WO2020111185A1 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
WO2020111185A1
WO2020111185A1 PCT/JP2019/046594 JP2019046594W WO2020111185A1 WO 2020111185 A1 WO2020111185 A1 WO 2020111185A1 JP 2019046594 W JP2019046594 W JP 2019046594W WO 2020111185 A1 WO2020111185 A1 WO 2020111185A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active material
solid
current collector
electrode
Prior art date
Application number
PCT/JP2019/046594
Other languages
English (en)
French (fr)
Inventor
知宏 矢野
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201980078063.XA priority Critical patent/CN113169375B/zh
Priority to DE112019005979.3T priority patent/DE112019005979T5/de
Priority to JP2020557824A priority patent/JP7424308B2/ja
Priority to US17/293,071 priority patent/US20210399339A1/en
Publication of WO2020111185A1 publication Critical patent/WO2020111185A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state battery, for example, an all-solid-state lithium-ion secondary battery.
  • an all-solid-state battery for example, an all-solid-state lithium-ion secondary battery.
  • the lithium-ion secondary battery is widely used as a power source for portable small devices such as mobile phones, notebook PCs and PDAs. Lithium-ion secondary batteries used in such portable small devices are required to be smaller, thinner, and more reliable.
  • lithium-ion secondary batteries it is known to use an organic electrolyte solution as an electrolyte and a solid electrolyte.
  • organic electrolyte solution As an electrolyte and a solid electrolyte.
  • all-solid-state lithium-ion secondary batteries that use a solid electrolyte as the electrolyte have a higher degree of freedom in designing the battery shape, making the battery size smaller and thinner. Is easy, and the electrolyte does not leak, so there is an advantage of high reliability.
  • all-solid-state lithium-ion secondary batteries are non-flammable like other electronic components, they have the advantage that they can be mounted on a board by reflow soldering.
  • the baking temperature of the copper paste is low in order to prevent volatilization of lithium, and voids are easily generated in the copper layer.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an all-solid-state battery that can further reduce the occurrence of failures due to invasion of a plating solution and improve the yield rate. ..
  • An electrode layer in which a current collector layer and an active material layer are laminated includes a laminate in which a solid electrolyte layer containing a solid electrolyte is laminated.
  • the current collector layer includes a main body portion formed inside the laminated body, and an extended portion extending from an end surface of the main body portion to an end surface of the laminated body,
  • the laminate has a plurality of the electrode layers,
  • the first electrode layer located at one end in the stacking direction of the stack has a first current collector layer and a first active material layer,
  • the first current collector layer includes a first main body part formed inside the laminate, and a first extending part extending from an end face of the first main body part to an end face of the laminate.
  • the second electrode layer located at the other end of the stack in the stacking direction has a second current collector layer and a second active material layer,
  • the second current collector layer includes a second main body part formed inside the laminate, and a second extending part extending from an end face of the second main body part to an end face of the laminate.
  • One of the first electrode layer and the second electrode layer constitutes a positive electrode, and the other of the first electrode layer and the second electrode layer constitutes a negative electrode.
  • the all-solid-state battery according to the above [7] in which both the first electrode layer and the second electrode layer constitute one of a positive electrode and a negative electrode.
  • FIG. 1A is a side view of the all-solid-state battery according to the present embodiment
  • FIG. 1B is a partially enlarged cross-sectional view of position A in FIG. 1A. It is a partial expanded sectional view of the position B in FIG. It is a partial expanded sectional view which shows the modification of the collector layer by the side of the positive electrode in FIG. It is a partial expanded sectional view which shows the modification of the collector layer by the side of the negative electrode in FIG.
  • FIG. 4A is a plan view of the all-solid-state battery of FIG. 1, and FIG. 4B is a plan view showing a modified example of FIG. 4A.
  • FIG. 1A is a side view of the all-solid-state battery according to this embodiment, and FIG. 1B is a partially enlarged cross-sectional view of FIG. 1A.
  • an all-solid-state battery 1 includes a current collector layer 11 (current collector layers 11a and 11b) and an active material layer 12 (active material layers 12a and 12b).
  • the electrode layer 10 (electrode layers 10a and 10b) in which is laminated includes a laminate 2 in which a solid electrolyte layer 20 including a solid electrolyte is laminated.
  • the all-solid-state battery 1 is not particularly limited, but is preferably an all-solid-state secondary battery, more preferably an all-solid-state lithium-ion secondary battery.
  • the all-solid-state battery 1 includes an electrode layer 10 including an electrode layer group 10A and an electrode layer group 10B.
  • the electrode layer group 10A has electrode layers 10a, 10a,..., And an electrode layer group 10B.
  • One of the electrode layers 10a and 10b constitutes a positive electrode and the other constitutes a negative electrode.
  • the positive/negative of each electrode layer can be changed depending on which polarity is connected to an external terminal described later.
  • the electrode layer 10a functions as a positive electrode
  • the electrode layer 10b functions as a negative electrode.
  • the electrode layer 10a is connected to the external electrode 3, and the electrode layer 10b is connected to the external electrode 4.
  • the external electrode 3 and the external electrode 4 form an electrical contact with the outside.
  • the electrode layers 10a and the electrode layers 10b are alternately laminated with the solid electrolyte layers 20 in between.
  • the all-solid-state battery 1 is charged and discharged by exchanging lithium ions between the electrode layers 10a and 10b via the solid electrolyte.
  • the electrode layer 10a includes a current collector layer 11a and active material layers 12a and 12a including an active material layer. Further, the electrode layer 10b includes a current collector layer 11b and active material layers 12b and 12b including an active material layer.
  • the current collector layer 11a includes, for example, a main body portion 11a-1 formed inside the laminated body 2, and an end surface 13a of the main body portion 11a-1 to an end surface 2a of the laminated body 2. And an extending portion 11a-2 extending up to.
  • the extending portion 11a-2 of the thickness T e of the end face 2a of the laminate 2 is smaller than the thickness T b of the main body portion 11a-1 (t e ⁇ t b).
  • a void of a metal layer for example, a copper layer
  • the plating solution infiltrates to the extent to some extent, it becomes difficult for the plating solution to reach the extension part 11a-2, and the plating solution passes through the interface between the extension part 11a-2 and the solid electrolyte layer 20 to the inside of the laminate 2. Intrusion can be suppressed.
  • the ratio of the thickness t e of the extending portion 11a-2 to the thickness t b of the main body portion 11a-1 is preferably 20% or more and 50% or less.
  • the ratio (t e / t b) is less than 20%, the electric resistance increases with the extension portion 11a-2 and the external electrode 3, the battery capacity decreases. Further, if the above ratio exceeds 50%, invasion of the plating solution cannot be sufficiently suppressed. Therefore, the ratio of the thickness t e of the extending portion 11a-2 to the thickness t b of the main body portion 11a-1 is set to a value within the above range.
  • the thickness t b of the main body 11a-1 is not particularly limited, but is, for example, 0.6 ⁇ m or more and 15 ⁇ m or less.
  • the thickness t e of the extending portion 11a-2 is not particularly limited, but is, for example, 0.3 ⁇ m or more and 3 ⁇ m or less.
  • the ratio of the extension direction length of the extension portion 11a-2 to the length of the main body portion 11a-1 can be, for example, 0.2% or more and 20% or less.
  • the length of the extending portion 11a-2 in the extending direction is not particularly limited, but is, for example, 10 ⁇ m or more and 1000 ⁇ m or less. If the length of the extending portion 11a-2 in the extending direction is less than 10 ⁇ m, the penetration of the plating solution cannot be sufficiently suppressed, and if it exceeds 1000 ⁇ m, the electrical resistance of the extending portion 11a-2 increases. In addition, the battery capacity is reduced, and the effect of suppressing the penetration of the plating solution is not improved as compared with the case of 1000 ⁇ m.
  • the current collector layer 11b also has a main body portion 11b-1 formed inside the laminate 2 and an end surface 13b of the main body portion 11b-1 similarly to the current collector layer 11a.
  • To an end face 2a of the laminated body 2 is preferably included.
  • the thickness of the extending portion 11b-2 on the end surface 2a of the laminated body 2 be smaller than the thickness of the main body portion 11b-1.
  • the ratio of the thickness of the extending portion 11b-2 to the thickness of the main body portion 11b-1 is preferably 20% or more and 50% or less.
  • the ratio of the length of the extending portion 11b-2 in the extending direction to the length of the main body portion 11b-1 is 0.2% or more and 20% or more, like the current collector layer 11a. It can be: Further, the length of the extending portion 11b-2 in the extending direction can be set to, for example, 10 ⁇ m or more and 1000 ⁇ m or less, similarly to the collector layer 11a.
  • the current collector layers 11a and 11b have high conductivity. Therefore, it is preferable to use silver, palladium, gold, platinum, aluminum, copper, nickel, or the like for the current collector layers 11a and 11b. Among these substances, copper hardly reacts with the positive electrode active material, the negative electrode active material, and the solid electrolyte. Therefore, if copper is used for the collector layer 11a and the collector layer 11b, the internal resistance of the all-solid-state battery 1 can be reduced.
  • the materials forming the current collector layer 11a and the current collector layer 11b may be the same or different.
  • the active material layer 12a is formed on both sides of the current collector layer 11a.
  • the electrode layer 10a is formed in the lowermost layer of the electrode layer 10a and the electrode layer 10b in the stacking direction of the laminated body 2, the opposing electrode layer is formed below the lowermost electrode layer 10a. There is no 10b. Therefore, in the lowermost electrode layer 10a, the active material layer 12a may be formed only on one surface on the upper side in the stacking direction.
  • the active material layer 12b is also formed on both sides of the current collector layer 11b.
  • the active material layer 12b is formed on the uppermost electrode layer 10b in the stacking direction. It may be formed on only one surface on the lower side.
  • the active material layer 12a includes one of a positive electrode active material and a negative electrode active material that transfer electrons
  • the active material layer 12b includes the other of the positive electrode active material and the negative electrode active material.
  • the positive electrode active material and the negative electrode active material are preferably capable of efficiently inserting and releasing lithium ions.
  • the active material layer 12a and the active material layer 12b may include a conductive auxiliary agent, an ion conductive auxiliary agent, a binder and the like in addition to the positive electrode active material and the negative electrode active material.
  • a transition metal oxide or a transition metal composite oxide is preferably used.
  • LiV 2 O 5 lithium vanadium compound
  • olivine type LiMbPO 4 where Mb is at least one element selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al and Zr
  • lithium vanadium phosphate Li 3 V 2 (PO 4 ) 3 or LiVOPO 4
  • Li 2 MnO 3 —LiMcO 2 Li 2 MnO 3 —LiMcO 2
  • Li 4 Ti 5 O 12 using a Li s Ni t Co u Al v O 2 (0.9 ⁇ s ⁇ 1.3,0.9 ⁇ t + u + v ⁇ 1.1) composite metal oxide represented by like be able to.
  • the negative electrode active material and the positive electrode active material may be selected according to the solid electrolyte described later.
  • Li 1+n Al n Ti 2-n (PO 4 ) 3 (0 ⁇ n ⁇ 0.6) is used for the solid electrolyte
  • LiVOPO 4 and Li 3 V 2 (PO 4 are used for the positive electrode active material and the negative electrode active material.
  • the contact areas at the interfaces between the active material layers 12a and 12b and the solid electrolyte layer 20 can be increased.
  • the active materials forming the active material layer 12a or the active material layer 12b there is no clear distinction between the active materials forming the active material layer 12a or the active material layer 12b. By comparing the potentials of two kinds of compounds, a compound showing a more noble potential can be used as a positive electrode active material, and a compound showing a more noble potential can be used as a negative electrode active material.
  • the negative electrode active material and the positive electrode active material for example, an active material in which a part of V in Li 3 V 2 (PO 4 ) 3 is replaced with another element M can be used.
  • the negative electrode active material and the positive electrode active material are active materials represented by the chemical formula Li 3 V 2 ⁇ x M x (PO 4 ) 3 (0 ⁇ x ⁇ 1.4), and M is a crystal.
  • An active material that is an element that becomes a divalent or tetravalent cation in the structure is used.
  • Such an active material has higher electron conductivity than the active material Li 3 V 2 (PO 4 ) 3 in which no element substitution is performed.
  • the active material Li 3 V 2 (PO 4 ) 3 When substituting an element that can be a divalent cation, oxygen vacancies are easily formed in the crystal lattice, and oxygen vacancies cause free electrons. Further, when substituting an element that can be a tetravalent cation, holes are easily formed in the crystal lattice, and holes are generated.
  • the electronic conductivity of the active material is improved and the internal resistance of the all solid state secondary battery is reduced. Can be done.
  • the active material is described as being used in an all-solid-state secondary battery, but is not limited to this, and may be used in other batteries such as a primary battery and a fuel cell.
  • the element represented by M in the above chemical formula Li 3 V 2-x M x (PO 4 ) 3 may be any element that becomes a divalent or tetravalent cation in the crystal structure.
  • the element represented by M is Mg, Ca, Ti, Zr, Sr, Ba, Nb, Ta, Cr, Mn, Fe, Co. Any one or more elements selected from the group consisting of Ni, Cu, Zn, Mo, Ru, Rh and W may be used.
  • the element represented by M in the chemical formula Li 3 V 2 ⁇ x M x (PO 4 ) 3 is one or more elements selected from the group consisting of Mg, Ca, Ti and Zr. Good.
  • the element represented by M in the chemical formula Li 3 V 2-x M x (PO 4 ) 3 may be Ti.
  • Ti has an ionic radius close to that of the trivalent cation of V (six-coordinate). It is considered that an element having an ionic radius close to that of the trivalent cation (six-coordinated) of V is easily substituted with V. An element having an ionic radius larger than the ionic radius of the trivalent cation (six-coordinated) of V, when V is replaced by the element, is combined with the element in the Li 3 V 2 (PO 4 ) 3 crystal and the O. Tends to weaken the bond with. As a result, oxygen is easily desorbed by heat treatment in a reducing atmosphere or the like.
  • the conduction aid examples include carbon materials such as carbon black, acetylene black, Ketjen black, carbon nanotubes, graphite, graphene and activated carbon, and metal materials such as gold, silver, palladium, platinum, copper and tin.
  • the ion-conducting auxiliary agent is, for example, a solid electrolyte.
  • a solid electrolyte specifically, for example, the same material as that used for the solid electrolyte layer 50 can be used.
  • a solid electrolyte As the ion-conducting auxiliary agent, it is preferable to use the same material as the ion-conducting auxiliary agent and the solid electrolyte used for the solid electrolyte layer 50.
  • the solid electrolyte forming the solid electrolyte layer 20 is preferably a phosphate-based solid electrolyte.
  • the solid electrolyte it is preferable to use a material having low electron conductivity and high lithium ion conductivity.
  • perovskite type compounds such as La 0.5 Li 0.5 TiO 3
  • lithicon type compounds such as Li 14 Zn(GeO 4 ) 4
  • garnet type compounds such as Li 7 La 3 Zr 2 O 12 are used.
  • a Nasicon-type compound such as Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 or Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 3.25 Ge 0.25 Thiolysicone type compounds such as P 0.75 S 4 and Li 3 PS 4 , glass compounds such as Li 2 S—P 2 S 5 and Li 2 O—V 2 O 5 —SiO 2 , and Li 3 PO 4 and Li 3. At least one selected from the group consisting of phosphate compounds such as 5 Si 0.5 P 0.5 O 4 and Li 2.9 PO 3.3 N 0.46 is desirable.
  • the solid electrolyte is preferably an oxide-based solid electrolyte containing an element represented by M in the above chemical formula Li 3 V 2-x M x (PO 4 ) 3 . Such a solid electrolyte is used in an all-solid-state battery.
  • the solid electrolyte of the present embodiment it is preferable to use a lithium ion conductor having a NASICON type crystal structure, for example, LiZr 2 (PO 4 ) 3 and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ). ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 It is preferable to contain the solid electrolyte material represented by these.
  • LiZr 2 (PO 4 ) 3 is used as the solid electrolyte, the one substituted with Ca or Y is also preferable.
  • Ca substitution Li 1.4 Ca 0.2 Zr 1.8 (PO 4 ) 3 and in the case of Y substitution, Li 1.15 Y 0.15 Zr 1.85 (PO 4 ) 3 and the like. Be done.
  • the activation energy of Li ions at the bonding interface between the active material layer 12a and the solid electrolyte layer 20 and at the bonding interface between the active material layer 12b and the solid electrolyte layer 20 becomes small.
  • the activation energy means the energy required for Li ions to pass through the bonding interface between the active material layer 12a and the solid electrolyte layer 20 and the bonding interface between the active material layer 12b and the solid electrolyte layer 20. means.
  • Li ions easily move at the bonding interface between the active material layer 12b and the solid electrolyte layer 20 and at the bonding interface between the active material layer 12b and the solid electrolyte layer, and the Li ion conductivity at the bonding interface is improved. To do. Therefore, the internal resistance of the all solid state secondary battery is reduced.
  • the external electrodes 3 and 4 are formed in contact with the side surfaces of the stacked body 2 (exposed surfaces of the end surfaces of the electrode layers 10a and 10b).
  • the external electrodes 3 and 4 are connected to external terminals (not shown) to transfer electrons to and from the stacked body 2.
  • the external electrodes 3 and 4 are preferably formed in a multi-layer structure, and can have, for example, a laminated structure in which a metal layer and a plating layer are laminated. In this case, the plating layer is formed over a part or the whole of the metal layer.
  • the co-firing method is a method in which materials for forming each layer are laminated and then a laminated body is produced by collective firing.
  • the sequential firing method is a method in which each layer is sequentially manufactured, and a firing step is performed every time each layer is manufactured.
  • the use of the simultaneous firing method can form the laminated body 2 with fewer working steps.
  • the simultaneous firing method is used, the obtained laminate 2 is denser than when the sequential firing method is used.
  • the case where the laminated body 2 is manufactured using the co-firing method will be described as an example.
  • the co-firing method is a step of forming a paste of each material forming the laminated body 2, a step of applying and drying the paste to produce a green sheet, and laminating the green sheets into a laminated sheet, and co-firing this. And the process. First, each material of the current collector layer 11a, the active material layer 12a, the solid electrolyte layer 20, the active material layer 12b, and the current collector layer 11b, which form the laminated body 2, is made into a paste.
  • the method of forming each material into a paste is not particularly limited.
  • a paste is obtained by mixing powder of each material with a vehicle.
  • the vehicle is a general term for a medium in a liquid phase.
  • the vehicle includes a solvent and a binder.
  • the laminated sheet can be produced, for example, by a method of producing a positive electrode active material layer unit and a negative electrode active material layer unit described below, and laminating these.
  • a paste for a solid electrolyte layer 20 is applied on a base material such as a PET film by a doctor blade method and dried to form a sheet-like solid electrolyte layer 20.
  • the paste for the active material layer 12a is printed on the solid electrolyte layer 20 by screen printing and dried to form the active material layer 12a.
  • the paste for the current collector layer 11a is printed on the active material layer 12a by screen printing and dried to form the current collector layer 11a.
  • the screen printing is divided into a plurality of times (three times in the configuration of FIG. 1B), the first step in which the paste for the current collector layer 11a is not printed to the end surface, and the second step in which the copper paste is printed to the end surface.
  • the process and the third process in which the copper paste is not printed up to the end face are performed in this order.
  • the extending portion 11a-2 is formed on the current collector layer 11a.
  • the second step of printing the layer 11a paste to the end surface and the third step of not printing the copper paste to the end surface can be performed. Further, a paste for active material layer 12a is printed on the current collector layer 11a by screen printing and dried to form the active material layer 12a.
  • the PET film is peeled off to obtain an active material layer unit as a positive electrode.
  • the positive electrode active material layer unit is a laminated sheet in which the solid electrolyte layer 20/active material layer 12a/current collector layer 11a/active material layer 12a are laminated in this order.
  • An active material layer unit as a negative electrode is produced by the same procedure.
  • This active material layer unit is a laminated sheet in which the solid electrolyte layer 20, the active material layer 12b, the current collector layer 11b, and the active material layer 12b are laminated in this order.
  • one active material layer unit serving as the positive electrode and one negative electrode active material layer unit serving as the negative electrode are laminated.
  • the active material layer 12a of the active material layer unit as the positive electrode and the solid electrolyte layer 20 of the active material layer unit as the negative electrode are laminated so as to be in contact with each other, or the solid material forming the active material layer unit as the positive electrode is formed.
  • the electrolyte layer 20 and the active material layer 12b forming the active material layer unit as the negative electrode are laminated so as to be in contact with each other.
  • active material layer 12a/current collector layer 11a/active material layer 12a/solid electrolyte layer 20/active material layer 12b/current collector layer 11b/active material layer 12b/solid electrolyte layer 20 are laminated in this order.
  • a laminated sheet is obtained.
  • the extending portion 11a-2 of the current collector layer 11a is one of the active material layer units serving as the positive electrode.
  • the units are stacked so that they extend only to the end face and the extending portion of the current collector layer 11b of the active material layer unit serving as the negative electrode extends only to the other face.
  • a sheet for solid electrolyte 20 having a predetermined thickness is further stacked on the uppermost layer and the lowermost layer of the stacked body in which the active material layer units are stacked to form a stacked sheet.
  • the produced laminated sheets are collectively pressure-bonded.
  • the pressure bonding is preferably performed while heating.
  • the heating temperature at the time of pressure bonding is, for example, 40 to 95°C.
  • the pressure-bonded laminated sheet green sheet laminated body
  • the sintered body is obtained by heating at 600° C. to 1000° C. in an atmosphere of nitrogen, hydrogen and water vapor and firing.
  • the firing time is, for example, 0.1 to 3 hours.
  • the obtained sintered body (laminated body 2) may be placed in a cylindrical container together with an abrasive such as alumina and barrel-polished. Thereby, the corners of the laminated body 2 can be chamfered.
  • the laminated body 2 may be polished by sandblast. This method is preferable because only a specific portion can be cut.
  • the laminate 2 is obtained through the above steps.
  • an all-solid-state lithium-ion secondary battery can be produced.
  • the external electrodes 3 and 4 are formed, for example, in a multilayer structure obtained through a copper paste applying step, a baking step and an electrolytic plating step in this order. Thereby, the all-solid-state battery 1 including the stacked body 2 is manufactured.
  • the thickness T e of the extending portion 11a-2 at the end face of the laminated body 2 is smaller than the thickness T b of the main body portion 11a-1, so that when the external electrode 4 is formed. It is difficult for the plating solution to enter, the occurrence of failures due to the penetration of the plating solution can be further reduced, and the yield rate can be improved.
  • FIG. 3 is a diagram showing a modification of the current collector layer 11a in FIG.
  • the laminated body 2 has a plurality of electrode layers
  • the first electrode layer 30a located at one end of the laminated body 2 in the laminating direction has a first current collector layer 31a and a first active material layer 32a.
  • the first electrode layer 30a located at the lower end of the stacked body 2 in the stacking direction has the first current collector layer 31a and the first active material layers 32a, 32a.
  • the first current collector layer 31a extends from the first body 31a-1 formed inside the laminate 2 and the end face 33a of the first body 31a-1 to the end face 2a of the laminate 2.
  • a first extending portion 31a-2 is
  • the first extending portion 31a-2 is provided so as to be displaced from the central position in the thickness direction of the first main body portion 31a-1 toward the central portion side of the laminated body 2 in the laminating direction of the laminated body 2. ..
  • the first extending portion 31a-2 is provided so as to be shifted upward (from the arrow in the figure) from the center position in the thickness direction of the first main body portion 31a-1.
  • the first extending portion 31a-2 is provided on the end face 33a of the first main body portion 31a-1 at the upper end in the thickness direction of the first main body portion 31a-1.
  • the metal layer (for example, copper layer) forming the external electrode 3 is likely to be thin, and the plating solution is more likely to enter. Therefore, by disposing the first extending portion 31a-2 so as to deviate from the central position in the thickness direction of the first main body portion 31a-1 toward the central portion of the laminated body 2, the metal layer is formed relatively thick. The end surface of the first extending portion 31a-2 can be located in the existing portion, and the invasion of the plating solution can be further suppressed.
  • the first active material layer 32a is formed on both sides of the first current collector layer 31a, but the present invention is not limited to this and may be formed on only one side of the laminated body 2 on the upper side in the laminating direction.
  • FIG. 4 is a diagram showing a modification of the current collector layer 11b in FIG.
  • the laminated body 2 has a plurality of electrode layers
  • the second electrode layer 30b located at the other end of the laminated body 2 in the laminating direction has a second current collector layer 31b and second active material layers 32b, 32b. have.
  • the second electrode layer 30b located at the upper end in the stacking direction of the stacked body 2 has the second current collector layer 31b and the second active material layers 32b and 32b.
  • the second current collector layer 31b extends from the second main body portion 31b-1 formed inside the laminated body 2 and the end surface 33b of the second main body portion 31b-1 to the end surface 2a of the laminated body 2.
  • the second extending portion 31b-2 is included.
  • the second extending portion 31b-2 is provided so as to be displaced from the center position in the thickness direction of the second main body portion 31b-1 toward the central portion side of the laminated body 2 in the laminating direction of the laminated body 2. ..
  • the second extending portion 31b-2 is provided so as to be shifted downward (from the arrow side in the drawing) from the center position in the thickness direction of the second main body portion 31b-1.
  • the second extending portion 31b-2 is provided on the end surface 33b of the second main body portion 31b-1 at the lower end in the thickness direction of the second main body portion 31b-1.
  • the second extending portion 31b-2 is provided so as to be displaced from the center position in the thickness direction of the second main body portion 31b-1 toward the central portion of the laminated body 2, so that the metal layer is formed relatively thick.
  • the end surface of the second extending portion 31b-2 can be located in the existing portion, and the invasion of the plating solution can be further suppressed.
  • the second active material layer 32b is formed on both sides of the second current collector layer 31b, but the present invention is not limited to this and may be formed only on one side of the laminated body 2 on the lower side in the laminating direction.
  • FIG. 5A is a plan view of the all-solid-state battery of FIG. 1, and FIG. 5B is a plan view of FIG. It is a modified example of.
  • the width of the extending portion 11a-2 (the dimension in the direction orthogonal to the extending direction) is the same as the width of the main body portion 11a-1.
  • the width of the extending portion 11b-2 (the dimension in the direction orthogonal to the extending direction) is the same as the width of the main body portion 11b-1, but the width is not limited to this.
  • FIG. 5(a) the width of the extending portion 11a-2 (the dimension in the direction orthogonal to the extending direction) is the same as the width of the main body portion 11a-1.
  • the width of the extending portion 41a-2 is conditioned, provided that the electric resistance between the extending portion 11a-2 and the external electrode 4 does not increase significantly. However, it may be smaller than the width of the main body portion 41a-1. Further, in the current collector layer 41b, the width of the extending portion 41b-2 may be smaller than the width of the main body portion 41b-1.
  • the width of the first extending portion 31a-2 may be smaller than the width of the first main body portion 31a-1. Further, in the second current collector layer 31b of FIG. 4, the width of the second extending portion 31b-2 may be smaller than the width of the second main body portion 31b-1.
  • first electrode layer 30a is located at the lower end in the stacking direction of the stacked body 2 (FIG. 3), the present invention is not limited thereto, and the first electrode layer may be located at the upper end in the stacking direction of the stacked body 2. ..
  • second electrode layer 30b is located at the upper end in the stacking direction of the stacked body 2 (FIG. 4), the present invention is not limited to this, and the second electrode layer may be located at the lower end in the stacking direction of the stacked body 2. ..
  • one of the first electrode layer and the second electrode layer may form a positive electrode, and the other of the first electrode layer and the second electrode layer may form a negative electrode.
  • the laminated body 2 has a plurality of electrode layers 10 a that function as positive electrodes, and the first electrode layer located at the lower end of the laminated body 2 in the laminating direction and the second electrode layer located at the upper end of the laminated body 2 in the laminating direction. It may have an electrode layer.
  • the laminated body 2 has a plurality of electrode layers 10b that function as negative electrodes, and is located at the lower end of the laminated body 2 in the laminating direction and the first electrode layer located at the upper end of the laminated body 2 in the laminating direction. You may have a 2nd electrode layer.
  • both the first electrode layer and the second electrode layer may constitute either the positive electrode or the negative electrode.
  • Example 1 Copper as the cathode current collector layer, Li 3 V 2 (PO 4 ) 3 as the positive electrode active material layer, copper as a negative electrode collector layer, Li 3 V 2 as the negative electrode active material layer (PO 4) 3, as a solid electrolyte layer with li 1.3 Al 0.3 Ti 1.7 (PO 4) 3, in the manufacturing method described above, to produce an all-solid battery element of the size of 3.2 mm ⁇ 2.5 mm ⁇ 1.0 mm ..
  • the positive electrode current collector layer and the negative electrode current collector layer were formed by a screen printing method.
  • the electrode length of the current collector layer main body portion was 2.8 mm, and the electrode length of the extension portion was 0.2 mm.
  • the external electrode was formed through a copper paste applying step, a baking step, and a nickel and tin electrolytic plating step in this order.
  • a 6 ⁇ m thickness of the body portion of the collector layer, the ratio of the extending portion of the thickness to the thickness of the body portion of the current collector layer (t e / t b) is 60% total
  • a solid state battery was produced.
  • Example 2 The ratio (t e / t b) is, except that a 50%, in the same manner as in Example 1 to prepare an all-solid battery.
  • Example 3 The ratio (t e / t b) is, except that a 40%, in the same manner as in Example 1 to prepare an all-solid battery.
  • Example 4 The ratio (t e / t b) is, except that a 30%, in the same manner as in Example 1 to prepare an all-solid battery.
  • Example 5 The ratio (t e / t b) is, except that a 20%, in the same manner as in Example 1-4 were produced all-solid-state cell.
  • Example 1 From the results of Table 1, in Example 1, the ratio of the extending portion of the thickness to the thickness of the body portion of the current collector layer (t e / t b) is 60% failure rate due to the plating solution infiltration is 1 It was found to be almost as good as 0.6%, and it was found that the occurrence of failures due to the penetration of the plating solution could be reduced.
  • Example 2 when the ratio (t e / t b) is 40%, a good and 1.0% failure rate due to the plating solution penetrates further found to be reduced failure by penetration of the plating solution It was
  • Example 3 Within the above ratio (t e / t b) is 30%, a good and 1.0% failure rate due to the plating solution penetrates further found to be reduced failure by penetration of the plating solution It was
  • Example 4 when the ratio (t e / t b) is 20%, a good and 0.8% failure rate due to the plating solution penetrates further found to be reduced failure by penetration of the plating solution It was
  • Example 5 when the ratio (t e / t b) is 20%, a good and 0.8% failure rate due to the plating solution penetrates further found to be reduced failure by penetration of the plating solution It was
  • Comparative Example 1 when the ratio (t e / t b) is 100% plating solution high failure rate and 6.0% by infiltration, to sufficiently reduce the failure caused by intrusion of the plating solution I could't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

めっき液の侵入による故障発生を更に低減して、良品率を向上することができる全固体電池を提供する。全固体電池(1)は、集電体層(11)(集電体層(11a,11b))と活物質層(12)(活物質層(12a,12b))とが積層された電極層(10)(電極層(10a,10b))が、固体電解質を含む固体電解質層(20)を介して積層された積層体2を含んでいる。電極層(10a)は、集電体層(11a)と、活物質層を含む活物質層(12a,12a)とを有する。集電体層(11a)は、積層体(2)の内部に形成された本体部(11a-1)と、本体部(11a-1)の端面(13a)から積層体(2)の端面(2a)まで延出した延出部(11a-2)と、を含む。そして、積層体(2)の端面(2a)における延出部(11a-2)の厚み(T)が、本体部(11a-1)の厚み(T)よりも小さい。

Description

全固体電池
 本発明は、全固体電池に関し、例えば、全固体リチウムイオン二次電池に関する。
本願は、2018年11月30日に日本に出願された特願2018-225307号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池は、例えば、携帯電話、ノートPC、PDAなどの携帯小型機器の電源として広く使用されている。このような携帯小型機器で使用されるリチウムイオン二次電池は、小型化、薄型化および信頼性の向上が求められている。
 リチウムイオン二次電池としては、電解質に有機電解液を用いたものと、固体電解質を用いたものとが知られている。電解質に固体電解質を用いた全固体リチウムイオン二次電池は、有機電解液を用いたリチウムイオン二次電池と比較して、電池形状の設計の自由度が高く、電池サイズの小型化や薄型化が容易であり、また電解液の液漏れなどが起きないため、信頼性が高いという利点がある。
 さらに、全固体リチウムイオン二次電池は、他の電子部品同様、不燃性であることから、リフローはんだ付けにより基盤に実装できるという利点がある。
 ここで、リフローはんだ付けを目的として、積層セラミックコンデンサのように、外部電極を、銅ペースト塗布、焼き付け、電解めっきプロセスを駆使して多層構造で形成した場合、電解めっきプロセスにおいて、めっき液が電池の積層体内部に侵入し、故障する問題が発生する。このようなめっき液浸入という問題に対処するべく、引き出し電極側の端面の幅を狭くする、いわゆる絞りパターンの設計が知られている(特許文献1)。
特開平5-326317号公報
 しかしながら、一般に、全固体電池の製造工程では、コンデンサに比べて、リチウムの揮発を防ぐために銅ペーストの焼き付け温度が低く、銅層内に空隙が生じやすいため、電極にいわゆる絞りパターンを使っても、めっき液の侵入による故障発生が依然として多いという問題がある。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、めっき液の侵入による故障発生を更に低減して、良品率を向上することができる全固体電池を提供することにある。
 上記目的を達成するために、本発明は以下の手段を提供する。
[1]集電体層と活物質層とが積層された電極層が、固体電解質を含む固体電解質層を介して積層された積層体を含み、
 前記集電体層は、前記積層体の内部に形成された本体部と、前記本体部の端面から前記積層体の端面まで延出した延出部と、を含み、
 前記積層体の端面における前記延出部の厚みが、前記本体部の厚みよりも小さい、全固体電池。
[2]前記本体部の厚みに対する前記延出部の厚みの比率が、20%以上50%以下である、上記[1]に記載の全固体電池。
[3]前記延出部の厚みが、0.3μm以上3μm以下である、上記[2]に記載の全固体電池。
[4]前記本体部の長さに対する前記延出部の延出方向長さの比率が、0.2以上20%以下である、上記[1]~[3]のいずれかに記載の全固体電池。
[5]前記延出部の延出方向長さが、10μm以上1000μm以下である、上記[4]に記載の全固体電池。
[6]前記積層体は、前記電極層を複数有し、
 前記積層体の積層方向一端に位置する第1電極層が、第1集電体層および第1活物質層を有し、
 前記第1集電体層が、前記積層体の内部に形成された第1本体部と、前記第1本体部の端面から前記積層体の端面まで延出した第1延出部と、を含み、
 前記第1延出部は、前記積層体の積層方向に関して、前記第1本体部の厚み方向中央位置から前記積層体の中央部側にずれて設けられる、上記[1]~[5]のいずれかに記載の全固体電池。
[7]前記積層体の積層方向他端に位置する第2電極層が、第2集電体層および第2活物質層を有し、
 前記第2集電体層が、前記積層体の内部に形成された第2本体部と、前記第2本体部の端面から前記積層体の端面まで延出した第2延出部と、を含み、
 前記第2延出部は、前記積層体の積層方向に関して、前記第2本体部の厚み方向中央位置から前記積層体の中央部側にずれて設けられる、上記[6]に記載の全固体電池。
[8]前記第1電極層および前記第2電極層のうちの一方が、正極を構成し、前記第1電極層および前記第2電極層のうちの他方が、負極を構成する、上記[7]に記載の全固体電池。
[9]前記第1電極層および前記第2電極層の双方が、正極および負極のうちのいずれかを構成する、上記[7]に記載の全固体電池。
 本発明によれば、めっき液の侵入による故障発生を更に低減して、良品率を向上することができる。
図1(a)は、本実施形態に係る全固体電池の側面図であり、図1(b)は、図1(a)における位置Aの部分拡大断面図である。 図1(a)における位置Bの部分拡大断面図である。 図1における正極側の集電体層の変形例を示す部分拡大断面図である。 図1における負極側の集電体層の変形例を示す部分拡大断面図である。 図(a)は、図1の全固体電池の平面図であり、図4(b)は、図4(a)の変形例を示す平面図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
[全固体電池の構成]
 図1(a)は、本実施形態に係る全固体電池の側面図であり、図1(b)は、図1(a)の部分拡大断面図である。
 図1(a)および図1(b)に示すように、全固体電池1は、集電体層11(集電体層11a,11b)と活物質層12(活物質層12a,12b)とが積層された電極層10(電極層10a,10b)が、固体電解質を含む固体電解質層20を介して積層された積層体2を含んでいる。全固体電池1は、特に制限されないが、全固体二次電池であるのが好ましく、全固体リチウムイオン二次電池であるのがより好ましい。
 全固体電池1は、電極層群10Aと、電極層群10Bとで構成される電極層10を備えており、電極層群10Aが、電極層10a,10a,…を有し、電極層群10Bが、複数の電極層10b,10b,…を有している。電極層10aおよび電極層10bのうちの一方が正極を構成し、他方が負極を構成する。各電極層の正負は、後述の外部端子にいずれの極性を接続するかによって変化させることができる。例えば、電極層10aは正極として機能し、電極層10bは負極として機能する。
 電極層10aは、外部電極3に接続されており、電極層10bは外部電極4に接続されている。外部電極3及び外部電極4は、外部との電気的な接点を構成する。
 積層体2において電極層10aと電極層10bは、固体電解質層20を介して交互に積層されている。電極層10aと電極層10bの間で固体電解質を介したリチウムイオンの授受により、全固体電池1の充放電が行われる。
(電極層)
 電極層10aは、集電体層11aと、活物質層を含む活物質層12a,12aとを有する。また、電極層10bは、集電体層11bと、活物質層を含む活物質層12b,12bとを有する。
 集電体層11aは、図1(b)に示すように、例えば、積層体2の内部に形成された本体部11a-1と、本体部11a-1の端面13aから積層体2の端面2aまで延出した延出部11a-2と、を含む。そして、積層体2の端面2aにおける延出部11a-2の厚みTが、本体部11a-1の厚みTよりも小さい(t<t)。この場合、延出部11a-2の端面13aにおける延出部11a-2の面積が小さいため、外部電極3を形成する際に、外部電極3を構成する金属層(例えば、銅層)の空隙にめっき液がある程度浸入するものの、めっき液が延出部11a-2に到達し難くなり、延出部11a-2と固体電解質層20との界面を通ってめっき液が積層体2の内部に浸入するのを抑制することができる。
 本体部11a-1の厚みtに対する延出部11a-2の厚みtの比率は、20%以上50%以下であるのが好ましい。上記比率(t/t)が20%未満であると、延出部11a-2と外部電極3との間で電気抵抗が増大し、電池容量が低下する。また、上記比率が50%を超えると、めっき液の侵入を十分に抑制することができない。したがって、本体部11a-1の厚みtに対する延出部11a-2の厚みtの比率を、上記範囲内の値とする。
 本体部11a-1の厚みtは、特に制限されないが、例えば0.6μm以上15μm以下である。また、延出部11a-2の厚みtは、特に制限されないが、例えば0.3μm以上3μm以下である。
 また、本体部11a-1の長さに対する延出部11a-2の延出方向長さの比率は、例えば、0.2%以上20%以下とすることができる。また、延出部11a-2の延出方向長さは、特に制限されないが、例えば10μm以上1000μm以下である。延出部11a-2の延出方向長さが10μm未満であると、めっき液の侵入を十分に抑制することができず、1000μmを超えると、延出部11a-2における電気抵抗が増大し、電池容量が低下するとともに、めっき液侵入抑制効果も1000μmの場合に比して向上しない。
 また、図2に示すように、集電体層11bも、集電体層11aと同様に、積層体2の内部に形成された本体部11b-1と、該本体部11b-1の端面13bから積層体2の端面2aまで延出した延出部11b-2と、を含むのが好ましい。その場合、積層体2の端面2aにおける延出部11b-2の厚みが、本体部11b-1の厚みよりも小さいのが好ましい。また、本体部11b-1の厚みに対する延出部11b-2の厚みの比率が、20%以上50%以下であるのが好ましい。
 また、集電体層11bにおいて、本体部11b-1の長さに対する延出部11b-2の延出方向長さの比率も、集電体層11aと同様に、0.2%以上20%以下とすることができる。また、延出部11b-2の延出方向長さも、集電体層11aと同様、例えば10μm以上1000μm以下とすることができる。
 集電体層11a及び集電体層11bは、導電率が高いことが好ましい。そのため、集電体層11a及び集電体層11bには、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル等を用いることが好ましい。これらの物質の中でも、銅は、正極活物質、負極活物質及び固体電解質と反応しにくい。そのため、集電体層11a及び集電体層11bに銅を用いると、全固体電池1の内部抵抗を低減できる。なお、集電体層11aと集電体層11bを構成する物質は、同一でもよいし、異なってもよい。
 活物質層12aは、集電体層11aの両面に形成されている。但し、例えば、電極層10aと電極層10bのうち、積層体2の積層方向の最下層に電極層10aが形成されている場合、最下層に位置する電極層10aの下には対向する電極層10bが無い。そのため、最下層に位置する電極層10aにおいて、活物質層12aは、積層方向上側の片面のみに形成されてもよい。
 活物質層12bも、活物質層12aと同様に、集電体層11bの両面に形成されている。但し、電極層10aと電極層10bのうち、積層体2の積層方向の最上層に電極層10bが形成されている場合、最上層に位置する電極層10bにおいて、活物質層12bは、積層方向下側の片面のみに形成されてもよい。
 活物質層12aは、電子を授受する正極活物質及び負極活物質のうちの一方を含み、活物質層12bは、上記正極活物質及び負極活物質のうちの他方を含む。上記正極活物質及び負極活物質は、リチウムイオンを効率的に挿入、脱離できることが好ましい。また、活物質層12aおよび活物質層12bは、上記正極活物質及び負極活物質の他に、導電助剤や導イオン助剤、結着剤等を含んでもよい。
 正極活物質及び負極活物質には、例えば、遷移金属酸化物、遷移金属複合酸化物を用いることが好ましい。具体的には、リチウムマンガン複合酸化物LiMnMa1-a(0.8≦a≦1、Ma=Co、Ni)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、一般式:LiNiCoMn(x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMbPO(ただし、Mbは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)、リン酸バナジウムリチウム(Li(PO又はLiVOPO)、LiMnO-LiMcO(Mc=Mn、Co、Ni)で表されるLi過剰系固溶体、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<s<1.3、0.9<t+u+v<1.1)で表される複合金属酸化物等を用いることができる。
 負極活物質及び正極活物質は、後述する固体電解質に合わせて、選択してもよい。
 例えば、固体電解質にLi1+nAlTi2-n(PO(0≦n≦0.6)を用いる場合は、正極活物質及び負極活物質にLiVOPO及びLi(POのうち一方又は両方を用いることが好ましい。この場合、活物質層12a及び活物質層12bと固体電解質層20との界面における接合が、強固なものになる。また、活物質層12a及び活物質層12bと固体電解質層20との界面における接触面積を広くすることができる。
 活物質層12a又は活物質層12bを構成する活物質には明確な区別がない。2種類の化合物の電位を比較して、より貴な電位を示す化合物を正極活物質として用い、より卑な電位を示す化合物を負極活物質として用いることができる。
 また、負極活物質及び正極活物質には、例えば、Li(POにおけるVの一部を別の元素Mで置換した活物質を用いることもできる。具体的には、負極活物質及び正極活物質として、化学式Li2-x(PO(0<x≦1.4)で表される活物質であって、Mは結晶構造中で2価又は4価の陽イオンになる元素である活物質が用いられる。
 このような活物質は、元素置換されていない活物質Li(POに比べて高い電子伝導性が得られる。2価の陽イオンとなり得る元素を置換する場合、結晶格子中に酸素欠損が出来易くなり、酸素欠損が生じることで自由になる電子が生じる。また、4価の陽イオンになり得る元素を置換する場合、結晶格子中に正孔が出来易くなり、正孔が生じる。このように、Vの一部を、結晶格子中で2価又は4価をとる元素で置換することによって、活物質の電子伝導性が向上し、全固体二次電池の内部抵抗を低減することが出来る。
 活物質は、便宜上、全固体二次電池に用いられるものとして説明されるが、これに限られず、一次電池、燃料電池などの他の電池に用いられてもよい。
 上記化学式Li2-x(POにおいてMで表記される元素は、結晶構造中で2価又は4価の陽イオンになる元素であればよい。好ましくは、上記化学式Li2-x(POにおいてMで表記される元素は、Mg、Ca、Ti、Zr、Sr、Ba、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh及びWからなる群から選択された1種以上の元素であればよい。さらに好ましくは、上記化学式Li2-x(POにおいてMで表記される元素は、Mg、Ca、Ti及びZrからなる群から選択された1種以上の元素であればよい。最も好ましくは、上記化学式Li2-x(POにおいてMで表記される元素は、Tiであればよい。
 例えば、TiはVの3価の陽イオン(6配位)のイオン半径に近いイオン半径を有する。Vの3価の陽イオン(6配位)のイオン半径に近いイオン半径を有する元素は、Vと置換しやすいと考えられる。Vの3価の陽イオン(6配位)のイオン半径よりも大きいイオン半径を有する元素は、Vを当該元素によって置換した場合、Li(PO結晶中で当該元素とOとの結合を弱くする傾向にある。これによって、還元雰囲気などの加熱処理で容易に酸素が脱離しやすい状態となる。
 導電助剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、グラファイト、グラフェン、活性炭等の炭素材料、金、銀、パラジウム、白金、銅、スズ等の金属材料が挙げられる。
 導イオン助剤としては、例えば、固体電解質である。固体電解質は、具体的に例えば、固体電解質層50に用いられる材料と同様の材料を用いることができる。
 導イオン助剤として固体電解質を用いる場合、導イオン助剤と、固体電解質層50に用いる固体電解質とが同じ材料を用いることが好ましい。
(固体電解質)
 固体電解質層20を構成する固体電解質は、リン酸塩系固体電解質であることが好ましい。固体電解質としては、電子の伝導性が小さく、リチウムイオンの伝導性が高い材料を用いることが好ましい。
 具体的には例えば、La0.5Li0.5TiOなどのペロブスカイト型化合物や、Li14Zn(GeOなどのリシコン型化合物、Li7LaZr12などのガーネット型化合物、Li1.3Al0.3Ti1.7(POやLi1.5Al0.5Ge1.5(POなどのナシコン型化合物、Li3.25Ge0.250.75やLiPSなどのチオリシコン型化合物、LiS-PやLiO-V-SiOなどのガラス化合物、LiPOやLi3.5Si0.50.5やLi2.9PO3.30.46などのリン酸化合物、よりなる群から選択される少なくとも1種であることが望ましい。
 固体電解質は、上記化学式Li2-x(POにおいてMで表記される元素を含む酸化物系固体電解質であることが好ましい。このような固体電解質は、全固体二電池において用いられる。
本実施形態の固体電解質として、ナシコン型の結晶構造を有するリチウムイオン伝導体を用いることが好ましく、例えば、LiZr(PO、Li1.3Al0.3Ti1.7(PO、Li1.5Al0.5Ge1.5(PO、で表される固体電解質材料を含むことが好ましい。
固体電解質としてLiZr(POを用いる場合、CaまたはYで置換したものも好ましい。例えば、Ca置換の場合、Li1.4Ca0.2Zr1.8(PO、 Y置換の場合、Li1.150.15Zr1.85(POなどが挙げられる。
 固体電解質が元素Mを含むと、元素Mを含む活物質層12a及び/又は活物質層12bとの接合界面における元素Mの濃度の変化が緩やかになる。そのため、活物質層12aと固体電解質層20との接合界面、及び、活物質層12bと固体電解質層20との接合界面におけるLiイオンの活性化エネルギーが小さくなる。ここで、活性化エネルギーとは、Liイオンが活物質層12aと固体電解質層20との接合界面、及び、活物質層12bと固体電解質層20との接合界面を通過するのに必要なエネルギーを意味する。そのため、活物質層12bと固体電解質層20との接合界面、及び、活物質層12bと固体電解質層との接合界面でのLiイオンの移動がし易くなり、接合界面におけるLiイオン伝導性が向上する。このため、全固体二次電池の内部抵抗が低減する。
(外部電極)
 外部電極3,4は、積層体2の側面(電極層10a及び電極層10bの端面の露出面)に接して形成されている。外部電極3,4は不図示の外部端子に接続されて、積層体2への電子の授受を担う。
 外部電極3,4には、導電率が大きい材料を用いることが好ましい。例えば、銀、金、プラチナ、アルミニウム、銅、スズ、ニッケル、ガリウム、インジウム、及びこれらの合金などを用いることができる。また、外部電極3,4は、多層構造で形成されるのが好ましく、例えば、金属層とめっき層とが積層された積層構造を有することができる。この場合、めっき層は、金属層の一部又は全体に亘って形成される。
[全固体電池の製造方法]
 次に、全固体電池の製造方法を説明する。説明の便宜上、電極層10aが正極、電極層10bが負極として機能する積層体2を備える全固体電池の製造方法を説明する。
(積層体の形成)
 積層体2を形成する方法としては、同時焼成法を用いてもよいし、逐次焼成法を用いてもよい。
 同時焼成法は、各層を形成する材料を積層した後、一括焼成により積層体を作製する方法である。逐次焼成法は、各層を順に作製する方法であり、各層を作製する毎に焼成工程を行う方法である。同時焼成法を用いた方が、逐次焼成法を用いる場合と比較して、少ない作業工程で積層体2を形成できる。また、同時焼成法を用いた方が、逐次焼成法を用いる場合と比較して、得られる積層体2が緻密になる。以下、同時焼成法を用いて積層体2を製造する場合を例に挙げて説明する。
 同時焼成法は、積層体2を構成する各材料のペーストを作成する工程と、ペーストを塗布乾燥してグリーンシートを作製する工程と、グリーンシートを積層して積層シートとし、これを同時焼成する工程とを有する。
 まず、積層体2を構成する集電体層11a、活物質層12a、固体電解質層20、活物質層12b及び集電体層11bの各材料をペースト化する。
 各材料をペースト化する方法は、特に限定されない。例えば、ビヒクルに各材料の粉末を混合してペーストが得られる。ここで、ビヒクルとは、液相における媒質の総称である。ビヒクルには、溶媒、バインダーが含まれる。
 かかる方法により、集電体層11a用のペースト、活物質層12a用のペースト、固体電解質層20用のペースト、活物質層12b用のペースト及び集電体層11b用のペーストを作製する。
 次いで、積層シートを作成する。積層シートは、例えば、以下に説明する正極活物質層ユニット及び負極活物質層ユニットを作製し、これを積層する方法を用いて作製することができる。
 まず、PETフィルムなどの基材上に、固体電解質層20用ペーストをドクターブレード法により塗布し、乾燥してシート状の固体電解質層20を形成する。次に、固体電解質層20上に、スクリーン印刷により活物質層12a用ペーストを印刷して乾燥し、活物質層12aを形成する。
 次いで、活物質層12a上に、スクリーン印刷により集電体層11a用ペーストを印刷して乾燥し、集電体層11aを形成する。このとき、スクリーン印刷を複数回に分けて行い(図1(b)の構成では3回)、集電体層11a用ペーストを端面まで印刷しない第1工程、銅ペーストを端面まで印刷する第2工程、および銅ペーストを端面まで印刷しない第3工程をこの順に行う。これにより、集電体層11aに延出部11a-2が形成される。
 延出部11a-2を、集電体層11aの厚み方向に関して本体部11a-1の一端(一主面と同一面)に形成する場合には、上記第1工程を行わず、集電体層11a用ペーストを端面まで印刷する第2工程および銅ペーストを端面まで印刷しない第3工程を行うことができる。
 さらに、集電体層11a上に、スクリーン印刷により活物質層12a用ペーストを印刷して乾燥し、活物質層12aを形成する。
 その後、PETフィルムを剥離することで正極としての活物質層ユニットが得られる。正極活物質層ユニットは、固体電解質層20/活物質層12a/集電体層11a/活物質層12aがこの順で積層された積層シートである。
 同様の手順にて、負極としての活物質層ユニットを作製する。この活物質層ユニットは、固体電解質層20/活物質層12b/集電体層11b/活物質層12bがこの順に積層された積層シートである。
 次に、正極として一枚の活物質層ユニットと、負極としての一枚の負極活物質層ユニットとを積層する。
 この際、正極としての活物質層ユニットの活物質層12aと、負極としての活物質層ユニットの固体電解質層20とが接するように積層するか、若しくは正極としての活物質層ユニットを構成する固体電解質層20と、負極としての活物質層ユニットを構成する活物質層12bとが接するように積層する。これにより、活物質層12a/集電体層11a/活物質層12a/固体電解質層20/活物質層12b/集電体層11b/活物質層12b/固体電解質層20がこの順で積層された積層シートが得られる。
 また、正極としての活物質層ユニットと負極としての活物質層ユニットとを積層する際には、正極としての活物質層ユニットのうち、集電体層11aにおける延出部11a-2が一の端面にのみ延出し、負極としての活物質層ユニットのうち、集電体層11bにおける延出部が他の面にのみ延出するように、各ユニットをずらして積み重ねる。その後、活物質層ユニットを積み重ねた積層体の最上層および最下層に、所定厚みの固体電解質20用シートをさらに積み重ね、積層シートとする。
 次に、作製した積層シートを一括して圧着する。圧着は、加熱しながら行うことが好ましい。圧着時の加熱温度は、例えば、40~95℃とする。
 次に、圧着した積層シート(グリーンシート積層体)を、例えば、窒素、水素および水蒸気雰囲気下で500℃~750℃に加熱し脱バインダーを行う。その後、窒素、水素および水蒸気雰囲気下で600℃~1000℃に加熱し焼成を行うことによって焼結体を得る。焼成時間は、例えば、0.1~3時間とする。
 得られた焼結体(積層体2)は、アルミナなどの研磨材とともに円筒型の容器に入れて、バレル研磨してもよい。これにより積層体2の角の面取りをすることができる。そのほかの方法として、積層体2をサンドブラストにて研磨しても良い。この方法では特定の部分のみを削ることができるため好ましい。以上の工程により、積層体2が得られる。
 そして、上記の手順で作製された積層体2の端部に、外部電極3,4を形成することで、全固体リチウムイオン二次電池を作製できる。外部電極3,4は、例えば、銅ペースト塗布工程、焼き付け工程および電解めっき工程をこの順に経て得られる多層構造で形成する。これにより、積層体2を備える全固体電池1が製造される。
 上述したように、本実施形態によれば、積層体2の端面における延出部11a-2の厚みTが、本体部11a-1の厚みTよりも小さいので、外部電極4の形成時にめっき液が侵入し難く、めっき液の侵入による故障発生を更に低減して、良品率を向上することができる。
 図3は、図1における集電体層11aの変形例を示す図である。
 図3において、積層体2は、電極層を複数有し、積層体2の積層方向一端に位置する第1電極層30aが、第1集電体層31aおよび第1活物質層32aを有する。具体的には、積層体2の積層方向下端に位置する第1電極層30aが、第1集電体層31aおよび第1活物質層32a,32aを有している。そして、第1集電体層31aが、積層体2の内部に形成された第1本体部31a-1と、第1本体部31a-1の端面33aから積層体2の端面2aまで延出した第1延出部31a-2と、を含む。
 本構成において、第1延出部31a-2は、積層体2の積層方向に関して、第1本体部31a-1の厚み方向中央位置から積層体2の中央部側にずれて設けられるのが好ましい。本実施形態では、第1延出部31a-2は、第1本体部31a-1の厚み方向中央位置から上側(図中の矢印側)にずれて設けられる。また、第1延出部31a-2は、第1本体部31a-1の端面33aにおいて、当該第1本体部31a-1の厚み方向上端部に設けられるのがより好ましい。積層体2の下方角部2bの近傍では、外部電極3を構成する金属層(例えば、銅層)が薄くなり易く、めっき液がより侵入し易い。このため、第1延出部31a-2を、第1本体部31a-1の厚み方向中央位置から積層体2の中央部側にずれて設けることにより、上記金属層が比較的厚く形成されている部分に、第1延出部31a-2の端面を位置させることができ、めっき液の侵入を更に抑制することが可能となる。
 第1活物質層32aは、第1集電体層31aの両面に形成されているが、これに限られず、積層体2の積層方向上側の片面のみに形成されてもよい。
 図4は、図1における集電体層11bの変形例を示す図である。
 図4において、積層体2は、電極層を複数有し、積層体2の積層方向他端に位置する第2電極層30bが、第2集電体層31bおよび第2活物質層32b,32bを有している。具体的には、積層体2の積層方向上端に位置する第2電極層30bが、第2集電体層31bおよび第2活物質層32b,32bを有する。そして、第2集電体層31bが、積層体2の内部に形成された第2本体部31b-1と、第2本体部31b-1の端面33bから積層体2の端面2aまで延出した第2延出部31b-2と、を含む。
 本構成において、第2延出部31b-2は、積層体2の積層方向に関して、第2本体部31b-1の厚み方向中央位置から積層体2の中央部側にずれて設けられるのが好ましい。本実施形態では、第2延出部31b-2は、第2本体部31b-1の厚み方向中央位置から下側(図中の矢印側)にずれて設けられる。また、第2延出部31b-2は、第2本体部31b-1の端面33bにおいて、当該第2本体部31b-1の厚み方向下端部に設けられるのがより好ましい。積層体2の上方角部2cの近傍でも、下方角部2bの近傍と同様、外部電極4を構成する金属層が薄くなり易く、めっき液がより侵入し易い。このため、第2延出部31b-2を、第2本体部31b-1の厚み方向中央位置から積層体2の中央部側にずれて設けることにより、上記金属層が比較的厚く形成されている部分に、第2延出部31b-2の端面を位置させることができ、めっき液の侵入を更に抑制することが可能となる。
 第2活物質層32bは、第2集電体層31bの両面に形成されているが、これに限られず、積層体2の積層方向下側の片面のみに形成されてもよい。
 図5(a)は、図1の全固体電池の平面図であり、図5(b)は、図4(a)
の変形例である。
 図1の全固体電池1では、図5(a)に示すように、延出部11a-2の幅(延出方向に直行する方向の寸法)は、本体部11a-1の幅と同じであり、また、延出部11b-2の幅(延出方向に直行する方向の寸法)は、本体部11b-1の幅と同じであるが、るが、これに限られない。図5(b)に示すように、集電体層41aにおいて、延出部11a-2と外部電極4との間で電気抵抗が大きく増大しないことを条件として、延出部41a-2の幅が、本体部41a-1の幅よりも小さくてもよい。また、集電体層41bにおいて、延出部41b-2の幅が、本体部41b-1の幅よりも小さくてもよい。
 また、図3の第1集電体層31aにおいて、第1延出部31a-2の幅が、第1本体部31a-1の幅よりも小さくてもよい。また、図4の第2集電体層31bにおいて、第2延出部31b-2の幅が、第2本体部31b-1の幅よりも小さくてもよい。
 以上、本発明の実施形態について詳述したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、第1電極層30aが積層体2の積層方向下端に位置しているが(図3)、これに限られず、第1電極層が積層体2の積層方向上端に位置していてもよい。また、第2電極層30bが積層体2の積層方向上端に位置しているが(図4)、これに限られず、第2電極層が積層体2の積層方向下端に位置していてもよい。
 また、第1電極層および第2電極層のうちの一方が、正極を構成し、第1電極層および第2電極層のうちの他方が、負極を構成してもよい。
 また、積層体2が、正極として機能する複数の電極層10aを有しており、積層体2の積層方向下端に位置する第1電極層と、積層体2の積層方向上端に位置する第2電極層とを有していてもよい。同様にして、積層体2が、負極として機能する複数の電極層10bを有しており、積層体2の積層方向下端に位置する第1電極層と、積層体2の積層方向上端に位置する第2電極層とを有していてもよい。このように、第1電極層および第2電極層の双方が、正極および負極のうちのいずれかを構成してもよい。
 以下、本発明の実施例を説明する。本発明は、以下の実施例のみに限定されるものではない。
(実施例1)
 正極集電体層として銅、正極活物質層としてLi(PO、負極集電体層として銅、負極活物質層としてLi(PO、固体電解質層としてLi1.3Al0.3Ti1.7(POを用い、上述した製造方法にて、3.2mm×2.5mm×1.0mmの大きさの全固体電池素体を作製した。正極集電体層および負極集電体層は、スクリーン印刷法にて形成した。集電体層本体部の電極長さは2.8mm、延出部の電極長さは0.2mmとした。外部電極は、銅ペースト塗布工程、焼き付け工程、およびニッケル、すず電解めっき工程を、この順に経て形成した。実施例1として、集電体層の本体部の厚みが6μmであり、集電体層の本体部の厚みに対する延出部の厚みの比率(t/t)が、60%である全固体電池を作製した。
(実施例2)
 上記比率(t/t)が、50%であること以外は、実施例1と同様にして、全固体電池を作製した。
(実施例3)
 上記比率(t/t)が、40%であること以外は、実施例1と同様にして、全固体電池を作製した。
(実施例4)
 上記比率(t/t)が、30%であること以外は、実施例1と同様にして、全固体電池を作製した。
(実施例5)
 上記比率(t/t)が、20%であること以外は、実施例1~4と同様にして、全固体電池を作製した。
(比較例1)
 上記比率(t/t)が、100%であること以外は、実施例1~4と同様にして、全固体電池を作製した。
 次に、上記実施例および比較例で得られた全固体電池を、以下の方法で測定、評価した。
[集電体層の本体部の厚みに対する延出部の厚みの比率(t/t)の測定]
 作製した全固体電池の断面を走査電子顕微鏡(日立ハイテクノロジーズ社製、製品名「S-4800」)を用い、集電体各部を観察し、厚みを測長して、集電体の厚み比率(t/t)を測定した。その結果、実施例および比較例のそれぞれについて、比率(t/t)が、表1に示す値であることが確認できた。
[めっき液浸入に因る故障率の測定]
 充放電試験機(アスカ電子社製、製品名「ACD-01」)を用い、充電して、その時の充電異常による初期故障率を算出した。そして、N=500とし、めっき液浸入に因る故障率が、1.0%以下である場合を良好「〇」、1.0以上2.0未満である場合をほぼ良好「△」、2%以上である場合を不良「×」と判断した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1では、集電体層の本体部の厚みに対する延出部の厚みの比率(t/t)が60%であると、めっき液浸入による故障率が1.6%とほぼ良好であり、めっき液の侵入による故障発生を低減できることが分かった。
 実施例2では、上記比率(t/t)が40%であると、めっき液浸入による故障率が1.0%と良好であり、めっき液の侵入による故障発生を更に低減できることが分かった。
 実施例3では、上記比率(t/t)が30%であると、めっき液浸入による故障率が1.0%と良好であり、めっき液の侵入による故障発生を更に低減できることが分かった。
 実施例4では、上記比率(t/t)が20%であると、めっき液浸入による故障率が0.8%と良好であり、めっき液の侵入による故障発生を更に低減できることが分かった。
 実施例5では、上記比率(t/t)が20%であると、めっき液浸入による故障率が0.8%と良好であり、めっき液の侵入による故障発生を更に低減できることが分かった。
 一方、比較例1では、上記比率(t/t)が100%であると、めっき液浸入による故障率が6.0%と高く、めっき液の侵入による故障発生を十分に低減することができなかった。
1 全固体電池
2 積層体
2a 端面
2b 下方角部
2c 上方角部
3 外部電極
4 外部電極
10 電極層
10A 電極層群
10a 電極層
10B 電極層群
10b 電極層
11 集電体層
11a 集電体層
11b 集電体層
11a-1 本体部
11a-2 延出部
11b-1 本体部
11b-2 延出部
12 活物質層
12a 活物質層
12b 活物質層
13a 端面
13b 端面
20 固体電解質層
30a 第1電極層
30b 第2電極層
31a 第1集電体層
31a-1 第1本体部
31a-2 第1延出部
31b 第2集電体層
31b-1 第2本体部
31b-2 第2延出部
32a 第1活物質層
32b 第2活物質層
33a 端面
33b 端面
41a 集電体層
41a-1 本体部
41a-2 延出部
41b 集電体層
41b-1 本体部
41b-2 延出部
 厚み
 厚み

Claims (9)

  1.  集電体層と活物質層とが積層された電極層が、固体電解質を含む固体電解質層を介して積層された積層体を含み、
     前記集電体層は、前記積層体の内部に形成された本体部と、前記本体部の端面から前記積層体の端面まで延出した延出部と、を含み、
     前記積層体の端面における前記延出部の厚みが、前記本体部の厚みよりも小さい、全固体電池。
  2.  前記本体部の厚みに対する前記延出部の厚みの比率が、20%以上50%以下である、請求項1に記載の全固体電池。
  3.  前記延出部の厚みが、0.3μm以上3μm以下である、請求項2に記載の全固体電池。
  4.  前記本体部の長さに対する前記延出部の延出方向長さの比率が、0.2%以上20%以下である、請求項1~3のいずれか1項に記載の全固体電池。
  5.  前記延出部の延出方向長さが、10μm以上1000μm以下である、請求項4に記載の全固体電池。
  6.  前記積層体は、前記電極層を複数有し、
     前記積層体の積層方向一端に位置する第1電極層が、第1集電体層および第1活物質層を有し、
     前記第1集電体層が、前記積層体の内部に形成された第1本体部と、前記第1本体部の端面から前記積層体の端面まで延出した第1延出部と、を含み、
     前記第1延出部は、前記積層体の積層方向に関して、前記第1本体部の厚み方向中央位置から前記積層体の中央部側にずれて設けられる、請求項1~5のいずれか1項に記載の全固体電池。
  7.  前記積層体の積層方向他端に位置する第2電極層が、第2集電体層および第2活物質層を有し、
     前記第2集電体層が、前記積層体の内部に形成された第2本体部と、前記第2本体部の端面から前記積層体の端面まで延出した第2延出部と、を含み、
     前記第2延出部は、前記積層体の積層方向に関して、前記第2本体部の厚み方向中央位置から前記積層体の中央部側にずれて設けられる、請求項6に記載の全固体電池。
  8.  前記第1電極層および前記第2電極層のうちの一方が、正極を構成し、前記第1電極層および前記第2電極層のうちの他方が、負極を構成する、請求項7に記載の全固体電池。
  9.  前記第1電極層および前記第2電極層の双方が、正極および負極のうちのいずれかを構成する、請求項7に記載の全固体電池。
PCT/JP2019/046594 2018-11-30 2019-11-28 全固体電池 WO2020111185A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980078063.XA CN113169375B (zh) 2018-11-30 2019-11-28 全固体电池
DE112019005979.3T DE112019005979T5 (de) 2018-11-30 2019-11-28 Festkörperbatterie
JP2020557824A JP7424308B2 (ja) 2018-11-30 2019-11-28 全固体電池
US17/293,071 US20210399339A1 (en) 2018-11-30 2019-11-28 All-solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-225307 2018-11-30
JP2018225307 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111185A1 true WO2020111185A1 (ja) 2020-06-04

Family

ID=70852034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046594 WO2020111185A1 (ja) 2018-11-30 2019-11-28 全固体電池

Country Status (5)

Country Link
US (1) US20210399339A1 (ja)
JP (1) JP7424308B2 (ja)
CN (1) CN113169375B (ja)
DE (1) DE112019005979T5 (ja)
WO (1) WO2020111185A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150974A (ja) * 2010-01-25 2011-08-04 Toyota Motor Corp 電極体、および当該電極体の製造方法
JP2015060721A (ja) * 2013-09-19 2015-03-30 株式会社村田製作所 固体電池
JP2015060720A (ja) * 2013-09-19 2015-03-30 株式会社村田製作所 固体電池
JP2018018600A (ja) * 2016-07-25 2018-02-01 トヨタ自動車株式会社 積層電池及びその製造方法
WO2018181379A1 (ja) * 2017-03-28 2018-10-04 Tdk株式会社 全固体二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326317A (ja) 1992-05-26 1993-12-10 Tama Electric Co Ltd 積層セラミックス素子
JP4208007B2 (ja) * 2006-11-15 2009-01-14 トヨタ自動車株式会社 集電体の製造方法及び蓄電装置の製造方法
JP5354646B2 (ja) * 2008-07-31 2013-11-27 Necエナジーデバイス株式会社 積層型二次電池およびその製造方法
WO2017065035A1 (ja) * 2015-10-15 2017-04-20 日本碍子株式会社 全固体リチウム電池
WO2018213601A2 (en) * 2017-05-19 2018-11-22 Cougeller Research Llc Rechargeable battery with anion conducting polymer
KR102571487B1 (ko) * 2017-08-31 2023-08-28 삼성에스디아이 주식회사 이차 전지 및 그 조립 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150974A (ja) * 2010-01-25 2011-08-04 Toyota Motor Corp 電極体、および当該電極体の製造方法
JP2015060721A (ja) * 2013-09-19 2015-03-30 株式会社村田製作所 固体電池
JP2015060720A (ja) * 2013-09-19 2015-03-30 株式会社村田製作所 固体電池
JP2018018600A (ja) * 2016-07-25 2018-02-01 トヨタ自動車株式会社 積層電池及びその製造方法
WO2018181379A1 (ja) * 2017-03-28 2018-10-04 Tdk株式会社 全固体二次電池

Also Published As

Publication number Publication date
DE112019005979T5 (de) 2021-08-05
CN113169375A (zh) 2021-07-23
JP7424308B2 (ja) 2024-01-30
JPWO2020111185A1 (ja) 2021-10-21
CN113169375B (zh) 2024-04-26
US20210399339A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP5508833B2 (ja) リチウムイオン二次電池
JP4352016B2 (ja) 無機固体電解質電池及び無機固体電解質電池の製造方法
TWI489683B (zh) Lithium ion secondary battery
CN109792079B (zh) 全固体锂离子二次电池
WO2019139070A1 (ja) 全固体リチウムイオン二次電池
US10854917B2 (en) All solid-state lithium ion secondary battery
WO2018062079A1 (ja) 活物質及び全固体リチウムイオン二次電池
JP7028169B2 (ja) 電気化学素子及び全固体リチウムイオン二次電池
JP2021027044A (ja) 全固体電池
CN113544891A (zh) 全固体二次电池
JP6992802B2 (ja) 全固体リチウムイオン二次電池
JP7424307B2 (ja) 全固体電池
CN110521048B (zh) 固体电解质及全固体二次电池
WO2021171736A1 (ja) 固体電池の製造方法及び固体電池
WO2021149460A1 (ja) リチウムイオン二次電池
WO2020111185A1 (ja) 全固体電池
JP7327380B2 (ja) 活物質及び全固体二次電池
WO2020145226A1 (ja) 全固体電池
WO2018181575A1 (ja) 全固体リチウムイオン二次電池
WO2024005181A1 (ja) 全固体二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557824

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19889918

Country of ref document: EP

Kind code of ref document: A1