WO2020111358A1 - 양면 발광 조명 장치 - Google Patents

양면 발광 조명 장치 Download PDF

Info

Publication number
WO2020111358A1
WO2020111358A1 PCT/KR2018/015294 KR2018015294W WO2020111358A1 WO 2020111358 A1 WO2020111358 A1 WO 2020111358A1 KR 2018015294 W KR2018015294 W KR 2018015294W WO 2020111358 A1 WO2020111358 A1 WO 2020111358A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattering
light
degree
substrate
scattering degree
Prior art date
Application number
PCT/KR2018/015294
Other languages
English (en)
French (fr)
Inventor
장하준
박윤정
신경임
Original Assignee
주식회사 첨단랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 첨단랩 filed Critical 주식회사 첨단랩
Priority to CN201880093713.3A priority Critical patent/CN112585397A/zh
Priority to US17/057,823 priority patent/US20210111376A1/en
Publication of WO2020111358A1 publication Critical patent/WO2020111358A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the disclosed embodiments relate to a double-sided light emitting device.
  • a self-luminous element such as an organic light-emitting element can be used as a surface-emitting illumination device, and since the light generated in the light-emitting layer has to pass through many interfaces until it exits to the light extraction surface, there is a lot of light loss in this process, and accordingly light extraction There is a problem of low efficiency. This reduction in light extraction efficiency increases power consumption, which in turn can have the side effect of reducing the life of the lighting device.
  • such a lighting device can be invented on both sides of the back side and the front side, and it is difficult to control the brightness of each of the back side and the front direction.
  • an embodiment has an object to provide a double-sided light-emitting lighting device having high light extraction efficiency and improved power efficiency.
  • an embodiment of the present invention between the first exit surface, the second exit surface positioned to face the first exit surface, and between the first exit surface and the second exit surface Located in the first light emitting surface in the direction of the first light emitting surface, and the light emitting device provided to emit the second light in the direction of the second light emitting surface, and the first light emitting surface, which is located opposite to each other
  • a light extracting film having a first surface and a second surface, the substrate provided to allow the first light to enter the first surface and exit to the second surface, and a plurality of pores irregularly distributed in the substrate Including, wherein the substrate is to be scattered when the light passes through the substrate, the scattering, the first scattering by the pore particles, and the second by at least one of the first surface and the second surface It may include a scattering, and the substrate may provide a double-sided light-emitting lighting device having a relative difference between the first scattering by the first scattering and the second scattering by the second scattering.
  • the light transmittance of the substrate may be 70% or more.
  • the light transmittance of the substrate may be less than 70%.
  • the light reflectivity of the substrate may be less than 20%.
  • the light reflectivity of the substrate may be 20% or more.
  • the pores When the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering, the pores have a first diameter, and the second scattering degree by the second scattering is applied to the first scattering. When larger than the first scattering degree by, the pores have a second diameter, and the first diameter may be larger than the second diameter.
  • the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering
  • at least one of the first surface and the second surface has a first roughness
  • the second scattering degree is greater than the first scattering degree by the first scattering
  • at least one of the first and second surfaces has a second roughness
  • the second roughness may be greater than the first roughness
  • the present invention is a two-way lighting device, and can be used in a transparent lighting device that can transmit external light through the lighting device.
  • the lighting effect can be further improved by achieving both side luminous efficiency and luminance control.
  • FIG. 1 is a cross-sectional view schematically showing a light extraction film according to an embodiment.
  • FIG. 2 is a cross-sectional view schematically showing a light extraction film according to another embodiment.
  • FIG 3 is a cross-sectional view schematically showing a double-sided light emitting device according to another embodiment.
  • FIG. 4 is a cross-sectional view schematically showing a double-sided light emitting device according to another embodiment.
  • FIG. 5 is a partial cross-sectional view showing an embodiment of an organic light emitting unit.
  • FIG. 6 is a cross-sectional SEM photograph (a) and a surface SEM photograph (b) for the first embodiment.
  • FIG. 7 is a cross-sectional SEM photograph (a) and a surface SEM photograph (b) for the second embodiment.
  • FIG 11 shows the power efficiency of the first embodiment (A) and the second embodiment (B) and the comparative example (ref).
  • a specific process order may be performed differently from the described order.
  • two processes described in succession may be performed substantially simultaneously, or may be performed in an order opposite to that described.
  • FIG. 1 is a cross-sectional view schematically showing a light extraction film 1 according to an embodiment.
  • the light extraction film 1 may include a substrate 101 and a plurality of pores 102 irregularly distributed in the substrate 101.
  • the substrate 101 may be provided with a light-transmitting polymer material, and may include polyimide according to an embodiment.
  • the substrate 101 may be provided flexibly.
  • the substrate 101 has a first surface 11 and a second surface 12 facing each other, wherein the first surface 11 becomes an incident surface to which light enters, and the second surface ( 12) may be an exit surface from which light exits. Therefore, light may enter the base 101 through the first surface 11 and exit through the second surface 12.
  • a plurality of pores 102 may be irregularly distributed between the first surface 11 and the second surface 12 of the substrate 101.
  • the pores 102 may function as scattering particles of light, and may form hollow voids, and may have a refractive index of air in this space.
  • the substrate 101 as described above may be to be scattered when light passes through the substrate 101.
  • the scattering may include a first scattering (S1) by the pores 102 and a second scattering (S2) by at least one of the first surface (11) and the second surface (12).
  • the light passing through the substrate 101 hits the pores 102 irregularly arranged on the path, and is caused by the difference in refractive index between the air forming the pores 102 and the polymer constituting the substrate 101. Will spawn.
  • the first scattering (S1) may include Mie Scattering.
  • the first scattering (S1) may form a scattering of light in a form that most of the light spreads in the direction of the light.
  • light passing through the substrate 101 may be second scattered (S2) by at least one of the first surface 11 and the second surface 12 that is the exit surface.
  • the second scattering (S2) may include scattering made by the second surface (12).
  • the second scattering (S2) may include surface scattering.
  • the scattered light may spread not only in the direction in which the light travels, but also in a direction other than the direction in which the light is scattered, and may be spread in the side direction and/or the rear direction.
  • the light extraction film 1 may be provided to have a relative difference between a first scattering degree by the first scattering (S1) and a second scattering degree by the second scattering (S2). That is, the light extraction film 1 according to one embodiment is provided so that the first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2) according to the required optical properties Can be. The light extraction film 1 according to another embodiment is provided so that the second scattering degree by the second scattering (S2) is greater than the first scattering degree by the first scattering (S1) according to the required optical properties Can be.
  • the average total transmittance of the light extraction film 1 to the wavelength of the light may be 70% or more.
  • the average total reflectivity for the wavelength of the light of the substrate 101 may be less than 20%.
  • the average total transmittance for the wavelength of light may correspond to the average value of the total integral transmittance that appears when the wavelength of light varies.
  • the average total reflectivity for the wavelength of the light may correspond to the average value of the total integral reflectance when the wavelength of the light is changed.
  • the light extraction film 1 when the first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2), the light extraction film having high transparency and low reflectivity ( 1) can be obtained.
  • the average light haze value for the wavelength of light can be about 80% or more, and thus can exhibit a high diffusivity, and the change in luminance according to the viewing angle is minimized, resulting in Lambertian emission. ).
  • changes in color coordinates according to viewing angles can be minimized.
  • the light extraction film 1 when the light extraction film 1 is attached to a lighting device, the light extraction efficiency of the lighting device is improved, a user can obtain a uniform white lighting effect, and high power efficiency can be increased.
  • the substrate ( 101) when the second scattering degree by the second scattering (S2) is greater than the first scattering degree by the first scattering (S1), the substrate ( 101), that is, the average total transmittance for the wavelength of the light of the light extraction film 1 may be less than 70%. At this time, the average total reflectivity for the wavelength of the light of the substrate 101 may be 20% or more.
  • the transparency is relatively low and the reflectivity is relatively high, but the light is
  • the average light diffusion value for the wavelength of can be about 80% or more, and thus can exhibit a high degree of diffusion.
  • the change in luminance according to the viewing angle is reduced to obtain an effect close to Lambertian emission, and the change in color coordinate according to the viewing angle can be reduced. Therefore, when the light extraction film 1 is attached to the lighting device, the light extraction efficiency of the lighting device is improved, a user can obtain a uniform white lighting effect, and high power efficiency can be increased.
  • the light diffusion value of the light extraction film 1 increases as the wavelength of the light increases. Accordingly, when it is reduced to a first angle, and the second scattering degree by the second scattering (S2) is greater than the first scattering degree by the first scattering (S1), the light diffusion value of the light extraction film 1 is As the wavelength of the light increases, it can be reduced to a second angle. At this time, the second angle may be greater than the first angle. Therefore, the average light diffusion value according to the wavelength of light has a second light extraction film 1 when the first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2).
  • the second scattering degree by scattering (S2) is higher than the light extraction film (1) when it is larger than the first scattering degree by the first scattering (S1). That is, in terms of light diffusion, the light scattering film 1 when the first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2) is the second scattering
  • the second scattering degree by (S2) may exhibit a relatively superior characteristic compared to the light extraction film 1 when the second scattering degree is greater than the first scattering degree by the first scattering (S1).
  • the pores 102 when the first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2), the pores 102 Has a first diameter, and when the second scattering degree by the second scattering (S2) is greater than the first scattering degree by the first scattering (S1), the pores 102 have a second diameter.
  • the first diameter may be provided larger than the second diameter.
  • the first scattering degree by the first scattering (S1) when the first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2), the first surface The surface roughness of at least one of (11) and the second surface 12 becomes the first roughness, and the second scattering degree by the second scattering (S2) is the first scattering degree by the first scattering (S1)
  • the surface roughness of at least one of the first surface 11 and the second surface 12 may be a second roughness, wherein the second roughness may be provided larger than the first roughness. have.
  • the size of the pores 102 has a greater effect on the first scattering (S1) Can go crazy.
  • the size of the pores 102 may be 0.5 ⁇ m or more in radius have.
  • the radius of the pores 102 may be based on a long axis. More specifically, the size of the pores 102 may be a radius of 1 ⁇ m or more.
  • the surface roughness of at least one of the first surface 11 and the second surface 12 may be 20 nm or less based on rms.
  • the first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2)
  • the surface of at least one of the first surface 11 and the second surface 12 Roughness may not significantly affect the optical properties of the light extraction film 1. Therefore, in the light extraction film 1 according to one embodiment, when the first scattering degree by the first scattering (S1) is designed to be greater than the second scattering degree by the second scattering (S2), the pores The size of (102) can be designed to be 0.5 ⁇ m or more in radius.
  • the first surface ( The surface roughness of at least one of 11) and the second surface 12 may have a greater influence on the first scattering (S1).
  • first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2)
  • One surface roughness may be 50 nm or more based on rms.
  • the size of the pores 102 may be 1 ⁇ m or less in radius. Specifically, the size of the pores 102 may be 0.5 ⁇ m or less in radius.
  • the size of the pores 102 is light extraction film ( It may have less effect on the optical properties of 1).
  • the second scattering degree by the second scattering (S2) when the second scattering degree by the second scattering (S2) is designed to be greater than the first scattering degree by the first scattering (S1), the The surface roughness of at least one of the one surface 11 and the second surface 12 may be designed to be 50 nm or more based on rms.
  • the light extracting film 1 according to the embodiments as described above may have a single film shape as illustrated in FIG. 1.
  • the present invention is not limited thereto, and the light extracting film 1 according to another embodiment may further include a base 100 positioned adjacent to the first surface 11 as shown in FIG. 2. have.
  • the base 100 may function as a support for forming the base 101 in the manufacturing process of the base 101.
  • the base 100 may be provided in the form of a substrate and/or a film, may be provided rigidly or flexibly, and may be provided as a light-transmissible glass material or polymer material.
  • FIG 3 is a cross-sectional view schematically showing a double-sided light emitting device 2 according to another embodiment.
  • the double-sided light emitting device 2 includes a first exit surface 201 and a second exit surface 202 and a first exit surface 201 positioned to face each other.
  • the light emitting device 20 positioned between the second light exit surfaces 202 and the light extraction film 1 positioned on the first photographing surface 201 may be included.
  • the light emitting device 20 may be sealed between the first and second light exit surfaces 201 and 202 facing each other, and may be sealed.
  • the first direction D1 which is the direction of the first light exit surface 201
  • the first light L1 may be emitted
  • the second light L2 may be emitted in the second direction D2 which is the direction of the second light exit surface 202.
  • first light exit surface 201 and the second light exit surface 202 are opposite directions, the first light L1 and the second light L2 may be emitted in opposite directions.
  • the light emitting device 20 may be a self-light emitting device, and according to an embodiment, may be an organic light emitting device.
  • the present invention is not limited thereto, and may be an inorganic light emitting device, and various bidirectional light emitting devices such as various UV LEDs may be used.
  • the light extraction film 1 may be located on the first photographing surface 201.
  • the first light L1 is transmitted through the light extraction film 1 to cause light diffusion, and accordingly, the first light L1 may be the diffused third light L3.
  • the first light L1 is diffused, so that luminance may be improved over the first light L1.
  • the first light L1 may be reflected by the light extraction film 1, and the reflected first light L1 may be reflected in the second direction D2 to form the fourth light L4. have.
  • the light extracting film 1 may have different transmittance and reflectance by adjusting the difference between the first scattering due to the first scattering and the second scattering due to the second scattering.
  • the light transmittance of the light extraction film 1 is a light extraction film when the second scattering degree is greater than the first scattering degree It is larger than the light transmittance of (1).
  • the light reflectance of the light extraction film 1 when the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering is the light extraction film when the second scattering degree is greater than the first scattering degree It is smaller than the light reflectance of (1).
  • the light transmittance of the light extraction film 1 when the first scattering degree is greater than the second scattering degree, the light transmittance of the light extraction film 1 may be 70% or more. When the second scattering degree is greater than the first scattering degree, the light transmittance of the light extraction film 1 may be less than 70%.
  • the luminance of the third light L3 when the first scattering degree is larger than the second scattering degree may be higher than the luminance of the third light L3 when the second scattering degree is larger than the first scattering degree.
  • the light reflectance of the light extraction film 1 when the first scattering degree is greater than the second scattering degree, the light reflectance of the light extraction film 1 may be less than 20%. When the second scattering degree is larger than the first scattering degree, the light reflectance of the light extraction film 1 may be 20% or more.
  • the luminance of the fourth light L4 when the second scattering degree is larger than the first scattering degree may be higher than the luminance of the fourth light L4 when the first scattering degree is larger than the second scattering degree.
  • the luminance of light emitted from the light emitting device 20 in the first direction D1 and the second direction D2 may be adjusted according to the adjustment of the first scattering degree and the second scattering degree of the light extraction film 1.
  • the first direction D1 is greater than when the light scattering degree 1 having a second scattering degree larger than the first scattering degree is used. ) Can be increased.
  • the second direction when the first scattering degree is larger than the second scattering degree using the light extraction film 1)
  • the brightness of D2 can be increased.
  • the above-described double-sided light-emitting lighting device 2 may be implemented as a transparent lighting device through which external light passes through the light-emitting element 20.
  • the first light L1 and the third light L3 are irradiated in the first direction D1
  • the second light L2 and the fourth light L4 are irradiated in the second direction D2.
  • a transparent lighting device can be implemented.
  • external light is transmitted to the light emitting device 20 so that the user can observe the object on the other side.
  • the luminances of the first direction D1 and/or the second direction D2 can be set as described above, different lighting effects can be implemented in both directions.
  • FIG. 4 is a cross-sectional view showing a more specific embodiment of the double-sided light emitting device 2 according to another embodiment.
  • the organic light emitting unit 24 may be used as the light emitting element 20.
  • the double-sided light-emitting device 2 may include a substrate 21 and a sealing member 22 facing each other and an organic light-emitting unit 24 positioned between them.
  • the substrate 21 and the sealing member 22 may be coupled to each other, and the organic light emitting unit 24 interposed therebetween may be sealed by blocking the outside air.
  • the sealing member 22 is provided in the shape of a substrate and can be combined with the substrate 21 by a sealant 23 located at the edge.
  • the sealing member 22 may include a thin film structure including at least one film, and in this case, may be formed on the substrate 21 to cover the organic light emitting part 24.
  • the light emitted from the organic light emitting part 24 includes first light L1 emitted in the direction of the substrate 21 and second light emitted in the direction of the sealing member 22.
  • Light L2 may be included.
  • the light extraction film 1 may be coupled to the outer surface of the substrate 21.
  • the light extracting film 1 may be positioned such that the aforementioned first surface 11 faces the substrate 21.
  • the organic light emitting unit 24 may include an organic light emitting device that emits white light. As shown in FIG. 5, the first electrode 241 formed on the substrate 21 and the second electrode opposed thereto 242 and an organic layer 243 interposed between the first electrode 241 and the second electrode 242.
  • the first electrode 241 and the second electrode 242 may function as an anode and a cathode, respectively, but the polarities may be reversed.
  • the first electrode 241 includes a conductor having a high work function when acting as an anode, and a conductor having a low work function when acting as a cathode.
  • the second electrode 242 also includes a conductor having a low work function when acting as a cathode, and a conductor having a high work function when acting as an anode.
  • a conductor having a high work function transparent conductive oxides such as ITO, In2O3, ZnO, and IZO, or noble metals such as Au may be used.
  • Ag, Al, Mg, Li, Ca, LiF/Ca, or LiF/Al may be used as a low work function conductor.
  • the first electrode 241 and the second electrode 242 may be provided to include a light transmitting body.
  • the first electrode 241 when the first electrode 241 acts as an anode, ITO, IZO, ZnO, or In2O3, etc. having a high work function may be formed.
  • the first electrode 241 when the first electrode 241 acts as a cathode, it may be thinly formed to be a semi-transmissive film of Ag, Al, Mg, Li, Ca, LiF/Ca, or LiF/Al having a low work function.
  • the second electrode 242 When acting as a cathode, the second electrode 242 may be formed to be a semi-transmissive film made of metal such as Li, Ca, LiF/Ca, LiF/Al, Al, Mg, and Ag having a small work function.
  • the second electrode 242 When the second electrode 242 acts as an anode, it may be formed by forming a film with ITO, IZO, ZnO, or In2O3.
  • the organic layer 243 may include a first organic layer 2431 and a second organic layer 2432 and a light emitting layer 2433 interposed therebetween.
  • the first organic layer 2431 and the second organic layer 2432 are intended to promote the flow of holes and electrons from the anode and the cathode, and when the first electrode 241 is an anode, the first organic layer 2431 is injected with holes.
  • a transport layer and/or an electron block layer may be included, and the second organic layer 2432 may include an electron injection/transport layer and/or a hole block layer.
  • the first organic layer 2431 may include an electron injection/transport layer and/or a hole block layer
  • the second organic layer 225 may be a hole injection/transport layer and/or It may include an electronic block layer.
  • the emission layer 2433 may be formed by using a single organic compound capable of emitting white light or by stacking two or more organic emission layers of different colors.
  • the red light emitting layer, the green light emitting layer, and the blue light emitting layer may be sequentially stacked, or a sky blue layer may be stacked on a mixed layer of red and green.
  • the method of achieving white light emission can be variously applied.
  • the organic light emitting unit 24 as described above may be provided to have a plurality of pixels, but is not limited thereto, and may be provided in a single pixel surface emission type.
  • the organic light emitting unit 24 may be implemented transparently between each pixel, and accordingly, when light emission is not achieved, it may be used as a transparent member capable of transmitting light.
  • the light extraction film 1 may improve light extraction efficiency for light emitted from the organic light emitting unit 24 as described above, and obtain a uniform white lighting effect. In addition, high power efficiency can be achieved.
  • the double-sided light-emitting lighting device 2 is formed in the form of directly depositing the substrate 101 of the light extraction film 1 as shown in FIG. 1 on the surface of the substrate 21 or the sealing member 22 as a base. Can be produced.
  • the present invention is not limited thereto, and the light extraction film 1 illustrated in FIG. 1 may be attached to the substrate 21 or the sealing member 22 using a separate adhesive member and/or a bonding method.
  • the light extraction film 1 shown in FIG. 2 may attach the base 100 to the substrate 21 or the sealing member 22 using a separate adhesive member and/or a bonding method.
  • the bottom surface of the substrate 21 may be the first light exit surface 201 and the upper surface of the sealing member 22 may be the second light exit surface 202, but is not limited thereto.
  • the bottom surface of the substrate 21 may be the second light output surface 202 and the top surface of the sealing member 22 may be the first light output surface 201.
  • the coating composition may include a colorless polyamic acid.
  • the coating composition was mixed with 4,4'-oxydiphthalic anhydride and 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoropropane in a DMAc solvent in a 1:1 molar ratio, stirred for 24 hours, and then 3 wt% DMAc solvent. It can be prepared by dilution.
  • the base may be the base 100 as illustrated in FIG. 2, but is not limited thereto, and may be the substrate 21 and/or the sealing member 22 illustrated in FIG. 4.
  • the base coated with the coating composition is supported on the pore forming solvent.
  • the pore-forming solvent may be polar protic solvents, which may include alcohol.
  • the first embodiment was 100% de-ionized water (DIW).
  • DIW de-ionized water
  • the second example was 100% ethanol.
  • the first and second examples thus formed were thermally dried at 170° C. to form a polyimide-based substrate 101.
  • FIG. 6 is a cross-sectional SEM photograph (a) and a surface SEM photograph (b) for the first embodiment
  • FIG. 7 is a cross-sectional SEM photograph (a) and a surface SEM photograph (b) for the second embodiment.
  • the thickness of the substrate formed as the formed film is 3.05 ⁇ m in the first embodiment, and 1.28 ⁇ m in the second embodiment. Thus, it can be seen that the film thickness of the first embodiment is higher than that of the second embodiment for the film having the same composition.
  • the first embodiment has a maximum pore size (based on the long axis) of about 3 ⁇ m, and the second embodiment has about 1.3 ⁇ m. It can be seen that the pore size of the first embodiment is significantly larger than that of the second embodiment.
  • the surface roughness (rms standard) is 3.6 nm in the first embodiment and 68 nm in the second embodiment. It can be seen that the surface roughness of the second embodiment is significantly greater than that of the first embodiment.
  • FIG. 8 shows the total transmittance according to the wavelength range of the visible light region of the first embodiment (A) and the second embodiment (B). As can be seen in Figure 8, it can be seen that the first embodiment (A) shows a high total transmittance, and the second embodiment (B) shows a low total transmittance.
  • the first embodiment (A) shows an average total transmittance of about 74%. At this time, the average total reflectivity of the first embodiment (A) is 15%.
  • the second example (B) shows an average total transmittance of about 59%. At this time, the average total reflectivity of the second embodiment (B) is 26%.
  • the light diffusion value of the first embodiment (A) decreases with a gentle angle as the wavelength increases, and the light diffusion value of the second embodiment (B) decreases as the wavelength increases. It decreases at a sharp angle. Accordingly, the total average light diffusion value also falls from the first embodiment (A) to the second embodiment (B). However, in each case, the average light diffusion value of about 80% or more was shown.
  • the light extraction film thus formed was installed in the double-sided light-emitting illumination device 2 as shown in FIGS. 3 and/or 4.
  • 700 ⁇ m of glass was used as the substrate 21
  • 150 nm of ITO was used for the first electrode 241
  • 20 nm of aluminum was used for the second electrode 242.
  • the first organic layer 2431 used a MoO3 1.5nm, CBP 45nm stacked structure
  • the second organic layer 2432 used a TPBi 20nm, Bphen 45nm, Cs2CO3 1.5nm stacked structure.
  • CBP: Ir(ppy) 2 (acac) was used at 15 nm.
  • FIG. 10 is a comparison of the power efficiency of the first embodiment (A) and the second embodiment (B) formed in such a double-sided light-emitting device and the comparative example (ref).
  • the comparative example (ref) does not use a light extraction film.
  • the first embodiment (A) and the second embodiment (B) have very high power efficiency compared to the comparative example (ref).
  • FIG. 11 is a comparison of the external quantum efficiency (EQE) of the first embodiment (A) and the second embodiment (B) and the comparative example (ref). As can be seen in FIG. 11, it can be seen that the first embodiment (A) and the second embodiment (B) have very high external quantum efficiency compared to the comparative example (ref).
  • FIG. 12 shows changes in light luminance in the first direction D1 according to the current change in the first embodiment (A) and the second embodiment (B) and the comparative example (ref).
  • FIG. 13 shows changes in light luminance in the second direction D2 according to the current change in the first embodiment (A) and the second embodiment (B) and the comparative example (ref).
  • the first embodiment (A) has a higher luminance than the second embodiment (B), and in the second direction D2, the second embodiment (B) is the first embodiment (A) ).
  • the first embodiment (A) described above may correspond to a case in which the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering.
  • the second embodiment (B) may correspond to a case in which the second scattering degree due to the second scattering is greater than the first scattering degree due to the first scattering.
  • the first embodiment (A) may exhibit higher optical properties in the first direction (D1), but the second embodiment (B) may exhibit higher optical properties in the second direction (D2). Therefore, in realizing the double-sided light emitting device, the double-sided light emission luminance can be adjusted as desired.
  • the present invention is a two-way lighting device, and can be used in a transparent lighting device that can transmit external light through the lighting device.
  • the lighting effect can be further improved by achieving both side luminous efficiency and luminance control.

Abstract

본 출원은 산란 효과를 극대화시킴으로써 광 추출 효율을 높일 수 있고, 양면 발광 조명 장치로서 높은 전력 효율을 올릴 수 있고, 이에 따라 조명 장치의 수명을 높일 수 있는 양면 발광 조명 장치에 관한 것으로, 상기 양면 발광 조명 장치는 제1 출광 면; 상기 제1 출광 면과 대향되게 위치하는 제2 출광 면; 상기 제1 출광 면과 제2 출광면의 사이에 위치하는 발광 소자; 및 상기 제1 출광 면에 위치하고, 서로 대향된 제1 면 및 제2 면을 갖고, 광이 상기 제1 면으로 입사해서 상기 제2 면으로 출사하도록 구비된 기재와, 상기 기재 내에 불규칙적으로 분포하는 복수의 기공을 포함하는 광 추출 필름;을 포함하고, 상기 기재는 상기 광이 상기 기재를 투과할 때 산란되도록 하며, 상기 산란은, 상기 기공에 의한 제1 산란과, 상기 제1 면 및 제2 면 중 적어도 하나에 의한 제2 산란을 포함하며, 상기 기재는 상기 제1 산란에 의한 제1 산란도와 제2 산란에 의한 제2 산란도가 상대적 차이를 갖도록 구비된다.

Description

양면 발광 조명 장치
개시된 실시예들은 양면 발광 조명 장치에 관한 것이다.
유기 발광 소자와 같은 자발광 소자는 면 발광 조명 장치로서 사용될 수 있는 데, 발광층에서 생성된 빛이 광 추출면으로 출사되기까지 많은 계면을 거쳐야 하기 때문에 이 과정에서 광 손실이 많고, 이에 따라 광 추출 효율이 떨어지는 문제가 있다. 이러한 광 추출 효율의 저하는 전력 소모를 증대시키고, 이는 결국 조명 장치의 수명을 줄이는 부작용을 나을 수 있다.
또한, 이러한 조명 장치는 배면과 전면의 양면으로 발명이 이뤄질 수 있는 데, 배면과 전면 방향 각각의 휘도 조절이 어려운 한계가 있다.
상기와 같이 양면 발광 조명 장치에서 광 추출 효율이 저하되는 문제를 해결하기 위하여, 일 실시예는, 광 추출 효율이 높고, 전력 효율이 향상된 양면 발광 조명 장치를 제공하는 데에 목적이 있다.
또한, 간단한 방법으로 양 방향 휘도 조절을 가능하게 할 수 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 실시예는, 제1 출광 면과, 상기 제1 출광 면과 대향되게 위치하는 제2 출광 면과, 상기 제1 출광 면과 제2 출광면의 사이에 위치하고, 상기 제1 출광 면의 방향으로 제1 광을 출사하고, 상기 제2 출광 면의 방향으로 제2 광을 출사하도록 구비된 발광 소자와, 상기 제1 출광 면에 위치한 것으로, 서로 대향된 제1 면 및 제2 면을 갖고, 상기 제1 광이 상기 제1 면으로 입사해서 상기 제2 면으로 출사하도록 구비된 기재와, 상기 기재 내에 불규칙적으로 분포하는 복수의 기공을 포함하는 광 추출 필름을 포함하고, 상기 기재는 상기 광이 상기 기재를 투과할 때 산란되도록 하는 것으로, 상기 산란은, 상기 기공 입자에 의한 제1 산란과, 상기 제1 면 및 제2 면 중 적어도 하나에 의한 제2 산란을 포함하며, 상기 기재는 상기 제1 산란에 의한 제1 산란도와 제2 산란에 의한 제2 산란도가 상대적 차이를 갖도록 구비된 양면 발광 조명 장치를 제공할 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기재의 광투과율은 70% 이상일 수 있다.
상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기재의 광투과율은 70% 미만일 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기재의 광반사율은 20% 미만일 수 있다.
상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기재의 광반사율은 20% 이상일 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기공은 제1 직경을 갖고, 상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기공은 제2 직경을 가지며, 상기 제1 직경은 상기 제2 직경보다 클 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제1 거칠기를 갖고, 상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제2 거칠기를 가지며, 상기 제2 거칠기는 상기 제1 거칠기보다 클 수 있다.
상기한 바와 같은 본 발명의 실시예들에 따르면, 광 추출 효율을 높일 수 있다.
양면 발광 조명 장치로서 높은 전력 효율을 올릴 수 있고, 이에 따라 양면 발광 조명 장치의 수명을 높일 수 있다.
간단하게 양방향 휘도의 조절을 가능하게 할 수 있다.
이러한 본 발명은 양방향 조명 장치로서, 조명 장치를 통해 외광이 투과 가능한 투명 조명 장치에 이용될 수 있다. 이 경우, 양측 발광 효율 및 휘도 조절을 이룸으로써 조명 효과를 더욱 높일 수 있다.
도 1은 일 실시예에 따른 광 추출 필름을 개략적으로 나타낸 단면도이다.
도 2는 다른 일 실시예에 따른 광 추출 필름을 개략적으로 나타낸 단면도이다.
도 3은 또 다른 일 실시예에 따른 양면 발광 조명 장치를 개략적으로 도시한 단면도이다.
도 4는 또 다른 일 실시예에 따른 양면 발광 조명 장치를 개략적으로 도시한 단면도이다.
도 5는 유기 발광부의 일 실시예를 도시한 부분 단면도이다.
도 6은 제1 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이다.
도 7은 제2 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이다.
도 8은 제1 실시예(A) 및 제2 실시예(B)의 가시광 영역의 파장대에 따른 총 투과율을 나타낸 것이다.
도 10은 제1 실시예(A) 및 제2 실시예(B)의 가시광 영역의 파장대에 따른 광 확산 값(optical haze value)을 나타낸 것이다.
도 11은 제1 실시예(A) 및 제2 실시예(B)와, 비교예(ref)의 전력 효율을 나타낸 것이다.
도 12는 제1 실시예(A) 및 제2 실시예(B)와, 비교예(ref)의 전류 변화에 따른 제1 방향으로의 광 휘도 변화를 나타낸 것이다.
도 13은 제1 실시예(A) 및 제2 실시예(B)와, 비교예(ref)의 전류 변화에 따른 제2 방향으로의 광 휘도 변화를 나타낸 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 이하의 실시예는 반드시 도시된 바에 한정되지 않는다.
도 1은 일 실시예에 따른 광 추출 필름(1)을 개략적으로 나타낸 단면도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광 추출 필름(1)은, 기재(101)와, 이 기재(101) 내에 불규칙적으로 분포하는 복수의 기공(102)을 포함할 수 있다.
상기 기재(101)는 광 투과성 폴리머재로 구비될 수 있는 데, 일 실시예에 따르면 폴리 이미드를 포함할 수 있다. 이러한 기재(101)는 플렉시블하게 구비될 수 있다.
상기 기재(101)는 서로 대향된 제1 면(11)과 제2 면(12)을 갖고, 이 때, 상기 제1 면(11)은 빛이 입사하는 입사면이 되고, 상기 제2 면(12)은 빛이 출사하는 출사면이 될 수 있다. 따라서 빛은 상기 기재(101)를 제1 면(11)을 통해 입사해 제2 면(12)을 통해 출사할 수 있다.
상기 기재(101)의 제1 면(11)과 제2 면(12)의 사이에는 복수의 기공(102)이 불규칙하게 분포할 수 있다. 상기 기공(102)은 빛의 산란 입자로서 기능할 수 있는 것으로, 내부가 비어 있는 공동을 형성할 수 있고, 이 공간에서 에어의 굴절율을 가질 수 있다.
상기와 같은 기재(101)는 빛이 기재(101)를 투과할 때 산란되도록 하는 것일 수 있다.
이러한 산란은 상기 기공(102)에 의한 제1 산란(S1)과, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나에 의한 제2 산란(S2)을 포함할 수 있다.
상기 기재(101)를 투과하는 빛은 그 경로 상에 불규칙하게 배치되어 있는 기공(102)에 부딪치게 되고 기공(102)을 형성하는 에어와 기재(101)를 구성하는 폴리머와의 굴절율 차이로 인하여 빛은 산란을 하게 된다. 이러한 제1 산란(S1)은 미산란(Mie Scattering)을 포함할 수 있다. 상기 제1 산란(S1)은 대부분이 빛의 진행 방향으로 퍼지는 형태로 빛의 산란을 이룰 수 있다.
한편 상기 기재(101)를 투과하는 빛은 입사면인 제1 면(11) 및 출사면인 제2 면(12) 중 적어도 하나에 의해 제2 산란(S2)을 할 수 있다. 일 실시예에 따르면, 상기 제2 산란(S2)은 상기 제2 면(12)에 의해 이루어지는 산란을 포함할 수 있다. 이러한 제2 산란(S2)은 표면 산란(Surface Scattering)을 포함할 수 있다. 상기 제2 산란(S2)은 산란된 빛이 빛의 진행 방향 뿐 아니라 진행 방향 이외의 방향으로도 많이 퍼질 수 있으며, 측면 방향 및/또는 배면 방향으로 퍼질 수도 있다.
일 실시예에 따른 상기 광 추출 필름(1)은 상기 제1 산란(S1)에 의한 제1 산란도와 상기 제2 산란(S2)에 의한 제2 산란도가 상대적 차이를 갖도록 구비될 수 있다. 즉, 일 실시예에 따른 상기 광 추출 필름(1)는 요구되는 광학적 특성에 따라 제1 산란(S1)에 의한 제1 산란도가 제2 산란(S2)에 의한 제2 산란도보다 크도록 구비될 수 있다. 다른 일 실시예에 따른 상기 광 추출 필름(1)는 요구되는 광학적 특성에 따라 상기 제2 산란(S2)에 의한 제2 산란도가 제1 산란(S1)에 의한 제1 산란도보다 크도록 구비될 수 있다.
일 실시예에 따르면, 상기 광 추출 필름(1)에서, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때, 상기 기재(101), 즉 광 추출 필름(1)의 상기 빛의 파장에 대한 평균 총투과율은 70% 이상일 수 있다. 이 때, 상기 기재(101)의 상기 빛의 파장에 대한 평균 총반사율은 20% 미만일 수 있다. 상기 빛의 파장에 대한 평균 총투과율은 빛의 파장이 달라질 때 나타나는 총 적분 투과율의 평균값에 대응할 수 있다. 상기 빛의 파장에 대한 평균 총반사율은 빛의 파장이 달라질 때 나타나는 총 적분 반사율의 평균값에 대응할 수 있다.
이처럼 광 추출 필름(1)에 있어서, 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우, 투명도가 높고 반사도가 낮은 광 추출 필름(1)을 얻을 수 있다. 아울러, 이 경우 빛의 파장에 대한 평균 광 확산(haze)값은 약 80% 이상이 될 수 있으며, 따라서 높은 확산도를 나타낼 수 있고, 보는 각도에 따른 휘도의 변화가 최소화되어 람베르트 발광(Lambertian emission)을 이룰 수 있다. 뿐만 아니라 보는 각도에 따른 색좌표의 변화도 최소화시킬 수 있다. 또한 상기 광 추출 필름(1)를 조명 장치에 부착할 경우 조명 장치의 광 추출 효율을 향상시키고, 사용자가 균일한 백색 조명 효과를 얻을 수 있으며, 높은 전력 효율을 올릴 수 있다.
다른 일 실시예에 따르면, 상기 광 추출 필름(1)에서, 상기 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때, 상기 기재(101), 즉 광 추출 필름(1)의 상기 빛의 파장에 대한 평균 총투과율은 70% 미만일 수 있다. 이 때, 상기 기재(101)의 상기 빛의 파장에 대한 평균 총반사율은 20% 이상일 수 있다.
이처럼 광 추출 필름(1)에 있어서, 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 큰 경우, 투명도가 비교적 낮고 반사도가 비교적 높지만, 빛의 파장에 대한 평균 광 확산 값은 약 80% 이상이 될 수 있으며, 따라서 높은 확산도를 나타낼 수 있다. 또 보는 각도에 따른 휘도의 변화가 줄여 람베르트 발광(Lambertian emission)에 가까운 효과를 얻을 수 있고, 보는 각도에 따른 색좌표의 변화도 작게 할 수 있다. 따라서 상기 광 추출 필름(1)을 조명 장치에 부착할 경우 조명 장치의 광 추출 효율을 향상시키고, 사용자가 균일한 백색 조명 효과를 얻을 수 있으며, 높은 전력 효율을 올릴 수 있다.
상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때, 상기 광 추출 필름(1)의 광 확산 값은 상기 빛의 파장이 증가함에 따라 제1 각도로 줄어들고, 상기 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때, 상기 광 추출 필름(1)의 광 확산 값은 상기 빛의 파장이 증가함에 따라 제2 각도로 줄어들 수 있다. 이 때 상기 제2 각도는 상기 제1 각도보다 클 수 있다. 따라서 빛의 파장에 따른 평균 광확산값은 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때의 광 추출 필름(1)이 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때의 광 추출 필름(1)에 비해 높게 된다. 즉, 광확산의 측면에서 볼 때, 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때의 광 추출 필름(1)이 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때의 광 추출 필름(1)에 비해 상대적으로 우수한 특징을 나타낼 수 있다. 다만, 전술한 바와 같이 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때의 광 추출 필름(1)의 경우에도 조명 장치에 사용하기에 충분한 광 확산 값을 얻을 수 있고, 각도 별 휘도 변화 및 색좌표 변화를 줄일 수 있어, 조명 용도로서의 광학적 특성을 나타낼 수 있다.
일 실시예에 따른 광 추출 필름(1)에 있어서, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때, 상기 기공(102)은 제1 직경을 갖고, 상기 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때, 상기 기공(102)은 제2 직경을 갖는다고 볼 때, 상기 제1 직경은 상기 제2 직경보다 크게 구비될 수 있다.
다른 일 실시예에 따른 광 추출 필름(1)에 있어서, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 제1 거칠기가 되고, 상기 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 제2 거칠기가 될 수 있는 데, 이 때 상기 제2 거칠기는 상기 제1 거칠기보다 크게 구비될 수 있다.
제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우, 상기 기공(102)의 크기가 상기 제1 산란(S1)에 보다 큰 영향을 미칠 수 있다.
일 실시예에 따르면, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우, 상기 기공(102)의 크기는 반경 0.5㎛ 이상일 수 있다. 이 때, 상기 기공(102)의 반경은 장축 기준일 수 있다. 더욱 구체적으로 상기 기공(102)의 크기는 반경 1㎛ 이상일 수 있다.
선택적으로 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 rms기준 20nm 이하일 수 있다.
이처럼 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우에는, 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 광 추출 필름(1)의 광학적 특성에 큰 영향을 미치지 않을 수 있다. 따라서, 일 실시예에 따른 광 추출 필름(1)에 있어서, 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 크도록 설계할 경우, 기공(102)의 크기를 반경 0.5㎛ 이상이 되도록 설계할 수 있다.
다른 일 실시예에 따른 광 추출 필름(1)에 있어서, 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 큰 경우, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기가 상기 제1 산란(S1)에 보다 큰 영향을 미칠 수 있다.
선택적으로, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 rms기준 50nm 이상일 수 있다.
선택적으로 상기 기공(102)의 크기는 반경 1㎛ 이하일 수 있다. 구체적으로 상기 기공(102)의 크기는 반경 0.5㎛ 이하일 수 있다.
이처럼 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 큰 경우에는, 전술한 실시예에 비해 상기 기공(102)의 크기가 광 추출 필름(1)의 광학적 특성에 덜 영향을 미칠 수 있다.
따라서, 일 실시예에 따른 광 추출 필름(1)에 있어서, 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 크도록 설계할 경우, 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기를 rms기준 50nm 이상이 되도록 설계할 수 있다.
이상 설명한 바와 같은 실시예들에 따른 광 추출 필름(1)은 도 1에 도시된 것과 같이 단일의 필름 형상일 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 또 다른 일 실시예에 따른 광 추출 필름(1)은 도 2에 도시된 것과 같이 상기 제1 면(11)에 인접하게 위치하는 베이스(100)를 더 포함할 수 있다. 상기 베이스(100)는 상기 기재(101)의 제조 과정에서 기재(101)를 형성하기 위한 서포트의 기능을 할 수 있다. 상기 베이스(100)는 기판 및/또는 필름 형상으로 구비될 수 있고, 리지드(rigid) 또는 플렉시블하게 구비될 수 있으며, 광투과 가능한 글래스재 또는 폴리머재로 구비될 수 있다.
도 3은 또 다른 일 실시예에 따른 양면 발광 조명 장치(2)를 개략적으로 도시한 단면도이다.
도 3을 참조하면, 일 실시예에 따른 양면 발광 조명 장치(2)는, 서로 대향되게 위치하는 제1 출광 면(201) 및 제2 출광 면(202)과, 제1 출광 면(201)과 제2 출광면(202)의 사이에 위치하는 발광 소자(20) 및 제1 촬광 면(201)에 위치하는 광 추출 필름(1)을 포함할 수 있다.
상기 발광 소자(20)는 서로 대향된 제1 출광 면(201)과 제2 출광 면(202)의 사이에 위치해 봉지될 수 있는 데, 제1 출광 면(201)의 방향인 제1 방향(D1)으로 제1 광(L1)을 출사하고, 제2 출광 면(202)의 방향인 제2 방향(D2)으로 제2 광(L2)을 출사할 수 있다.
상기 제1 출광 면(201)과 제2 출광 면(202)은 서로 대향된 방향이므로, 상기 제1 광(L1)과 제2 광(L2)은 서로 반대 방향으로 출사될 수 있다.
상기 발광 소자(20)는 자발광 소자가 될 수 있으며, 일 실시예에 따르면, 유기 발광 소자가 될 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 무기 발광 소자가 될 수 있으며, 다양한 UV LED 등 다양한 양방향 발광 소자가 사용될 수 있다.
상기 광 추출 필름(1)은 제1 촬광 면(201)에 위치할 수 있다.
따라서 상기 제1 광(L1)은 상기 광 추출 필름(1)을 투과해 광 확산을 일으키며, 이에 따라 상기 제1 광(L1)은 확산된 제3 광(L3)이 될 수 있다. 상기 제3 광(L3)은 제1 광(L1)이 확산되어 제1 광(L1)보다 휘도가 향상될 수 있다.
상기 제1 광(L1)은 상기 광 추출 필름(1)에 의해 반사될 수 있으며, 반사된 제1 광(L1)은 제2 방향(D2)으로 반사되어 제4 광(L4)을 형성할 수 있다.
전술한 바와 같이 광 추출 필름(1)은 상기 제1 산란에 의한 제1 산란도와 제2 산란에 의한 제2 산란도의 차이를 조절함으로써 투과율과 반사율이 달라지도록 할 수 있다.
제1 산란에 의한 제1 산란도가 제2 산란에 의한 제2 산란도보다 큰 경우, 상기 광 추출 필름(1)의 광 투과율은 제2 산란도가 제1 산란도보다 큰 경우의 광 추출 필름(1)의 광 투과율보다 크다. 그리고 제1 산란에 의한 제1 산란도가 제2 산란에 의한 제2 산란도보다 큰 경우의 광 추출 필름(1)의 광 반사율은 제2 산란도가 제1 산란도보다 큰 경우의 광 추출 필름(1)의 광 반사율보다 작다.
일 실시예에 따르면, 제1 산란도가 제2 산란도보다 큰 경우 상기 광 추출 필름(1)의 광 투과율은 70% 이상일 수 있다. 제2 산란도가 제1 산란도보다 큰 경우 상기 광 추출 필름(1)의 광 투과율은 70% 미만일 수 있다.
따라서 제1 산란도가 제2 산란도보다 큰 경우의 제3 광(L3)의 휘도가 제2 산란도가 제1 산란도보다 큰 경우의 제3 광(L3)의 휘도보다 클 수 있다.
일 실시예에 따르면, 제1 산란도가 제2 산란도보다 큰 경우 상기 광 추출 필름(1)의 광 반사율은 20% 미만일 수 있다. 제2 산란도가 제1 산란도보다 큰 경우 상기 광 추출 필름(1)의 광 반사율은 20% 이상일 수 있다.
따라서 제2 산란도가 제1 산란도보다 큰 경우의 제4 광(L4)의 휘도가 제1 산란도가 제2 산란도보다 큰 경우의 제4 광(L4)의 휘도보다 클 수 있다.
이처럼, 광 추출 필름(1)의 제1 산란도와 제2 산란도의 조절에 따라 발광 소자(20)로부터 제1 방향(D1) 및 제2 방향(D2)으로 발광되는 광의 휘도를 조절할 수 있다.
즉, 제1 산란도가 제2 산란도보다 큰 광 추출 필름(1)을 사용하면, 제2 산란도가 제1 산란도보다 큰 광 추출 필름(1)을 사용하는 경우보다 제1 방향(D1)의 휘도를 크게 할 수 있다.
선택적으로, 제2 산란도가 제1 산란도보다 큰 광 추출 필름(1)을 사용하면, 제1 산란도가 제2 산란도보다 큰 광 추출 필름(1)을 사용하는 경우보다 제2 방향(D2)의 휘도를 크게 할 수 있다.
또한 상기와 같은 양면 발광 조명 장치(2)는 발광 소자(20)를 외광이 관통하는 투명 조명 장치로 구현될 수 있다. 이 경우 제1 방향(D1)으로 제1 광(L1) 및 제3 광(L3)이 조사되고, 제2 방향(D2)으로 제2 광(L2) 및 제4 광(L4)이 조사되어 양방향 투명 조명 장치를 구현할 수 있다. 선택적으로, 제1 방향(D1) 및/또는 제2 방향(D2)으로 광 조사가 이루어지지 않을 때에 발광 소자(20)로 외광이 투과되어 사용자가 건너편의 사물을 관찰 할 수 있다. 그리고 제1 방향(D1) 및/또는 제2 방향(D2)의 휘도가 전술한 바와 같이 설정될 수 있으므로, 양 방향으로 서로 다른 조명 효과를 구현할 수 있다.
도 4는 또 다른 일 실시예에 따른 양면 발광 조명 장치(2)의 보다 구체적인 일 실시예를 도시한 단면도이다.
도 4에 도시된 실시예에 따르면, 발광 소자(20)로서 유기 발광부(24)를 사용할 수 있다. 도 4를 참조하면, 상기 양면 발광 조명 장치(2)는 서로 대향된 기판(21)과 밀봉부재(22) 및 이들의 사이에 위치하는 유기 발광부(24)를 포함할 수 있다. 상기 기판(21)과 밀봉부재(22)는 서로 결합될 수 있으며, 이들 사이에 개재된 유기 발광부(24)를 외기와 차단시켜 밀봉할 수 있다. 도 4에 도시된 일 실시예에 따르면, 상기 밀봉부재(22)는 기판의 형상으로 구비되어 가장자리에 위치한 실런트(23)에 의해 기판(21)과 결합될 수 있다. 그러나 반드시 이에 한정되는 것은 아니고 밀봉부재(22)는 적어도 하나 이상의 막을 포함하는 박막 구조체를 포함할 수 있고, 이 경우 유기 발광부(24)를 덮도록 기판(21) 상에 성막된 것일 수 있다.
도 4에 도시된 실시예에 따르면, 유기 발광부(24)에서 발광된 빛은, 기판(21)의 방향으로 출사되는 제1 광(L1)과 밀봉 부재(22)의 방향으로 출사되는 제2 광(L2)을 포함할 수 있다.
기판(21)의 외면에 전술한 실시예들에 따른 광 추출 필름(1)이 결합될 수 있다. 이 경우 상기 광 추출 필름(1)은 전술한 제1 면(11)이 기판(21)을 향하도록 위치할 수 있다.
상기 유기 발광부(24)는 백색광을 발광하는 유기 발광 소자를 포함할 수 있는 데, 도 5에서 볼 수 있듯이, 기판(21) 상에 형성된 제1전극(241)과, 이에 대향된 제2전극(242)과, 이들 제1전극(241)과 제2전극(242)의 사이에 개재되는 유기층 (243)으로 구비될 수 있다.
제1전극(241) 및 제2전극(242)은 각각 애노드(Anode) 및 캐소드(Cathode)로 작용할 수 있는 데, 그 극성은 반대로 되어도 무방하다.
상기 제1전극(241)은 만일 애노드로 작용할 경우에는 일함수가 높은 도전체를 포함하도록 하고, 캐소드로 작용할 경우에는 일함수가 낮은 도전체를 포함하도록 한다. 제2전극(242)도 캐소드로 작용하는 경우에는 일함수가 낮은 도전체를 포함하도록 하고, 애노드로 작용하는 경우에는 일함수가 높은 도전체를 포함하도록 한다. 일함수가 높은 도전체로는 ITO, In2O3, ZnO, IZO 등의 투명 도전성 산화물이나, Au 등의 귀금속(noble metal)이 사용될 수 있다. 일함수가 낮은 도전체로는 Ag, Al, Mg, Li, Ca, LiF/Ca, LiF/Al 등이 사용될 수 있다.
도 5에서 볼 수 있는 양면 발광 형 구조에서 상기 제1 전극(241) 및 제2 전극(242)은 광투과체를 포함하도록 구비될 수 있다.
이를 위해, 상기 제1전극(241)이 애노드로 작용하는 경우에는 일함수가 높은 ITO, IZO, ZnO, 또는 In2O3 등을 성막하여 형성할 수 있다. 그리고, 제1전극(241)이 캐소드로 작용하는 경우에는 일함수가 낮은 Ag, Al, Mg, Li, Ca, LiF/Ca, LiF/Al 등으로 반투과막이 되도록 얇게 형성할 수 있다.
상기 제2전극(242)은 캐소드로 작용하는 경우에는 일함수가 작은 Li, Ca, LiF/Ca, LiF/Al, Al, Mg, Ag 등의 금속으로 반투과막이 되도록 형성할 수 있다. 제2전극(242)이 애노드로 작용하는 경우에는 ITO, IZO, ZnO, 또는 In2O3 등으로 성막하여 형성할 수 있다.
유기층(243)은 제1 유기층(2431)과 제2 유기층(2432)과 이들 사이에 개재된 발광층(2433)을 포함할 수 있다.
제1유기층(2431) 및 제2유기층(2432)은 애노드 및 캐소드로부터의 정공 및 전자의 흐름을 촉진시키기 위한 것으로, 제1전극(241)이 애노드일 경우 제1유기층(2431)은 정공 주입/수송층 및/또는 전자블록층을 포함할 수 있고, 제2유기층(2432)은 전자 주입/수송층 및/또는 정공블록층을 포함할 수 있다. 그리고, 제1전극(241)이 캐소드일 경우 제1유기층(2431)은 전자 주입/수송층 및/또는 정공블록층을 포함할 수 있고, 제2유기층(225)은 정공 주입/수송층이 및/또는 전자블록층을 포함할 수 있다.
발광층(2433)은 백색 발광이 가능한 단일의 유기 화합물을 사용하거나, 서로 다른 색상의 두 층 이상의 유기 발광층을 적층하여 형성할 수 있다.
두 층 이상의 유기 발광층을 적층하여 형성하는 경우에는 적색 발광층, 녹색 발광층, 및 청색 발광층을 순차로 적층하여 형성할 수 있고, 적색과 녹색의 혼합층상에 스카이 블루층을 적층하여 형성할 수도 있다.
백색 발광을 이루는 방법은 이 밖에도 다양하게 적용 가능하다.
이상 설명한 바와 같은 유기 발광부(24)는 복수개의 화소를 갖도록 구비될 수도 있는 데, 반드시 이에 한정되는 것은 아니며, 단일 화소의 면 발광형으로 구비될 수도 있다.
또한, 선택적으로, 상기 유기 발광부(24)는 각 화소 사이가 투명하게 구현될 수 있으며, 이에 따라 발광이 이루어지지 않을 때에는 광 투과가 가능한 투명한 부재로서 사용될 수 있다.
상기와 같은 양면 발광 조명 장치(2)에서 광 추출 필름(1)은 전술한 바와 같이 유기 발광부(24)에서 발광된 빛에 대한 광 추출 효율을 향상시키고, 균일한 백색 조명 효과를 얻을 수 있을 뿐 아니라, 높은 전력 효율을 올릴 수 있다.
이러한 양면 발광 조명 장치(2)는 기판(21) 또는 밀봉 부재(22)를 베이스로 하여 그 표면에 도 1에 도시된 바와 같은 광 추출 필름(1)의 기재(101)를 직접 성막하는 형태로 제조할 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 기판(21) 또는 밀봉 부재(22)에 별도의 접착 부재 및/또는 접합 방법을 이용하여 도 1에 도시된 광 추출 필름(1)을 부착할 수 있다. 또한, 도 2에 도시된 광 추출 필름(1)은 베이스(100)를 기판(21) 또는 밀봉 부재(22)에 별도의 접착 부재 및/또는 접합 방법을 이용하여 부착할 수 있다.
도 4에 도시된 실시예에서, 기판(21)의 저면이 제1 출광 면(201)이 되고 밀봉 부재(22)의 상면이 제2 출광 면(202)이 될 수 있는 데, 반드시 이에 한정되는 것은 아니고 기판(21)의 저면이 제2 출광면(202)이 되고 밀봉 부재(22)의 상면이 제1 출광 면(201)이 될 수 있다.
상기와 같은 광 추출 필름(1)의 보다 구체적인 실시예는 다음과 같다.
코팅 조성액을 준비한다.
일 실시예에 따르면, 상기 코팅 조성액은 무색의 폴리 아믹산을 포함할 수 있다.
상기 코팅 조성액은 4,4'-oxydiphthalic anhydride 과 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoropropane 을 DMAc 용매에 1:1 몰비로 혼합하고, 24시간 Stirring한 후 3wt% DMAc 용매로 희석하여 제조할 수 있다.
다음으로 이 코팅 조성액을 베이스에 코팅한다. 상기 베이스는 도 2에 도시된 바와 같은 베이스(100)가 될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 도 4에 도시된 기판(21) 및/또는 밀봉 부재(22)가 될 수 있다.
이렇게 코팅 조성액이 코팅된 베이스를 기공 형성용 용매에 담지한다.
상기 기공 형성용 용매는 극성 양성자 용매(Polar protic solvents)를 사용할 수 있는 데, 알코올을 포함하는 것일 수 있다.
상기 기공 형성용 용매로서, 제1 실시예는 탈이온수(DIW, De-Ionized Water) 100%로 하였다. 제2 실시예는 에탄올 100%로 하였다.
이렇게 형성된 제1 및 제2 실시예를 170℃에서 열 건조하는 단계를 거쳐 폴리 이미드계 기재(101)를 형성하였다.
도 6은 제1 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이고, 도 7은 제2 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이다.
형성된 막인 기재의 두께인 제1 실시예는 3.05㎛이고, 제2 실시예는 1.28㎛이다. 이처럼 동일 조성의 막에 대해 제1 실시예의 막 두께가 제2 실시예에 비해 높음을 알 수 있다.
형성된 기공의 크기는, 제1 실시예는 최대 기공 크기(장축 기준)가 약 3㎛이고, 제2 실시예는 약 1.3㎛이다. 제1 실시예의 기공 크기가 제2 실시예에 비해 현저히 큼을 알 수 있다.
표면 거칠기(rms 기준)는, 제1 실시예가 3.6nm이고, 제2 실시예는 68nm이다. 제2 실시예의 표면 거칠기가 제1 실시예에 비해 현저히 큼을 알 수 있다.
도 8은 제1 실시예(A), 및 제2 실시예(B)의 가시광 영역의 파장대에 따른 총 투과율을 나타낸 것이다. 도 8에서 볼 수 있듯이 제1 실시예(A)가 높은 총 투과율을 나타내는 것을 알 수 있고, 제2 실시예(B)가 낮은 총 투과율을 나타냄을 알 수 있다.
제1 실시예(A)는 약 74%의 평균 총투과율을 나타낸다. 이 때 제1 실시예(A)의 평균 총반사율은 15%이다.
제2 실시예(B)는 약 59%의 평균 총투과율을 나타낸다. 이 때 제2 실시예(B)의 평균 총반사율은 26%이다.
도 9는 제1 실시예(A), 및 제2 실시예(B)의 가시광 영역의 파장대에 따른 광 확산 값(optical haze value)을 나타낸 것이다.
도 9에서 볼 수 있듯이, 제1 실시예(A)의 광 확산값은 파장이 증가함에 따라 완만한 각도를 이루며 감소하고, 제2 실시예(B)의 광 확산값은 파장이 증가함에 따라 가장 급한 각도를 이루며 감소한다. 이에 따라 전체 평균 광 확산값도 제1 실시예(A)에서 제2 실시예(B)로 갈수록 떨어지게 된다. 그러나 각 경우에 모두 약 80% 이상의 평균 광 확산값을 나타내었다.
이렇게 형성된 광 추출 필름을 도 3 및/또는 도 4에 도시된 바와 같은 양면 발광 조명 장치(2)에 설치하였다. 도 4의 구조에서 기판(21)으로 글라스 700㎛를 사용하고, 제1 전극(241)은 ITO 150nm, 제2 전극(242)은 알루미늄 20nm를 사용하였다. 제1 유기층(2431)은 MoO3 1.5nm, CBP 45nm 적층 구조를 사용하고, 제2 유기층(2432)은 TPBi 20nm, Bphen 45nm, Cs2CO3 1.5nm 적층 구조를 사용하였다. 발광층(2433)은 CBP: Ir(ppy)2(acac) 를 15nm 사용하였다.
도 10은 이러한 양면 발광 조명 장치에 제1 실시예(A) 및 제2 실시예(B)를 형성한 것과, 비교예(ref)의 전력 효율을 비교한 것이다. 비교예(ref)는 광 추출 필름을 사용하지 않은 것이다.
도 10에서 볼 수 있듯이, 제1 실시예(A) 및 제2 실시예(B)가 비교예(ref)에 비해 전력 효율이 매우 높음을 알 수 있다.
도 11은 제1 실시예(A) 및 제2 실시예(B)와, 비교예(ref)의 외부 양자 효율(EQE)을 비교한 것이다. 도 11에서 볼 수 있듯이, 제1 실시예(A) 및 제2 실시예(B) 가 비교예(ref)에 비해 외부 양자 효율이 매우 높음을 알 수 있다.
도 12는 제1 실시예(A) 및 제2 실시예(B)와, 비교예(ref)의 전류 변화에 따른 제1 방향(D1)으로의 광 휘도 변화를 나타낸 것이다. 도 13은 제1 실시예(A) 및 제2 실시예(B)와, 비교예(ref)의 전류 변화에 따른 제2 방향(D2)으로의 광 휘도 변화를 나타낸 것이다.
도 12 및 도 13에서 볼 수 있듯이, 제1 실시예(A) 및 제2 실시예(B)는 모두 비교예(ref)에 비해 모두 높은 휘도를 보임을 알 수 있다. 특히 광 산란 필름(1)이 부착되지 않은 방향인 제2 방향(D2)에서도 비교예에 비해 높은 휘도를 나타낸다.
제1 방향(D1)으로는 제1 실시예(A)가 제2 실시예(B)에 비해 휘도가 높고 제2 방향(D2)으로는 제2 실시예(B)가 제1 실시예(A)에 비해 휘도가 높게 나온다.
위에서 설명한 제1 실시예(A)는 전술한 제1 산란에 의한 제1 산란도가 제2 산란에 의한 제2 산란도보다 큰 경우에 해당될 수 있다. 그리고 제2 실시예(B)는 제2 산란에 의한 제2 산란도가 제1 산란에 의한 제1 산란도보다 큰 경우에 해당될 수 있다. 전술한 바와 같이 제1 실시예(A)가 제1 방향(D1)으로 더 높은 광학적 특성을 나타내나, 제2 실시예(B)의 경우 제2 방향(D2)으로 더 높은 광학적 특성을 나타낼 수 있어, 양면 발광 조명장치를 구현함에 있어서, 양면 발광 휘도를 원하는 대로 조절할 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.
본 발명은 양방향 조명 장치로서, 조명 장치를 통해 외광이 투과 가능한 투명 조명 장치에 이용될 수 있다. 이 경우, 양측 발광 효율 및 휘도 조절을 이룸으로써 조명 효과를 더욱 높일 수 있다.

Claims (7)

  1. 제1 출광 면;
    상기 제1 출광 면과 대향되게 위치하는 제2 출광 면;
    상기 제1 출광 면과 제2 출광면의 사이에 위치하고, 상기 제1 출광 면의 방향으로 제1 광을 출사하고, 상기 제2 출광 면의 방향으로 제2 광을 출사하도록 구비된 발광 소자; 및
    상기 제1 출광 면에 위치한 것으로, 서로 대향된 제1 면 및 제2 면을 갖고, 상기 제1 광이 상기 제1 면으로 입사해서 상기 제2 면으로 출사하도록 구비된 기재와, 상기 기재 내에 불규칙적으로 분포하는 복수의 기공을 포함하는 광 추출 필름;을 포함하고,
    상기 기재는 상기 광이 상기 기재를 투과할 때 산란되도록 하는 것으로,
    상기 산란은, 상기 기공 입자에 의한 제1 산란과, 상기 제1 면 및 제2 면 중 적어도 하나에 의한 제2 산란을 포함하며,
    상기 기재는 상기 제1 산란에 의한 제1 산란도와 제2 산란에 의한 제2 산란도가 상대적 차이를 갖도록 구비된 양면 발광 조명 장치.
  2. 제1항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기재의 광투과율은 70% 이상인 양면 발광 조명 장치.
  3. 제1항에 있어서,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기재의 광투과율은 70% 미만인 양면 발광 조명 장치.
  4. 제1항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기재의 광반사율은 20% 미만인 양면 발광 조명 장치.
  5. 제1항에 있어서,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기재의 광반사율은 20% 이상인 양면 발광 조명 장치.
  6. 제1항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기공은 제1 직경을 갖고,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기공은 제2 직경을 가지며,
    상기 제1 직경은 상기 제2 직경보다 큰, 양면 발광 조명 장치.
  7. 제1항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제1 거칠기를 갖고,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제2 거칠기를 가지며,
    상기 제2 거칠기는 상기 제1 거칠기보다 큰, 양면 발광 조명 장치.
PCT/KR2018/015294 2018-11-26 2018-12-05 양면 발광 조명 장치 WO2020111358A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880093713.3A CN112585397A (zh) 2018-11-26 2018-12-05 两面发光照明装置
US17/057,823 US20210111376A1 (en) 2018-11-26 2018-12-05 Both-side light emitting lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0147695 2018-11-26
KR1020180147695A KR102152876B1 (ko) 2018-11-26 2018-11-26 양면 발광 조명 장치

Publications (1)

Publication Number Publication Date
WO2020111358A1 true WO2020111358A1 (ko) 2020-06-04

Family

ID=70852530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015294 WO2020111358A1 (ko) 2018-11-26 2018-12-05 양면 발광 조명 장치

Country Status (4)

Country Link
US (1) US20210111376A1 (ko)
KR (1) KR102152876B1 (ko)
CN (1) CN112585397A (ko)
WO (1) WO2020111358A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072216B2 (ja) * 2005-11-21 2012-11-14 株式会社ジャパンディスプレイセントラル 両面表示装置
JP2015115199A (ja) * 2013-12-11 2015-06-22 パナソニックIpマネジメント株式会社 建材ユニット
JP2015176735A (ja) * 2014-03-14 2015-10-05 凸版印刷株式会社 El素子、照明装置、ディスプレイ装置、および液晶ディスプレイ装置
KR20170037953A (ko) * 2014-07-31 2017-04-05 니폰 제온 가부시키가이샤 유기 el 발광장치
KR20180114368A (ko) * 2017-04-10 2018-10-18 포항공과대학교 산학협력단 광학용 기판, 유기전자장치, 광원 및 광학용 기판의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009116531A1 (ja) * 2008-03-18 2011-07-21 旭硝子株式会社 電子デバイス用基板、有機led素子用積層体及びその製造方法、有機led素子及びその製造方法
JP6582981B2 (ja) * 2013-05-09 2019-10-02 Agc株式会社 透光性基板、有機led素子、透光性基板の製造方法
WO2015137448A1 (ja) * 2014-03-14 2015-09-17 凸版印刷株式会社 El素子、el素子用基板、照明装置、ディスプレイ装置、及び液晶ディスプレイ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072216B2 (ja) * 2005-11-21 2012-11-14 株式会社ジャパンディスプレイセントラル 両面表示装置
JP2015115199A (ja) * 2013-12-11 2015-06-22 パナソニックIpマネジメント株式会社 建材ユニット
JP2015176735A (ja) * 2014-03-14 2015-10-05 凸版印刷株式会社 El素子、照明装置、ディスプレイ装置、および液晶ディスプレイ装置
KR20170037953A (ko) * 2014-07-31 2017-04-05 니폰 제온 가부시키가이샤 유기 el 발광장치
KR20180114368A (ko) * 2017-04-10 2018-10-18 포항공과대학교 산학협력단 광학용 기판, 유기전자장치, 광원 및 광학용 기판의 제조방법

Also Published As

Publication number Publication date
CN112585397A (zh) 2021-03-30
KR102152876B1 (ko) 2020-09-07
US20210111376A1 (en) 2021-04-15
KR20200061878A (ko) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2018048131A1 (ko) 디스플레이 장치
WO2017026820A1 (ko) 발광 소자 및 이를 구비한 표시 장치
US8431943B2 (en) Light transmitting substrate, method for manufacturing light transmitting substrate, organic LED element and method for manufacturing organic LED element
WO2017146476A1 (ko) 디스플레이 장치 및 그의 제조 방법
CN100539221C (zh) 半导体发光器件和半导体发光器件组装体
US8427045B2 (en) Translucent substrate, process for producing the same, organic LED element and process for producing the same
WO2013069878A1 (en) Optical sheet, display device and light emitting device having the same
WO2015174673A1 (ko) 유기발광소자 및 이의 제조방법
WO2012026718A2 (ko) 멀티칩 백색 led 소자
US8314547B2 (en) Opto-electronic component
WO2016032160A1 (ko) 디스플레이 패널 및 이의 제조 방법
WO2014148792A1 (ko) 무기 코팅층 및 고분자 코팅층을 포함하는 색변환 필름 및 이의 제조방법
WO2020111358A1 (ko) 양면 발광 조명 장치
WO2020045719A1 (ko) 광 추출 구조체 및 유기 발광 조명 장치
WO2017082640A1 (ko) 고굴절 및 저굴절 유/무기 하이브리드 재료를 이용한 oled 소자용 적층체 및 oled 소자의 제조방법, 이에 의해 제조되는 oled 소자
WO2017135688A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2016114598A1 (ko) 표시 장치
WO2022169028A1 (ko) 디스플레이 디바이스
WO2021251717A1 (ko) 발광 소자를 갖는 유닛 픽셀 및 디스플레이 장치
WO2021153827A1 (ko) 컬러휠
WO2014088381A1 (ko) 조명 기구 및 이의 제조방법
WO2023121424A1 (ko) 발광 모듈 및 그것을 포함하는 디스플레이 장치
WO2022055314A1 (ko) 발광 소자를 갖는 유닛 픽셀 및 디스플레이 장치
KR102352322B1 (ko) 광 추출 구조체 및 유기 발광 조명 장치
WO2016111534A1 (ko) 탠덤형 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941752

Country of ref document: EP

Kind code of ref document: A1