WO2020113596A1 - 一种空间环境用长效抗菌固体润滑膜层及其制备方法 - Google Patents

一种空间环境用长效抗菌固体润滑膜层及其制备方法 Download PDF

Info

Publication number
WO2020113596A1
WO2020113596A1 PCT/CN2018/120102 CN2018120102W WO2020113596A1 WO 2020113596 A1 WO2020113596 A1 WO 2020113596A1 CN 2018120102 W CN2018120102 W CN 2018120102W WO 2020113596 A1 WO2020113596 A1 WO 2020113596A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
coating
layer
long
substrate
Prior art date
Application number
PCT/CN2018/120102
Other languages
English (en)
French (fr)
Inventor
鞠鹏飞
刘京周
臧旭升
唐丽娜
朱雪龙
周宏�
郭立杰
Original Assignee
上海航天设备制造总厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海航天设备制造总厂有限公司 filed Critical 上海航天设备制造总厂有限公司
Publication of WO2020113596A1 publication Critical patent/WO2020113596A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering

Definitions

  • the invention relates to the technical field of surface coating for space environment, in particular to a method for preparing a long-acting antibacterial lubricating coating for space.
  • diamond-like carbon film As a new type of protective coating, diamond-like carbon film has excellent characteristics such as high hardness, low friction, and wear resistance, and has the potential and characteristics of being used in vacuum lubrication components.
  • pure diamond-like coatings are doped with antibacterial and sterilizing Ag elements.
  • the Ag reserves in the coating are less. After a period of use, the Ag element in the coating is exhausted, and the antibacterial effect is seriously reduced, which cannot be well satisfied Long-term and stable antibacterial lubrication needs in the space environment.
  • the purpose of the present invention is to meet the long-term and reliable antibacterial lubrication requirements of space lubricating films.
  • adjusting the sputtering Ag target current, heat treatment temperature and time can effectively adjust the substrate The thickness and Ag content of the Ag-containing functional layer; finally, a thicker Ag-containing antibacterial functional layer is obtained, and the long-acting antibacterial effect is achieved by increasing the thickness of the Ag-containing antibacterial functional layer.
  • the present invention provides a long-acting antibacterial solid lubricating film layer for space environment, which comprises: a substrate, a diffusion layer containing Ag, and a coating layer, and the coating layer comprises: Cr seeds deposited on the substrate in sequence A crystal layer and an amorphous carbon film layer containing Ag; wherein, the Ag-containing diffusion layer is located in the matrix adjacent to the Cr seed layer, and is doped from the matrix material and Ag diffused from the Cr seed layer into the matrix material Atom formation.
  • the base material is selected from any one of titanium alloy, aluminum alloy, stainless steel, and bearing steel.
  • the thickness of the Ag-containing diffusion layer is not less than 1 ⁇ m.
  • the Ag-containing amorphous carbon film layer is an Ag-containing diamond-like film layer.
  • the Ag content changes gradually from inside to outside.
  • the total thickness of the coating is between 0.5 ⁇ m and 10 ⁇ m.
  • the hardness of the coating is 20-30GPa, the critical load Lc ⁇ 30N of the binding force test by the scratch method; the coating is tested according to the provisions of GJB3032-97, and the coating layer is friction-weared with a ball-disk
  • the coating is tested according to the provisions of GJB3032-97, and the coating layer is friction-weared with a ball-disk
  • the friction coefficient is less than 0.15, and the sliding friction life t ⁇ 6.0 ⁇ 10 5 r
  • the coating has passed the 84d mold test and the rating does not exceed 1 Grade
  • UV irradiation treatment was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation grade was not more than 1 grade; the coating was subjected to sliding friction test 4.0 ⁇ 10 5 r After that, the antibacterial level does not decrease.
  • the invention also provides a method for preparing the above-mentioned long-acting antibacterial solid lubricating film layer for space environment, the method comprising:
  • Step 1 Deposit a layer of metallic Cr as a Cr seed layer on the substrate by DC magnetron sputtering; before depositing an amorphous carbon layer in the present invention, a layer of Cr is deposited as a seed layer by an arc to improve the combination of the coating and the substrate force;
  • Step 2 DC magnetron co-sputtering a graphite target and an Ag target to deposit an amorphous carbon film containing Ag;
  • Step 3 the deposited coating is subjected to heat treatment (annealing treatment) in a vacuum environment or an inert gas atmosphere, the heat treatment temperature is 100°C-300°C, and the heat treatment time is 0.5h-50h.
  • heat treatment annealing treatment
  • the Ag element in the coating diffuses into the matrix. After diffusion, the distribution of the Ag element in the amorphous carbon film tends to be more uniform than before annealing, resulting in a thicker Contains Ag antibacterial functional layer.
  • the substrate is also subjected to a glow etching cleaning step before step 1: the cleaned substrate is placed in a deposition apparatus, evacuated to below 3.0 ⁇ 10 -3 Pa, filled with argon gas, and Ar plasma is applied to the substrate Body etching cleaning, bias voltage is -350V-0V.
  • the Ag target sputtering current varies from 0.1A to 3A, and the sputtering current varies from large to small.
  • the invention first deposits a Cr seed layer on the substrate, and then adopts a magnetron co-sputtering graphite target and an Ag target.
  • a magnetron co-sputtering Ag current By adjusting the size of the sputtering Ag current, the gradient of the amorphous carbon film layer is doped with Ag element to get from inside to outside A coating with a decreasing Ag content gradient; finally, through subsequent heat treatment, the Ag atoms in the coating are diffused into the matrix to achieve an increase in the thickness of the Ag-containing antibacterial functional layer.
  • the antibacterial level of the coating does not decrease. To achieve the effect of long-term antibacterial, especially suitable for long-term antibacterial lubricating components of the space station, has great practical application needs and good application prospects.
  • FIG. 1 is a schematic structural view of a long-acting antibacterial solid lubricating film layer (after heat treatment) for a space environment of the present invention.
  • FIG. 2 is a schematic view of the structure of the long-acting antibacterial solid lubricating film layer for space environment according to the present invention without heat treatment.
  • the long-acting antibacterial solid lubricating film layer for space environment includes: a substrate 10, an Ag-containing diffusion layer 20, and a coating 30, and the coating 30 includes: sequentially deposited on the substrate The Cr seed layer 31 and the Ag-containing amorphous carbon film layer 32; wherein, the Ag-containing diffusion layer 20 is located in the substrate 10 adjacent to the Cr seed layer 31, and the Ag-containing diffusion layer 20 is made of a substrate material, and , Ag atoms diffusely doped from the Cr seed layer into the matrix material.
  • the preparation process of the substrate surface coating is as follows:
  • the TC4 titanium alloy substrate is ultrasonically cleaned with acetone for 15 minutes and dried, placed on the rack, and placed in the deposition equipment, evacuated to 3.0 ⁇ 10 -3 Pa or less, and the chamber is filled with high-purity argon Gas, the substrate was etched and cleaned by Ar plasma with a bias voltage of -350V and cleaned for 30 minutes.
  • the deposited coating is heat-treated in an inert gas atmosphere at a heat treatment temperature of 100°C and a heat treatment time of 50 hours.
  • the resulting long-acting antibacterial solid lubricating film layer for space environment is shown in FIG. 1.
  • the obtained coating was tested according to the regulations of GJB3032-97.
  • the film layer was rubbed with a ball-disk friction and wear tester and a G10 grade 9Cr18 steel ball with a diameter of 1.5 mm, the friction coefficient was 0.10 and the sliding friction life was 7.0 ⁇ 10. 5 r.
  • the nano-indentation method determined the coating hardness to be 27 GPa, and the scratch method determined the coating adhesion to 34 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation treatment was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 6.5 ⁇ 10 5 r, the antibacterial grade does not decrease.
  • the preparation process in this example is basically the same as in Example 1, and the preparation process of the substrate surface coating is basically the same as in Example 1, except that the heat treatment temperature in step (4) is 300°C and the heat treatment time is 0.5 hour.
  • the obtained coating was tested according to the regulations of GJB3032-97.
  • the friction coefficient was 0.10 and the sliding friction life was 7.0 ⁇ 10. 5 r.
  • the nano-indentation method measured the coating hardness at 25 GPa, and the scratch method determined the coating adhesion at 33 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 4.1 ⁇ 10 5 r, the antibacterial grade of the coating does not decrease.
  • the substrate is the same as in Example 1.
  • the preparation process of the substrate surface coating is basically the same as in Example 1, except that the sputtering current of the Ag target in step (3) is reduced from 2A to 1A, the total thickness of the coating is 5 ⁇ m, and that in step (4)
  • the heat treatment temperature is 200°C and the heat treatment time is 20 hours.
  • the obtained coating was tested according to GJB3032-97.
  • the film layer was rubbed with a ball-disk friction and wear tester and a G10 grade 9Cr18 steel ball with a diameter of 1.5mm, the friction coefficient was 0.13 and the sliding friction life was 6.5 ⁇ 10. 5 r.
  • the hardness of the coating measured by the nano-indentation method is 22GPa, and the binding force of the coating determined by the scratch method is 35N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation treatment was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 5.5 ⁇ 10 5 r the antibacterial grade of the coating does not decrease.
  • the substrate is aluminum alloy.
  • the preparation and heat treatment of the substrate surface coating are the same as in Example 1.
  • the obtained coating was tested according to the regulations of GJB3032-97.
  • the film layer was ground with a ball-disk friction and wear tester and a G10 grade 9Cr18 steel ball with a diameter of 1.5mm, the friction coefficient was 0.10 and the sliding friction life was 7.0 ⁇ 10. 5 r.
  • the nano-indentation method determined the coating hardness to be 27 GPa, and the scratch method determined the coating adhesion to 32 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation treatment was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 6.5 ⁇ 10 5 r, the antibacterial grade does not decrease.
  • the substrate is aluminum alloy.
  • the preparation and heat treatment process of the substrate surface coating is basically the same as in Example 1, except that the sputtering current of the Ag target in step (3) is reduced from 2A to 0.5A, the total thickness of the coating is 5 ⁇ m, and the step (4 )
  • the heat treatment temperature in) is 200°C and the heat treatment time is 20 hours.
  • the obtained coating was tested according to the regulations of GJB3032-97.
  • the friction coefficient was 0.11 and the sliding friction life was 6.6 ⁇ 10. 5 r.
  • the hardness of the coating measured by the nano-indentation method is 26 GPa, and the binding force of the coating determined by the scratch method is 35 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d mold experiment, and the rating was not more than level 1.
  • UV irradiation was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 5.2 ⁇ 10 5 r the antibacterial grade of the coating does not decrease.
  • the substrate is stainless steel.
  • the preparation and heat treatment of the substrate surface coating are the same as in Example 1.
  • the obtained coating was tested according to the regulations of GJB3032-97.
  • the film layer was rubbed with a ball-disk friction and wear tester and a G10 grade 9Cr18 steel ball with a diameter of 1.5 mm, the friction coefficient was 0.10 and the sliding friction life was 7.0 ⁇ 10. 5 r.
  • the hardness of the coating measured by the nano-indentation method was 28 GPa, and the binding force of the coating determined by the scratch method was 36 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation treatment was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 6.5 ⁇ 10 5 r, the antibacterial grade does not decrease.
  • the substrate is stainless steel.
  • the preparation and heat treatment process of the substrate surface coating is basically the same as in Example 1, except that the sputtering current of the Ag target in step (3) is reduced from 2A to 0.5A, the total thickness of the coating is 5 ⁇ m, and the step (4 )
  • the heat treatment temperature in) is 200°C and the heat treatment time is 20 hours.
  • the obtained coating was tested according to the regulations of GJB3032-97.
  • the film layer was rubbed with a ball-disk friction and wear tester and a G10 grade 9Cr18 steel ball with a diameter of 1.5mm, the friction coefficient was 0.11 and the sliding friction life was 6.5 ⁇ 10. 5 r.
  • the nano-indentation method determined the coating hardness to be 27 GPa, and the scratch method determined the coating adhesion to 37 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 5.0 ⁇ 10 5 r, the antibacterial grade does not decrease.
  • the base body is bearing steel.
  • the preparation and heat treatment of the substrate surface coating are the same as in Example 1.
  • the obtained coating was tested according to the regulations of GJB3032-97.
  • the film layer was rubbed with a ball-disk friction and wear tester and a G10 grade 9Cr18 steel ball with a diameter of 1.5 mm, the friction coefficient was 0.10 and the sliding friction life was 7.0 ⁇ 10. 5 r.
  • the nano-indentation method measured the coating hardness at 29 GPa, and the scratch method determined the coating adhesion at 33 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 6.5 ⁇ 10 5 r, the antibacterial grade does not decrease.
  • the base body is bearing steel.
  • the preparation and heat treatment process of the substrate surface coating is basically the same as in Example 1, except that the sputtering current of the Ag target in step (3) is reduced from 2A to 0.5A, the total thickness of the coating is 5 ⁇ m, and the step (4 )
  • the heat treatment temperature in) is 200°C and the heat treatment time is 20 hours.
  • the obtained coating was tested according to GJB3032-97.
  • the film layer was rubbed with a ball-disk friction and wear tester and a G10 grade 9Cr18 steel ball with a diameter of 1.5mm, the friction coefficient was 0.11 and the sliding friction life was 6.4 ⁇ 10. 5 r.
  • the nano-indentation method determined the coating hardness to be 27 GPa, and the scratch method determined the coating adhesion to 35 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation treatment was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1.
  • the sliding friction test of 5.0 ⁇ 10 5 r, the antibacterial grade does not decrease.
  • the substrate is the same as in Example 1.
  • the preparation process of the substrate surface coating is basically the same as in Example 1, except that the sputtering current of the Ag target in step (3) is reduced from 2A to 0.1A, the total thickness of the coating is 0.5 ⁇ m, and step (4)
  • the heat treatment temperature in is 100°C, and the heat treatment time is 0.5 hours.
  • the obtained coating was tested according to GJB3032-97.
  • the film layer was rubbed with a ball-disk friction and wear tester and a G10 grade 9Cr18 steel ball with a diameter of 1.5mm, the friction coefficient was 0.10 and the sliding friction life was 3.0 ⁇ 10. 5 r.
  • the nano-indentation method determined the coating hardness to be 21 GPa, and the scratch method determined the coating adhesion to 35 N.
  • the coating was tested according to GJB150.10A, and the film layer passed the 84d fungus experiment, and the rating was no more than level 1.
  • UV irradiation was performed according to GJB2502.5-2006. After 3000ESH UV irradiation, the 84d mold experiment was conducted, and the evaluation level did not exceed level 1. After 1.5 ⁇ 10 5 r sliding friction test, the antibacterial grade does not decrease.
  • high-purity argon gas is introduced into the vacuum sputtering coating equipment, a graphite target and an Ag target are used for co-sputtering, and the Cr seed crystal layer is etched and deposited on the substrate after high bias glow, Deposit a coating containing amorphous carbon and Ag; during the sputtering process, the sputtering current of the graphite target remains unchanged, and the Ag current gradient changes; then all the coatings are heat treated under vacuum (or inert gas protection) to promote coating
  • the Ag atoms in the layer diffuse into the matrix to increase the thickness of the Ag-containing antibacterial functional layer.
  • the thickness of the Ag-containing antibacterial layer in the matrix is adjusted by adjusting the Ag element content in the diamond-like coating, heat treatment temperature and time to achieve a long-term antibacterial effect .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种空间环境用长效抗菌固体润滑膜层及其制备方法,该固体润滑膜层包含:基体、含Ag 扩散层、涂层;该涂层包含:依次沉积在基体上的Cr 籽晶层及含Ag 非晶碳膜层;该含Ag 扩散层位于邻近Cr 籽晶层的基体中,由基体材料,以及,自Cr 籽晶层扩散掺杂至基体材料中的Ag 原子形成。先在基体上沉积Cr 籽晶层,再采用磁控共溅射石墨靶和Ag 靶,通过调控溅射Ag 电流大小,沉积梯度过渡Ag 功能层;最后经热处理,促使涂层中Ag 原子向基体扩散,实现含Ag 抗菌功能层厚度的增加,获得的涂层在经过长时间摩擦实验后,抗菌等级不降低,达到长效抗菌的效果,尤其适用于空间站长效抗菌润滑部件,有很大的实际应用需求和良好的应用前景。

Description

一种空间环境用长效抗菌固体润滑膜层及其制备方法 技术领域
本发明涉及空间环境用表面涂层技术领域,尤其涉及一种空间用长效抗菌润滑涂层的制备方法。
背景技术
空间环境中,航天零部件的可靠运行和长期稳定服役是航天器在轨稳定运行的首要保障。然而,外太空环境中的细菌和真菌对空间部件持续不断地造成腐蚀侵害,一方面,材料的腐蚀侵害会引起空间零部件的损坏失效,大大降低航天器的使用寿命,降低航天器的可靠性;另一方面,细菌和真菌的不断滋生会极大的影响航天员的身体健康,无法为航天员提供清洁可靠的工作和生活环境。空间站作为我国乃至整个人类太空资源开发探索的新支点,有着发射成本高,零部件更换难度大等实际问题,这就对空间环境润滑涂层的长效抗菌润滑特性提出了新的要求。
类金刚石薄膜作为新型防护涂层,具有高硬度、低摩擦、耐磨损等优异特性,具有运用在真空润滑组件中的潜能和特性。为结合空间润滑涂层的抗菌需求,对纯类金刚石涂层掺入抗菌杀菌的Ag元素。但现有技术中,由于溅射涂层较薄,涂层中的Ag储量较少,经过一段时间的使用之后,涂层中的Ag元素消耗殆尽,抗菌效果严重下降,不能很好的满足空间环境中长效稳定抗菌润滑需求。
发明的公开
本发明的目的是针对空间用润滑薄膜的长效可靠抗菌润滑需求,在采用磁控溅射设备共溅射石墨靶和Ag靶时,调节溅射Ag靶电流、热处理温度和时间能够有效调节基体中含Ag功能层的厚度和Ag含量;最终得到更厚的含Ag抗菌功能层,通过增大含Ag抗菌功能层的厚度达到长效抗菌的效果。
为了达到上述目的,本发明提供了一种空间环境用长效抗菌固体润滑膜 层,其包含:基体、含Ag扩散层、涂层,所述的涂层包含:依次沉积在基体上的Cr籽晶层及含Ag非晶碳膜层;其中,所述的含Ag扩散层位于邻近Cr籽晶层的基体中,由基体材料,以及,自Cr籽晶层扩散掺杂至基体材料中的Ag原子形成。
较佳地,所述基体材料选自钛合金、铝合金、不锈钢、轴承钢中的任意一种。
较佳地,所述的含Ag扩散层的厚度不低于1μm。
较佳地,所述的含Ag非晶碳膜层为含Ag类金刚石膜层。
较佳地,所述的含Ag类金刚石膜层中,Ag含量从内到外呈梯度递减变化趋势。
较佳地,所述的涂层的总厚度在0.5μm~10μm。
较佳地,所述的涂层的硬度为20-30GPa,划痕法结合力测试临界载荷Lc≥30N;所述涂层按GJB3032-97规定进行测试,所述镀膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数<0.15,滑动摩擦寿命t≥6.0×10 5r;根据GJB150.10A,所述涂层经过84d霉菌实验,评级不超过1级;霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级;涂层在经滑动摩擦实验4.0×10 5r后,抗菌等级不降低。
本发明还提供了一种上述的空间环境用长效抗菌固体润滑膜层的制备方法,该方法包含:
步骤1,通过直流磁控溅射对基体沉积一层金属Cr作为Cr籽晶层;本发明在沉积非晶碳层之前,采用电弧沉积一层Cr作为籽晶层以提高涂层和基体的结合力;
步骤2,直流磁控共溅射石墨靶和Ag靶,沉积含Ag非晶碳膜层;
步骤3,将沉积所得涂层在真空环境或惰性气体氛围中进行热处理(退火处理),热处理温度为100℃-300℃,热处理时间为0.5h-50h。
由于涂层中Ag浓度较高,在高Ag浓度驱动下,涂层中Ag元素扩散到基体中,扩散后,非晶碳膜层中Ag元素分布较退火前趋向均匀化,从而得到更厚的含Ag抗菌功能层。
较佳地,在步骤1之前还对基体进行辉光刻蚀清洗步骤:将清洁的基体 置于沉积设备中,抽真空至3.0×10 -3Pa以下,充入氩气,对基体进行Ar等离子体刻蚀清洗,偏压为-350V-0V。
较佳地,步骤2中,Ag靶溅射电流变化范围为0.1A-3A,溅射电流从大到小变化。
本发明先在基体上沉积Cr籽晶层,再采用磁控共溅射石墨靶和Ag靶,通过调控溅射Ag电流大小,对非晶碳膜层梯度掺入Ag元素,得到从内到外Ag含量梯度递减的涂层;最后,通过后续热处理,促使涂层中Ag原子向基体中扩散,实现含Ag抗菌功能层厚度的增加,涂层在经过长时间摩擦实验后,抗菌等级不降低,达到长效抗菌的效果,尤其适用于空间站长效抗菌润滑部件,有很大的实际应用需求和良好的应用前景。
附图的简要说明
图1为本发明的一种空间环境用长效抗菌固体润滑膜层(经热处理)的结构示意图。
图2为本发明所述的空间环境用长效抗菌固体润滑膜层未经热处理的结构示意图。
实现本发明的最佳方式
下面为对本发明作进一步详细描述,但本发明可以通过不同形式实现,以下所述实施例旨在便于对本发明的理解,不对其起任何的限制作用。
如图1所示,本发明所述的空间环境用长效抗菌固体润滑膜层,其包含:基体10、含Ag扩散层20、涂层30,所述的涂层30包含:依次沉积在基体上的Cr籽晶层31及含Ag非晶碳膜层32;其中,所述的含Ag扩散层20位于邻近Cr籽晶层31的基体10中,该含Ag扩散层20由基体材料,以及,自Cr籽晶层扩散掺杂至基体材料中的Ag原子形成。
实施例1
本实施例中,基底表面涂层的制备过程如下:
(1)将TC4钛合金基体进行丙酮超声清洗15分钟并烘干,置于机架上,并放入沉积设备中,抽真空至3.0×10 -3Pa以下,向腔体充入高纯氩气,对基体进行Ar等离子体刻蚀清洗,偏压为-350V,清洗30分钟。
(2)通过直流磁控溅射对基体沉积一层金属Cr作为籽晶层,氩气气压为4mTorr,偏压为-90kv,籽晶层厚度约为200nm。
(3)直流磁控共溅射石墨靶和Ag靶,沉积Ag-C润滑抗菌功能层:石墨靶溅射电流20A,电压500V左右;金属Ag靶溅射电流从2A减少到0.1A,工作气体为Ar气,工作气压为0.2Pa,沉积偏压为-200V,涂层总厚度10μm,如图2所示,该涂层包含Cr籽晶层31及Ag非晶碳膜层32,基体10中未见含Ag扩散层。
(4)将沉积所得涂层在惰性气体氛围中进行热处理,热处理温度为100℃,热处理时间为50小时,得到的空间环境用长效抗菌固体润滑膜层如图1所示。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.10,滑动摩擦寿命为7.0×10 5r。纳米压痕法测定涂层硬度为27GPa,划痕法测定涂层结合力为34N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验6.5×10 5r后,抗菌等级不降低。
实施例2
本实施例中制备过程与实施例1中基本相同,基体表面涂层的制备过程与实施例1中基本相同,所不同的是:步骤(4)中的热处理温度为300℃,热处理时间为0.5小时。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.10,滑动摩擦寿命为7.0×10 5r。纳米压痕法测定涂层硬度为25GPa,划痕法测定涂层结合力为33N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验4.1×10 5r后,抗菌等级不降低。
实施例3
本实施例中,基体与实施例1中相同。基体表面涂层的制备过程与实施例1中基本相同,所不同的是:步骤(3)中Ag靶的溅射电流从2A减少到1A,涂层总厚度为5μm,步骤(4)中的热处理温度为200℃,热处理时间为20小时。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.13,滑动摩擦寿命为6.5×10 5r。纳米压痕法测定涂层硬度为22GPa,划痕法测定涂层结合力为35N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验5.5×10 5r后,抗菌等级不降低。
实施例4
本实施例中,基体为铝合金。基体表面涂层的制备和热处理过程与实施例1中相同。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.10,滑动摩擦寿命为7.0×10 5r。纳米压痕法测定涂层硬度为27GPa,划痕法测定涂层结合力为32N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验6.5×10 5r后,抗菌等级不降低。
实施例5
本实施例中,基体为铝合金。基体表面涂层的制备和热处理过程与实施例1中基本相同,所不同的是:步骤(3)中Ag靶的溅射电流从2A减少到0.5A,涂层总厚度为5μm,步骤(4)中的热处理温度为200℃,热处理时间为20小时。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.11,滑动摩擦寿命为6.6×10 5r。纳米压痕法测定涂层硬度为26GPa,划痕法测定涂层结合力为35N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验, 评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验5.2×10 5r后,抗菌等级不降低。
实施例6
本实施例中,基体为不锈钢。基体表面涂层的制备和热处理过程与实施例1中相同。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.10,滑动摩擦寿命为7.0×10 5r。纳米压痕法测定涂层硬度为28GPa,划痕法测定涂层结合力为36N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验6.5×10 5r后,抗菌等级不降低。
实施例7
本实施例中,基体为不锈钢。基体表面涂层的制备和热处理过程与实施例1中基本相同,所不同的是:步骤(3)中Ag靶的溅射电流从2A减少到0.5A,涂层总厚度为5μm,步骤(4)中的热处理温度为200℃,热处理时间为20小时。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.11,滑动摩擦寿命为6.5×10 5r。纳米压痕法测定涂层硬度为27GPa,划痕法测定涂层结合力为37N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验5.0×10 5r后,抗菌等级不降低。
实施例8
本实施例中,基体为轴承钢。基体表面涂层的制备和热处理过程与实施例1中相同。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.10,滑动摩 擦寿命为7.0×10 5r。纳米压痕法测定涂层硬度为29GPa,划痕法测定涂层结合力为33N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验6.5×10 5r后,抗菌等级不降低。
实施例9
本实施例中,基体为轴承钢。基体表面涂层的制备和热处理过程与实施例1中基本相同,所不同的是:步骤(3)中Ag靶的溅射电流从2A减少到0.5A,涂层总厚度为5μm,步骤(4)中的热处理温度为200℃,热处理时间为20小时。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.11,滑动摩擦寿命为6.4×10 5r。纳米压痕法测定涂层硬度为27GPa,划痕法测定涂层结合力为35N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验5.0×10 5r后,抗菌等级不降低。
对比实施例1
本对比实施例中,基体与实施例1中相同。基体表面涂层的制备过程与实施例1中基本相同,所不同的是:步骤(3)中Ag靶的溅射电流从2A减少到0.1A,涂层总厚度为0.5μm,步骤(4)中的热处理温度为100℃,热处理时间为0.5小时。
将所得涂层按GJB3032-97规定进行测试,所述膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数为0.10,滑动摩擦寿命为3.0×10 5r。纳米压痕法测定涂层硬度为21GPa,划痕法测定涂层结合力为35N。根据GJB150.10A对涂层进行测试,所述膜层经过84d霉菌实验,评级不超过1级。霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级。涂层在经滑动摩擦实验1.5×10 5r后,抗菌等级不降低。
综上所述,本发明在真空溅射镀膜设备中通入高纯氩气,采用石墨靶和 Ag靶共溅射,在经过高偏压辉光刻蚀并沉积Cr籽晶层的基体上,沉积包含非晶碳和Ag的涂层;溅射过程中,石墨靶溅射电流保持不变,Ag电流梯度变化;然后将所有涂层在真空条件(或惰性气体保护)下进行热处理,促使涂层中Ag原子向基体中扩散,实现含Ag抗菌功能层厚度的增加,通过调控类金刚石涂层中Ag元素的含量、热处理温度和时间调控基体含Ag抗菌层的厚度,达到长效抗菌的效果。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

  1. 一种空间环境用长效抗菌固体润滑膜层,其特征在于,该固体润滑膜层包含:基体、含Ag扩散层、涂层,所述的涂层包含:依次沉积在基体上的Cr籽晶层及含Ag非晶碳膜层;其中,所述的含Ag扩散层位于邻近Cr籽晶层的基体中,由基体材料,以及,自Cr籽晶层扩散掺杂至基体材料中的Ag原子形成。
  2. 如权利要求1所述的空间环境用长效抗菌固体润滑膜层,其特征在于,所述基体材料选自钛合金、铝合金、不锈钢、轴承钢中的任意一种。
  3. 如权利要求1所述的空间环境用长效抗菌固体润滑膜层,其特征在于,所述的含Ag扩散层的厚度不低于1μm。
  4. 如权利要求1所述的空间环境用长效抗菌固体润滑膜层,其特征在于,所述的含Ag非晶碳膜层为含Ag类金刚石膜层。
  5. 如权利要求4述的空间环境用长效抗菌固体润滑膜层,其特征在于,所述的含Ag类金刚石膜层中,Ag含量从内到外呈梯度递减变化趋势。
  6. 如权利要求1所述的空间环境用长效抗菌固体润滑膜层,其特征在于,所述的涂层的总厚度在0.5μm~10μm。
  7. 如权利要求1所述的空间环境用长效抗菌固体润滑膜层,其特征在于,所述的涂层的硬度为20-30GPa,划痕法结合力测试临界载荷Lc≥30N;所述涂层按GJB3032-97规定进行测试,所述镀膜层用球-盘摩擦磨损试验机与直径1.5mm的G10级9Cr18钢球对磨时,摩擦系数<0.15,滑动摩擦寿命t≥6.0×10 5r;根据GJB150.10A,所述涂层经过84d霉菌实验,评级不超过1级;霉菌实验后,根据GJB2502.5-2006进行紫外辐照处理,经过3000ESH紫外辐照后,再进行84d霉菌实验,评价等级不超过1级;涂层在经滑动摩擦实验4.0×10 5r后,抗菌等级不降低。
  8. 一种根据权利要求1-7中任意一项所述的空间环境用长效抗菌固体润滑膜层的制备方法,其特征在于,该方法包含:
    步骤1,通过直流磁控溅射对基体沉积一层金属Cr作为Cr籽晶层;
    步骤2,直流磁控共溅射石墨靶和Ag靶,沉积含Ag非晶碳膜层;
    步骤3,将沉积所得涂层在真空环境或惰性气体氛围中进行热处理,热处理温度为100℃-300℃,热处理时间为0.5h-50h。
  9. 如权利要求8所述的空间环境用长效抗菌固体润滑膜层的制备方法,其特征在于,在步骤1之前还对基体进行辉光刻蚀清洗步骤:将清洁的基体置于沉积设备中,抽真空至3.0×10 -3Pa以下,充入氩气,对基体进行Ar等离子体刻蚀清洗,偏压为-350V-0V。
  10. 如权利要求8所述的空间环境用长效抗菌固体润滑膜层的制备方法,其特征在于,步骤2中,Ag靶溅射电流变化范围为0.1A-3A,溅射电流从大到小变化。
PCT/CN2018/120102 2018-12-07 2018-12-10 一种空间环境用长效抗菌固体润滑膜层及其制备方法 WO2020113596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811493172.1A CN109504945B (zh) 2018-12-07 2018-12-07 一种空间环境用长效抗菌固体润滑膜层及其制备方法
CN201811493172.1 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020113596A1 true WO2020113596A1 (zh) 2020-06-11

Family

ID=65752928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120102 WO2020113596A1 (zh) 2018-12-07 2018-12-10 一种空间环境用长效抗菌固体润滑膜层及其制备方法

Country Status (2)

Country Link
CN (1) CN109504945B (zh)
WO (1) WO2020113596A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112647051A (zh) * 2020-12-14 2021-04-13 军事科学院系统工程研究院军需工程技术研究所 一种含Ag金属复合薄膜及其制备方法
CN114717512A (zh) * 2022-04-21 2022-07-08 中国科学院兰州化学物理研究所 一种多种环境下具有自适应长效润滑性能的金/碳复合薄膜及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117777A (zh) * 2019-06-04 2019-08-13 东莞市和荣纳米技术有限公司 一种具有抗菌和高耐磨性能的类金刚石涂层的制备方法
GB201914136D0 (en) * 2019-10-01 2019-11-13 Teer Coatings Ltd Improvements to carbon coatings, method and apparatus for applying them, and articles bearing such coatings
CN111020512A (zh) * 2019-12-28 2020-04-17 广东省新材料研究所 一种抗菌型涂层刀具及其制备方法
CN111411335B (zh) * 2020-03-02 2022-06-28 杭州电子科技大学 一种大面积分布的Ag@SiO2纳米粒子的制备方法及应用
KR102513326B1 (ko) * 2020-12-17 2023-03-23 주식회사 에코넷코리아 바이러스 비활성화 직물 및 바이러스 비활성화 적층직물
CN115074683A (zh) * 2022-06-07 2022-09-20 上海航天设备制造总厂有限公司 一种重载荷耐潮解润滑膜层

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022039A1 (de) * 2008-04-30 2009-11-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleißschutzbeschichtung für auf Reibung beanspruchte Oberflächen von Bauteilen sowie Verfahren zur Ausbildung
CN102230153A (zh) * 2011-06-22 2011-11-02 西安理工大学 精密轴承用钢珠离子镀glc镀层实现自润滑的处理方法
CN103367528A (zh) * 2012-03-29 2013-10-23 无锡尚德太阳能电力有限公司 一种太阳电池、组件及太阳电池电极的制造方法
CN105644059A (zh) * 2015-09-14 2016-06-08 中国船舶重工集团公司第十二研究所 一种磁控溅射含银超低摩擦系数类石墨碳膜的制备方法
CN106175996A (zh) * 2016-06-30 2016-12-07 天津医科大学 表面具有富银纳米多层膜修饰的椎间融合器及制备方法
CN107326336A (zh) * 2017-06-29 2017-11-07 四川理工学院 抗菌耐磨非晶碳涂层及其制备方法、抗菌耐磨器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104947037B (zh) * 2015-05-30 2018-07-06 中国科学院宁波材料技术与工程研究所 一种掺杂类金刚石薄膜及其制备方法
CN107881466B (zh) * 2017-11-03 2020-10-20 南京工业大学 一种银掺杂类石墨碳涂层及其制备方法
CN108060399A (zh) * 2017-11-09 2018-05-22 南京工业大学 一种Ag-Me共掺杂类石墨碳涂层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022039A1 (de) * 2008-04-30 2009-11-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleißschutzbeschichtung für auf Reibung beanspruchte Oberflächen von Bauteilen sowie Verfahren zur Ausbildung
CN102230153A (zh) * 2011-06-22 2011-11-02 西安理工大学 精密轴承用钢珠离子镀glc镀层实现自润滑的处理方法
CN103367528A (zh) * 2012-03-29 2013-10-23 无锡尚德太阳能电力有限公司 一种太阳电池、组件及太阳电池电极的制造方法
CN105644059A (zh) * 2015-09-14 2016-06-08 中国船舶重工集团公司第十二研究所 一种磁控溅射含银超低摩擦系数类石墨碳膜的制备方法
CN106175996A (zh) * 2016-06-30 2016-12-07 天津医科大学 表面具有富银纳米多层膜修饰的椎间融合器及制备方法
CN107326336A (zh) * 2017-06-29 2017-11-07 四川理工学院 抗菌耐磨非晶碳涂层及其制备方法、抗菌耐磨器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112647051A (zh) * 2020-12-14 2021-04-13 军事科学院系统工程研究院军需工程技术研究所 一种含Ag金属复合薄膜及其制备方法
CN114717512A (zh) * 2022-04-21 2022-07-08 中国科学院兰州化学物理研究所 一种多种环境下具有自适应长效润滑性能的金/碳复合薄膜及其制备方法
CN114717512B (zh) * 2022-04-21 2023-02-28 中国科学院兰州化学物理研究所 一种自适应长效润滑性能金/碳复合薄膜的制备方法

Also Published As

Publication number Publication date
CN109504945A (zh) 2019-03-22
CN109504945B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2020113596A1 (zh) 一种空间环境用长效抗菌固体润滑膜层及其制备方法
WO2018113053A1 (zh) 一种具有类金刚石阵列的结构件及其制备方法
US10145004B2 (en) Application of metallic glass coating for improving fatigue resistance of aluminum alloys
JP3027502B2 (ja) 耐摩耗性非晶質硬質膜及びその製造方法
EP3670696A1 (en) Corrosion resistant carbon coatings
CN107587133B (zh) 一种钨探针复合类金刚石涂层及其制备方法
JP6364685B2 (ja) ピストンリングとその製造方法
US20220162739A1 (en) Improved coating processes
JP5792257B2 (ja) 抗菌性dlc膜被覆部材の製造方法
CN112210753A (zh) 一种二硫化钼掺银的硫化薄膜及其制备方法与应用
US5466305A (en) Method of treating the surface of titanium
Tadayyon et al. Work function modification of indium–tin–oxide used in organic light emitting devices
JPH01201461A (ja) 合成樹脂基板のコーティング法
Roy et al. Improvement of adhesion of DLC coating on nitinol substrate by hybrid ion beam deposition technique
CN1795285A (zh) 在真空中形成超硬无定形碳涂层的方法
KR20120059255A (ko) 티타늄, 은, 및 질소를 포함하는 다성분계 코팅재 및 그의 코팅 방법
JPH0320457A (ja) アルミナ被覆Al・Al合金部材の製造方法
BR112012022316B1 (pt) processo para preparar um sistema de catalisador suportado, sistema de catalisador suportado obtido por um processo, processo para preparar uma poliolefina, processo para preparar um polipropileno e poliolefina obtida por um processo
JP2000140470A (ja) ミシン及びミシン部品の製造方法
CN109252137B (zh) 锆合金表面涂层的制备方法
JP4807290B2 (ja) 皮膜の成膜方法、及び皮膜形成部材
CN111575650B (zh) 一种双层高熵合金复合薄膜及其制备方法和应用
CN107881469A (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具
CN111254401A (zh) 提高钛合金板材硬质耐磨纳米涂层粘附强度的方法
Krukovskii et al. Microstructure and properties of a silicon coating deposited on a titanium nickelide substrate using molecular-beam epitaxy equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942436

Country of ref document: EP

Kind code of ref document: A1