上,平放于面板上;将弹簧片置入负极壳;夹取垫片放于弹簧片上,再夹取锂片(直径12mm)放于垫片正中;夹取隔膜覆盖锂片,用移液器滴100 ul电解液于隔膜上;夹取正极片置于隔膜正中,塑料镊子夹取多孔正极壳覆盖,用纽扣电池封装机压制完成。
本发明中,通过在锂空气电池中使用上述锂空气电池用电解液,能抑制可溶性催化剂与锂负极副反应的发生,降低锂空气电池的充电过电势,同时能够抑制锂负极锂枝晶的生长,改善锂空气电池的循环寿命。
本发明还提供一种锂铜电池,该锂铜电池包括正极、负极和电解液(锂铜电池用电解液),电解液包含锂盐、有机溶剂以及作为添加剂的离子型有机卤素化合物。离子型有机卤素化合物也可选自结构式为上述式(1)-式(9)所示的化合物中的至少一种。
上述离子型有机卤素化合物在电解液中的摩尔浓度可以为0.01-1 mol/L。
本发明的锂铜电池用电解液含有有机溶剂。
作为上述有机溶剂,可使用二甲基亚砜、乙二醇二甲醚、二乙二醇二甲基醚、三乙二醇二甲基醚、四乙二醇二甲基醚等。所述有机溶剂的含水量小于等于10ppm。
本发明的锂铜电池用电解液含有锂盐作为电解质。
作为构成上述锂盐,可使用高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲基磺酸锂、六氟磷酸锂、四氟硼酸锂、双草酸硼酸锂等。锂盐在电解液中的浓度可以为0.5-4 mol/L,该范围具有离子传导率高、倍率性能好的优点。锂盐的含水量可小于等于50ppm,优选小于等于10ppm。
锂铜电池的正极为金属铜(例如铜箔),负极为金属锂。锂铜电池的组装可以包括:例如扣式电池:电池壳为2025型,负极壳开口向上,平放于面板上;将弹簧片置入负极壳;夹取垫片放于弹簧片上,再夹取锂片(直径12mm)放于垫片正中;夹取隔膜覆盖锂片,用移液器滴100 ul电解液于隔膜上;夹取铜箔置于隔膜正中,塑料镊子夹取正极壳覆盖,用纽扣电池封装机压制完成。
将该电解液应用于锂铜电池时,电解液中的双功能电解液添加剂一端释放有机阳离子,有机阳离子锂负极表面形成SEI保护膜层,保护锂负极,抑制锂枝晶的生长,从而改善电池循环寿命。
图1为本发明一实施形态的电解液添加剂的作用示意图,在电解液中,离子型有机卤素类添加剂中的卤素脱出,变为游离的卤素离子,其可作为可溶性催化剂,离子型有机卤素类添加剂的有机阳离子在金属锂负极表面形成SEI保护膜层保护锂负极。
本发明的电解液具有离子型有机卤素类双功能电解液添加剂。该电解液添加剂为离子型有机卤素类,其一端可在电解液中释放卤素离子,作为可溶性催化剂,能有效实现锂空气电池放电产物的分解和降低过电势;其另一端有机阳离子可在锂负极表面形成SEI保护膜层,抑制穿梭反应的发生以及锂枝晶的生长,从而改善电池循环寿命。使锂空气电池(或锂铜电池)有良好的循环性能和较大的能量利用效率。另外,本发明的电解液制备简单高效,可操作性强,方便推广。
发明的优点:
本发明提供一种含有离子型有机卤素类双功能电解液添加剂的电解液。该电解液中的电解液添加剂为离子型有机卤素类,其一端可在电解液中释放卤素X(氟,氯,溴,碘)离子,卤素X离子在充电过程中首先被电化学氧化生成氧化态的X 2,其在正极侧与放电产物(例如过氧化锂(Li 2O 2)等)发生化学氧化反应,在此过程中,氧化态X 2被还原,实现可逆催化,并同时实现放电产物的分解和降低电池过电势;其另一端有机阳离子可在锂负极表面形成SEI保护膜层,抑制穿梭反应的发生以及锂枝晶的生长,从而改善电池循环寿命。
本发明的实施方式
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
在下述实施例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均为常规试剂、常规材料以及常规仪器,均可商购获得,其中所涉及的试剂也可通过常规合成方法合成获得。
实施例1
制备基础电解液:电解液选用四乙二醇二甲醚(含水量10 ppm)和双三氟甲烷磺酰亚胺锂(含水量50 ppm)的混合体系,在四乙二醇二甲醚中加入双三氟甲烷磺酰亚胺锂,进行搅拌并确认完全溶解,得到基础电解液,其中双三氟甲烷磺酰亚胺锂为1 mol/L;
制备锂空气电池用电解液:在充满氩气的手套箱(水分<0.1ppm,氧分<0.1ppm)中,向基础电解液中添加三乙基碘代硫(含水量10ppm),添加量为0.05 mol/L,所述电解液添加剂的结构式见图5;
组装电池:锂空气电池的正极活性材料为涂覆在碳纸上的碳纳米管,负极为直径12mm的圆形金属锂片,电池壳为2032型,负极壳开口向上,平放于面板上;将弹簧片置入负极壳;夹取垫片放于弹簧片上,再夹取锂片(直径12mm)放于垫片正中;夹取隔膜覆盖锂片,用移液器滴100ul电解液于隔膜上;夹取正极片置于隔膜正中,塑料镊子夹取多孔正极壳覆盖,用纽扣电池封装机压制完成,得到扣式锂空气电池,电解液在扣电中的添加量为100ul;选用含有双功能电解液添加剂的电解液组装的锂空气电池作为实施例1,选用不含电解液添加剂的常规电解液组装的锂空气电池作为比较例1。
图1为本发明电解液添加剂的作用示意图。实施例1中,在电解液中,三乙基碘代硫中的碘脱出,变为游离的碘离子,其可作为可溶性催化剂,三乙基碘代硫中的有机阳离子在金属锂负极表面形成SEI保护膜层保护锂负极。
图2(a)、图2(b)示出实施例1电解液添加三乙基碘代硫电解液添加剂与对比例1电解液未添加三乙基碘代硫电解液添加剂的锂空气电池电化学性能(循环性能)比较((a)未添加;(b)添加三乙基碘代硫),从结果可看出加入添加剂的电解液用于锂空气电池能大大改善其充电极化问题,第1圈与第60圈的充电平台均小于4.0V,而未含添加剂的锂空气电池极化明显,第30圈充电平台就大于4.0V。
实施例2
在充满氩气的手套箱(水分<0.1ppm,氧分<0.1ppm)中,向电解液中添加碘化胆碱,添加量为0.01 mol/L,所述电解液添加剂的结构式见图5;
用该电解液组装成锂空气电池。其他步骤同实施例1。
实施例3
在充满氩气的手套箱(水分<0.1ppm,氧分<0.1ppm)中,向电解液中添加二苯基碘化碘鎓,添加量为0.1mol/L,所述电解液添加剂的结构式见图5;
用该电解液组装成锂空气电池。其他步骤同实施例1。
实施例4
在充满氩气的手套箱(水分<0.1ppm,氧分<0.1ppm)中,向电解液中添加1-甲基-3-丙基碘化咪唑鎓,添加量为0.3 mol/L,所述电解液添加剂的结构式见图5;
用该电解液组装成锂空气电池。其他步骤同实施例1。
实施例5
在充满氩气的手套箱(水分<0.1ppm,氧分<0.1ppm)中,向电解液中添加三甲基碘化亚砜,添加量为0.6 mol/L,所述电解液添加剂的结构式见图5;
用该电解液组装成锂空气电池。其他步骤同实施例1。
实施例6
在充满氩气的手套箱(水分<0.1ppm,氧分<0.1ppm)中,向电解液中添加三甲基溴化亚砜,添加量为0.8 mol/L,所述电解液添加剂的结构式见图5;
用该电解液组装成锂空气电池。其他步骤同实施例1。
实施例7
在充满氩气的手套箱(水分<0.1ppm,氧分<0.1ppm)中,向电解液中添加三甲基氯化亚砜,添加量为1 mol/L,所述电解液添加剂的结构式见图5;
用该电解液组装成锂空气电池。其他步骤同实施例1。
实施例8
制备基础电解液:电解液选用四乙二醇二甲醚(含水量10ppm)和双三氟甲烷磺酰亚胺锂(含水量50ppm)的混合体系,在四乙二醇二甲醚中加入双三氟甲烷磺酰亚胺锂,进行搅拌并确认完全溶解,得到基础电解液,其中双三氟甲烷磺酰亚胺锂为1 mol/L;
制备锂铜电池用电解液:在充满氩气的手套箱(水分<0.1ppm,氧分<0.1ppm)中,向基础电解液中添加三乙基碘代硫(含水量10ppm),添加量为0.05 mol/L,所述电解液添加剂的结构式见图5;
组装电池:锂铜电池的正极活性材料为铜箔,负极为直径12mm的圆形金属锂片。锂铜电池的组装可以包括:例如扣式电池:电池壳为2025型,负极壳开口向上,平放于面板上;将弹簧片置入负极壳;夹取垫片放于弹簧片上,再夹取锂片(直径12mm)放于垫片正中;夹取隔膜覆盖锂片,用移液器滴100 ul电解液于隔膜上;夹取铜箔置于隔膜正中,塑料镊子夹取正极壳覆盖,用纽扣电池封装机压制完成。得到扣式锂铜电池,电解液在扣电中的添加量为100ul;选用含有双功能电解液添加剂的电解液组装的锂-铜电池作为实施例8,选用不含电解液添加剂的常规电解液组装的锂-铜电池作为比较例2。
图3示出实施例8电解液添加三乙基碘代硫电解液添加剂与对比例2电解液未添加三乙基碘代硫电解液添加剂的锂铜半电池循环性能比较,从结果可看出加入添加剂的电解液用于锂铜半电池的库伦效率大大改善,其循环稳定性也更优异,在80圈之后库伦效率依然高达87%,而未含添加剂的锂铜半电池库伦效率波动非常明显,且在80圈之后,库伦效率只有50%。

Claims (7)

  1. 一种锂空气电池用或锂铜电池用电解液,其特征在于,所述电解液包括锂盐、有机溶剂以及添加剂,所述添加剂为由卤素离子和有机阳离子构成的离子型有机卤素化合物,所述添加剂在所述电解液中的摩尔浓度为0.01-1 mol/L。
  2. 根据权利要求1所述的锂空气电池用或锂铜电池用电解液,其特征在于,所述添加剂选自结构式为式(1)-式(9)所示的化合物中的至少一种,
    Figure 409111dest_path_image001
    其中,X1、X2、X3、X4、X5、X6、X71、X72、X73、X8、X9各自独立地选自氟、氯、溴、碘中的一种;R1、R2、R3各自独立地选自氢、C1~12烷基、苯基、C1~C12烷氧基、苄基、羟基、氨基、C3~C12环氧基、脲基、乙烯酰氧基、巯基、硫基、硝基、哌啶、咪唑、亚砜中的一种;Y为氮、硫、钒、碘、铂中的一种。
  3. 根据权利要求1或2所述的锂空气电池用或锂铜电池用电解液,其特征在于,所述有机溶剂为乙二醇二甲基醚、二乙二醇二甲基醚、三乙二醇二甲基醚、二甲基亚砜、四乙二醇二甲基醚、乙腈、四氢呋喃、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯中的至少一种。
  4. 根据权利要求1至3中任一项所述的锂空气电池用或锂铜电池用电解液,其特征在于,所述锂盐为双三氟甲烷磺酰亚胺锂、三氟甲基磺酸锂、六氟磷酸锂、四氟硼酸锂、高氯酸锂、双草酸硼酸锂中的至少一种。
  5. 根据权利要求1至4中任一项所述的锂空气电池用或锂铜电池用电解液,其特征在于,所述锂盐在所述电解液中的摩尔浓度为0.5-4 mol/L。
  6. 根据权利要求1至5中任一项所述的锂空气电池用或锂铜电池用电解液,其特征在于,所述有机溶剂的含水量小于等于10ppm。
  7. 根据权利要求1至6中任一项所述的锂空气电池用或锂铜电池用电解液,其特征在于,所述锂盐的含水量小于等于50ppm。
PCT/CN2019/072093 2018-12-05 2019-01-17 一种锂空气电池用或锂铜电池用电解液 WO2020113786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811481941.6 2018-12-05
CN201811481941.6A CN111276740B (zh) 2018-12-05 2018-12-05 一种锂空气电池用或锂铜电池用电解液

Publications (1)

Publication Number Publication Date
WO2020113786A1 true WO2020113786A1 (zh) 2020-06-11

Family

ID=70973571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072093 WO2020113786A1 (zh) 2018-12-05 2019-01-17 一种锂空气电池用或锂铜电池用电解液

Country Status (2)

Country Link
CN (1) CN111276740B (zh)
WO (1) WO2020113786A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151862B (zh) * 2020-09-25 2022-06-14 东北师范大学 卤化取代咪唑作为氧化还原媒介的应用、电解液和锂氧电池
CN113140791B (zh) * 2021-03-19 2022-08-19 复旦大学 一种锂空气电池的吡嗪类电解液
CN113258137B (zh) * 2021-05-07 2022-05-10 厦门大学 一种提高锂空气电池电化学性能的电解液添加剂
CN113937391B (zh) * 2021-10-15 2024-02-13 中国科学院长春应用化学研究所 一种用于锂氧气电池的金属有机配合物、锂氧气电池及抑制锂氧气电池氧化还原穿梭的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636058A (zh) * 2011-06-24 2014-03-12 汉阳大学校产学协力团 锂空气电池
CN103996892A (zh) * 2014-06-17 2014-08-20 常州盈华高科储能材料科技有限公司 一种醚类电解液及锂空气电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592248B1 (ko) * 2003-10-24 2006-06-23 삼성에스디아이 주식회사 유기 전해액 및 이를 이용한 리튬 전지
JP4197644B2 (ja) * 2003-12-26 2008-12-17 株式会社東芝 非水電解質空気電池
JP5421076B2 (ja) * 2009-11-13 2014-02-19 日本電信電話株式会社 リチウム空気電池
CN103378370B (zh) * 2012-04-24 2015-05-13 张家港市国泰华荣化工新材料有限公司 一种锂铁电池用碘化锂有机电解液及其制备方法
CN104518239A (zh) * 2013-09-26 2015-04-15 中国科学院过程工程研究所 一种具有成膜和稳定作用的双功能锂离子电池酰胺类添加剂及含该添加剂的电解液
CN104916883A (zh) * 2015-06-26 2015-09-16 东莞市迈科科技有限公司 锂空气电池及其电解液
CN107221704B (zh) * 2017-06-29 2019-10-25 中国科学院长春应用化学研究所 一种锂二次电池用电解液和锂-氧气二次电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636058A (zh) * 2011-06-24 2014-03-12 汉阳大学校产学协力团 锂空气电池
CN103996892A (zh) * 2014-06-17 2014-08-20 常州盈华高科储能材料科技有限公司 一种醚类电解液及锂空气电池

Also Published As

Publication number Publication date
CN111276740B (zh) 2021-05-25
CN111276740A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
JP5397533B2 (ja) 非水電解液型二次電池及び非水電解液型二次電池用非水電解液
US8895193B2 (en) Plastic crystal electrolyte with a broad potential window
WO2020113786A1 (zh) 一种锂空气电池用或锂铜电池用电解液
US20130298386A1 (en) Method for producing a lithium or sodium battery
US9306253B2 (en) Electrolyte solution for lithium-air battery
KR100441518B1 (ko) 리튬 이차 전지 및 리튬 이차 전지의 제조 방법
KR101440347B1 (ko) 다층 구조의 이차전지용 음극 및 이를 포함하는 리튬 이차전지
US20130280604A1 (en) Electrode active material, nonaqueous secondary battery electrode, and nonaqueous secondary battery
TW201230470A (en) Secondary battery
JP5115109B2 (ja) 非水電解質電池
CN111048840B (zh) 锂离子电池电解液以及锂离子电池
KR20050114516A (ko) 이종금속 산화물이 코팅된 리튬 2차 전지용 양극 활물질및 이를 포함한 리튬 2차 전지
KR20080110404A (ko) 비수전해액 첨가제 및 이를 이용한 이차 전지
US11264647B2 (en) Battery
JP2000251932A (ja) 非水電解質二次電池
KR20020079346A (ko) 리튬 이차 전지 및 리튬 이차 전지의 제조 방법
EP4099469A1 (en) Electrochemical device and electronic device comprising same
US20230074459A1 (en) Rechargeable non-aqueous lithium-air battery cell comprising a solid organic catalyst
US20090269676A1 (en) Non-aqueous electrolytes for lithium electrochemical cells
EP4358221A1 (en) Electrolyte, secondary battery, and electric device comprising secondary battery
KR20230101255A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20040038679A (ko) 비수전해액 및 그것을 사용한 2차전지
KR102046538B1 (ko) 리튬금속 이차전지용 전해질 및 이를 포함하는 리튬금속 이차전지
KR102063821B1 (ko) 리튬금속 이차전지용 전해질 및 이를 포함하는 리튬금속 이차전지
CN113497272A (zh) 非水电解液以及包含其的锂二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893511

Country of ref document: EP

Kind code of ref document: A1