WO2020111065A1 - 熱硬化性樹脂組成物、フィルム接着剤、プリプレグ及びこれらの製造方法 - Google Patents

熱硬化性樹脂組成物、フィルム接着剤、プリプレグ及びこれらの製造方法 Download PDF

Info

Publication number
WO2020111065A1
WO2020111065A1 PCT/JP2019/046183 JP2019046183W WO2020111065A1 WO 2020111065 A1 WO2020111065 A1 WO 2020111065A1 JP 2019046183 W JP2019046183 W JP 2019046183W WO 2020111065 A1 WO2020111065 A1 WO 2020111065A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
fiber
prepreg
mass
Prior art date
Application number
PCT/JP2019/046183
Other languages
English (en)
French (fr)
Inventor
美希 堀川
貴也 鈴木
広明 桑原
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US17/298,305 priority Critical patent/US20220017698A1/en
Priority to JP2020557739A priority patent/JP7086218B2/ja
Priority to EP19890174.6A priority patent/EP3889207B1/en
Publication of WO2020111065A1 publication Critical patent/WO2020111065A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/128Unsaturated polyimide precursors the unsaturated precursors containing heterocyclic moieties in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C09J179/085Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/12Ceramic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/26Presence of textile or fabric
    • C09J2400/263Presence of textile or fabric in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide

Definitions

  • the present invention relates to a thermosetting resin composition, a film adhesive containing the thermosetting resin composition, a prepreg, and a method for producing these. Specifically, the present invention relates to a thermosetting resin composition having excellent adhesiveness to a metal, a film adhesive containing the thermosetting resin composition, a prepreg containing the thermosetting resin composition, and a method for producing these.
  • Thermosetting resin compositions and film adhesives containing them are widely used as various adhesives.
  • high strength such as aircraft structural members
  • the fiber reinforced composite material and the metal material are bonded together using a film adhesive
  • sufficient adhesive strength may not be obtained in some cases. Therefore, generally, a method of increasing the adhesive strength by surface-treating a metal material is adopted.
  • the surface treatment of the metal material requires complicated work before the bonding step, which is troublesome.
  • a halogen compound containing an element such as chlorine is generally used for the surface treatment of a metal material. Halogen compounds are classified as environmentally and toxicologically undesirable harmful substances (toxicity, sensitization and carcinogenicity), and there is concern about their effects on the environment.
  • Patent Document 1 describes a surface treatment method for a metal material that does not use an adhesive joining primer in order to make the adhesion easier.
  • Patent Document 2 describes a surface treatment method for a metal material that does not use a halogen compound.
  • these methods require formation of a chemical conversion layer by surface treatment and still require complicated work.
  • thermosetting resin composition containing a bismaleimide compound and a triazine compound having a predetermined structure can solve the above problems, and completed the present invention.
  • thermosetting resin composition comprising a bismaleimide compound and a triazine compound having a structure of diaminotriazine.
  • thermosetting resin composition according to [1] wherein the thermosetting resin composition contains 0.1 to 30 parts by mass of the triazine compound with respect to 100 parts by mass of the bismaleimide compound.
  • thermosetting resin composition according to [1] or [2], wherein the thermosetting resin composition further contains a thermoplastic resin.
  • thermosetting resin compositions containing a bismaleimide compound and a triazine compound having a predetermined structure.
  • This thermosetting resin composition is also used as a material for the film adhesive described in [4] below and the prepreg described in [11] below.
  • thermosetting resin composition comprising a base fiber and a thermosetting resin composition, A film adhesive, wherein the thermosetting resin composition contains a bismaleimide compound and a triazine compound having a structure of diaminotriazine.
  • thermosetting resin composition contains 0.1 to 30 parts by mass of the triazine compound with respect to 100 parts by mass of the bismaleimide compound.
  • thermosetting resin composition further contains a thermoplastic resin.
  • thermosetting resin composition described in [1] above is carried by a base fiber.
  • thermosetting resin composition impregnated in a reinforcing fiber layer made of the reinforcing fiber, A prepreg characterized in that the thermosetting resin composition contains a bismaleimide compound and a triazine compound having a structure of diaminotriazine.
  • thermosetting resin composition contains 0.1 to 30 parts by mass of the triazine compound with respect to 100 parts by mass of the bismaleimide compound.
  • thermosetting resin composition further contains a thermoplastic resin.
  • the inventions [11] to [14] are prepregs in which reinforcing fibers are impregnated with the thermosetting resin composition according to [1].
  • [15] A method for producing a prepreg, characterized in that the reinforcing fiber and the thermosetting resin composition according to any one of [1] to [3] are integrated.
  • thermosetting resin composition of the present invention and the film adhesive containing the same have particularly high adhesiveness to metals.
  • thermosetting resin composition The details of the thermosetting resin composition, the film adhesive, the prepreg, and the manufacturing method thereof of the present invention will be described below.
  • thermosetting resin composition of the present invention comprises a bismaleimide compound and a triazine compound having a structure of diaminotriazine. This triazine compound dissolves in the bismaleimide compound during the curing reaction, and the NH 2 group of the triazine ring forms a coordinate bond with the metal to improve the adhesiveness to the metal material.
  • R 1 to R 4 are each independently a group consisting of —H, —CH 3 , —C 2 H 5 , —C 3 H 7 , —F, —Cl, —Br and —I. Represents a group selected from X will be described later.
  • the bismaleimide compound may be either an aromatic bismaleimide or an aliphatic bismaleimide.
  • the amount of aromatic bismaleimide based on the entire bismaleimide compound contained in the thermosetting resin composition is preferably 70% by mass or more.
  • the amount of all bismaleimide compounds based on the total amount of the thermosetting resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more. Is particularly preferable.
  • Aromatic Bismaleimide Compound When the bismaleimide compound has an aromatic ring structure (hereinafter, also referred to as “aromatic bismaleimide compound”), X in the chemical formula (1) is represented by the following chemical formula (2 ) To (8) are preferable.
  • R 5 represents —CH 2 —, —C(CH 3 ) 2 —, —O—, or —SO 2 —.
  • R 5 represents —CH 2 —, —C(CH 3 ) 2 —, —O—, or —SO 2 —.
  • R 6 to R 9 are each independently a group selected from the group consisting of —H, —CH 3 , —C 2 H 5 , —C 3 H 7 , —F, —Cl, —Br and —I. Represents.
  • R 5 represents —CH 2 —, —C(CH 3 ) 2 —, —O—, or —SO 2 —.
  • R 10 to R 11 each independently represent —CH 2 —, —C(CH 3 ) 2 —, —O—, or —SO 2 —.
  • n is 0 to 0.5.
  • aromatic bismaleimide compounds include N,N'-4,4'-diphenylmethane bismaleimide, N,N'-4,4'-diphenyl ether bismaleimide, N,N'-m-phenylene bismaleimide, N,N'-p-phenylene bismaleimide, N,N'-m-toluylene bismaleimide, N,N'-4,4'-biphenylene bismaleimide, N,N'-4,4'-(3 3'-dimethylbiphenylene)bismaleimide, 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, N,N′-4,4′-diphenylsulfone bismaleimide, N,N′-4,4′-benzophenone bismaleimide and the
  • the content of the aromatic bismaleimide compound in the thermosetting resin composition is preferably 10 to 80% by mass, and preferably 20 to 65% by mass, based on the total mass of the thermosetting resin composition. Is more preferable and 25 to 60% by mass is particularly preferable.
  • the content of the aromatic bismaleimide compound is less than 10% by mass, the heat resistance of the film adhesive produced using the present thermosetting resin composition tends to be low.
  • the content of the aromatic bismaleimide compound exceeds 80% by mass, the film adhesive produced using the present thermosetting resin composition tends to have poor handleability.
  • n is an integer of 10 or less, preferably 1, 2, 3, 4, and 6.
  • Examples of such an aliphatic bismaleimide compound include 1,6′-bismaleimide-(2,2,4-trimethyl)hexane, hexamethylenediamine bismaleimide, N,N′-1,2-ethylene bismaleimide, N , N'-1,3-propylene bismaleimide and N,N'-1,4-tetramethylene bismaleimide. 1,6'-bismaleimide-(2,2,4-trimethyl)hexane and hexamethylenediamine bismaleimide are particularly preferable.
  • the aliphatic bismaleimide compounds may be used alone or in combination of two or more kinds.
  • the content of the aliphatic bismaleimide compound in the thermosetting resin composition is preferably 3 to 30% by mass, and preferably 5 to 20% by mass, based on the total mass of the thermosetting resin composition. It is preferably 7 to 15% by mass, and particularly preferably.
  • the compounding amount of the aliphatic bismaleimide compound is less than 3% by mass, the film adhesive produced using the present thermosetting resin composition is likely to have poor handleability.
  • the content of the aliphatic bismaleimide compound exceeds 30% by mass, the heat resistance of the cured product of the thermosetting resin composition of the present invention is likely to decrease.
  • Triazine Compound The triazine compound used in the present invention is a triazine compound having a diaminotriazine structure. Examples thereof include triazine compounds represented by the following chemical formulas (12) to (14).
  • R is preferably an aliphatic chain having 1 to 15 carbon atoms.
  • R is preferably an aliphatic chain having 1 to 15 carbon atoms.
  • R is preferably an aliphatic chain having 1 to 15 carbon atoms.
  • the triazine compound having a diaminotriazine structure is preferably a compound having an OH group, and more preferably a compound having two or more OH groups.
  • the compound having an OH group contributes to the adhesiveness between the metal and the resin and the OH group contributes to the adhesiveness between the resin and the resin, so that the adhesiveness between the metal and the resin can be further enhanced.
  • the triazine compound having the structure of diaminotriazine preferably has a melting point of 100° C. or higher.
  • a triazine compound having a diaminotriazine structure having a melting point of 100° C. or higher is particularly preferable as a film adhesive for a honeycomb sandwich panel because it has excellent fillet forming properties.
  • the fillet is a resin pool formed at the end of the honeycomb due to a decrease in resin viscosity as the temperature rises during molding. By forming the fillet, the adhesion area is improved and the adhesion between the honeycomb and the skin material is improved.
  • the content of the above triazine compound in the thermosetting resin composition is preferably 0.1 to 30 parts by mass, and preferably 1 to 20 parts by mass, relative to 100 parts by mass of the bismaleimide compound contained in the thermosetting resin composition. It is more preferably part by mass, particularly preferably 1 to 10 parts by mass. If the amount is less than 0.1 mass, the adhesiveness with a metal material tends to be reduced.
  • the triazine compound may be dispersed in the bismaleimide compound, or a part or all of the triazine compound may be dissolved in the bismaleimide compound.
  • the undissolved triazine compound is dissolved in the bismaleimide compound by heating during the curing reaction.
  • thermosetting resin composition of the present invention preferably contains a co-reactant.
  • the co-reactant is preferably liquid at room temperature. Examples of such co-reactant include alkenylphenol and/or alkenylphenol ether.
  • Alkenylphenol ether is obtained by reacting a phenolic compound with an alkenyl halide. By subjecting the alkenylphenol ether to Claisen transfer, alkenylphenol can be obtained (JP-A-52-994).
  • the transition structure may be contained in the alkenylphenol and/or alkenylphenol ether compound.
  • alkenylphenol and/or alkenylphenol ether As alkenylphenol and/or alkenylphenol ether, allylphenol, methallylphenol or their ethers are preferred. In particular, the compounds represented by the following chemical formulas (15) to (19) are preferable.
  • R 12 , R 13 and R 14 each independently represent hydrogen or an alkenyl group having 2 to 10 carbon atoms, preferably an allyl group or a propenyl group. However, at least one of R 12 , R 13 and R 14 is an alkenyl group having 2 to 10 carbon atoms.
  • R 15 is a direct bond, —CH 2 —, —C(CH 3 ) 2 —, —O—, —S—, —SO— or —SO 2 —.
  • R 16 , R 17 , R 18 , and R 19 are each independently hydrogen or an alkenyl group having 2 to 10 carbon atoms, preferably an allyl group or a propenyl group. However, at least one of R 16 , R 17 , R 18 , and R 19 is an alkenyl group having 2 to 10 carbon atoms.
  • the compound of the following chemical formula (17) is particularly preferable.
  • R 15 represents a direct bond, —CH 2 —, —C(CH 3 ) 2 —, —O—, —S—, —SO— or —SO 2 —.
  • R 20 and R 21 are a direct bond, —CH 2 —, —C(CH 3 ) 2 —, —O—, —S—, —SO— or —SO 2 —.
  • R 22 , R 23 , R 24 , R 25 , R 26 , and R 27 are each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms, and preferably an allyl group. Alternatively, it is a propenyl group. However, at least one of R 22 , R 23 , R 24 , R 25 , R 26 , and R 27 is an alkenyl group having 2 to 10 carbon atoms.
  • P is an integer of 0 to 10.
  • R 15 represents a direct bond, —CH 2 —, —C(CH 3 ) 2 —, —O—, —S—, —SO—, or —SO 2 —.
  • R 28 and R 29 are each independently hydrogen, an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and preferably an allyl group or a propenyl group. However, at least one of R 28 and R 29 is an alkenyl group having 2 to 10 carbon atoms.
  • alkenylphenol or alkenylphenol ether compound examples include O,O′-diallylbisphenol A, 4,4′-dihydroxy-3,3′-diallyldiphenyl, bis(4-hydroxy-3-allylphenyl)methane, 2,2'-bis(4-hydroxy-3,5-diallylphenyl)propane, 2,2'-diallylbisphenol F, 4,4'-dihydroxy-3,3'-diallyldiphenyl ether, 4,4'-bis Examples thereof include —O-propenylphenoxy-benzophenone.
  • O,O′-diallyl bisphenol A, 2,2′-bis(4-hydroxy-3,5-diallylphenyl)propane and 2,2′-diallyl have high glass transition points after heat curing.
  • Bisphenol F and the like are preferable.
  • O,O'-diallylbisphenol A is particularly preferable because it lowers the viscosity of the resin composition.
  • the alkenylphenol and/or the alkenylphenol ether may be used alone or in combination of two or more kinds.
  • the alkenylphenol and/or alkenylphenol ether compound functions as a curing agent for the bismaleimide compound.
  • the blending amount in the present thermosetting resin composition is preferably 5 to 70% by mass, more preferably 10 to 50% by mass, and particularly preferably 15 to 40% by mass.
  • the present thermosetting resin composition can be adjusted in viscosity and can have good handleability.
  • the content of the alkenylphenol and/or the alkenylphenol ether compound in the thermosetting resin composition is 10 to 400 parts by mass with respect to 100 parts by mass of the bismaleimide compound contained in the thermosetting resin composition.
  • thermosetting resin composition having excellent handleability and mechanical properties of the cured product can be obtained.
  • Thermoplastic Resin preferably contains a thermoplastic resin.
  • a thermoplastic resin a known thermoplastic resin can be used.
  • the thermoplastic resin include polyether sulfone, polysulfone, polyether imide, and polyimide.
  • thermoplastic resin When the thermoplastic resin is blended, its content is preferably 0.1 to 40% by mass, more preferably 0.1 to 30% by mass, and particularly preferably 1 to 20% by mass. preferable.
  • content of the thermoplastic resin When the content of the thermoplastic resin is less than 0.1% by mass, the viscosity of the resin composition may not be sufficiently increased and the adhesiveness may be insufficient.
  • content of the thermoplastic resin is too high, the viscosity of the resin composition becomes high and the handleability may be significantly deteriorated.
  • thermoplastic resin soluble in the thermosetting resin composition of the present invention (hereinafter, also referred to as “soluble thermoplastic resin”) or an insoluble thermoplastic resin (hereinafter, also referred to as “insoluble thermoplastic resin”) is used. be able to.
  • the soluble thermoplastic resin means a thermoplastic resin which is partially or wholly dissolved in the thermosetting resin composition at 180°C.
  • the soluble thermoplastic resin dissolves in the thermosetting resin composition and increases the viscosity of the thermosetting resin composition.
  • thermoplastic resins examples include polyether sulfone, polysulfone, polyether imide, and polyimide.
  • the soluble thermoplastic resin When the soluble thermoplastic resin is blended, its content is preferably 0.1 to 40% by mass, more preferably 1 to 30% by mass. When the content of the soluble thermoplastic resin is less than 0.1% by mass, the viscosity of the thermosetting resin composition may not be sufficiently increased, and the thermosetting resin composition may flow out. When the content of the soluble thermoplastic resin is too high, the viscosity of the thermosetting resin composition becomes high and the handleability may be significantly deteriorated.
  • the insoluble thermoplastic resin refers to a thermoplastic resin which does not dissolve in the thermosetting resin composition at 180°C.
  • examples of the insoluble thermoplastic resin include a polyimide resin.
  • the insoluble thermoplastic resin When the insoluble thermoplastic resin is blended, its content is preferably 0.1 to 40% by mass, more preferably 1 to 20% by mass. By including the insoluble thermoplastic resin in this range, the impact resistance of the cured product of the thermosetting resin composition can be improved. When the content of the insoluble thermoplastic resin is less than 0.1% by mass, the viscosity of the thermosetting resin composition may not be sufficiently increased, and the thermosetting resin composition may flow out. When the content of the insoluble thermoplastic resin is too high, the viscosity of the thermosetting resin composition may be high and the handleability may be significantly deteriorated.
  • the particle size of the insoluble thermoplastic resin is not particularly limited, but is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • thermosetting resin composition may contain other components as long as the adhesiveness is not impaired.
  • other components include polymerization inhibitors, conductive particles, conductive fillers, inorganic fillers, rubber-like components, toughness imparting agents, stabilizers, release agents, colorants and the like.
  • thermosetting resin composition In order to produce the present thermosetting resin composition, the above components may be mixed to uniformly dissolve and/or disperse the composition. There is no particular limitation. These components may be mixed at room temperature, but it is preferable to mix them by heating for economical production. In this case, the heating temperature is usually 30 to 150°C, preferably 50 to 120°C. If the temperature exceeds 150° C., the polymerization reaction will be accelerated, and the thermosetting resin composition may be cured during mixing.
  • Mixing may be done in one stage or in multiple stages. Further, the order of mixing the respective components of the resin composition is not limited, but the components to be blended as the solid phase components are preferably added after the other components in the resin composition are dissolved. This facilitates uniform dispersion of the solid phase component in the resin composition.
  • the mixing time varies depending on the temperature, but is preferably 10 to 180 minutes.
  • kneading machine device conventionally known devices such as a roll mill, a planetary mixer, a kneader, an extruder and a Banbury mixer can be used.
  • the film adhesive of the present invention comprises the above-mentioned thermosetting resin composition supported on the base fiber.
  • the base fiber is preferably impregnated with the thermosetting resin composition.
  • Basis weight of the film adhesive is preferably 50 ⁇ 1500g / m 2, more preferably 100 ⁇ 500g / m 2.
  • the base fibers used for the film adhesive include carbon fibers, glass fibers, aramid fibers, silicon carbide fibers, polyester fibers, ceramic fibers, alumina fibers, boron fibers, metal fibers, mineral fibers, rock fibers and slug fibers. Can be mentioned. Among these, carbon fiber, glass fiber and aramid fiber are preferable, and glass fiber is more preferable.
  • the shape of the base fiber is not limited, but a sheet-like material is preferable from the viewpoint of workability.
  • a sheet-like material obtained by arranging a large number of fibers in one direction a bidirectional woven fabric such as plain weave or twill weave, multiaxial woven fabric, non-woven fabric, mat, knit, braid, paper made from reinforced fibers, etc. may be mentioned. it can.
  • the thickness of the base fiber sheet is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.15 mm.
  • the basis weight of the base fiber sheet is preferably 10 ⁇ 400g / m 2, more preferably 20 ⁇ 150g / m 2.
  • the content of the present thermosetting resin composition in the film adhesive is preferably 20 to 95% by mass, more preferably 30 to 70% by mass.
  • the base fiber is impregnated with the present thermosetting resin composition (that is, the present thermosetting resin composition remains in the base fiber layer and contacts the adherend. Since the amount of the present thermosetting resin composition present on the surface of the base fiber layer may decrease, it may be difficult to function as an adhesive. When it exceeds 95% by mass, the base fiber may not be able to sufficiently support the present thermosetting resin composition.
  • the adhesive bonding strength of the film adhesive of the present invention is preferably 2.5 MPa or more, more preferably 3.0 MPa or more, and 3.5 MPa or more in a flatwise tensile test measured in Examples described later. Is particularly preferable. Further, the lap shear tensile load measured in Examples described later is preferably 10 MPa or more, and more preferably 13 MPa or more.
  • the film adhesive of the present invention can be produced by integrating the thermosetting resin composition and the base fiber.
  • a method for integrating the thermosetting resin composition with the base fiber a known wet impregnation method or dry impregnation method can be used. Since the wet impregnation method uses an organic solvent, it is necessary to remove the organic solvent after impregnating the resin composition. Therefore, it is preferable to use the hot melt method, which is a dry method in which there is no risk of the organic solvent remaining.
  • the hot melt method is a method in which a resin composition is stacked on a base fiber and heated under pressure to reduce the viscosity of the resin composition and impregnate the base composition with the resin composition.
  • the base fiber is in the form of a sheet, it is preferable to stack the resin composition formed into a film on the base fiber.
  • the present thermosetting resin composition can be formed into a film by a known method. For example, by using a die coater, an applicator, a reverse roll coater, a comma coater, a knife coater, etc., the present thermosetting resin composition is cast into a film by casting it on a support such as release paper and release film. can do.
  • the temperature for producing the film is appropriately set according to the viscosity of the present thermosetting resin composition. Usually, the temperature is preferably 50 to 130°C, more preferably 80 to 110°C.
  • the thickness of the film of the present thermosetting resin composition is preferably about 8 to 500 ⁇ m, more preferably 10 to 300 ⁇ m.
  • the pressure conditions for impregnating the base fiber with the present thermosetting resin composition are appropriately adjusted depending on the composition and viscosity of the present thermosetting resin composition. Pressurization may not be performed. When applying pressure, the linear pressure is usually 245 N/cm or less, and more preferably 147 N/cm or less. Pressurization may be performed once or may be performed in multiple times.
  • the heating temperature for impregnating the base fiber with the present thermosetting resin composition is appropriately adjusted according to the viscosity of the present thermosetting resin composition. Usually, it is 25°C or higher, preferably 30°C or higher.
  • the upper limit of the heating temperature is preferably 160°C or lower, more preferably 150°C or lower, and particularly preferably 140°C or lower.
  • the heating temperature is less than 25° C., the viscosity of the present thermosetting resin composition does not decrease, and the base fiber cannot be sufficiently impregnated with the present thermosetting resin composition.
  • the heating temperature exceeds 150° C. the curing reaction of the thermosetting resin composition easily proceeds.
  • the film adhesive of the present invention is used by arranging it at the adhesive interface and curing it by a known method.
  • it is preferably used when adhering the fiber-reinforced composite materials to each other or when adhering the fiber-reinforced composite material and the metal material.
  • It can also be used by stacking it on a prepreg for producing a fiber-reinforced composite material. That is, the fiber-reinforced composite material can be produced and the fiber-reinforced composite material can be bonded to an object to be bonded (other fiber-reinforced composite material or metal material).
  • the film adhesive of the present invention is carried on the base fiber, it has excellent adhesiveness to the honeycomb core and the like. That is, a part of the present thermosetting resin composition supported on the base fiber easily penetrates along the wall surface of the honeycomb core to easily form a fillet on the wall surface portion of the honeycomb core. In particular, it has excellent adhesiveness to a metallic honeycomb core.
  • the prepreg of the present invention (hereinafter, also referred to as “present prepreg”) is a prepreg in which a reinforced fiber base material is impregnated with the above-mentioned present thermosetting resin composition.
  • the reinforcing fibers constituting the reinforcing fiber base material include carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, polyester fiber, ceramic fiber, alumina fiber, boron fiber, metal fiber, mineral fiber, rock. Fibers and slug fibers may be mentioned.
  • carbon fibers, glass fibers, aramid fibers are preferable, specific strength, specific elastic modulus is more preferable carbon fibers to obtain a lightweight and high strength fiber-reinforced composite material, among the carbon fibers, Polyacrylonitrile (PAN)-based carbon fibers having excellent tensile strength are particularly preferable.
  • PAN Polyacrylonitrile
  • the tensile elastic modulus is preferably 170 to 600 GPa, and particularly preferably 220 to 450 GPa. Further, the tensile strength is preferably 3920 MPa (400 kgf/mm 2 ) or more. By using such carbon fibers, the mechanical properties of the fiber-reinforced composite material can be improved.
  • the shape of the reinforcing fiber base is not limited, but a sheet-like material is preferable from the viewpoint of workability.
  • a sheet-like material obtained by aligning a large number of reinforcing fibers in one direction, a bidirectional woven fabric such as a plain weave or a twill weave, a multiaxial woven fabric, a non-woven fabric, a mat, a knit, a braid, and a reinforced fiber are made into paper. You can mention the paper that was made.
  • the thickness of the reinforcing fiber sheet is preferably 0.01 to 3 mm, more preferably 0.1 to 1.5 mm.
  • the basis weight of the reinforcing fiber sheet is preferably 70 ⁇ 400g / m 2, more preferably 100 ⁇ 300g / m 2.
  • the content of the present thermosetting resin composition in the present prepreg is preferably 20 to 60% by mass, more preferably 30 to 50% by mass, based on the total mass of the reinforcing fiber base material and the present thermosetting resin composition. ..
  • the content of the present thermosetting resin composition is less than 20% by mass, voids and the like may occur inside the fiber reinforced composite material produced using this prepreg.
  • the content of the present thermosetting resin composition exceeds 60% by mass, the content of the reinforcing fiber is insufficient, and the strength of the obtained fiber-reinforced composite material is likely to decrease.
  • the water absorption of the prepreg is preferably 2 to 40%, more preferably 4 to 25%.
  • the water absorption rate is an index showing the porosity in the prepreg, and the higher the water absorption rate, the higher the porosity in the prepreg.
  • the water absorption rate is high, there are many voids in the prepreg, which deteriorates handleability during molding.
  • the mechanical properties thereof may be adversely affected.
  • the water absorption is low, the drapability becomes low because there are few voids in the prepreg. Therefore, good moldability (shape followability) cannot be obtained.
  • the present prepreg can be produced by impregnating the thermosetting resin composition into the reinforcing fiber base material.
  • a method of impregnating the thermosetting resin composition into the reinforcing fiber base material a known wet method or dry method can be used. Since the wet method uses an organic solvent, it is necessary to remove the organic solvent after impregnating the resin composition. Therefore, it is preferable to use the hot melt method which is a dry method in which the organic solvent does not remain.
  • the hot melt method reduces the viscosity of the present thermosetting resin composition by heating the present thermosetting resin composition and the reinforced fiber base material stacked thereon under pressure to reduce the viscosity of the present thermosetting resin composition.
  • the reinforcing fiber base material is a sheet, it is preferable to stack the film-shaped thermosetting resin composition on the reinforcing fiber base material.
  • the present thermosetting resin composition can be formed into a film by a known method. For example, by using a die coater, an applicator, a reverse roll coater, a comma coater, a knife coater, etc., the present thermosetting resin composition is cast into a film by casting it on a support such as release paper and release film. can do.
  • the temperature for producing the film is appropriately set according to the viscosity of the present thermosetting resin composition. Usually, the temperature is preferably 60 to 130°C, more preferably 80 to 110°C.
  • the thickness of the film of the thermosetting resin composition is preferably 8 to 350 ⁇ m, more preferably 10 to 200 ⁇ m.
  • the pressure conditions for impregnating the reinforcing fiber substrate with the present thermosetting resin composition are appropriately adjusted according to the composition and viscosity of the present thermosetting resin composition.
  • the linear pressure is 0.98 to 245 N/cm, and more preferably 19.6 to 147 N/cm.
  • Pressurization may be performed once or may be performed in multiple times.
  • the heating temperature for impregnating the reinforcing fiber base material with the present thermosetting resin composition is appropriately adjusted according to the viscosity of the present thermosetting resin composition. Usually, it is 70 to 160° C., preferably 80 to 120° C. When the heating temperature is too low, the viscosity of the present thermosetting resin composition does not decrease, and it becomes difficult to impregnate the present thermosetting resin composition into the reinforcing fiber base material. If the heating temperature is too high, the curing reaction in the thermosetting resin composition proceeds, and the tackiness and drapeability of the prepreg are likely to deteriorate.
  • the industrial production rate of the prepreg is not particularly limited, but considering productivity and economic efficiency, in the case of continuous production, it is preferably 0.1 m/min or more, more preferably 1 to 50 m/min. Particularly preferably, it is 5 to 20 m/min.
  • the present prepreg can be cured by a known method to produce a fiber-reinforced composite material.
  • a method for producing a fiber reinforced composite material using the present prepreg a conventionally known method, for example, manual layup, automatic tape layup (ATL), automatic fiber placement, vacuum bagging, autoclave curing, curing other than autoclave, These include methods using fluid-assisted processing, pressure assisted processes, match mold processes, simple press cure, pressclave cure, or continuous band press.
  • a molded fiber-reinforced composite material can be produced by laminating the present prepreg, applying a pressure of 0.2 to 1 MPa in an autoclave, and heating at 150 to 204° C. for 1 to 8 hours.
  • the heat resistance can be further improved by performing post-curing for 2 to 20 hours while gradually raising the temperature in the temperature range of 180 to 280°C.
  • the fiber-reinforced composite material produced using the present prepreg has a heat resistance of at least 180°C or higher.
  • the resin composition after curing constituting the fiber reinforced composite material has a glass transition temperature of preferably 200 to 400° C., more preferably 250 to 350° C., obtained by a measuring method according to ASTM D7028. preferable.
  • the post-damage compressive strength (CAI) of the fiber-reinforced composite material produced using this prepreg is 100 to 500 MPa, and more preferably 150 to 400 MPa.
  • the post-damage compressive strength (CAI) means the post-damage compressive strength (CAI) obtained by a measuring method based on SACMA SRM 2R-94 and compressed after applying an impact of 30.5J.
  • the resin bending elastic modulus of the resin used in this prepreg is preferably 3.0 to 5.0 GPa, and more preferably 3.5 to 4.5 GPa.
  • the resin bending elastic modulus means a value obtained by a measuring method according to JIS K7171.
  • the resin bending strength of the resin used in this prepreg is preferably 30 to 300 MPa, more preferably 50 to 300 MPa.
  • the resin bending elastic modulus means a value obtained by a measuring method according to JIS K7171.
  • the resin bending elongation of the resin used in this prepreg is preferably 1 to 30%, more preferably 3 to 20%.
  • the resin bending elastic modulus means a value obtained by a measuring method according to JIS K7171.
  • This prepreg has excellent storage stability, and maintains the moldability immediately after production even after at least 10 days have passed since the production of this prepreg. Therefore, it is possible to produce a fiber-reinforced composite material having high heat resistance and high impact resistance even after a predetermined time has elapsed.
  • the prepreg of the present invention has excellent adhesiveness to a metal material, by curing the prepreg in a state where the prepreg of the present invention is bonded to the metal material to be bonded, the fiber reinforced composite bonded to the metal material The material can be obtained.
  • the prepreg of the present invention has excellent adhesiveness to a honeycomb core and the like, and particularly to a metallic honeycomb core.
  • part of the thermosetting resin composition penetrates along the wall surface of the honeycomb core to form a fillet on the wall surface portion of the honeycomb core, Bond the fiber-reinforced composite material and the honeycomb.
  • the adhesive bond strength between the prepreg of the present invention and the honeycomb core is preferably 2.5 MPa or more in the flatwise tensile test measured in Examples described later.
  • the film adhesive of the present invention may be further disposed between the prepreg and the metal material.
  • the fiber-reinforced composite material and the metal material can be bonded with higher adhesive strength.
  • a lighter weight composite can be obtained at a lower cost.
  • a fiber reinforced composite material can be obtained by compounding and curing the present thermosetting resin composition and a reinforcing fiber base material composed of reinforcing fibers.
  • the method of forming a composite with the reinforcing fiber base is not particularly limited, and the reinforcing fiber base and the present thermosetting resin composition may be combined in advance as in the prepreg of the present invention.
  • a resin transfer molding method RTM method
  • a hand lay-up method a filament winding method, a pultrusion method, or the like may be combined during molding.
  • the above-mentioned reinforcing fiber base material can be used.
  • the content of the present thermosetting resin composition in the fiber-reinforced composite material is preferably 10 to 80% by mass, and 20 to 60% by mass based on the total mass of the reinforcing fiber base material and the present thermosetting resin composition. More preferably, 30 to 50 mass% is particularly preferable.
  • the content of the present thermosetting resin composition is too small, voids and the like may occur inside the fiber reinforced composite material.
  • the content of the present thermosetting resin composition is too large, the content of the reinforcing fiber is insufficient, and the strength of the obtained fiber-reinforced composite material is likely to decrease.
  • a fiber-reinforced composite material is obtained by compounding a reinforced fiber base material and the present thermosetting resin composition, and then heating and pressing under specific conditions to cure the composite material. Can be obtained.
  • Examples of the method for producing FRP using the prepreg of the present invention include known molding methods such as press molding as well as autoclave molding.
  • thermosetting resin composition and the film adhesive.
  • Triazine compound (Triazine compound having a structure of diaminotriazine) -VD-3 (trade name) (manufactured by Shikoku Chemicals Co., Ltd.), melting point: 160°C (catalog value), and a compound represented by the following chemical formula (12).
  • R is an aliphatic chain having 1 to 15 carbon atoms, and this compound is a mixture thereof.
  • ⁇ VD-5 (trade name) (manufactured by Shikoku Chemicals Co., Ltd.), melting point: 80° C. (catalog value), a compound represented by the following chemical formula (13).
  • R is an aliphatic chain having 1 to 15 carbon atoms, and this compound is a mixture thereof.
  • ⁇ VD-HT (trade name) (manufactured by Shikoku Chemicals Co., Ltd.), melting point: 220° C. (catalog value), a compound represented by the following chemical formula (14).
  • R is an aliphatic chain having 1 to 15 carbon atoms, and this compound is a mixture thereof.
  • Base material A E10T 4W 106T (trade name) (glass fiber woven fabric, manufactured by Unitika Glass Fiber Co., Ltd., basis weight: 106 g/m 2 ).
  • -Substrate B H25X104 (trade name) (glass fiber woven fabric, manufactured by Unitika Glass Fiber Co., Ltd., basis weight: 24.5 g/m 2 )
  • Base material C carbon fiber strands Tenax (registered trademark) IMS 65 E 23 24K 830tex (manufactured by Teijin Ltd., tensile strength: 5800 MPa, tensile elastic modulus: 290 GPa), a fiber mass per unit area is 190 g/m.
  • Sheet-shaped reinforcing fiber base material produced by arranging carbon fibers in one direction so as to be 2.
  • Base material D Tenax (registered trademark) W3101 (carbon fiber fabric, Teijin Ltd., basis weight: 200 g/ m 2 )
  • thermosetting resin composition The thermosetting resin composition, film adhesive, and prepreg were evaluated by the following methods.
  • a honeycomb core laminated body was obtained by laminating five layers of a BMI prepreg and a film adhesive in the direction of [45°/-45°/0°/90°/film adhesive] on top and bottom of a honeycomb core. ..
  • a film adhesive was not used, and four laminated bodies in the direction of [45°/ ⁇ 45°/0°/90°] were laminated above and below the honeycomb core.
  • a honeycomb core laminate was obtained.
  • AL3/16-5052-.002N manufactured by Showa Aircraft Industry Co., Ltd. was used.
  • This laminate was put in a bag, heated in an autoclave at 1.7° C./min, heated at 180° C. for 360 minutes to be cured, and further post-cured at 240° C. for 360 minutes to obtain a honeycomb sandwich panel. Obtained.
  • a test piece was cut out from the obtained honeycomb sandwich panel to a length of 50.8 mm and a width of 50.8 mm, and an aluminum block having a length of 50.8 mm and a width of 50.8 mm was bonded to the upper and lower surfaces of the test piece with an epoxy adhesive.
  • the honeycomb sandwich panel was subjected to a tensile test in a vertical direction (thickness direction) at a tensile speed of 0.5 mm/min in accordance with ASTM C 273 to measure the flatwise strength of the honeycomb sandwich panel. ..
  • CAI Compressive strength after damage
  • the damaged area and the compressive strength (CAI) were measured according to SACMA SRM 2R-94 by applying an impact of 30.5 J for damage.
  • thermosetting resin composition (Examples 1 to 15, Comparative Examples 1 to 6) [Preparation of thermosetting resin composition] The components shown in Table 1 were mixed at 85°C to prepare a thermosetting resin composition.
  • thermosetting resin composition was impregnated into the base fiber to obtain a film adhesive.
  • the heating temperature at this time was 50°C.
  • the tackiness was evaluated using this film adhesive. The results are shown in Table 1.
  • Example 14 Using the thermosetting resin composition obtained in Example 2 and the base material C which is a carbon fiber base material, a prepreg was produced by the following method. The obtained prepreg was used to evaluate flatness and tackiness. The results are shown in Table 2. In the flatwise test, a film adhesive was not used, and four prepregs obtained were laminated in the [45°/-45°/0°/90°] direction to form a laminated body above and below the honeycomb core. Evaluation was performed using a honeycomb sandwich panel in which the honeycomb core laminate was cured by laminating the honeycomb core laminate. The prepreg obtained in Example 14 exhibited sufficiently high flatwise characteristics without using a film adhesive.
  • thermosetting resin composition was applied onto release paper using a reverse roll coater to prepare a resin film having a basis weight of 50 g/m 2 .
  • the obtained resin films were stacked on both sides of the carbon fiber base material and heated and pressed under the conditions of a temperature of 100° C. and a pressure of 0.2 MPa to produce a prepreg having a carbon fiber content of 65 mass %.
  • Example 15 A prepreg was produced in the same manner as in Example 14 except that the substrate D was used as the carbon fiber substrate. The obtained prepreg was used to evaluate flatness and tackiness. The results are shown in Table 2. The prepreg obtained in Example 14 exhibited sufficiently high flatwise characteristics without using a film adhesive.
  • Example 5 A prepreg was produced in the same manner as in Example 14 except that the resin composition obtained in Comparative Example 1 was used as the thermosetting resin composition. The tackiness was evaluated using the obtained prepreg. The results are shown in Table 2. The flat wise property of the prepreg obtained in Comparative Example 5 containing no triazine compound was insufficient.
  • Comparative example 6 A prepreg was produced in the same manner as in Comparative Example 5 except that the substrate D was used as the carbon fiber substrate. The tackiness was evaluated using the obtained prepreg. The results are shown in Table 2. The prepreg obtained in Comparative Example 6 containing no triazine compound had an insufficient flatwise property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明により、ビスマレイミド化合物と、ジアミノトリアジンの構造を有するトリアジン化合物と、を含むことを特徴とする熱硬化性樹脂組成物が提供される。

Description

熱硬化性樹脂組成物、フィルム接着剤、プリプレグ及びこれらの製造方法
 本発明は、熱硬化性樹脂組成物、該熱硬化性樹脂組成物を含むフィルム接着剤、プリプレグ、及びこれらの製造方法に関する。詳しくは、金属との接着性に優れた熱硬化性樹脂組成物、該熱硬化性樹脂組成物を含むフィルム接着剤、該熱硬化性樹脂組成物を含むプリプレグ、及びこれらの製造方法に関する。
 熱硬化性樹脂組成物やそれを含んで成るフィルム接着剤は、各種接着剤として広く利用されている。しかし、航空機構造部材など高い強度が求められる用途において、繊維強化複合材料と金属材料とをフィルム接着剤を用いて接着する場合、十分な接着強度が得られない場合がある。そのため、一般的に、金属材料を表面処理することによって接着強度を高める手法が採られている。しかし、金属材料の表面処理は、接着工程の前に煩雑な作業を必要とし、手間がかかることが問題になっている。また、金属材料の表面処理には、一般的に、塩素などの元素を含むハロゲン化合物が使用されている。ハロゲン化合物は環境的および毒物学的に好ましくない有害物質(毒性、感作および発がん性)に分類され、環境などへの影響が懸念される。
 特許文献1には、接着をより簡便にするため、接着接合プライマーを用いない金属材料の表面処理方法が記載されている。また、特許文献2には、ハロゲン化合物を用いない金属材料の表面処理法が記載されている。しかし、これらの方法では、表面処理による化成層の形成を必要としており、依然として煩雑な作業が必要である。
特表2016-524629号公報 特開2014-047353号公報
 本発明の課題は、金属材料の表面処理の有無にかかわらず、金属材料との接着性に優れる熱硬化性樹脂組成物を提供することにある。また、この熱硬化性樹脂組成物を用いて構成されるフィルム状の接着剤やプリプレグ、及びこれらの製造方法を提供することにある。
 本発明者らは、ビスマレイミド化合物と、所定の構造を有するトリアジン化合物と、を含む熱硬化性樹脂組成物は、上記課題を解決できることを見出し、本発明を完成するに至った。
 上記課題を解決する本発明は、以下に記載のものである。
 〔1〕 ビスマレイミド化合物と、ジアミノトリアジンの構造を有するトリアジン化合物と、を含むことを特徴とする熱硬化性樹脂組成物。
 〔2〕 前記熱硬化性樹脂組成物が、前記ビスマレイミド化合物100質量部に対して前記トリアジン化合物を0.1~30質量部含む〔1〕に記載の熱硬化性樹脂組成物。
 〔3〕 前記熱硬化性樹脂組成物が、さらに熱可塑性樹脂を含む〔1〕又は〔2〕に記載の熱硬化性樹脂組成物。
 上記〔1〕~〔3〕に記載の発明は、ビスマレイミド化合物及び所定の構造を有するトリアジン化合物を含有する熱硬化性樹脂組成物である。この熱硬化性樹脂組成物は、以下の〔4〕に記載のフィルム接着剤や〔11〕に記載のプリプレグの材料としても利用される。
 〔4〕 基材繊維と、熱硬化性樹脂組成物と、を含んで成り、
 前記熱硬化性樹脂組成物がビスマレイミド化合物、及びジアミノトリアジンの構造を有するトリアジン化合物を含むことを特徴とするフィルム接着剤。
 〔5〕 前記熱硬化性樹脂組成物が、前記ビスマレイミド化合物100質量部に対して前記トリアジン化合物を0.1~30質量部含む〔4〕に記載のフィルム接着剤。
 〔6〕 前記熱硬化性樹脂組成物が、さらに熱可塑性樹脂を含む〔4〕又は〔5〕に記載のフィルム接着剤。
 〔7〕 前記基材繊維が、ガラス繊維又は炭素繊維である〔4〕乃至〔6〕の何れかに記載のフィルム接着剤。
 〔8〕 目付が50~1500g/mである〔4〕乃至〔7〕の何れかに記載のフィルム接着剤。
 上記〔4〕~〔8〕に記載の発明は、上記〔1〕に記載の熱硬化性樹脂組成物が基材繊維によって担持されているフィルム状の接着剤である。
 〔9〕 基材繊維と、熱硬化性樹脂組成物と、を一体化することを特徴とする〔4〕に記載のフィルム接着剤の製造方法。
 〔10〕 前記一体化が、前記基材繊維への前記熱硬化性樹脂組成物の含浸である〔9〕に記載のフィルム接着剤の製造方法。
 〔11〕 強化繊維と、前記強化繊維から成る強化繊維層内に含浸した熱硬化性樹脂組成物と、から成り、
 前記熱硬化性樹脂組成物がビスマレイミド化合物と、ジアミノトリアジンの構造を有するトリアジン化合物と、を含むことを特徴とするプリプレグ。
 〔12〕 前記熱硬化性樹脂組成物が、前記ビスマレイミド化合物100質量部に対して前記トリアジン化合物を0.1~30質量部含む〔11〕に記載のプリプレグ。
 〔13〕 前記熱硬化性樹脂組成物が、さらに熱可塑性樹脂を含む〔11〕又は〔12〕に記載のプリプレグ。
 〔14〕 前記強化繊維が、炭素繊維である〔11〕乃至〔13〕の何れかに記載のプリプレグ。
 上記〔11〕~〔14〕に記載の発明は、上記〔1〕に記載の熱硬化性樹脂組成物が強化繊維に含浸しているプリプレグである。
 〔15〕 強化繊維と、〔1〕乃至〔3〕の何れかに熱硬化性樹脂組成物と、を一体化することを特徴とするプリプレグの製造方法。
 本発明の熱硬化性樹脂組成物及びそれを含んで成るフィルム接着剤は、特に金属に対する高い接着性を有する。
 以下、本発明の熱硬化性樹脂組成物、フィルム接着剤、プリプレグ及びこれらの製造方法の詳細について説明する。
 (1) 熱硬化性樹脂組成物
 本発明の熱硬化性樹脂組成物は、ビスマレイミド化合物と、ジアミノトリアジンの構造を有するトリアジン化合物と、を含んでなる。このトリアジン化合物は、硬化反応時にビスマレイミド化合物に溶解するとともに、トリアジン環のNH基が金属と配位結合を形成することによって、金属材料に対する接着性を向上させる。
 (1-1) ビスマレイミド化合物
 本熱硬化性樹脂組成物に配合されるビスマレイミド化合物(以下、「BMI」ともいう)としては、従来公知のビスマレイミド化合物を用いることができる。例えば、下記化学式(1)で表されるビスマレイミド化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 化学式(1)中、R~Rは、それぞれ独立に、-H、-CH、-C、-C、-F、-Cl、-Br及び-Iからなる群から選ばれる基を表す。Xについては後述する。
 本発明においては、ビスマレイミド化合物は、芳香族ビスマレイミド及び脂肪族ビスマレイミドの何れであっても良い。本発明において、熱硬化性樹脂組成物に含まれるビスマレイミド化合物全体に対する芳香族ビスマレイミドの量は70質量%以上であることが好ましい。また、本発明において、熱硬化性樹脂組成物の全体量に対する全ビスマレイミド化合物の量は10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが特に好ましい。
 (1-1-1) 芳香族ビスマレイミド化合物
 ビスマレイミド化合物が芳香環構造を含む(以下、「芳香族ビスマレイミド化合物」ともいう)場合、化学式(1)中のXは、以下の化学式(2)~(8)に記載する構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 化学式(5)中、Rは、-CH-、-C(CH-、-O-、-SO-を表す。
Figure JPOXMLDOC01-appb-C000006
 化学式(6)中、Rは、-CH-、-C(CH-、-O-、-SO-を表す。また、R~Rは、それぞれ独立に、-H、-CH、-C、-C、-F、-Cl、-Br及び-Iからなる群から選ばれる基を表す。
Figure JPOXMLDOC01-appb-C000007
 化学式(7)中、Rは、-CH-、-C(CH-、-O-、-SO-を表す。
Figure JPOXMLDOC01-appb-C000008
 化学式(8)中、R10~R11は、それぞれ独立に、-CH-、-C(CH-、-O-、-SO-を表す。化学式(8)中、nは0~0.5である。
 このような芳香族ビスマレイミド化合物としては、N,N’-4,4’-ジフェニルメタンビスマレイミド、N,N’-4,4’-ジフェニルエーテルビスマレイミド、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4’-ビフェニレンビスマレイミド、N,N’-4,4’-(3,3’-ジメチルビフェニレン)ビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、N,N’-4,4’-ジフェニルスルフォンビスマレイミド、N,N’-4,4’-ベンゾフェノンビスマレイミド等を挙げることができる。
 加熱硬化後の耐熱性の観点からは、N,N’-4,4’-ジフェニルメタンビスマレイミド、N,N’-4,4’-ジフェニルエーテルビスマレイミド、N,N’-m-トルイレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、4-メチル-1,3-フェニレンビスマレイミド、N,N’-4,4’-ジフェニルスルフォンビスマレイミド、N,N’-4,4’-ベンゾフェノンビスマレイミドが好ましく、N,N’-4,4’-ジフェニルメタンビスマレイミド、N,N’-4,4’-ジフェニルエーテルビスマレイミド、N,N’-m-トルイレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、4-メチル-1,3-フェニレンビスマレイミドが特に好ましい。これらの芳香族ビスマレイミド化合物は、単独で使用しても良く、2種類以上を併用しても良い。
 本熱硬化性樹脂組成物における芳香族ビスマレイミド化合物の含有量は、本熱硬化性樹脂組成物の全質量に対して10~80質量%であることが好ましく、20~65質量%であることがより好ましく、25~60質量%であることが特に好ましい。芳香族ビスマレイミド化合物の含有量が10質量%未満である場合、本熱硬化性樹脂組成物を用いて作製するフィルム接着剤の耐熱性が低くなる傾向がある。芳香族ビスマレイミド化合物の含有量が80質量%を超える場合、本熱硬化性樹脂組成物を用いて作製するフィルム接着剤の取扱い性が低くなる傾向がある
 (1-1-2) 脂肪族ビスマレイミド化合物
 ビスマレイミド化合物が芳香環構造を含まない(以下、「脂肪族ビスマレイミド化合物」ともいう)場合、化学式(1)中のXは、以下の化学式(9)~(11)に記載する構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 化学式(9)中、nは10以下の整数であり、1、2、3、4、6が好ましい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 このような脂肪族ビスマレイミド化合物としては、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ヘキサメチレンジアミンビスマレイミド、N,N’-1,2-エチレンビスマレイミド、N,N’-1,3-プロピレンビスマレイミド、N,N’-1,4-テトラメチレンビスマレイミドを挙げることができる。1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ヘキサメチレンジアミンビスマレイミドは特に好ましい。脂肪族ビスマレイミド化合物は、単独で使用しても良く、2種類以上を併用してもよい。
 本熱硬化性樹脂組成物における脂肪族ビスマレイミド化合物の含有量は、熱硬化性樹脂組成物の全質量に対して3~30質量%であることが好ましく、5~20質量%であることが好ましく、7~15質量%であることが特に好ましい。脂肪族ビスマレイミド化合物の配合量が3質量%未満である場合、本熱硬化性樹脂組成物を用いて作製されるフィルム接着剤の取扱い性が低下しやすい。脂肪族ビスマレイミド化合物の含有量が30質量%を超える場合、本熱硬化性樹脂組成物の硬化物の耐熱性が低下しやすい。
 (1-2) トリアジン化合物
 本発明に用いるトリアジン化合物は、ジアミノトリアジンの構造を有するトリアジン化合物である。例えば、下記化学式(12)~(14)で表されるトリアジン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 ここで、化学式(12)中、Rは炭素数1~15の脂肪族鎖であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 ここで、化学式(13)中、Rは炭素数1~15の脂肪族鎖であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 ここで、化学式(14)中、Rは炭素数1~15の脂肪族鎖であることが好ましい。
 本発明において、ジアミノトリアジンの構造を有するトリアジン化合物としては、OH基を有する化合物が好ましく、OH基を2つ以上有する化合物が好ましい。OH基を有する化合物は、金属との接着性に加え、OH基が樹脂との接着性に寄与するため、金属と樹脂の接着性をより高めることができる。
 また、本発明においてジアミノトリアジンの構造を有するトリアジン化合物としては、その融点が100℃以上であることが好ましい。融点が100℃以上のジアミノトリアジン構造を有するトリアジン化合物は、特にハニカムサンドイッチパネル向けフィルム接着剤として、フィレット形成性に優れるため好ましい。なお、フィレットとは、成形時に温度が上がると同時に樹脂の粘度が低下してハニカムの端部に形成される樹脂だまりのことである。フィレットが形成されることで接着面積が向上し、ハニカムと表皮材との接着性が向上する。
 本熱硬化性樹脂組成物における上記トリアジン化合物の含有量は、熱硬化性樹脂組成物に含まれるビスマレイミド化合物100質量部に対して0.1~30質量部であることが好ましく、1~20質量部であることがより好ましく、1~10質量部であることが特に好ましい。0.1質量未満である場合、特に金属材料との接着性が低下する傾向がある。
 本熱硬化性樹脂組成物では、トリアジン化合物はビスマレイミド化合物中に分散していても良いし、その一部又は全部がビスマレイミド化合物に溶解していても良い。未溶解のトリアジン化合物は、硬化反応時の加熱によりビスマレイミド化合物中に溶解する。
 (1-3) 共反応物質
 本発明の熱硬化性樹脂組成物は、共反応物質を含んでいることが好ましい。この共反応物質は、室温で液状であることが好ましい。このような共反応物質としては、アルケニルフェノール及び/又はアルケニルフェノールエーテルが例示される。
 アルケニルフェノールエーテルは、フェノール系化合物とアルケニルハライドとの反応により得られる。アルケニルフェノールエーテルをクライゼン転移することによりアルケニルフェノールが得られる(特開昭52―994号公報)。アルケニルフェノール及び/又はアルケニルフェノールエーテル化合物には、その転移構造体が含まれていてもよい。
 アルケニルフェノール及び/又はアルケニルフェノールエーテルとしては、アリルフェノール、メタリルフェノール又はそれらのエーテルが好ましい。特に、以下の化学式(15)~(19)の化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
 化学式(15)中、R12、R13、R14はそれぞれ独立して水素又は炭素数2~10のアルケニル基であり、好ましくはアリル基又はプロペニル基である。ただし、R12、R13、R14の少なくとも1個は炭素数2~10のアルケニル基である。
Figure JPOXMLDOC01-appb-C000016
 化学式(16)中、R15は、直接結合、-CH-、-C(CH-、-O-、-S-、-SO-又は-SO-である。R16、R17、R18、R19はそれぞれ独立して水素又は炭素数2~10のアルケニル基であり、好ましくはアリル基又はプロペニル基である。ただし、R16、R17、R18、R19の少なくとも1個は炭素数2~10のアルケニル基である。
 化学式(16)のうち、以下の化学式(17)の化合物は特に好ましい。
Figure JPOXMLDOC01-appb-C000017
 化学式(17)中、R15は、直接結合、-CH-、-C(CH-、-O-、-S-、-SO-又は-SO-を表す。
Figure JPOXMLDOC01-appb-C000018
 化学式(18)中、R20、R21は、直接結合、-CH-、-C(CH-、-O-、-S-、-SO-又は-SO-である。R22、R23、R24、R25、R26、R27は、それぞれ独立して水素、炭素数1~4のアルキル基、又は炭素数2~10のアルケニル基であり、好ましくはアリル基又はプロペニル基である。ただし、R22、R23、R24、R25、R26、R27の少なくとも1個は炭素数2~10のアルケニル基である。Pは0~10の整数である。
Figure JPOXMLDOC01-appb-C000019
 化学式(19)中、R15は、直接結合、-CH-、-C(CH-、-O-、-S-、-SO-又は-SO-を表す。R28、R29は、それぞれ独立して水素、炭素数1~4のアルキル基、又は炭素数2~10のアルケニル基であり、好ましくはアリル基又はプロペニル基である。ただし、R28、R29の少なくとも1個は炭素数2~10のアルケニル基である。
 このようなアルケニルフェノール又はアルケニルフェノールエーテル化合物としては、O,O’-ジアリルビスフェノールA、4,4’-ジヒドロキシ-3,3’-ジアリルジフェニル、ビス(4-ヒドロキシ-3-アリルフェニル)メタン、2,2’-ビス(4-ヒドロキシ-3,5-ジアリルフェニル)プロパン、2,2’-ジアリルビスフェノールF、4,4’-ジヒドロキシ-3,3’-ジアリルジフェニルエーテル、4,4’-ビス-O-プロペニルフェノキシ-ベンゾフェノン等を挙げることができる。これらの中でも、加熱硬化後のガラス転移点が高いため、O,O’-ジアリルビスフェノールA、2,2’-ビス(4-ヒドロキシ-3,5-ジアリルフェニル)プロパン、2,2’-ジアリルビスフェノールF等が好ましい。O,O’-ジアリルビスフェノールAは、樹脂組成物の粘度を低くするため特に好ましい。本熱硬化性樹脂組成物では、アルケニルフェノール及び/又はアルケニルフェノールエーテルは単独で用いても良く、2種類以上を混合して用いてもよい。
 アルケニルフェノール及び/又はアルケニルフェノールエーテル化合物は、ビスマレイミド化合物の硬化剤として機能する。本熱硬化性樹脂組成物における配合量は、5~70質量%であることが好ましく、10~50質量%であることがより好ましく、15~40質量%であることが特に好ましい。本熱硬化性樹脂組成物は、アルケニルフェノール及び/又はアルケニルフェノールエーテル化合物を上記の所定の範囲内で適宜含有することにより、粘度が調整され、良好な取扱性を得ることができる。また、本熱硬化性樹脂組成物におけるアルケニルフェノール及び/又はアルケニルフェノールエーテル化合物の含有量は、熱硬化性樹脂組成物に含まれるビスマレイミド化合物100質量部に対して10~400質量部であることが好ましく、25~250質量部であることがより好ましく、40~150質量部であることが特に好ましい。ビスマレイミド化合物とアルケニルフェノール及び/又はアルケニルフェノールエーテル化合物の配合量の割合をこの範囲とすることで、取扱性と、硬化物の機械特性に優れた熱硬化性樹脂組成物とすることができる。
 (1-4) 熱可塑性樹脂
 本樹脂組成物は、熱可塑性樹脂を含有することが好ましい。熱可塑性樹脂としては、公知の熱可塑性樹脂を使用することができる。
 熱可塑性樹脂としては、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリイミド等を挙げることができる。
 熱可塑性樹脂を配合する場合、その含有量は、0.1~40質量%であることが好ましく、0.1~30質量%であることがより好ましく、1~20質量%であることが特に好ましい。熱可塑性樹脂の含有量が0.1質量%未満の場合、樹脂組成物の粘度が十分に上昇せず、接着性が不十分となる場合がある。熱可塑性樹脂の含有量が高すぎる場合、樹脂組成物の粘度が高くなり、取扱い性が著しく悪化する場合がある。
 本発明の熱硬化性樹脂組成物に可溶な熱可塑性樹脂(以下、「可溶性熱可塑性樹脂」ともいう)、不溶な熱可塑性樹脂(以下、「不溶性熱可塑性樹脂」ともいう)のいずれも用いることができる。
 (1-4-1) 可溶性熱可塑性樹脂
 本発明において、可溶性熱可塑性樹脂とは、180℃において熱硬化性樹脂組成物中に一部又は全部が溶解する熱可塑性樹脂を意味する。可溶性熱可塑性樹脂は、熱硬化性樹脂組成物中に溶解し、熱硬化性樹脂組成物の粘度を増加させる。
 可溶性熱可塑性樹脂としては、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリイミド等を挙げることができる。
 可溶性熱可塑性樹脂を配合する場合、その含有量は、0.1~40質量%であることが好ましく、1~30質量%であることがより好ましい。可溶性熱可塑性樹脂の含有量が0.1質量%未満の場合、熱硬化性樹脂組成物の粘度が十分に上昇せず、熱硬化性樹脂組成物の流出を招くおそれがある。可溶性熱可塑性樹脂の含有量が高すぎる場合、熱硬化性樹脂組成物の粘度が高くなり、取扱い性が著しく悪化する場合がある。
 (1-4-2) 不溶性熱可塑性樹脂
 本発明において、不溶性熱可塑性樹脂とは、180℃において熱硬化性樹脂組成物中に溶解しない熱可塑性樹脂をいう。不溶性熱可塑性樹脂としては、ポリイミド樹脂を挙げることができる。
 不溶性熱可塑性樹脂を配合する場合、その含有量は、0.1~40質量%であることが好ましく、1~20質量%であることがより好ましい。不溶性熱可塑性樹脂をこの範囲で含むことで、熱硬化性樹脂組成物の硬化物の耐衝撃性を向上させることができる。不溶性熱可塑性樹脂の含有量が0.1質量%未満の場合、熱硬化性樹脂組成物の粘度が十分に上昇せず、熱硬化性樹脂組成物の流出を招くおそれがある。不溶性熱可塑性樹脂の含有量が高すぎる場合、熱硬化性樹脂組成物の粘度が高くなり取扱い性が著しく悪化する場合がある。不溶性熱可塑性樹脂の粒子径は、特に限定されないが、0.1~100μmであることが好ましく、1~50μmであることがより好ましい。
 (1-5) その他の成分
 本熱硬化性樹脂組成物には、接着性を損なわない限り、他の成分を含有させることができる。他の成分として、重合防止剤、導電性粒子、導電性フィラー、無機フィラー、ゴム状成分、靭性付与剤、安定剤や離型剤、着色剤等が例示される。
 (2) 熱硬化性樹脂組成物の製造方法
 本熱硬化性樹脂組成物を製造するには、上述の成分を混合して均一に溶解及び/又は分散した組成物とすればよく、その方法に特に制限はない。これらの成分を常温で混合してもよいが、経済的に製造するためには加熱して混合することが好ましい。この場合、加熱温度は通常30~150℃であり、50~120℃が好ましい。150℃を超える温度では重合反応が速くなり、本熱硬化性樹脂組成物が混合中に硬化する可能性がある。
 混合は、一段で行ってもよいし、多段で行ってもよい。また、樹脂組成物の各成分の混合順序は限定されないが、固相成分として配合する成分は、樹脂組成物中の他の成分が溶解した後に添加することが好ましい。これにより、固相成分を樹脂組成物中に均一に分散させやすくなる。混合時間は温度により相違するが、10~180分が好ましい。
 混練機械装置としては、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー等、従来公知の装置を用いることができる。
 (3) フィルム接着剤
 本発明のフィルム接着剤は、前述の熱硬化性樹脂組成物が基材繊維に担持されて成る。熱硬化性樹脂組成物は基材繊維に含浸していることが好ましい。フィルム接着剤の目付は、50~1500g/mが好ましく、100~500g/mがより好ましい。
 本フィルム接着剤に用いる基材繊維としては、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ポリエステル繊維、セラミック繊維、アルミナ繊維、ボロン繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維などを挙げることができる。これらの中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましく、ガラス繊維がより好ましい。
 基材繊維の形状は限定されないが、シート状物であることが加工性の点から好ましい。例えば、多数本の繊維を一方向に引き揃えたシート状物や、平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙などを挙げることができる。基材繊維シートの厚さは、0.01~0.5mmが好ましく、0.02~0.15mmがより好ましい。また、基材繊維シートの目付は、10~400g/mが好ましく、20~150g/mがより好ましい。
 フィルム接着剤中の本熱硬化性樹脂組成物の含有量は、20~95質量%が好ましく、30~70質量%がより好ましい。20質量%未満である場合、基材繊維中に本熱硬化性樹脂組成物が含浸されて(つまり、本熱硬化性樹脂組成物が基材繊維層の中に留まり、被接着体と接触する基材繊維層の表面の本熱硬化性樹脂組成物の存在量が少なくなる場合があるため、)接着剤として機能し難い場合がある。95質量%を超える場合、基材繊維が本熱硬化性樹脂組成物を十分に担持できない場合がある。
 本発明のフィルム接着剤の接着接合強度は、後述する実施例において測定されるフラットワイズ引張試験において2.5MPa以上であることが好ましく、3.0MPa以上であることがより好ましく、3.5MPa以上であることが特に好ましい。また、後述する実施例において測定されるラップシェア引張負荷が10MPa以上であることが好ましく、13MPa以上であることがより好ましい。
 (4) フィルム接着剤の製造方法
 本発明のフィルム接着剤は、本熱硬化性樹脂組成物と基材繊維とを一体化することにより製造することができる。本熱硬化性樹脂組成物を基材繊維と一体化させる方法としては、公知の湿式含浸法や乾式含浸法を用いることができる。湿式含浸法は有機溶媒を用いるため、樹脂組成物を含浸した後、有機溶媒を除去する必要がある。したがって、有機溶媒が残存する虞がない乾式法であるホットメルト法を用いることが好ましい。
 ホットメルト法は、基材繊維に樹脂組成物を積重して加圧下で加熱することにより、樹脂組成物の粘度を低下させ、樹脂組成物を基材繊維内に含浸させる方法である。基材繊維がシート状物の場合、フィルム状に成形した樹脂組成物を基材繊維に積重することが好ましい。
 本熱硬化性樹脂組成物は、公知の方法でフィルム状に成形できる。例えば、本熱硬化性樹脂組成物をダイコーター、アプリケーター、リバースロールコーター、コンマコーター、ナイフコーターなどを用いて、離型紙、離型フィルムなどの支持体上に流延させることによりフィルム状に成形することができる。フィルムを製造する温度は、本熱硬化性樹脂組成物の粘度に応じて適宜設定される。通常、温度は50~130℃が好ましく、80~110℃がより好ましい。
 本熱硬化性樹脂組成物のフィルムの厚さは、概ね8~500μmとすることが好ましく、10~300μmとすることがより好ましい。
 基材繊維に本熱硬化性樹脂組成物を含浸させる際の加圧条件は、本熱硬化性樹脂組成物の組成や粘度に応じて適宜調整される。加圧は行わなくてもよい。加圧を行う場合は、通常、線圧245N/cm以下であり、より好ましくは147N/cm以下である。加圧は、1回で行ってもよく、複数回に分けて行ってもよい。
 基材繊維に本熱硬化性樹脂組成物を含浸させる際の加熱温度は、本熱硬化性樹脂組成物の粘度に応じて適宜調整される。通常、25℃以上であり、30℃以上が好ましい。加熱温度の上限は160℃以下が好ましく、150℃以下がより好ましく、140℃以下が特に好ましい。加熱温度が25℃未満である場合、本熱硬化性樹脂組成物の粘度が低くならず、本熱硬化性樹脂組成物を基材繊維内に十分に含浸させることができない。加熱温度が150℃を超える場合、本熱硬化性樹脂組成物の硬化反応が進行し易い。
 (5) フィルム接着剤の使用方法
 本発明のフィルム接着剤は、接着界面に配置して公知の手法により硬化させることにより使用される。特に、繊維強化複合材料同士を接着する場合や、繊維強化複合材料と金属材料とを接着する場合に好ましく使用される。また、繊維強化複合材料を作製するためのプリプレグに積重して使用することもできる。即ち、繊維強化複合材料を作製するとともに、該繊維強化複合材料を接着対象物(他の繊維強化複合材料や金属材料)に接着することもできる。
 本発明のフィルム接着剤は、基材繊維に担持されているため、ハニカムコア等に対する接着性が優れている。即ち、基材繊維に担持された本熱硬化性樹脂組成物の一部が、ハニカムコアの壁面に沿って侵入し、ハニカムコアの壁面部にフィレットを形成し易い。特に、金属製のハニカムコアに対して優れた接着性を有する。
 (6) プリプレグ
 本発明のプリプレグ(以下、「本プリプレグ」ともいう)は、前述の本熱硬化性樹脂組成物が強化繊維基材に含浸しているプリプレグである。
 本プリプレグの製造において、強化繊維基材を構成する強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ポリエステル繊維、セラミック繊維、アルミナ繊維、ボロン繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維などを挙げることができる。これらの強化繊維の中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましく、比強度、比弾性率が良好で軽量かつ高強度の繊維強化複合材料が得られる炭素繊維がより好ましく、炭素繊維の中でも、引張強度に優れるポリアクリロニトリル(PAN)系炭素繊維が特に好ましい。
 強化繊維にPAN系炭素繊維を用いる場合、引張弾性率は、170~600GPaであることが好ましく、220~450GPaであることが特に好ましい。また、引張強度は3920MPa(400kgf/mm)以上であることが好ましい。このような炭素繊維を用いることにより、繊維強化複合材料の機械的性質を向上できる。
 強化繊維基材の形状は限定されないが、シート状物であることが加工性の点から好ましい。強化繊維シートとしては、例えば、多数本の強化繊維を一方向に引き揃えたシート状物や、平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙などを挙げることができる。強化繊維シートの厚さは、0.01~3mmが好ましく、0.1~1.5mmがより好ましい。また、強化繊維シートの目付は、70~400g/mが好ましく、100~300g/mがより好ましい。
 本プリプレグ中の本熱硬化性樹脂組成物の含有量は、強化繊維基材と本熱硬化性樹脂組成物の合計質量に対して20~60質量%が好ましく、30~50質量%がより好ましい。本熱硬化性樹脂組成物の含有量が20質量%未満である場合、このプリプレグを用いて作製される繊維強化複合材料の内部にボイド等が発生する場合がある。本熱硬化性樹脂組成物の含有量が60質量%を超える場合、強化繊維の含有量が不足し、得られる繊維強化複合材料の強度が低下し易い。
 本プリプレグの吸水率は、2~40%が好ましく、4~25%がより好ましい。本発明において吸水率は、プリプレグ中の空隙率を示す指標であり、吸水率が高いほどプリプレグ中の空隙率が高いことを示す。吸水率が高い場合、プリプレグ中に空隙が多いため、成形時の取扱い性が悪化する。また、製造される繊維強化複合材料に空隙が残りやすいため、その機械特性に悪影響を及す場合がある。吸水率が低い場合、プリプレグ中の空隙が少ないため、ドレープ性が低くなる。そのため、良好な成形加工性(形状追従性)が得られなくなる。
 (7) プリプレグの製造方法
 本プリプレグは、本熱硬化性樹脂組成物を強化繊維基材内に含浸させることにより製造することができる。本熱硬化性樹脂組成物を強化繊維基材内に含浸させる方法としては、公知の湿式法や乾式法を用いることができる。湿式法は有機溶媒を用いるため、樹脂組成物を含浸した後、有機溶媒を除去する必要がある。したがって、有機溶媒が残存することがない乾式法であるホットメルト法を用いることが好ましい。
 ホットメルト法は、本熱硬化性樹脂組成物と積重した強化繊維基材とを加圧下で加熱することにより、本熱硬化性樹脂組成物の粘度を低下させ、本熱硬化性樹脂組成物を強化繊維基材内に含浸させる。強化繊維基材がシート状物の場合、フィルム状に成形した本熱硬化性樹脂組成物を強化繊維基材に積重することが好ましい。
 本熱硬化性樹脂組成物は、公知の方法でフィルム状に成形できる。例えば、本熱硬化性樹脂組成物をダイコーター、アプリケーター、リバースロールコーター、コンマコーター、ナイフコーターなどを用いて、離型紙、離型フィルムなどの支持体上に流延させることによりフィルム状に成形することができる。フィルムを製造する温度は、本熱硬化性樹脂組成物の粘度に応じて適宜設定される。通常、温度は60~130℃が好ましく、80~110℃がより好ましい。
 本熱硬化性樹脂組成物のフィルムの厚さは、概ね8~350μmとすることが好ましく、10~200μmとすることがより好ましい。
 強化繊維基材に本熱硬化性樹脂組成物を含浸させる際の加圧条件は、本熱硬化性樹脂組成物の組成や粘度に応じて適宜調整される。通常、線圧0.98~245N/cmであり、より好ましくは19.6~147N/cmである。線圧が0.98N/cm未満である場合、樹脂組成物を強化繊維シート内に十分に含浸させるのが困難である。加圧は、1回で行ってもよく、複数回に分けて行ってもよい。
 強化繊維基材に本熱硬化性樹脂組成物を含浸させる際の加熱温度は、本熱硬化性樹脂組成物の粘度に応じて適宜調整される。通常、70~160℃であり、80~120℃が好ましい。加熱温度が低過ぎる場合、本熱硬化性樹脂組成物の粘度が低くならず、本熱硬化性樹脂組成物を強化繊維基材内に含浸させ難くなる。加熱温度が高過ぎる場合、本熱硬化性樹脂組成物中の硬化反応が進行し、プリプレグのタック性やドレープ性が悪化し易い。
 プリプレグの工業的生産速度は特に限定されないが、生産性や経済性などを考慮すると、連続生産の場合、0.1m/min以上であることが好ましく、1~50m/minであることがより好ましく、5~20m/minであることが特に好ましい。
 (8) 本プリプレグの使用方法
 本プリプレグは公知の手法により硬化させることにより繊維強化複合材料を作製することができる。本プリプレグを用いて繊維強化複合材料を作製する方法としては、従来公知の方法、例えば、マニュアルレイアップ、自動テープレイアップ(ATL)、自動繊維配置、真空バギング、オートクレーブ硬化、オートクレーブ以外の硬化、流体援用加工、圧力支援プロセス、マッチモールドプロセス、単純プレス硬化、プレスクレーブ硬化、又は連続バンドプレスを使用する方法が挙げられる。
 例えば、本プリプレグを積層して、オートクレーブ中で0.2~1MPaに加圧し、150~204℃で1~8時間加熱することによって、成形された繊維強化複合材料を作製することができる。ポストキュアとして180~280℃の温度範囲で温度を段階的に上昇させながら2~20時間処理することにより、耐熱性をさらに向上させることができる。
 本プリプレグは、高耐熱性の樹脂組成物を用いている。したがって、本プリプレグを用いて作製される繊維強化複合材料は、少なくとも180℃以上の耐熱性を有する。繊維強化複合材料を構成している硬化後の樹脂組成物は、ASTM D7028に準拠した測定方法で得られるガラス転移温度が200~400℃であることが好ましく、250~350℃であることがより好ましい。
 本プリプレグを用いて作製される繊維強化複合材料の損傷後圧縮強度(CAI)は、100~500MPaであり、より好ましくは150~400MPaである。なお、損傷後圧縮強度(CAI)は、SACMA SRM 2R-94に準拠した測定方法で得られる、30.5Jの衝撃を与えた後に圧縮する損傷後圧縮強度(CAI)を意味する。
 本プリプレグに使用される樹脂の樹脂曲げ弾性率は3.0~5.0GPaであることが好ましく、3.5~4.5GPaであることがより好ましい。なお、樹脂曲げ弾性率は、JIS K7171に準拠した測定方法で得られる値を意味する。
 本プリプレグに使用される樹脂の樹脂曲げ強度は30~300MPaであることが好ましく、50~300MPaであることがより好ましい。なお、樹脂曲げ弾性率は、JIS K7171に準拠した測定方法で得られる値を意味する。
 本プリプレグに使用される樹脂の樹脂曲げ伸度は1~30%であることが好ましく、3~20%であることがより好ましい。なお、樹脂曲げ弾性率は、JIS K7171に準拠した測定方法で得られる値を意味する。
 本プリプレグは保存安定性に優れ、本プリプレグの製造後、少なくとも10日間を経過しても、製造直後の成形加工性を維持する。したがって、所定の時間が経過した後も、耐熱性及び耐衝撃性が高い繊維強化複合材料を作製することができる。
 本発明のプリプレグは、金属材料への接着性に優れているため、本発明のプリプレグを接合する金属材料と接着させた状態で、プリプレグを硬化させることで、金属材料と接着された繊維強化複合材料を得ることができる。
 本発明のプリプレグは、ハニカムコア等に対する接着性にも優れ、特に金属製のハニカムコアに対する接着性に優れている。本発明のプリプレグを用いると、フィルム接着剤を用いなくても、本熱硬化性樹脂組成物の一部が、ハニカムコアの壁面に沿って侵入し、ハニカムコアの壁面部にフィレットを形成し、繊維強化複合材料とハニカムを接着させる。本発明のプリプレグとハニカムコアとの接着接合強度は、後述する実施例において測定されるフラットワイズ引張試験において2.5MPa以上であることが好ましい。
 本発明のプリプレグと金属材料を積重、硬化させて金属材料と接着した繊維強化複合材料を得る場合、プリプレグと金属材料の間に、さらに、本発明のフィルム接着剤を配置してもよい。本発明のフィルム接着剤を併用することで、繊維強化複合材料と金属材料をより高い接着強度で接着させることができる。一方、フィルム接着剤を併用しない場合、より軽量な複合体を、より安価に得ることができる。
(9) 繊維強化複合材料
 本熱硬化性樹脂組成物と、強化繊維から成る強化繊維基材と、を複合化して硬化させることで繊維強化複合材料を得ることができる。強化繊維基材と複合化する方法としては、特に制限はなく、本発明のプリプレグのように強化繊維基材と本熱硬化性樹脂組成物を予め複合化してもよい。また、例えば、レジントランスファー成形法(RTM法)、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法などのように成形時に複合化してもよい。
 繊維強化複合材料に用いる強化繊維基材は、上述の強化繊維基材を用いることができる。繊維強化複合材料中の本熱硬化性樹脂組成物の含有量は、強化繊維基材と本熱硬化性樹脂組成物の合計質量に対して10~80質量%が好ましく、20~60質量%がより好ましく、30~50質量%が特に好ましい。本熱硬化性樹脂組成物の含有量が少なすぎる場合、繊維強化複合材料の内部にボイド等が発生する場合がある。本熱硬化性樹脂組成物の含有量が多すぎる場合、強化繊維の含有量が不足し、得られる繊維強化複合材料の強度が低下し易い。
(10) 繊維強化複合材料の製造方法
 強化繊維基材と、本熱硬化性樹脂組成物とを複合化した後、特定の条件で加熱加圧して硬化させることにより、繊維強化複合材料(FRP)を得ることができる。本発明のプリプレグを用いて、FRPを製造する方法としては、オートクレーブ成形の他、プレス成形等の公知の成形法が挙げられる。
 
 以下、実施例により本発明をより詳細に説明する。ただし、本発明は以下に記載する実施例に限定されるものではない。
 熱硬化性樹脂組成物及びフィルム接着剤の原材料として、以下のものを用いた。
 [芳香族ビスマレイミド化合物]
  ・BMI1100-H:BMI-1100H(商品名)(N,N’-4,4’-ジフェニルメタンビスマレイミド、 大和化成工業(株)社製)
  ・TDAB:Compimide TDAB(商品名)(2,4-ビスマレイミドトルエン、 Evonik Industries AG社製)
 [脂肪族ビスマレイミド化合物]
  ・BMI-TMH:BMI-TMH(商品名)(1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、 大和化成工業(株)社製)
 [共反応物質]
  ・DABPA:DABPA(商品名)(2,2’-ジアリルビスフェノールA、 大和化成工業(株)社製)
 [可溶性熱可塑性樹脂]
  ・PEI:Ultem1000-1000(商品名)粉砕物(ポリエーテルイミド、 SABICイノベーティブプラスチック社製、 平均粒子径15μm)
  ・PES:スミカエクセル5003P(商品名)粉砕物(ポリエーテルスルホン、住友化学工業(株)製、平均粒子径15μm)
 [不溶性熱可塑性樹脂]
  ・AURUM:AURUM PD450M(商品名)(ポリイミド、三井化学(株)製)
 [トリアジン化合物]
 (ジアミノトリアジンの構造を有するトリアジン化合物)
  ・VD-3(商品名)(四国化成工業株式会社製)、融点:160℃(カタログ値)、下記化学式(12)で示される化合物である。化学式(12)中、Rは炭素数1~15の脂肪族鎖であり、本化合物はその混合物である。
Figure JPOXMLDOC01-appb-C000020
  ・VD-5(商品名)(四国化成工業株式会社製)、融点:80℃(カタログ値)、下記化学式(13)で示される化合物である。化学式(13)中、Rは炭素数1~15の脂肪族鎖であり、本化合物はその混合物である。
Figure JPOXMLDOC01-appb-C000021
  ・VD-HT(商品名)(四国化成工業株式会社製)、融点:220℃(カタログ値)、下記化学式(14)で示される化合物である。化学式(14)中、Rは炭素数1~15の脂肪族鎖であり、本化合物はその混合物である。
Figure JPOXMLDOC01-appb-C000022
 (その他のトリアジン化合物)
  ・D3265(商品名)(東京化成工業株式会社製)、融点:140℃(カタログ値)、下記化学式(20)で示される化合物である。
Figure JPOXMLDOC01-appb-C000023
 [基材繊維]
  ・基材A:E10T 4W 106T(商品名)(ガラス繊維織物、 ユニチカグラスファイバー(株)社製、 目付:106g/m
  ・基材B:H25X104(商品名)(ガラス繊維織物、 ユニチカグラスファイバー(株)社製、 目付:24.5g/m
 [炭素繊維基材]
  ・基材C:炭素繊維ストランド テナックス(登録商標) IMS 65 E 23 24K 830tex(帝人(株)社製、 引張強度:5800MPa、 引張弾性率:290GPa)を、単位面積当たりの繊維質量が190g/mとなるように炭素繊維を一方向に整列させて作製したシート状の強化繊維基材
  ・基材D:テナックス(登録商標) W3101 (炭素繊維織物、帝人(株)社製、目付:200g/m
 熱硬化性樹脂組成物、フィルム接着剤、及びプリプレグを以下の方法により評価した。
 [フラットワイズ引張試験]
 BMIプリプレグとフィルム接着剤を[45°/-45°/0°/90°/フィルム接着剤]の方向に5枚積層した積層体をハニカムコアの上下に積層してハニカムコア積層体を得た。なお、プリプレグのフラットワイズ引張試験においては、フィルム接着剤を使用せず、[45°/-45°/0°/90°]の方向に4枚積層した積層体をハニカムコアの上下に積層してハニカムコア積層体を得た。この時のハニカムコアは、昭和飛行機工業株式会社製、AL3/16-5052-.002Nを使用した。この積層体をバッグ内に入れ、オートクレーブ内で1.7℃/分で昇温し、180℃にて360分間加熱し、硬化させ、さらに240℃で360分ポストキュアを行い、ハニカムサンドイッチパネルを得た。
 得られたハニカムサンドイッチパネルから縦50.8mm、横50.8mmに試験片を切り出し、該試験片の上下面に縦50.8mm、横50.8mmのアルミブロックをエポキシ接着剤で接着した。接着剤が硬化した後、ハニカムサンドイッチパネルの上下方向(厚さ方向)に、ASTM C 273に準拠し、引張速度0.5mm/分で引張試験を行い、ハニカムサンドイッチパネルのフラットワイズ強度を測定した。
 [ラップシェア引張負荷試験]
 アルミ板(グレード:2024-T3)を幅25.4mm、長さ101.6mmにカットし、端より12.7mmブラストした。ブラスト部分にフィルム接着剤を張り付け、上面にも12.7mmブラストしたアルミ板を重ねた。この積層体をバッグ内に入れ、オートクレーブ内で2℃/分で昇温し、180℃にて360分間加熱し、硬化させ、さらに240℃で360分ポストキュアを行いフラットワイズ試験片を得た。ASTM D 1002に準拠し、引張試験を行い、フィルム接着剤のラップシェア引張強度を測定した。
 [タック性]
 ハンドレイアップの際、積層のしやすさを評価した。
 十分にタックがあり、積層後も剥がれがないものを〇、
 タックが弱く、積層後に端部などの剥がれが確認できるものを△、
 タックが非常に弱く、常温での積層が困難であるものを×とした。
 [損傷後圧縮強度(CAI)]
 プリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で6時間成形した。得られた成形物を取り出し、熱風循環乾燥機を用いて、240℃の条件下で6時間、フリースタンドでポストキュアを実施した。成形物を幅101.6mm×長さ152.4mmの寸法に切断し、損傷後圧縮強度(CAI)試験の試験片を得た。この試験片を用いて、SACMA SRM 2R-94に従い、30.5Jの衝撃を与えて損傷させた後、損傷面積および圧縮強度(CAI)を測定した。試験片圧縮試験機のクロスヘッドスピードは1.27mm/分とし、n=5で測定を行った。
 (実施例1~15、比較例1~6)
 [熱硬化性樹脂組成物の調製]
 表1に示す配合で各成分を85℃で混合し、熱硬化性樹脂組成物を調製した。
 (実施例1~13、比較例1~4)
 [フィルム接着剤の作製]
 各熱硬化性樹脂組成物を基材繊維内に含浸してフィルム接着剤とした。この際の加熱温度は50℃であった。このフィルム接着剤を用いてタック性を評価した。結果を表1に示した。
 作製した各フィルム接着剤にて、フラットワイズ引張試験、及びラップシェア引張負荷試験を行った。結果を表1に示した。
 (実施例14)
 実施例2で得られた熱硬化性樹脂組成物と、炭素繊維基材である基材Cを用いて以下の方法でプリプレグを作製した。得られたプリプレグを用いてフラットワイズおよびタック性を評価した。結果を表2に示した。なお、フラットワイズ試験においては、フィルム接着剤を使用せず、得られたプリプレグを、[45°/-45°/0°/90°]の方向に4枚積層した積層体をハニカムコアの上下に積層してハニカムコア積層体を硬化させたハニカムサンドイッチパネルを用いて評価した。実施例14で得られたプリプレグは、フィルム接着剤を用いなくても十分に高いフラットワイズ特性を示した。
 [プリプレグの作製]
 リバースロールコーターを用いて、離型紙上に、熱硬化性樹脂組成物を塗布して50g/m目付の樹脂フィルムを作製した。次に、炭素繊維基材の両面に得られた樹脂フィルムを積重し、温度100℃、圧力0.2MPaの条件で加熱加圧して、炭素繊維含有率が65質量%のプリプレグを作製した。
 (実施例15)
 炭素繊維基材として基材Dを用いた以外は実施例14と同様にしてプリプレグを作製した。得られたプリプレグを用いてフラットワイズおよびタック性を評価した。結果を表2に示した。実施例14で得られたプリプレグは、フィルム接着剤を用いなくても十分に高いフラットワイズ特性を示した。
 (比較例5)
 熱硬化性樹脂組成物として、比較例1で得られた樹脂組成物を用いた以外は実施例14と同様にしてプリプレグを作製した。得られたプリプレグを用いてタック性を評価した。結果を表2に示した。トリアジン化合物を含まない比較例5で得られたプリプレグのフラットワイズ特性は、不十分なものであった。
 (比較例6)
 炭素繊維基材として基材Dを用いた以外は比較例5と同様にしてプリプレグを作製した。得られたプリプレグを用いてタック性を評価した。結果を表2に示した。トリアジン化合物を含まない比較例6で得られたプリプレグのフラットワイズ特性は、不十分なものであった。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026

Claims (15)

  1.  ビスマレイミド化合物と、ジアミノトリアジンの構造を有するトリアジン化合物と、を含むことを特徴とする熱硬化性樹脂組成物。
  2.  前記熱硬化性樹脂組成物が、前記ビスマレイミド化合物100質量部に対して前記トリアジン化合物を0.1~30質量部含む請求項1に記載の熱硬化性樹脂組成物。
  3.  前記熱硬化性樹脂組成物が、さらに熱可塑性樹脂を含む請求項1又は2に記載の熱硬化性樹脂組成物。
  4.  基材繊維と、熱硬化性樹脂組成物と、を含んで成り、
     前記熱硬化性樹脂組成物がビスマレイミド化合物と、ジアミノトリアジンの構造を有するトリアジン化合物とを含むことを特徴とするフィルム接着剤。
  5.  前記熱硬化性樹脂組成物が、前記ビスマレイミド化合物100質量部に対して前記トリアジン化合物を0.1~30質量部含む請求項4に記載のフィルム接着剤。
  6.  前記熱硬化性樹脂組成物が、さらに熱可塑性樹脂を含む請求項4又は5に記載のフィルム接着剤。
  7.  前記基材繊維が、ガラス繊維又は炭素繊維である請求項4乃至6の何れか1項に記載のフィルム接着剤。
  8.  目付が50~1500g/mである請求項4乃至7の何れか1項に記載のフィルム接着剤。
  9.  基材繊維と、熱硬化性樹脂組成物と、を一体化することを特徴とする請求項4に記載のフィルム接着剤の製造方法。
  10.  前記一体化が、前記基材繊維への前記熱硬化性樹脂組成物の含浸である請求項9に記載のフィルム接着剤の製造方法。
  11.  強化繊維と、前記強化繊維から成る強化繊維層内に含浸した熱硬化性樹脂組成物と、から成り、
     前記熱硬化性樹脂組成物がビスマレイミド化合物と、ジアミノトリアジンの構造を有するトリアジン化合物と、を含むことを特徴とするプリプレグ。
  12.  前記熱硬化性樹脂組成物が、前記ビスマレイミド化合物100質量部に対して前記トリアジン化合物を0.1~30質量部含む請求項11に記載のプリプレグ。
  13.  前記熱硬化性樹脂組成物が、さらに熱可塑性樹脂を含む請求項11又は12に記載のプリプレグ。
  14.  前記強化繊維が、炭素繊維である請求項11乃至13の何れか1項に記載のプリプレグ。
  15.  強化繊維と、請求項1乃至3の何れか1項に熱硬化性樹脂組成物と、を一体化することを特徴とするプリプレグの製造方法。
PCT/JP2019/046183 2018-11-29 2019-11-26 熱硬化性樹脂組成物、フィルム接着剤、プリプレグ及びこれらの製造方法 WO2020111065A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/298,305 US20220017698A1 (en) 2018-11-29 2019-11-26 Thermosetting resin composition, film adhesive, prepreg, and production method thereof
JP2020557739A JP7086218B2 (ja) 2018-11-29 2019-11-26 熱硬化性樹脂組成物、フィルム接着剤、プリプレグ及びこれらの製造方法
EP19890174.6A EP3889207B1 (en) 2019-11-26 Thermosetting resin composition, film adhesive, prepreg, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018224300 2018-11-29
JP2018-224300 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111065A1 true WO2020111065A1 (ja) 2020-06-04

Family

ID=70854417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046183 WO2020111065A1 (ja) 2018-11-29 2019-11-26 熱硬化性樹脂組成物、フィルム接着剤、プリプレグ及びこれらの製造方法

Country Status (4)

Country Link
US (1) US20220017698A1 (ja)
JP (1) JP7086218B2 (ja)
TW (1) TW202028356A (ja)
WO (1) WO2020111065A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022540412A (ja) * 2019-07-02 2022-09-15 山▲東▼▲聖▼泉新材料股▲ふん▼有限公司 接着促進剤およびそれを含有する感光性樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52994A (en) 1975-06-19 1977-01-06 Ciba Geigy Ag Imide grouppcontaining crosslinked polymer and preparation thereof
JPS5439495A (en) * 1977-09-05 1979-03-26 Hitachi Ltd Thermosetting resin composition
JP2009105283A (ja) * 2007-10-24 2009-05-14 Hitachi Chem Co Ltd 多層プリント配線板用樹脂付き銅箔及びそれを用いて作製される多層プリント配線板
JP2009149742A (ja) * 2007-12-19 2009-07-09 Hitachi Chem Co Ltd ポリイミド化合物の製造方法、熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2014047353A (ja) 2012-08-31 2014-03-17 Boeing Co クロムフリー化成被覆
JP2016524629A (ja) 2013-04-26 2016-08-18 ザ・ボーイング・カンパニーThe Boeing Company アルミニウムとの構造的な接合のための表面処理

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558505A (zh) * 2006-09-29 2012-07-11 日立化成工业株式会社 热固性树脂组合物及用其形成的预浸料及层叠板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52994A (en) 1975-06-19 1977-01-06 Ciba Geigy Ag Imide grouppcontaining crosslinked polymer and preparation thereof
JPS5439495A (en) * 1977-09-05 1979-03-26 Hitachi Ltd Thermosetting resin composition
JP2009105283A (ja) * 2007-10-24 2009-05-14 Hitachi Chem Co Ltd 多層プリント配線板用樹脂付き銅箔及びそれを用いて作製される多層プリント配線板
JP2009149742A (ja) * 2007-12-19 2009-07-09 Hitachi Chem Co Ltd ポリイミド化合物の製造方法、熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2014047353A (ja) 2012-08-31 2014-03-17 Boeing Co クロムフリー化成被覆
JP2016524629A (ja) 2013-04-26 2016-08-18 ザ・ボーイング・カンパニーThe Boeing Company アルミニウムとの構造的な接合のための表面処理

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022540412A (ja) * 2019-07-02 2022-09-15 山▲東▼▲聖▼泉新材料股▲ふん▼有限公司 接着促進剤およびそれを含有する感光性樹脂組成物
JP7311232B2 (ja) 2019-07-02 2023-07-19 山▲東▼▲聖▼泉新材料股▲ふん▼有限公司 接着促進剤およびそれを含有する感光性樹脂組成物

Also Published As

Publication number Publication date
EP3889207A1 (en) 2021-10-06
JP7086218B2 (ja) 2022-06-17
US20220017698A1 (en) 2022-01-20
TW202028356A (zh) 2020-08-01
JPWO2020111065A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
KR101616658B1 (ko) 에폭시 수지 조성물, 프리프레그, 섬유 강화 복합 재료와 그의 제조 방법
JP6007914B2 (ja) 真空成形用プリプレグ、繊維強化複合材料およびその製造方法
US5268223A (en) Toughened fiber-reinforced composites
JPH045688B2 (ja)
KR20070112180A (ko) 표면 마무리 및/또는 접합 방법
JP6397205B2 (ja) プリプレグ、炭素繊維強化複合材料、ロボットハンド部材及びその原料樹脂組成物
JP2019157097A (ja) プリプレグ及び繊維強化複合材料、並びにそれらの製造方法
JP6854880B2 (ja) 自己接着性プリプレグ、及びその製造方法
JP2014114369A (ja) 熱硬化性ビスマレイミド系樹脂組成物、同樹脂組成物を用いるプリプレグ及びそれらの製造方法
EP3197933B1 (en) Fast curing compositions
JP7099113B2 (ja) 炭素繊維プリプレグの製造方法
JP2014114368A (ja) 熱硬化性ビスマレイミド系樹脂組成物及びプリプレグ並びにそれらの製造方法
EP4130106A1 (en) Fiber-reinforced composite material and bonded body
JP7086218B2 (ja) 熱硬化性樹脂組成物、フィルム接着剤、プリプレグ及びこれらの製造方法
JP2018062540A (ja) 熱硬化性樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP6949141B2 (ja) 熱硬化性樹脂組成物
EP3889207B1 (en) Thermosetting resin composition, film adhesive, prepreg, and production method thereof
JPWO2019107276A1 (ja) 炭素繊維束、プリプレグ、繊維強化複合材料
JP2014105317A (ja) 樹脂組成物、該樹脂組成物を用いるプリプレグ、及び樹脂組成物の製造方法
JP2013209474A (ja) 樹脂組成物、それを用いたプリプレグ、および樹脂組成物の製造方法
JP2019157096A (ja) エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP4972865B2 (ja) 自己接着型プリプレグ用樹脂組成物の製造方法
JP2023140385A (ja) 成形材料、繊維強化複合材料、及び繊維強化複合材料の製造方法
JP4817919B2 (ja) 繊維強化プリプレグ及びそれから得られる複合材料
JP2022180746A (ja) 複合材料およびプリプレグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890174

Country of ref document: EP

Effective date: 20210629