WO2020111042A1 - 蓄電モジュール - Google Patents

蓄電モジュール Download PDF

Info

Publication number
WO2020111042A1
WO2020111042A1 PCT/JP2019/046104 JP2019046104W WO2020111042A1 WO 2020111042 A1 WO2020111042 A1 WO 2020111042A1 JP 2019046104 W JP2019046104 W JP 2019046104W WO 2020111042 A1 WO2020111042 A1 WO 2020111042A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
heat conduction
storage module
conduction suppressing
Prior art date
Application number
PCT/JP2019/046104
Other languages
English (en)
French (fr)
Inventor
笙汰 乗峯
光俊 田嶋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/297,393 priority Critical patent/US20220006138A1/en
Priority to JP2020557728A priority patent/JP7373753B2/ja
Priority to CN201980076916.6A priority patent/CN113169390A/zh
Publication of WO2020111042A1 publication Critical patent/WO2020111042A1/ja
Priority to JP2023176927A priority patent/JP2023174808A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage module.
  • an electricity storage module in which a plurality of power storage devices (for example, batteries) are connected in series is known as a power supply for vehicles, which requires a high output voltage.
  • an electricity storage module includes a plurality of electricity storage devices, a plurality of separators arranged between adjacent electricity storage devices, a pair of end plates arranged at both ends in the arrangement direction of the electricity storage devices, and a pair of end plates. And a bind bar for restraining the plurality of power storage devices in the arrangement direction.
  • the power storage device generally includes an outer can having an opening, an electrode body housed in the outer can, and a sealing plate that closes the opening of the outer can.
  • Such a power storage device tends to expand with charging. Expansion of the power storage device is caused by an increase in gas pressure in the outer can and an expansion of the electrode body. In the conventional power storage module, this expansion is suppressed by the end plate and the bind bar.
  • Patent Document 1 discloses an assembled battery including a flat prismatic secondary battery and spacers arranged on both sides in the thickness direction of the secondary battery.
  • the secondary battery had an intermediate region overlapping the electrode mixture layer of the electrode and a peripheral region around the intermediate region on the wide side surface.
  • the spacer has an abutting portion that abuts the peripheral area of the wide side surface, and a cavity portion that is adjacent to the intermediate area of the wide side surface.
  • the dimension of the cavity in the thickness direction was equal to or larger than the expansion amount of the wide side surface when the secondary battery was fully charged.
  • a gap is provided between the intermediate region on the wide side surface of the container and the spacer to prevent the intermediate region on the wide side surface from receiving a reaction force from the spacer during expansion of the battery.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for increasing the reliability of a power storage module.
  • the power storage module includes a plurality of power storage devices arranged in the first direction and a separator that is arranged between two adjacent power storage devices and insulates the two power storage devices.
  • the power storage device includes an outer can having an opening, a sealing plate that closes the opening, and a joint portion between the outer can and the sealing plate.
  • the separator has a contact region that is in contact with a surface of the outer can facing the first direction, and a separation region that overlaps the joint portion when viewed from the first direction and is recessed in a direction away from the outer can than the contact region.
  • the reliability of the power storage module can be improved.
  • FIG. 3 is a perspective view of the electricity storage module according to the first embodiment.
  • FIG. 3 is an exploded perspective view of a power storage device and a separator. It is a perspective view of a separator. It is a perspective view which expands and shows a part of separator. It is a sectional view of a part of electricity storage module. It is sectional drawing which expands and shows a part of upper part of an electricity storage module. It is sectional drawing which expands and shows a part of lower part of an electrical storage module.
  • FIG. 6 is a cross-sectional view showing an enlarged part of an upper portion of the electricity storage module according to the second embodiment.
  • FIG. 9 is a perspective view of an electricity storage module according to a third embodiment.
  • FIG. 3 is an exploded perspective view of a power storage device and a separator. It is a perspective view of a separator. It is a perspective view which expands and shows a part of separator. It is a sectional view of a part of electricity storage
  • FIG. 3 is an exploded perspective view of a power storage device and a separator. It is a perspective view of a separator. It is a perspective view which expands and shows a part of separator. It is a sectional view of a part of electricity storage module. It is sectional drawing which expands and shows a part of upper part of an electricity storage module. It is sectional drawing which expands and shows a part of lower part of an electrical storage module.
  • FIG. 11 is a cross-sectional view showing an enlarged part of the lower portion of the electricity storage module according to the fourth embodiment.
  • FIG. 10 is a cross-sectional view showing an enlarged part of a lower portion of an electricity storage module according to a fifth embodiment.
  • FIG. 8 is a cross-sectional view showing an enlarged part of a lower portion of an electricity storage module according to Modification 1.
  • FIG. 1 is a perspective view of an electricity storage module according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the power storage device and the separator.
  • the power storage module 1 includes a plurality of power storage devices 2, a plurality of separators 4, a pair of end plates 6, and a pair of restraining members 8.
  • Each power storage device 2 is a rechargeable secondary battery such as a lithium-ion battery, a nickel-hydrogen battery, a nickel-cadmium battery, or the like.
  • the power storage device 2 is a so-called prismatic battery and has a flat rectangular parallelepiped outer case 10.
  • the outer can 10 has a rectangular opening 12 (see FIG. 5) on one surface, and the outer can 10 accommodates an electrode body 14 (see FIG. 5) including a positive electrode and a negative electrode, an electrolytic solution, and the like through the opening 12. ..
  • the opening 12 is provided with a sealing plate 16 that closes the opening 12 and seals the outer can 10.
  • the sealing plate 16 is, for example, a rectangular plate.
  • the outer can 10 has a bottom surface 10 a facing the sealing plate 16.
  • the outer can 10 has four side surfaces that connect the opening 12 and the bottom surface 10a. Two of the four side surfaces are a pair of long side surfaces 10b connected to the two long sides of the opening 12 that face each other. Each long side surface 10b is the largest surface of the surfaces of the outer can 10, that is, the main surface. The remaining two side surfaces excluding the two long side surfaces 10b are a pair of short side surfaces connected to the opening 12 of the outer can 10 and the short side of the bottom surface 10a.
  • the sealing plate 16 is provided with an output terminal 18 electrically connected to the positive electrode of the electrode body 14 near one end in the longitudinal direction, and an output terminal 18 electrically connected to the negative electrode of the electrode body 14 near the other end.
  • the output terminal 18 connected to the positive electrode will be appropriately referred to as a positive electrode terminal 18a
  • the output terminal 18 connected to the negative electrode will be referred to as a negative electrode terminal 18b.
  • the positive electrode terminal 18a and the negative electrode terminal 18b are collectively referred to as the output terminal 18.
  • the outer can 10 and the sealing plate 16 are conductors, and are made of metal such as aluminum, iron, and stainless.
  • the sealing plate 16 and the outer can 10 are joined by, for example, a laser. Therefore, the power storage device 2 has the joint portion 20 between the outer can 10 and the sealing plate 16. As an example, the joint portion 20 is provided on the entire outer periphery of the sealing plate 16. It should be noted that the sealing plate 16 and the outer can 10 may be joined by friction stir welding, brazing, or the like other than the laser.
  • the surface on which the sealing plate 16 is provided is the upper surface of the power storage device 2.
  • the bottom surface 10 a of the outer can 10 is the bottom surface of the power storage device 2
  • the long side surface 10 b of the outer can 10 is the long side surface of the power storage device 2
  • the short side surface of the outer can 10 is the short side surface of the power storage device 2.
  • the top surface of the power storage device 2 is the top surface of the power storage module 1
  • the bottom surface of the power storage device 2 is the bottom surface of the power storage module 1
  • the short side surface of the power storage device 2 is the power storage module 2. It is the side of module 1.
  • the upper surface side of the electricity storage module 1 is vertically upward and the bottom surface side of the electricity storage module 1 is vertically downward. These directions and positions are defined for convenience. Therefore, for example, in the present invention, the portion defined as the top surface does not necessarily mean that it is located above the portion defined as the bottom surface. Therefore, the sealing plate 16 is not always located above the bottom surface 10a of the outer can 10.
  • the sealing plate 16 is provided with a safety valve 22 between the pair of output terminals 18.
  • the safety valve 22 is configured to open when the internal pressure of the outer can 10 rises above a predetermined value to release the gas inside the outer can 10.
  • the safety valve 22 of each power storage device 2 is connected to a gas duct (not shown), and the gas inside the power storage device 2 is discharged from the safety valve 22 to the gas duct.
  • the safety valve 22 is composed of, for example, a thin portion that is provided in a part of the sealing plate 16 and has a smaller thickness than other portions, and a linear groove formed on the surface of the thin portion. In this configuration, when the internal pressure of the outer can 10 rises, the thin wall portion tears from the groove, and the safety valve 22 opens.
  • the plurality of power storage devices 2 are arranged in parallel at a predetermined interval such that the long side surfaces 10b of the power storage devices 2 adjacent to each other face each other to form an assembly.
  • the direction in which the plurality of power storage devices 2 are arranged is the first direction X.
  • a direction in which the sealing plate 16 extends is defined as a second direction Y, and a direction in which the sealing plate 16 and the bottom surface 10a are arranged is defined as a third direction Z.
  • the output terminals 18 of the respective power storage devices 2 are arranged so as to face the same direction.
  • output terminal 18 of each power storage device 2 is arranged so as to face upward in the vertical direction for convenience.
  • the output terminals 18 of the respective power storage devices 2 may be arranged so as to face different directions.
  • the two adjacent power storage devices 2 are stacked so that the positive electrode terminal 18a of one power storage device 2 and the negative electrode terminal 18b of the other power storage device 2 are adjacent to each other.
  • the positive electrode terminal 18a and the negative electrode terminal 18b are connected in series via a bus bar (not shown).
  • the output terminals 18 of the same polarity in a plurality of adjacent power storage devices 2 may be connected in parallel by a bus bar to form a power storage device block, and the power storage device blocks may be connected in series.
  • the separator 4 is also called an insulating spacer and is arranged between two adjacent power storage devices 2 to electrically insulate the two power storage devices 2 from each other.
  • the separator 4 of the present embodiment has a frame portion 24 and a heat conduction suppressing portion 26.
  • the frame portion 24 is made of, for example, an insulating resin. Examples of the resin forming the frame portion 24 include thermoplastic resins such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), and Noryl (registered trademark) resin (modified PPE).
  • the frame portion 24 has a locking portion 27 interposed between the long side surfaces 10b of two adjacent power storage devices 2.
  • the interposition of the locking portion 27 insulates between two adjacent power storage devices 2.
  • the frame portion 24 is a polygonal ring shape (a square ring shape in the present embodiment) corresponding to the shape of the long side surface 10b, the inside of the frame or ring corresponds to the center side of the power storage module 1 in the YZ plane, and The outside corresponds to the outside of the electricity storage module 1 on the YZ plane.
  • the YZ plane is a plane that extends in the second direction Y and the third direction Z.
  • the frame 24 also has a wall 28.
  • the wall portion 28 is connected to the outer peripheral surface of the locking portion 27, extends in the first direction X, and covers the upper surface, the short side surface, and the bottom surface of the power storage device 2. This makes it possible to secure a creeping distance between the power storage devices 2 adjacent to each other or between the power storage device 2 and the end plate 6. Further, it is possible to regulate the position of the power storage device 2 in the second direction Y and the third direction Z. Further, each power storage device 2 and the restraint member 8 can be electrically insulated.
  • the locking portion 27 and the wall portion 28 are integrally formed.
  • a notch 30 is provided at a position of the wall 28 corresponding to the output terminal 18 so that the output terminal 18 is exposed.
  • the wall portion 28 is provided with a pair of projecting wall portions 32 that project in the third direction Z in which the sealing plate 16 and the bottom surface 10a are arranged.
  • the pair of protruding wall portions 32 are arranged so as to sandwich the cutout portion 30 in the second direction Y in which the sealing plate 16 extends, in other words, in the second direction Y in which the two output terminals 18 are arranged.
  • An opening 34 is provided at a position of the wall 28 corresponding to the safety valve 22 so that the safety valve 22 is exposed.
  • a tubular duct portion 36 protruding from the wall portion 28 in the third direction Z is provided.
  • the duct portion 36 surrounds the entire circumference of the opening portion 34.
  • the duct part 36 connects the safety valve 22 and a gas duct (not shown).
  • a cutout portion 38 is provided in the wall portion 28 at a position corresponding to the bottom surface 10a of the outer can 10 so that a part of the bottom surface 10a is exposed.
  • a cooling plate is thermally connected to bottom surface 10a of power storage device 2.
  • the heat conduction suppressing unit 26 is interposed between the long side surfaces 10b of two adjacent power storage devices 2 and suppresses heat conduction between the two power storage devices 2. Accordingly, even if the temperature of any power storage device 2 excessively rises during use of power storage module 1, the heat can be suppressed from being transferred to the adjacent power storage device 2. Therefore, a chain of overheating (chain of thermal runaway) can be suppressed. Further, the heat conduction suppressing portion 26 has an insulating property.
  • the heat conduction suppressing portion 26 has a plate shape or a sheet shape, and is made of, for example, a heat insulating material and a laminated film. The thickness of the heat conduction suppressing portion 26 is, for example, 1 to 2 mm.
  • the heat insulating material is in the form of a sheet and has a structure in which a porous material such as silica xerogel is carried between the fibers of a fiber sheet made of non-woven fabric or the like.
  • Silica xerogel has a nano-sized void structure that regulates the movement of air molecules, and has low thermal conductivity.
  • the thermal conductivity of the heat insulating material is about 0.018 to 0.024 W/m ⁇ K.
  • the heat insulating material is particularly useful as a heat insulating material used in a narrow space.
  • the thermal conductivity of the heat insulating material is lower than that of air.
  • the heat conduction suppressing unit 26 it is possible to further suppress the heat conduction between the power storage devices 2 as compared with the case where only the air layer is interposed between two adjacent power storage devices 2. Further, the heat conduction suppressing portion 26 has lower heat conductivity than the frame portion 24.
  • silica xerogel has relatively high structural stability against external pressure. Therefore, the heat insulating performance of the heat insulating material can be stably maintained. Therefore, the electricity storage module 1 can suppress the heat conduction between the electricity storage devices 2 more stably by including the heat conduction suppressing unit 26. Furthermore, since the heat insulating material has a lower thermal conductivity than that of air, it is possible to obtain the same heat insulating effect with a thinner layer thickness than that of the air layer. Therefore, upsizing of the electricity storage module 1 can be suppressed.
  • Laminate film is a member that wraps and protects the entire heat insulating material.
  • the laminated film can prevent the porous material in the heat insulating material from falling off from the fiber sheet. Further, by covering the heat insulating material with the laminate film, it is possible to easily fit the heat conduction suppressing portion 26 into the frame portion 24 at the time of assembling the electricity storage module 1.
  • the laminate film is made of, for example, polyethylene terephthalate (PET).
  • the heat conduction suppressing portion 26 has higher heat resistance than the frame portion 24. More specifically, the heat resistance of the heat insulating material is higher than that of the frame portion 24. More specifically, the fiber sheet contains fibers having a higher melting point than the frame portion 24, the porous material is made of a substance having a higher melting point than the frame portion 24, or both.
  • the heat insulating material has a melting point of 300° C. or higher. Specifically, the melting point of the fiber sheet and/or the porous material forming the heat insulating material is 300° C. or higher. In particular, it is preferable that the melting point of the fibers forming the fiber sheet is 300° C. or higher. Thereby, even when the heat insulating material is exposed to high temperature, the fiber sheet can maintain the state of carrying the porous material.
  • the heat conduction suppressing portion 26 can be left even when the frame portion 24 is melted by the heat generation of the power storage device 2. it can. Therefore, even if the frame portion 24 is melted, the heat conduction suppressing portion 26 can maintain the insulation between the power storage devices 2. In addition, a state in which heat conduction between adjacent power storage devices 2 is suppressed can be maintained for a longer period of time.
  • the plurality of power storage devices 2 and the plurality of separators 4 arranged in parallel are sandwiched by the pair of end plates 6 in the first direction X. Between the pair of end plates 6 and the power storage devices 2 located at both ends in the first direction X, for example, a separator to which the heat conduction suppressing portion 26 is not attached is arranged.
  • this separator preferably has a separation region 48 described later.
  • the end plate 6 is made of, for example, a metal plate. A screw hole (not shown) into which the screw 40 is screwed is provided on a surface of the end plate 6 that faces the long side surface 10b of the outer can 10.
  • the pair of restraint members 8 are also called bind bars, and are long members having the first direction X as the longitudinal direction.
  • the pair of restraint members 8 are arranged to face each other in the second direction Y in which the pair of output terminals 18 are arranged.
  • a plurality of power storage devices 2, a plurality of separators 4, and a pair of end plates 6 are interposed between the pair of restraint members 8.
  • Each restraint member 8 has a rectangular flat surface portion 8a extending parallel to the short side surface of the power storage device 2, and four eaves portions 8b protruding from each end of the flat surface portion 8a toward the power storage device 2 side.
  • a through hole (not shown) into which the screw 40 is inserted is provided in each of the two eave portions 8b facing each other in the first direction X.
  • While the plurality of power storage devices 2 and the plurality of separators 4 are alternately arranged and sandwiched in the first direction X by the pair of end plates 6, they are sandwiched in the second direction Y by the pair of restraining members 8. ..
  • Each restraint member 8 is aligned such that the through hole of the eaves portion 8b overlaps the screw hole of the end plate 6. Then, the screw 40 is inserted into the through hole and screwed into the screw hole. In this way, the pair of restraint members 8 are engaged with the pair of end plates 6 to restrain the plurality of power storage devices 2.
  • the plurality of power storage devices 2 and the plurality of separators 4 are fastened by the restraining member 8 in a state where a predetermined pressure is applied in the first direction X.
  • the plurality of power storage devices 2 are positioned in the first direction X by being tightened in the first direction X by the restraint member 8. Further, the upper surface and the bottom surface of the plurality of power storage devices 2 are in contact with the two eaves portions 8 b facing each other in the third direction Z where the upper surface and the bottom surface are arranged, via the wall portion 28 of the separator 4. As a result, the plurality of power storage devices 2 are positioned in the third direction Z.
  • a bus bar is attached to the output terminal 18 of each power storage device 2, and the output terminals 18 of the plurality of power storage devices 2 are electrically connected.
  • the bus bar is fixed to the output terminal 18 by welding.
  • the top surfaces of the plurality of power storage devices 2 are covered with a cover member (not shown).
  • the cover member is supported by the protruding wall portion 32.
  • the cover member prevents the output terminal 18, the bus bar, the safety valve 22 and the like of the power storage device 2 from contacting condensed water, dust and the like.
  • the cover member is made of, for example, an insulating resin.
  • FIG. 3 is a perspective view of the separator.
  • FIG. 4 is an enlarged perspective view showing a part of the separator.
  • FIG. 5 is a cross-sectional view of a part of the power storage module.
  • FIG. 6 is an enlarged cross-sectional view showing a part of the upper portion of the electricity storage module.
  • FIG. 7 is a cross-sectional view showing an enlarged part of the lower portion of the electricity storage module. 3 and 4, the illustration of the heat conduction suppressing portion 26 is omitted. 5 to 7, as a part of the power storage module 1, two arbitrary power storage devices 2 and a separator 4 arranged between them are illustrated. Further, the internal structure of the power storage device 2 is schematically illustrated.
  • the separator 4 has the frame portion 24 and the heat conduction suppressing portion 26.
  • the locking portion 27 of the frame portion 24 is provided between two adjacent power storage devices 2 and has a hole 42 extending between the two power storage devices 2.
  • the frame portion 24 extends along the peripheral portion of the outer can 10 when viewed from the first direction X in which the power storage devices 2 are arranged. Therefore, the hole 42 overlaps with the central portion of the outer can 10 when viewed in the first direction X.
  • the hole 42 is a through hole that penetrates the separator 4 in the first direction X.
  • the heat conduction suppressing portion 26 is arranged so as to close the hole 42.
  • the locking portion 27 of the frame portion 24 has a predetermined thickness in the first direction X, and has a groove portion 44 on the inner peripheral surface of the frame portion 24 facing the hole 42 side.
  • the groove portion 44 extends over the entire circumference of the hole 42.
  • the heat conduction suppressing portion 26 is supported by the frame portion 24 by fitting the peripheral edge portion into the groove portion 44.
  • the groove portion 44 does not have to extend over the entire circumference of the hole 42.
  • the groove portions 44 may be formed only at both ends of the heat conduction suppressing portion 26 and may grasp both ends of the heat conduction suppressing portion 26.
  • the following method is exemplified as a method of installing the heat conduction suppressing portion 26 on the frame portion 24, in other words, an assembling method of the separator 4.
  • the frame portion 24 is divided into a plurality (for example, two) in the second direction Y or the third direction Z.
  • the respective divided parts are arranged with the heat conduction suppressing part 26 interposed therebetween, the ends of the heat conduction suppressing part 26 are aligned with the groove parts 44 of the respective parts, and then the respective parts are brought closer to each other. After the respective parts abut, they are fixed by, for example, bonding.
  • the heat conduction suppressing portion 26 has the peripheral edge portion inserted into the groove portion 44 and is supported by the frame portion 24.
  • a slit for inserting the heat conduction suppressing portion 26 into the hole 42 may be provided in the frame portion 24, and the heat conduction suppressing portion 26 may be inserted into the frame portion 24 via this slit.
  • the frame portion 24 is divided in the first direction X, and the separator 4 may be assembled by sandwiching the heat conduction suppressing portion 26 in each portion in the first direction X. Further, the separator 4 may be formed by integrally molding the frame portion 24 and the heat conduction suppressing portion 26.
  • the separator 4 has a contact area 46 and a separation area 48.
  • the contact area 46 and the separation area 48 are arranged in the frame portion 24. More specifically, the contact area 46 and the separation area 48 are arranged on both side surfaces of the locking portion 27 of the frame portion 24 facing the first direction X in which the power storage devices 2 are arranged.
  • the contact area 46 corresponds to a surface of each outer can 10 that faces the first direction X, that is, the long side surface 10b. As a result, each power storage device 2 is positioned in the first direction X. Further, the expansion of the outer can 10 is suppressed.
  • the contact area 46 of the present embodiment is in contact with three edge portions of the long side surface 10b, which are adjacent to the bottom surface 10a and the pair of short side surfaces. Therefore, the contact area 46 is substantially U-shaped when viewed in the first direction X.
  • the separation area 48 has a shape recessed in the direction away from the outer can 10 than the contact area 46. Then, the separated region 48 is arranged so as to overlap the joint portion 20 when viewed in the first direction X.
  • the long side surface 10b of the present embodiment has a rectangular shape, the contact area 46 overlaps with three of the four side surfaces of the long side surface 10b facing the first direction X, and the separation area 48 has four. It overlaps with the rest of the edges.
  • a gap 50 is provided between the separated region 48 of the frame 24 and the long side surface 10 b of the outer can 10. Since the frame portion 24 has the separated region 48, it is possible to prevent the joint portion 20 from being pressed by the frame portion 24 when the power storage module 1 is assembled. As a result, it is possible to reduce the load applied to the joint portion 20 due to the pressure from the separator 4 when the storage module 1 is assembled.
  • the separated region 48 may be provided so as to extend intermittently in the second direction Y and the third direction Z.
  • the region near the joint portion 20 of the outer can 10 expands without being pressed by the frame 24.
  • the outer can 10 expands by a predetermined amount, the outer can 10 comes into contact with the separated region 48, and further expansion of the outer can 10 is suppressed. Thereby, excessive deformation of the joint portion 20 is suppressed. As a result, the load applied to the joint portion 20 due to the deformation can be reduced.
  • the separation area 48 of the present embodiment extends over the entire locking portion 27 in the second direction Y in which the sealing plate 16 extends. That is, both ends of the separated region 48 in the second direction Y are in contact with the wall 28 that extends parallel to the short side surface of the power storage device 2. Therefore, the separation region 48 overlaps the entire joint portion 20 in the second direction Y in which the sealing plate 16 extends when viewed from the first direction X. Thereby, the load applied to the joint portion 20 can be reduced more reliably. Both ends of the separated region 48 in the second direction Y may be connected to the portion of the contact region 46 extending in the third direction Z. In this case, the mechanical strength of the frame 24 is increased, and the reliability of holding the power storage device 2 is increased.
  • the separated region 48 overlaps the entire joint portion 20 in the thickness direction of the sealing plate 16, that is, in the third direction Z.
  • the separation region 48 extends from the surface of the sealing plate 16 facing the outer side of the power storage device 2 to the surface facing the inner space side of the power storage device 2.
  • the load applied to the joint portion 20 can be reduced more reliably.
  • the separation region 48 projects from the sealing plate 16 toward the surface of the outer can 10 that faces the sealing plate 16, that is, toward the bottom surface 10a. That is, the separated region 48 extends toward the bottom surface 10 a side of the surface of the sealing plate 16 that faces the internal space side of the power storage device 2. This also makes it possible to more reliably reduce the load applied to the joint portion 20.
  • the portion of the frame portion 24 that extends along the joint portion 20, that is, the portion where the separation region 48 is arranged is arranged outside the electrode body 14 when viewed in the first direction X.
  • the expansion of the outer can 10 is mainly caused by the expansion of the electrode body 14. Therefore, by disposing the portion of the frame portion 24 outside the electrode body 14, the separated region 48 does not overlap the electrode body 14, and the load applied to the joint portion 20 can be reduced more reliably.
  • the peripheral portion of the heat conduction suppressing portion 26 is fitted in the groove portion 44 of the frame portion 24. That is, the frame portion 24 supports the heat conduction suppressing portion 26 by sandwiching the peripheral edge portion of the heat conduction suppressing portion 26 in the first direction X. Therefore, a part of the frame portion 24 is interposed between the peripheral edge portion of the heat conduction suppressing portion 26 and the peripheral edge portion of the long side surface 10b of the outer can 10. As a result, a space 52 is formed between the central portion of the heat conduction suppressing portion 26 and the central portion of the long side surface 10b.
  • the central portion of the outer can 10 expands without hitting the heat conduction suppressing part 26. That is, the void 52 functions as a space that allows a predetermined amount of expansion of the outer can 10. Thereby, the deformation of the heat conduction suppressing portion 26 due to the expansion of the outer can 10, that is, the compression in the first direction X can be suppressed. As a result, it is possible to suppress deterioration of the heat insulation performance of the heat conduction suppressing portion 26. Further, the load applied to the end plate 6 and the restraint member 8 can be reduced.
  • the size of the void 52 in the first direction X may be equal to or larger than the size of the void 50 in the first direction X. With this configuration, it is possible to secure the space in which the outer can 10 expands while providing the separated region 48.
  • the power storage module 1 includes a plurality of power storage devices 2 and a separator disposed between two adjacent power storage devices 2 to insulate the two power storage devices 2 from each other. 4 is provided.
  • the power storage device 2 includes an outer can 10 having an opening 12, a sealing plate 16 that closes the opening 12, and a joint portion 20 between the outer can 10 and the sealing plate 16.
  • the separator 4 overlaps the contact area 46 that is in contact with the surface of the outer can 10 in which the power storage devices 2 are arranged in the first direction X, and the joint portion 20 when viewed from the first direction X. And a separated region 48 that is recessed in the separating direction.
  • the joint portion 20 is provided. Such a load can be reduced. Further, it is possible to reduce the load repeatedly applied to the joint portion 20 when the outer can 10 is expanded. Further, when the outer can 10 expands to a predetermined size, the outer can 10 contacts the separated region 48, and further expansion of the outer can 10 is suppressed. Thereby, excessive deformation of the joint portion 20 can be suppressed, and the load applied to the joint portion 20 due to the deformation can be reduced.
  • the electricity storage module 1 As described above, according to the electricity storage module 1 according to the present embodiment, it is possible to reduce the risk that the joint portion 20 between the outer can 10 and the sealing plate 16 is damaged, so that the reliability of the electricity storage device 2 and thus the electricity storage module 1 is improved. You can Further, it is possible to increase the capacity of the power storage module 1 while maintaining the reliability of the power storage module 1.
  • the separation region 48 overlaps the entire joint portion 20 in the second direction Y in which the sealing plate 16 extends when viewed from the first direction X. Further, the separation region 48 overlaps the entire joint portion 20 in the thickness direction of the sealing plate 16. Further, the separation region 48 projects toward the bottom surface 10 a side of the outer can 10 than the sealing plate 16. As a result, the load applied to the joint portion 20 when the outer can 10 is expanded and when the power storage device 2 is fastened by the restraint member 8 can be more reliably reduced.
  • the separator 4 of the present embodiment has a frame portion 24 and a heat conduction suppressing portion 26.
  • the frame portion 24 is interposed between two adjacent power storage devices 2 and defines a hole 42 extending between the two power storage devices 2.
  • the heat conduction suppressing portion 26 is arranged so as to close the hole 42.
  • the contact area 46 and the separation area 48 are arranged in the frame portion 24.
  • FIG. 8 is an enlarged cross-sectional view showing a part of the upper portion of the electricity storage module according to the second embodiment.
  • FIG. 8 schematically shows the internal structure of power storage device 2.
  • the separator 4 included in the electricity storage module 1 according to the present embodiment has the contact area 46 and the separation area 48 as in the first embodiment. Also in the present embodiment, the contact area 46 and the separation area 48 are arranged in the frame portion 24.
  • the separation area 48 has an inclined surface 48a.
  • the inclined surface 48a is inclined so as to separate from the outer can 10 as it goes from the side of the sealing plate 16 toward the bottom surface 10a side of the outer can 10 that faces the sealing plate 16.
  • the inclined surface 48a is arranged at an end portion on the hole 42 side in a portion extending along the joint portion 20 of the frame portion 24. Therefore, a portion of frame portion 24 extending along joint 20 has a tapered portion whose thickness (size in first direction X) decreases from the outside of power storage module 1 toward the center side.
  • the gap 50 provided between the separated region 48 and the long side surface 10b gradually expands from the outer side to the center side of the power storage module 1 in the region where the inclined surface 48a extends.
  • the outer can 10 has a larger expansion amount in the central portion than in the peripheral portion.
  • the separated region 48 has the inclined surface 48a, the expansion of the outer can 10 can be more reliably allowed. Therefore, the load applied to the joint portion 20 can be reduced more reliably. Further, it is possible to reduce the possibility that the frame portion 24 is pressed against the outer can 10 and the outer can 10 or the insulating tape or the like covering the outer surface of the outer can 10 is damaged such as a dent.
  • the inclined surface 48a may extend over the entire separation region 48 in the third direction Z.
  • FIG. 9 is a perspective view of the power storage module according to the third embodiment.
  • FIG. 10 is an exploded perspective view of the power storage device and the separator.
  • the power storage module 1 includes a plurality of power storage devices 2, a plurality of separators 4, a pair of end plates 6, and a pair of restraining members 8.
  • Each power storage device 2 is a rechargeable secondary battery such as a lithium-ion battery, a nickel-hydrogen battery, a nickel-cadmium battery, or the like.
  • the power storage device 2 is a so-called prismatic battery and has a flat rectangular parallelepiped outer case 10.
  • the outer can 10 has a rectangular opening 12 (see FIG. 13) on one surface, and the outer can 10 accommodates an electrode body 14 (see FIG. 13) including a positive electrode and a negative electrode, an electrolytic solution, and the like through the opening 12. ..
  • the opening 12 is provided with a sealing plate 16 that closes the opening 12 and seals the outer can 10.
  • the sealing plate 16 is, for example, a rectangular plate.
  • the outer can 10 has a bottom surface 10 a facing the sealing plate 16.
  • the outer can 10 has four side surfaces that connect the opening 12 and the bottom surface 10a. Two of the four side surfaces are a pair of long side surfaces 10b connected to the two long sides of the opening 12 that face each other. Each long side surface 10b is the largest surface of the surfaces of the outer can 10, that is, the main surface. The remaining two side surfaces excluding the two long side surfaces 10b are a pair of short side surfaces connected to the opening 12 of the outer can 10 and the short side of the bottom surface 10a.
  • the sealing plate 16 is provided with an output terminal 18 electrically connected to the positive electrode of the electrode body 14 near one end in the longitudinal direction, and an output terminal 18 electrically connected to the negative electrode of the electrode body 14 near the other end.
  • the output terminal 18 connected to the positive electrode will be appropriately referred to as a positive electrode terminal 18a
  • the output terminal 18 connected to the negative electrode will be referred to as a negative electrode terminal 18b.
  • the positive electrode terminal 18a and the negative electrode terminal 18b are collectively referred to as the output terminal 18.
  • the outer can 10 and the sealing plate 16 are conductors, and are made of metal such as aluminum, iron, and stainless.
  • the sealing plate 16 and the outer can 10 are joined by, for example, a laser. Therefore, the power storage device 2 has the joint portion 20 between the outer can 10 and the sealing plate 16. As an example, the joint portion 20 is provided on the entire outer periphery of the sealing plate 16. It should be noted that the sealing plate 16 and the outer can 10 may be joined by friction stir welding, brazing, or the like other than the laser.
  • the surface on which the sealing plate 16 is provided is the upper surface of the power storage device 2.
  • the bottom surface 10 a of the outer can 10 is the bottom surface of the power storage device 2
  • the long side surface 10 b of the outer can 10 is the long side surface of the power storage device 2
  • the short side surface of the outer can 10 is the short side surface of the power storage device 2.
  • the top surface of the power storage device 2 is the top surface of the power storage module 1
  • the bottom surface of the power storage device 2 is the bottom surface of the power storage module 1
  • the short side surface of the power storage device 2 is the power storage module 2. It is the side of module 1.
  • the upper surface side of the electricity storage module 1 is vertically upward and the bottom surface side of the electricity storage module 1 is vertically downward. These directions and positions are defined for convenience. Therefore, for example, in the present invention, the portion defined as the top surface does not necessarily mean that it is located above the portion defined as the bottom surface. Therefore, the sealing plate 16 is not always located above the bottom surface 10a of the outer can 10.
  • the sealing plate 16 is provided with a safety valve 22 between the pair of output terminals 18.
  • the safety valve 22 is configured to open when the internal pressure of the outer can 10 rises above a predetermined value to release the gas inside the outer can 10.
  • the safety valve 22 of each power storage device 2 is connected to a gas duct (not shown), and the gas inside the power storage device 2 is discharged from the safety valve 22 to the gas duct.
  • the safety valve 22 is composed of, for example, a thin portion that is provided in a part of the sealing plate 16 and has a smaller thickness than other portions, and a linear groove formed on the surface of the thin portion. In this configuration, when the internal pressure of the outer can 10 rises, the thin wall portion tears from the groove, and the safety valve 22 opens.
  • the plurality of power storage devices 2 are arranged in parallel at a predetermined interval such that the long side surfaces 10b of the power storage devices 2 adjacent to each other face each other to form an assembly.
  • the direction in which the plurality of power storage devices 2 are arranged is the first direction X.
  • a direction in which the sealing plate 16 extends is defined as a second direction Y, and a direction in which the sealing plate 16 and the bottom surface 10a are arranged is defined as a third direction Z.
  • the output terminals 18 of the respective power storage devices 2 are arranged so as to face the same direction.
  • output terminal 18 of each power storage device 2 is arranged so as to face upward in the vertical direction for convenience.
  • the output terminals 18 of the respective power storage devices 2 may be arranged so as to face different directions.
  • the two adjacent power storage devices 2 are stacked so that the positive electrode terminal 18a of one power storage device 2 and the negative electrode terminal 18b of the other power storage device 2 are adjacent to each other.
  • the positive electrode terminal 18a and the negative electrode terminal 18b are connected in series via a bus bar (not shown).
  • the output terminals 18 of the same polarity in a plurality of adjacent power storage devices 2 may be connected in parallel by a bus bar to form a power storage device block, and the power storage device blocks may be connected in series.
  • the separator 4 is also called an insulating spacer and is arranged between two adjacent power storage devices 2 to electrically insulate the two power storage devices 2 from each other.
  • the separator 4 of the present embodiment has a frame portion 24 and a heat conduction suppressing portion 26.
  • the frame portion 24 is made of, for example, an insulating resin. Examples of the resin forming the frame portion 24 include thermoplastic resins such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), and Noryl (registered trademark) resin (modified PPE).
  • the frame portion 24 has a locking portion 27 interposed between the long side surfaces 10b of two adjacent power storage devices 2.
  • the interposition of the locking portion 27 insulates between two adjacent power storage devices 2.
  • the frame portion 24 is a polygonal ring shape (a square ring shape in the present embodiment) corresponding to the shape of the long side surface 10b, the inside of the frame or ring corresponds to the center side of the power storage module 1 in the YZ plane, and The outside corresponds to the outside of the electricity storage module 1 on the YZ plane.
  • the YZ plane is a plane that extends in the second direction Y and the third direction Z.
  • the frame 24 also has a wall 28.
  • the wall portion 28 is connected to the outer peripheral surface of the locking portion 27, extends in the first direction X, and covers the upper surface, the short side surface, and the bottom surface of the power storage device 2. This makes it possible to secure a creeping distance between the power storage devices 2 adjacent to each other or between the power storage device 2 and the end plate 6. Further, it is possible to regulate the position of the power storage device 2 in the second direction Y and the third direction Z. Further, each power storage device 2 and the restraint member 8 can be electrically insulated.
  • the locking portion 27 and the wall portion 28 are integrally formed.
  • a notch 30 is provided at a position of the wall 28 corresponding to the output terminal 18 so that the output terminal 18 is exposed.
  • the wall portion 28 is provided with a pair of projecting wall portions 32 that project in the third direction Z in which the sealing plate 16 and the bottom surface 10a are arranged.
  • the pair of protruding wall portions 32 are arranged so as to sandwich the cutout portion 30 in the second direction Y in which the sealing plate 16 extends, in other words, in the second direction Y in which the two output terminals 18 are arranged.
  • An opening 34 is provided at a position of the wall 28 corresponding to the safety valve 22 so that the safety valve 22 is exposed.
  • a tubular duct portion 36 protruding from the wall portion 28 in the third direction Z is provided.
  • the duct portion 36 surrounds the entire circumference of the opening portion 34.
  • the duct part 36 connects the safety valve 22 and a gas duct (not shown).
  • a cutout portion 38 is provided in the wall portion 28 at a position corresponding to the bottom surface 10a of the outer can 10 so that a part of the bottom surface 10a is exposed.
  • a cooling plate is thermally connected to bottom surface 10a of power storage device 2.
  • the heat conduction suppressing unit 26 is interposed between the long side surfaces 10b of two adjacent power storage devices 2 and suppresses heat conduction between the two power storage devices 2. Accordingly, even if the temperature of any power storage device 2 excessively rises during use of power storage module 1, the heat can be suppressed from being transferred to the adjacent power storage device 2. Therefore, a chain of overheating (chain of thermal runaway) can be suppressed. Further, the heat conduction suppressing portion 26 has an insulating property.
  • the heat conduction suppressing portion 26 has a plate shape or a sheet shape, and is made of, for example, a heat insulating material and a laminated film. The thickness of the heat conduction suppressing portion 26 is, for example, 1 to 2 mm.
  • the heat insulating material is in the form of a sheet, and has a structure in which a porous material such as silica xerogel is carried between the fibers of a fiber sheet made of non-woven fabric or the like.
  • Silica xerogel has a nano-sized void structure that regulates the movement of air molecules, and has low thermal conductivity.
  • the thermal conductivity of the heat insulating material is about 0.018 to 0.024 W/m ⁇ K.
  • the heat insulating material is particularly useful as a heat insulating material used in a narrow space.
  • the thermal conductivity of the heat insulating material is lower than that of air.
  • the heat conduction suppressing unit 26 it is possible to further suppress the heat conduction between the power storage devices 2 as compared with the case where only the air layer is interposed between two adjacent power storage devices 2. Further, the heat conduction suppressing portion 26 has lower heat conductivity than the frame portion 24.
  • silica xerogel has relatively high structural stability against external pressure. Therefore, the heat insulating performance of the heat insulating material can be stably maintained. Therefore, the electricity storage module 1 can suppress the heat conduction between the electricity storage devices 2 more stably by including the heat conduction suppressing unit 26. Furthermore, since the heat insulating material has a lower thermal conductivity than that of air, it is possible to obtain the same heat insulating effect with a thinner layer thickness than that of the air layer. Therefore, upsizing of the electricity storage module 1 can be suppressed.
  • Laminate film is a member that wraps and protects the entire heat insulating material.
  • the laminated film can prevent the porous material in the heat insulating material from falling off from the fiber sheet. Further, by covering the heat insulating material with the laminate film, it is possible to easily fit the heat conduction suppressing portion 26 into the frame portion 24 at the time of assembling the electricity storage module 1.
  • the laminate film is made of, for example, polyethylene terephthalate (PET).
  • the heat conduction suppressing portion 26 has higher heat resistance than the frame portion 24. More specifically, the heat resistance of the heat insulating material is higher than that of the frame portion 24. More specifically, the fiber sheet contains fibers having a higher melting point than the frame portion 24, the porous material is made of a substance having a higher melting point than the frame portion 24, or both.
  • the heat insulating material has a melting point of 300° C. or higher. Specifically, the melting point of the fiber sheet and/or the porous material forming the heat insulating material is 300° C. or higher. In particular, it is preferable that the melting point of the fibers forming the fiber sheet is 300° C. or higher. Thereby, even when the heat insulating material is exposed to high temperature, the fiber sheet can maintain the state of carrying the porous material.
  • the heat conduction suppressing portion 26 can be left even when the frame portion 24 is melted by the heat generation of the power storage device 2. it can. Therefore, even if the frame portion 24 is melted, the heat conduction suppressing portion 26 can maintain the insulation between the power storage devices 2. In addition, a state in which heat conduction between adjacent power storage devices 2 is suppressed can be maintained for a longer period of time.
  • the plurality of power storage devices 2 and the plurality of separators 4 arranged in parallel are sandwiched by the pair of end plates 6 in the first direction X. Between the pair of end plates 6 and the power storage devices 2 located at both ends in the first direction X, for example, a separator to which the heat conduction suppressing portion 26 is not attached is arranged.
  • this separator preferably has a separation region 48 described later.
  • the end plate 6 is made of, for example, a metal plate. A screw hole (not shown) into which the screw 40 is screwed is provided on a surface of the end plate 6 that faces the long side surface 10b of the outer can 10.
  • the pair of restraint members 8 are also called bind bars, and are long members having the first direction X as the longitudinal direction.
  • the pair of restraint members 8 are arranged to face each other in the second direction Y in which the pair of output terminals 18 are arranged.
  • a plurality of power storage devices 2, a plurality of separators 4, and a pair of end plates 6 are interposed between the pair of restraint members 8.
  • Each restraint member 8 has a rectangular flat surface portion 8a extending parallel to the short side surface of the power storage device 2, and four eaves portions 8b protruding from each end of the flat surface portion 8a toward the power storage device 2 side.
  • a through hole (not shown) into which the screw 40 is inserted is provided in each of the two eave portions 8b facing each other in the first direction X.
  • While the plurality of power storage devices 2 and the plurality of separators 4 are alternately arranged and sandwiched in the first direction X by the pair of end plates 6, they are sandwiched in the second direction Y by the pair of restraining members 8. ..
  • Each restraint member 8 is aligned such that the through hole of the eaves portion 8b overlaps the screw hole of the end plate 6. Then, the screw 40 is inserted into the through hole and screwed into the screw hole. In this way, the pair of restraint members 8 are engaged with the pair of end plates 6 to restrain the plurality of power storage devices 2.
  • the plurality of power storage devices 2 and the plurality of separators 4 are fastened by the restraining member 8 in a state where a predetermined pressure is applied in the first direction X.
  • the plurality of power storage devices 2 are positioned in the first direction X by being tightened in the first direction X by the restraint member 8. Further, the upper surface and the bottom surface of the plurality of power storage devices 2 are in contact with the two eaves portions 8 b facing each other in the third direction Z where the upper surface and the bottom surface are arranged, via the wall portion 28 of the separator 4. As a result, the plurality of power storage devices 2 are positioned in the third direction Z.
  • a bus bar is attached to the output terminal 18 of each power storage device 2, and the output terminals 18 of the plurality of power storage devices 2 are electrically connected.
  • the bus bar is fixed to the output terminal 18 by welding.
  • the top surfaces of the plurality of power storage devices 2 are covered with a cover member (not shown).
  • the cover member is supported by the protruding wall portion 32.
  • the cover member prevents the output terminal 18, the bus bar, the safety valve 22 and the like of the power storage device 2 from contacting condensed water, dust and the like.
  • the cover member is made of, for example, an insulating resin.
  • FIG. 11 is a perspective view of the separator.
  • FIG. 12 is an enlarged perspective view showing a part of the separator.
  • FIG. 13 is a cross-sectional view of a part of the power storage module.
  • FIG. 14 is a cross-sectional view showing an enlarged part of the upper portion of the electricity storage module.
  • FIG. 15 is a cross-sectional view showing an enlarged part of the lower portion of the electricity storage module. 11 and 12, the illustration of the heat conduction suppressing portion 26 is omitted.
  • the plurality of power storage devices 2 included in the power storage module 1 include a first power storage device 2a and a second power storage device 2b that are adjacent to each other.
  • 13 to 15 show, as a part of power storage module 1, first power storage device 2a and second power storage device 2b, and separator 4 disposed between them.
  • the power storage device 2 when it is not necessary to distinguish between the first power storage device 2a and the second power storage device 2b, they are collectively referred to as the power storage device 2 as appropriate.
  • 13 to 15 schematically show the internal structure of each power storage device 2.
  • the separator 4 is arranged between the first power storage device 2a and the second power storage device 2b arranged in the first direction X to insulate the two power storage devices 2 from each other. Further, as described above, the separator 4 has the frame portion 24 and the heat conduction suppressing portion 26.
  • the locking portion 27 of the frame portion 24 is provided between the first power storage device 2a and the second power storage device 2b and has a hole 42 extending between the two power storage devices 2.
  • the frame portion 24 extends along the peripheral portion of the outer can 10 when viewed from the first direction X in which the power storage devices 2 are arranged. Therefore, the hole 42 overlaps with the central portion of the outer can 10 when viewed in the first direction X. In other words, the hole 42 is a through hole that penetrates the separator 4 in the first direction X.
  • the heat conduction suppressing portion 26 is arranged so as to close the hole 42.
  • the locking portion 27 of the frame portion 24 has a predetermined thickness in the first direction X, and has a groove portion 44 on the inner peripheral surface of the frame portion 24 facing the hole 42 side.
  • the groove portion 44 extends over the entire circumference of the hole 42.
  • the heat conduction suppressing portion 26 is supported by the frame portion 24 by fitting the peripheral edge portion into the groove portion 44.
  • the groove portion 44 does not have to extend over the entire circumference of the hole 42.
  • the groove portions 44 may be formed only at both ends of the heat conduction suppressing portion 26 and may grasp both ends of the heat conduction suppressing portion 26.
  • the frame part 24 of the present embodiment has a locking part 27 as a structure for locking the heat conduction suppressing part 26.
  • the locking portion 27 has a first portion 27a, a second portion 27b, and a third portion 27c.
  • the groove portion 44 is defined by the first portion 27a, the second portion 27b, and the third portion 27c.
  • each of the first portion 27a to the third portion 27c has a frame shape, and the second portion 27b, the first portion 27a, and the third portion 27c are arranged in this order in the first direction X. That is, the first portion 27a is sandwiched between the second portion 27b and the third portion 27c in the first direction X.
  • Second part 27b is arranged between first part 27a and first power storage device 2a
  • third part 27c is arranged between first part 27a and second power storage device 2b.
  • the first portion 27a, the second portion 27b and the third portion 27c are integrally molded.
  • the outer peripheral surfaces of the first portion 27a to the third portion 27c are connected to the inner peripheral surface of the wall portion 28, respectively.
  • the protruding height of each locking portion from the inner peripheral surface of the wall portion 28 is larger in the second portion 27b and the third portion 27c than in the first portion 27a.
  • the bottom surface of the groove portion 44 is formed by the inner peripheral surface 54 of the first portion 27a.
  • one side surface of the groove portion 44 is formed of a region of the side surface 56 of the second portion 27b facing the second power storage device 2b side that protrudes more toward the inside of the frame portion 24 than the inner peripheral surface 54.
  • the other side surface of the groove portion 44 is formed of a region of the side surface 58 of the third portion 27c that faces the first power storage device 2a side and that projects more toward the inside of the frame portion 24 than the inner peripheral surface 54.
  • the protrusion height of the first portion 27a may be zero. That is, the region of the inner peripheral surface of the wall portion 28 that is sandwiched between the second portion 27b and the third portion 27c may form the first portion 27a.
  • the first portion 27a abuts the surface 26a of the heat conduction suppressing portion 26 that faces the direction intersecting the first direction X.
  • the surface 26 a is a surface of the heat conduction suppressing portion 26 facing the outside of the frame portion 24, or a surface of the heat conduction suppressing portion 26 extending in the first direction X.
  • second portion 27b is interposed between heat conduction suppressing unit 26 and first power storage device 2a. That is, the second portion 27b is sandwiched between the peripheral edge of the heat conduction suppressing portion 26 and the peripheral edge of the outer can 10 of the first power storage device 2a.
  • the third portion 27c is interposed between the heat conduction suppressing unit 26 and the second power storage device 2b. That is, the third portion 27c is sandwiched between the peripheral edge of the heat conduction suppressing portion 26 and the peripheral edge of the outer can 10 of the second power storage device 2b.
  • the second portion 27b and the third portion 27c are interposed between the peripheral portion of the heat conduction suppressing portion 26 and the peripheral portion of the outer can 10 of each adjacent power storage device 2, whereby the heat conduction suppressing portion is formed.
  • a space 52 is formed between the central portion of 26 and the central portion of each outer can 10.
  • the expanded portion of the outer can 10 presses the end plate 6 and the restraining member 8 so that the load on the end plate 6 and the restraining member 8 can be reduced.
  • An elastic body (not shown) may be interposed between the heat conduction suppressing unit 26 and the power storage device 2 adjacent to the heat conduction suppressing unit 26 instead of the void 52.
  • This elastic body is a member having a lower elastic modulus than the heat conduction suppressing portion 26, for example.
  • the elastic body when the power storage device 2 swells, the elastic body is compressed with priority over the heat conduction suppressing portion 26. Accordingly, it is possible to prevent the heat conduction suppressing portion 26 from being excessively compressed by the expanded power storage device 2 and being plastically deformed.
  • the elastic body may be arranged so as to sandwich the sheet-shaped heat conduction suppressing unit 26. Further, the elastic body may be interposed not only between the heat conduction suppressing unit 26 and the power storage device 2 but also between the contact region 46 of the separator 4 and the power storage device 2.
  • the locking portion 27 of the present embodiment has both the second portion 27b and the third portion 27c, the locking portion 27 has only the second portion 27b as in the modified example 1 described later. Good. Since the locking portion 27 has the second portion 27b, the gap 52 can be provided at least between the heat conduction suppressing portion 26 and the outer can 10 of the first power storage device 2a. Thereby, expansion of outer can 10 of first power storage device 2a can be allowed by void 52. Further, when the outer can 10 of the second power storage device 2b expands, the heat conduction suppression unit 26 is pushed to the first power storage device 2a side, but the heat conduction suppression unit 26 displaces in the void 52 to the first power storage device 2a side. can do. Therefore, even when the frame portion 24 does not have the third portion 27c, the compression amount of the heat conduction suppressing portion 26 due to the expansion of each outer can 10 can be reduced.
  • the following method is exemplified as a method of installing the heat conduction suppressing portion 26 on the frame portion 24, in other words, an assembling method of the separator 4.
  • the frame portion 24 is divided into a plurality (for example, two) in the second direction Y or the third direction Z.
  • the respective divided parts are arranged with the heat conduction suppressing part 26 interposed therebetween, the ends of the heat conduction suppressing part 26 are aligned with the groove parts 44 of the respective parts, and then the respective parts are brought closer to each other. After the respective parts abut, they are fixed by, for example, bonding.
  • the heat conduction suppressing portion 26 has the peripheral edge portion inserted into the groove portion 44 and is supported by the frame portion 24.
  • a slit for inserting the heat conduction suppressing portion 26 into the hole 42 may be provided in the frame portion 24, and the heat conduction suppressing portion 26 may be inserted into the frame portion 24 via this slit.
  • the frame portion 24 is divided in the first direction X, and the separator 4 may be assembled by sandwiching the heat conduction suppressing portion 26 in each portion in the first direction X. Further, the separator 4 may be formed by integrally molding the frame portion 24 and the heat conduction suppressing portion 26.
  • the separator 4 has a contact area 46 and a separation area 48.
  • the contact area 46 and the separation area 48 are arranged in the frame portion 24. More specifically, the contact area 46 and the separation area 48 are arranged on the side surface of the second portion 27b facing the first power storage device 2a side and the side surface of the third portion 27c facing the second power storage device 2b side.
  • the contact area 46 corresponds to a surface of each outer can 10 that faces the first direction X, that is, the long side surface 10b. As a result, each power storage device 2 is positioned in the first direction X. Further, the expansion of the outer can 10 is suppressed.
  • the contact area 46 of the present embodiment is in contact with three edge portions of the long side surface 10b, which are adjacent to the bottom surface 10a and the pair of short side surfaces. Therefore, the contact area 46 is substantially U-shaped when viewed in the first direction X.
  • the separation area 48 has a shape recessed in the direction away from the outer can 10 than the contact area 46. Then, the separated region 48 is arranged so as to overlap the joint portion 20 when viewed in the first direction X.
  • the long side surface 10b of the present embodiment has a rectangular shape, the contact area 46 overlaps with three of the four side surfaces of the long side surface 10b facing the first direction X, and the separation area 48 has four. It overlaps with the rest of the edges.
  • a gap 50 is provided between the separated region 48 of the frame 24 and the long side surface 10 b of the outer can 10. Since the frame portion 24 has the separated region 48, it is possible to prevent the joint portion 20 from being pressed by the frame portion 24 when the power storage module 1 is assembled. As a result, it is possible to reduce the load applied to the joint portion 20 due to the pressure from the separator 4 when the storage module 1 is assembled.
  • the separated region 48 may be provided so as to extend intermittently in the second direction Y and the third direction Z.
  • the region near the joint portion 20 of the outer can 10 expands without being pressed by the frame 24.
  • the outer can 10 expands by a predetermined amount, the outer can 10 comes into contact with the separated region 48, and further expansion of the outer can 10 is suppressed. Thereby, excessive deformation of the joint portion 20 is suppressed. As a result, the load applied to the joint portion 20 due to the deformation can be reduced.
  • the separation area 48 of the present embodiment extends over the entire locking portion 27 in the second direction Y in which the sealing plate 16 extends. That is, both ends of the separated region 48 in the second direction Y are in contact with the wall 28 that extends parallel to the short side surface of the power storage device 2. Therefore, the separation region 48 overlaps the entire joint portion 20 in the second direction Y in which the sealing plate 16 extends when viewed from the first direction X. Thereby, the load applied to the joint portion 20 can be reduced more reliably.
  • both ends of the separated region 48 in the second direction Y may be connected to portions of the contact region 46 that extend in the third direction Z. In this case, the mechanical strength of the frame 24 is increased, and the reliability of holding the power storage device 2 is increased.
  • the separated region 48 overlaps the entire joint portion 20 in the thickness direction of the sealing plate 16, that is, in the third direction Z.
  • the separation region 48 extends from the surface of the sealing plate 16 facing the outer side of the power storage device 2 to the surface facing the inner space side of the power storage device 2.
  • the load applied to the joint portion 20 can be reduced more reliably.
  • the separation region 48 projects from the sealing plate 16 toward the surface of the outer can 10 that faces the sealing plate 16, that is, toward the bottom surface 10a. That is, the separated region 48 extends toward the bottom surface 10 a side of the surface of the sealing plate 16 that faces the internal space side of the power storage device 2. This also makes it possible to more reliably reduce the load applied to the joint portion 20.
  • the portion of the frame portion 24 that extends along the joint portion 20, that is, the portion where the separation region 48 is arranged is arranged outside the electrode body 14 when viewed in the first direction X.
  • the expansion of the outer can 10 is mainly caused by the expansion of the electrode body 14. Therefore, by disposing the portion of the frame portion 24 outside the electrode body 14, the separated region 48 does not overlap the electrode body 14, and the load applied to the joint portion 20 can be reduced more reliably.
  • the power storage module 1 is provided between the first power storage device 2a and the second power storage device 2b arranged in the first direction X, and between the first power storage device 2a and the second power storage device 2b.
  • a separator 4 arranged to insulate the two power storage devices 2 from each other.
  • the separator 4 has a frame portion 24 and a heat conduction suppressing portion 26.
  • the frame portion 24 has a hole 42 that is interposed between the first power storage device 2a and the second power storage device 2b and extends between the two power storage devices 2, and a locking portion 27 of the heat conduction suppressing portion 26.
  • the heat conduction suppressing portion 26 is arranged so as to close the hole 42 and is supported by the frame portion 24.
  • the locking portion 27 is disposed between the heat conduction suppressing portion 26 and the first power storage device 2a, and the first portion 27a that contacts the surface 26a of the heat conduction suppressing portion 26 that faces the direction intersecting the first direction X. And two portions 27b.
  • the void 52 can be formed between the heat conduction suppressing part 26 and the first power storage device 2a. More specifically, the second portion 27b is inserted between the peripheral edge of the heat conduction suppressing portion 26 and the peripheral edge of the first power storage device 2a. Therefore, it is possible to more reliably form the space 52 between the central portion of the heat conduction suppressing portion 26 and the central portion of the first power storage device 2a.
  • the load on the end plate 6 and the restraint member 8 can be reduced.
  • the size of the void 52 in the first direction X may be equal to or larger than the size of the void 50 in the first direction X.
  • the locking portion 27 of the present embodiment has a third portion 27c interposed between the heat conduction suppressing portion 26 and the second power storage device 2b.
  • the void 52 can be formed not only between the heat conduction suppressing unit 26 and the first power storage device 2a but also between the heat conduction suppressing unit 26 and the second power storage device 2b.
  • the third portion 27c is inserted between the peripheral edge of the heat conduction suppressing portion 26 and the peripheral edge of the second power storage device 2b. Therefore, it is possible to more reliably form the gap 52 between the central portion of the heat conduction suppressing portion 26 and the central portion of the second power storage device 2b.
  • power storage device 2 of the present embodiment has an outer can 10 having opening 12, sealing plate 16 that closes opening 12, and a joint portion 20 between outer can 10 and sealing plate 16.
  • the frame portion 24 overlaps the contact area 46 that is in contact with the surface of the outer can 10 facing the first direction X and the joint portion 20 when viewed from the first direction X, and is a direction away from the outer can 10 than the contact area 46.
  • a separated region 48 which is recessed.
  • the separator 4 Since the separator 4 has the separated region 48, when the plurality of power storage devices 2 and the plurality of separators 4 are compressed in the first direction X and restrained by the restraint member 8 during assembly of the electricity storage module 1, the joint portion 20 is provided. Such a load can be reduced. Further, it is possible to reduce the load repeatedly applied to the joint portion 20 when the outer can 10 is expanded.
  • the outer can 10 expands to a predetermined size, the outer can 10 contacts the separated region 48, and further expansion of the outer can 10 is suppressed. Thereby, excessive deformation of the joint portion 20 can be suppressed, and the load applied to the joint portion 20 due to the deformation can be reduced. Therefore, according to the electricity storage module 1 according to the present embodiment, it is possible to reduce the risk of the joint 20 between the outer can 10 and the sealing plate 16 being damaged, and thus the reliability of the electricity storage device 2 and thus the electricity storage module 1 can be improved. it can.
  • the separation region 48 overlaps the entire joint portion 20 in the second direction Y in which the sealing plate 16 extends when viewed from the first direction X. Further, the separation region 48 overlaps the entire joint portion 20 in the thickness direction of the sealing plate 16. Further, the separation region 48 projects toward the bottom surface 10 a side of the outer can 10 than the sealing plate 16. As a result, the load applied to the joint portion 20 when the outer can 10 is expanded and when the power storage device 2 is fastened by the restraint member 8 can be more reliably reduced.
  • FIG. 16 is an enlarged cross-sectional view showing a part of the lower portion of the electricity storage module according to the fourth embodiment.
  • FIG. 16 schematically shows the internal structure of power storage device 2.
  • the separator 4 included in the electricity storage module 1 has the frame portion 24 and the heat conduction suppressing portion 26, as in the third embodiment.
  • the frame portion 24 is provided between the first power storage device 2a and the second power storage device 2b, and has a hole 42 that extends between the two power storage devices 2 and a locking portion 27 of the heat conduction suppressing portion 26. ..
  • the locking portion 27 has a first portion 27a, a second portion 27b, and a third portion 27c.
  • the heat conduction suppressing portion 26 is arranged so as to close the hole 42 and is supported by the frame portion 24.
  • the first portion 27a is in contact with the surface 26a of the heat conduction suppressing portion 26 that faces the direction intersecting the first direction X.
  • the second portion 27b is interposed between the heat conduction suppressing unit 26 and the first power storage device 2a.
  • the third portion 27c is interposed between the heat conduction suppressing unit 26 and the second power storage device 2b.
  • the second portion 27b of the present embodiment has the first inclined surface 60 on the side facing the heat conduction suppressing portion 26, that is, on the side surface 56 of the second portion 27b facing the second power storage device 2b side.
  • the first inclined surface 60 is inclined so as to separate from the heat conduction suppressing portion 26 from the outer side to the inner side of the frame portion 24.
  • the first inclined surface 60 is arranged at the end of the second portion 27b on the hole 42 side. Therefore, the second portion 27b has a tapered portion whose thickness (size in the first direction X) decreases from the outer side of the electricity storage module 1 toward the center side.
  • the power storage device 2 has a larger expansion amount in the central portion than in the peripheral portion. Therefore, when the heat conduction suppressing part 26 is pushed toward the first power accumulating device 2a side due to the expansion of the second power storage device 2b, the heat conduction suppressing part 26 is pressed against the corner portion of the second portion 27b, so that the heat conduction is suppressed.
  • the suppression unit 26 may be damaged.
  • the damage of the heat conduction suppressing portion 26 can be suppressed. Therefore, the reliability of the electricity storage module 1 can be further enhanced.
  • the third portion 27c of the present embodiment has the third inclined surface 62 on the side facing the heat conduction suppressing portion 26, that is, on the side surface 58 of the third portion 27c facing the first power storage device 2a side.
  • the third inclined surface 62 is inclined so as to separate from the heat conduction suppressing portion 26 from the outer side to the inner side of the frame portion 24.
  • the third inclined surface 62 is arranged at the end of the third portion 27c on the hole 42 side. Therefore, the third portion 27c has a tapered portion whose thickness decreases from the outside of the electricity storage module 1 toward the center thereof.
  • the third inclined surface 62 By providing the third inclined surface 62, it is possible to prevent the heat conduction suppressing portion 26 from being pressed against the corner portion of the third portion 27c and being damaged by the expansion of the first power storage device 2a. Therefore, the reliability of the electricity storage module 1 can be further enhanced.
  • FIG. 17 is an enlarged cross-sectional view showing a part of the lower portion of the electricity storage module according to the fifth embodiment.
  • FIG. 17 schematically shows the internal structure of power storage device 2.
  • the separator 4 included in the electricity storage module 1 has the frame portion 24 and the heat conduction suppressing portion 26, as in the third embodiment.
  • the frame portion 24 is provided between the first power storage device 2a and the second power storage device 2b, and has a hole 42 that extends between the two power storage devices 2 and a locking portion 27 of the heat conduction suppressing portion 26. ..
  • the locking portion 27 has a first portion 27a, a second portion 27b, and a third portion 27c.
  • the heat conduction suppressing portion 26 is arranged so as to close the hole 42 and is supported by the frame portion 24.
  • the first portion 27a is in contact with the surface 26a of the heat conduction suppressing portion 26 that faces the direction intersecting the first direction X.
  • the second portion 27b is interposed between the heat conduction suppressing unit 26 and the first power storage device 2a.
  • the third portion 27c is interposed between the heat conduction suppressing unit 26 and the second power storage device 2b.
  • Second portion 27b of the present embodiment has second inclined surface 64 on the side facing first power storage device 2a, that is, on the side surface of second portion 27b facing the first power storage device 2a side.
  • the second sloped surface 64 slopes away from the first power storage device 2a from the outside of the frame 24 toward the inside.
  • the second inclined surface 64 is arranged at the end of the second portion 27b on the hole 42 side. Therefore, second portion 27b has a tapered portion whose thickness decreases from the outside of power storage module 1 toward the center side.
  • the second inclined surface 64 on the second portion 27b By providing the second inclined surface 64 on the second portion 27b, it is possible to prevent the outer can 10 of the first electricity storage device 2a from being pressed against the corner portion of the second portion 27b due to the expansion of the first electricity storage device 2a. it can. As a result, it is possible to reduce the risk that the outer can 10 or the insulating tape or the like covering the outer surface of the outer can 10 is damaged such as a dent. Therefore, the reliability of the electricity storage module 1 can be further enhanced.
  • the third portion 27c of the present embodiment has a fourth inclined surface 66 on the side facing the second power storage device 2b, that is, on the side surface of the third portion 27c facing the second power storage device 2b side.
  • the fourth inclined surface 66 is inclined so as to separate from the second power storage device 2b from the outer side to the inner side of the frame portion 24.
  • the fourth inclined surface 66 is arranged at the end of the third portion 27c on the hole 42 side. Therefore, the third portion 27c has a tapered portion whose thickness decreases from the outside of the electricity storage module 1 toward the center thereof.
  • the fourth inclined surface 66 on the third portion 27c it is possible to prevent the outer can 10 of the second power storage device 2b from being pressed against the corner of the third portion 27c due to the expansion of the second power storage device 2b. it can. As a result, it is possible to reduce the risk that the outer can 10 or the insulating tape or the like covering the outer surface of the outer can 10 is damaged such as a dent. Therefore, the reliability of the electricity storage module 1 can be further enhanced.
  • the separator 4 may not include the heat conduction suppressing unit 26. That is, the separator 4 may be only the frame portion 24. Further, the separator 4 may include a flat plate portion having no hole 42 instead of the frame portion 24. In this case, the separation region 48 is arranged in a region of the flat plate portion that overlaps the joint portion 20 when viewed in the first direction X. Further, in the flat plate portion, all regions except the separation region 48 may form the contact region 46, but only the region overlapping with the peripheral portion of the long side surface 10b when viewed from the first direction X forms the contact region 46. It is preferable to configure. That is, it is preferable that the void 52 be formed in a region overlapping the electrode body 14 when viewed in the first direction X. Moreover, the separator 4 may not include the wall portion 28.
  • the number of power storage devices 2 included in the power storage module 1 is not particularly limited.
  • the structure of each part of the electricity storage module 1 including the shape of the wall portion 28 of the separator 4 and the fastening structure between the end plate 6 and the restraining member 8 is not particularly limited.
  • the power storage module 1 may include a bus bar plate.
  • the bus bar plate is a plate-shaped member that is arranged so as to face the upper surfaces of the plurality of power storage devices 2 and covers the upper surfaces.
  • the shape of the opening 12 of the outer can 10 may be a quadrangle such as a square or a polygon other than the quadrangle.
  • FIG. 18 is an enlarged cross-sectional view showing a part of the lower portion of the electricity storage module according to Modification 1.
  • FIG. 18 schematically shows the internal structure of power storage device 2.
  • the locking portion 27 of Modification 1 has a first portion 27a and a second portion 27b, but does not have a third portion 27c. Even if the third portion 27c is not provided, since the void 52 can be provided between the heat conduction suppressing unit 26 and the first power storage device 2a, each outer can 10 as described in the third embodiment. It is possible to reduce the amount of compression of the heat conduction suppressing portion 26 due to expansion of the.
  • the second portion 27b having the first inclined surface 60 is shown in FIG. 18 (corresponding to the structure in which the third portion 27c is omitted in the fourth embodiment), it is not particularly limited to this structure.
  • the second portion 27b may have the second inclined surface 64 (corresponding to the structure in which the third portion 27c is omitted in the fifth embodiment), and has the first inclined surface 60 and the second inclined surface 64. It may not be provided (corresponding to the structure in which the third portion 27c is omitted in the third embodiment).
  • the second portion 27b may include both the first inclined surface 60 and the second inclined surface 64.
  • the third portion 27c may include both the third inclined surface 62 and the fourth inclined surface 66.
  • the first inclined surface 60 to the fourth inclined surface 66 can be arbitrarily combined.
  • the second portion 27b and/or the third portion 27c may not be provided on the entire circumference of the frame portion 24. That is, the second portion 27b and/or the third portion 27c may be provided intermittently around the hole 42.
  • the first inclined surface 60 to the fourth inclined surface 66 may also be provided intermittently around the hole 42. Further, the first portion 27a to the third portion 27c may not be integrated and may be separated from each other by a predetermined distance.
  • the first power storage device 2a and the second power storage device 2b are arbitrary two power storage devices 2 in the plurality of power storage devices 2. Further, it is preferable that all the separators 4 included in the electricity storage module 1 have the structure described in each embodiment or the first modification, but at least one separator 4 may have the structure.
  • the number of power storage devices 2 included in the power storage module 1 is not particularly limited.
  • the structure of each part of the electricity storage module 1 including the shape of the wall portion 28 of the separator 4 and the fastening structure between the end plate 6 and the restraining member 8 is not particularly limited.
  • the power storage module 1 may include a bus bar plate.
  • the bus bar plate is a plate-shaped member that is arranged so as to face the upper surfaces of the plurality of power storage devices 2 and covers the upper surfaces.
  • the shape of the opening 12 of the outer can 10 may be a quadrangle such as a square or a polygon other than the quadrangle.
  • the present invention can be used for a power storage module.
  • 1 electricity storage module 2 electricity storage device, 2a 1st electricity storage device, 2b 2nd electricity storage device, 4 separators, 10 exterior cans, 12 openings, 16 sealing plates, 20 joints, 24 frame parts, 26 heat conduction suppressing parts, 27 parts Stop, 27a 1st part, 27b 2nd part, 27c 3rd part, 42 hole, 46 contact area, 48 separation area, 48a inclined surface, 60 1st inclined surface, 62 3rd inclined surface, 64 2nd inclination Surface, 66th inclined surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

蓄電モジュールは、第1方向Xに並ぶ複数の蓄電装置2と、隣接する2つの蓄電装置2の間に配置されて、当該2つの蓄電装置2間を絶縁するセパレータ4と、を備える。蓄電装置2は、開口12を有する外装缶10と、開口12を塞ぐ封口板16と、外装缶10および封口板16の接合部20と、を有する。セパレータ4は、外装缶10における第1方向Xを向く表面に当たる当接領域と、第1方向Xから見て接合部20と重なり、当接領域よりも外装缶10から離れる方向に凹んだ離間領域48と、を有する。

Description

蓄電モジュール
 本発明は、蓄電モジュールに関する。
 例えば車両用等の、高い出力電圧が要求される電源として、複数個の蓄電装置(例えば電池)が直列接続された蓄電モジュールが知られている。一般に蓄電モジュールは、複数の蓄電装置と、隣接する蓄電装置間に配置される複数のセパレータと、蓄電装置の配列方向における両端に配置される一対のエンドプレートと、一対のエンドプレート間に掛け渡されて複数の蓄電装置を配列方向に拘束するバインドバーと、を備えていた。
 また、一般に蓄電装置は、開口を有する外装缶と、外装缶に収納される電極体と、外装缶の開口を塞ぐ封口板と、を備えていた。このような蓄電装置は、充電にともなって膨張する傾向があった。蓄電装置の膨張は、外装缶内のガス圧の上昇や電極体の膨張によって引き起こされる。従来の蓄電モジュールでは、エンドプレートおよびバインドバーでこの膨張を押さえ込んでいた。
 このような蓄電モジュールに関して、特許文献1には、扁平角形の二次電池と、二次電池の厚さ方向の両側に配置されたスペーサと、を備えた組電池が開示されている。この組電池において、二次電池は、電極の合剤層と重なる中間領域と中間領域の周囲の周縁領域とを、幅広側面に有していた。また、スペーサは、幅広側面の周縁領域に当接する当接部と、幅広側面の中間領域に隣接する空洞部と、を有していた。そして、空洞部の厚さ方向における寸法は、二次電池の満充電時における幅広側面の膨張量以上であった。特許文献1の組電池は、容器の幅広側面の中間領域とスペーサとの間に隙間を設けることで、電池の膨張時に幅広側面の中間領域がスペーサから反力を受けることを回避していた。
特開2016-152203号
 近年、蓄電モジュールのさらなる高容量化が求められており、この要求を満たすために蓄電装置の高容量化が進んでいる。しかしながら、蓄電装置が高容量化すると、蓄電装置の膨張量が増大し得る。蓄電装置の外装缶の周縁部をスペーサで押さえ込む従来の蓄電モジュールでは、蓄電装置の膨張量が増大すると、膨張時に外装缶と封口板との接合部にかかる負荷が過大となって、接合部の破損を引き起こすおそれがあった。また、外装缶の周縁部をスペーサで押さえ込む構造では、蓄電モジュールの組み立て時、バインドバーで蓄電装置を拘束する際に大きな負荷が接合部にかかり、接合部の破損を引き起こすおそれがあった。接合部の破損は蓄電モジュールの信頼性の低下につながるため、回避することが望まれる。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、蓄電モジュールの信頼性を高めるための技術を提供することにある。
 本発明のある態様は、蓄電モジュールである。当該蓄電モジュールは、第1方向に並ぶ複数の蓄電装置と、隣接する2つの蓄電装置の間に配置されて、当該2つの蓄電装置間を絶縁するセパレータと、を備える。蓄電装置は、開口を有する外装缶と、開口を塞ぐ封口板と、外装缶および封口板の接合部と、を有する。セパレータは、外装缶における第1方向を向く表面に当たる当接領域と、第1方向から見て接合部と重なり、当接領域よりも外装缶から離れる方向に凹んだ離間領域と、を有する。
 以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、蓄電モジュールの信頼性を高めることができる。
実施の形態1に係る蓄電モジュールの斜視図である。 蓄電装置とセパレータの分解斜視図である。 セパレータの斜視図である。 セパレータの一部分を拡大して示す斜視図である。 蓄電モジュールの一部分の断面図である。 蓄電モジュールの上部の一部分を拡大して示す断面図である。 蓄電モジュールの下部の一部分を拡大して示す断面図である。 実施の形態2に係る蓄電モジュールの上部の一部分を拡大して示す断面図である。 実施の形態3に係る蓄電モジュールの斜視図である。 蓄電装置とセパレータの分解斜視図である。 セパレータの斜視図である。 セパレータの一部分を拡大して示す斜視図である。 蓄電モジュールの一部分の断面図である。 蓄電モジュールの上部の一部分を拡大して示す断面図である。 蓄電モジュールの下部の一部分を拡大して示す断面図である。 実施の形態4に係る蓄電モジュールの下部の一部分を拡大して示す断面図である。 実施の形態5に係る蓄電モジュールの下部の一部分を拡大して示す断面図である。 変形例1に係る蓄電モジュールの下部の一部分を拡大して示す断面図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
(実施の形態1)
 図1は、実施の形態1に係る蓄電モジュールの斜視図である。図2は、蓄電装置とセパレータの分解斜視図である。蓄電モジュール1は、複数の蓄電装置2と、複数のセパレータ4と、一対のエンドプレート6と、一対の拘束部材8と、を備える。
 各蓄電装置2は、例えば、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。蓄電装置2は、いわゆる角形電池であり、扁平な直方体形状の外装缶10を有する。外装缶10は一面に長方形状の開口12(図5参照)を有し、開口12を介して外装缶10に正極および負極を含む電極体14(図5参照)や電解液等が収容される。開口12には、開口12を塞いで外装缶10を封止する封口板16が設けられる。封口板16は、例えば長方形状の板である。
 外装缶10は、封口板16と対向する底面10aを有する。また、外装缶10は、開口12および底面10aをつなぐ4つの側面を有する。4つの側面のうち2つは、開口12の対向する2つの長辺に接続される一対の長側面10bである。各長側面10bは、外装缶10が有する面のうち面積の最も大きい面、すなわち主表面である。2つの長側面10bを除いた残り2つの側面は、外装缶10の開口12および底面10aの短辺と接続される一対の短側面である。
 封口板16には、長手方向の一端寄りに電極体14の正極と電気的に接続される出力端子18が設けられ、他端寄りに電極体14の負極と電気的に接続される出力端子18が設けられる。以下では適宜、正極に接続される出力端子18を正極端子18aと称し、負極に接続される出力端子18を負極端子18bと称する。また、出力端子18の極性を区別する必要がない場合、正極端子18aと負極端子18bとをまとめて出力端子18と称する。外装缶10および封口板16は導電体であり、例えばアルミニウム、鉄、ステンレス等の金属で構成される。封口板16と外装缶10とは、例えばレーザーで接合される。したがって、蓄電装置2は、外装缶10および封口板16の接合部20を有する。一例として、接合部20は、封口板16の外周全域に設けられる。なお、封口板16と外装缶10とは、レーザー以外に、摩擦攪拌接合やろう接などで接合されてもよい。
 本実施の形態の説明では、便宜上、封口板16が設けられる側の面を蓄電装置2の上面とする。また、外装缶10の底面10aを蓄電装置2の底面とし、外装缶10の長側面10bを蓄電装置2の長側面とし、外装缶10の短側面を蓄電装置2の短側面とする。また、蓄電モジュール1において、蓄電装置2の上面側の面を蓄電モジュール1の上面とし、蓄電装置2の底面側の面を蓄電モジュール1の底面とし、蓄電装置2の短側面側の面を蓄電モジュール1の側面とする。また、蓄電モジュール1の上面側を鉛直方向上方とし、蓄電モジュール1の底面側を鉛直方向下方とする。これらの方向および位置は、便宜上規定したものである。したがって、例えば、本発明において上面と規定された部分は、底面と規定された部分よりも必ず上方に位置することを意味するものではない。よって、封口板16は、外装缶10の底面10aよりも上方に位置するとは限らない。
 封口板16には、一対の出力端子18の間に安全弁22が設けられる。安全弁22は、外装缶10の内圧が所定値以上に上昇した際に開弁して、外装缶10の内部のガスを放出するように構成される。各蓄電装置2の安全弁22は、ガスダクト(図示せず)に接続され、蓄電装置2内部のガスは安全弁22からガスダクトに排出される。安全弁22は、例えば、封口板16の一部に設けられる他部よりも厚さが薄い薄肉部と、この薄肉部の表面に形成される線状の溝とで構成される。この構成では、外装缶10の内圧が上昇すると、溝を起点に薄肉部が裂けることで安全弁22が開弁する。
 複数の蓄電装置2は、隣り合う蓄電装置2の長側面10bどうしが対向するようにして所定の間隔で並設されて集合体を形成する。本実施の形態では、複数の蓄電装置2が並ぶ方向を第1方向Xとする。また、封口板16が延びる方向を第2方向Yとし、封口板16と底面10aとが並ぶ方向を第3方向Zとする。また、各蓄電装置2の出力端子18は、互いに同じ方向を向くように配置される。本実施の形態では、各蓄電装置2の出力端子18は、便宜上、鉛直方向上方を向くように配置されている。なお、各蓄電装置2の出力端子18は、異なる方向を向くように配置されてもよい。
 隣接する2つの蓄電装置2は、一方の蓄電装置2の正極端子18aと他方の蓄電装置2の負極端子18bとが隣り合うように積層される。正極端子18aと負極端子18bとは、図示しないバスバーを介して直列接続される。なお、隣接する複数個の蓄電装置2における同極性の出力端子18どうしをバスバーで並列接続して蓄電装置ブロックを形成し、蓄電装置ブロックどうしを直列接続してもよい。
 セパレータ4は、絶縁スペーサとも呼ばれ、隣接する2つの蓄電装置2の間に配置されて、当該2つの蓄電装置2間を電気的に絶縁する。本実施の形態のセパレータ4は、枠部24と、熱伝導抑制部26と、を有する。枠部24は、例えば絶縁性を有する樹脂で構成される。枠部24を構成する樹脂としては、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ノリル(登録商標)樹脂(変性PPE)等の熱可塑性樹脂が例示される。
 枠部24は、隣接する2つの蓄電装置2の長側面10b間に介在する係止部27を有する。係止部27の介在により、隣接する2つの蓄電装置2間が絶縁される。枠部24は、長側面10bの形状に対応する多角環状(本実施の形態では四角環状)であり、枠もしくは環の内側がYZ平面における蓄電モジュール1の中心側に対応し、枠もしくは環の外側がYZ平面における蓄電モジュール1の外側に対応する。YZ平面は、第2方向Y且つ第3方向Zに広がる平面である。
 また、枠部24は、壁部28を有する。壁部28は、係止部27の外周面に接続されるとともに第1方向Xに延びて、蓄電装置2の上面、短側面および底面を覆う。これにより、隣り合う蓄電装置2間、あるいは蓄電装置2とエンドプレート6との間の沿面距離を確保することができる。また、蓄電装置2の第2方向Yや第3方向Zにおける位置規制が可能である。また、各蓄電装置2と拘束部材8との間を電気的に絶縁することができる。本実施の形態では、係止部27および壁部28は一体成形されている。
 壁部28の出力端子18に対応する位置には、出力端子18が露出するように切欠部30が設けられる。また、壁部28には、封口板16と底面10aとが並ぶ第3方向Zに突出する一対の突出壁部32が設けられる。一対の突出壁部32は、封口板16が延びる第2方向Y、言い換えれば2つの出力端子18が並ぶ第2方向Yにおいて、切欠部30を挟むように配置される。
 また、壁部28の安全弁22に対応する位置には、安全弁22が露出するように開口部34が設けられる。開口部34の周囲には、壁部28から第3方向Zに突出する筒状のダクト部36が設けられる。ダクト部36は、開口部34の全周を囲う。ダクト部36は、安全弁22とガスダクト(図示せず)とをつなぐ。また、壁部28における外装缶10の底面10aに対応する位置には、底面10aの一部が露出するように切欠部38が設けられる。一例として、蓄電装置2の底面10aには冷却プレートが熱的に接続される。
 熱伝導抑制部26は、隣接する2つの蓄電装置2の長側面10b間に介在して、当該2つの蓄電装置2間の熱伝導を抑制する。これにより、蓄電モジュール1の使用中に任意の蓄電装置2の温度が過度に上昇しても、その熱が隣接する蓄電装置2に伝達することを抑制することができる。したがって、過熱の連鎖(熱暴走の連鎖)を抑制することができる。また、熱伝導抑制部26は、絶縁性を有する。熱伝導抑制部26は、板状もしくはシート状であり、一例として断熱材およびラミネートフィルムで構成される。熱伝導抑制部26の厚さは、例えば1~2mmである。
 断熱材は、シート状であり、不織布等からなる繊維シートの繊維間に、シリカキセロゲル等の多孔質材が担持された構造を有する。シリカキセロゲルは、空気分子の運動を規制するナノサイズの空隙構造を有し、熱伝導率が低い。断熱材の熱伝導率は、約0.018~0.024W/m・Kである。断熱材は、特に狭スペースで使用される断熱材として有用である。断熱材の熱伝導率は、空気の熱伝導率よりも低い。このため、熱伝導抑制部26を設けることで、隣接する2つの蓄電装置2間に空気の層のみが介在する場合よりも、当該蓄電装置2間の熱伝導をより抑制することができる。また、熱伝導抑制部26は、枠部24よりも熱伝導性が低い。
 また、シリカキセロゲルは外部からの押圧に対する構造安定性が比較的高い。このため、断熱材の断熱性能を安定的に維持することができる。したがって、蓄電モジュール1は、熱伝導抑制部26を備えることで、蓄電装置2間の熱伝導をより安定的に抑制することができる。さらに、断熱材は空気よりも熱伝導率が低いため、空気の層に比べてより薄い層厚で同程度の断熱効果を得ることができる。よって、蓄電モジュール1の大型化を抑制することができる。
 ラミネートフィルムは、断熱材の全体を包んで保護するための部材である。ラミネートフィルムにより、断熱材における多孔質材が繊維シートから脱落することを抑制することができる。また、ラミネートフィルムで断熱材を被覆することで、蓄電モジュール1の組み立て時に熱伝導抑制部26を枠部24に嵌め込みやすくすることができる。ラミネートフィルムは、例えばポリエチレンテレフタレート(PET)等からなる。
 熱伝導抑制部26は、枠部24よりも耐熱性が高い。より具体的には、断熱材の耐熱性が枠部24の耐熱性よりも高い。さらに具体的には、繊維シートが枠部24よりも融点が高い繊維を含むか、多孔質材が枠部24よりも融点が高い物質からなるか、あるいはその両方である。例えば、断熱材は、融点が300℃以上である。具体的には、断熱材を構成する繊維シートおよび/または多孔質材の融点が300℃以上である。特に、繊維シートを構成する繊維の融点を300℃以上とすることが好ましい。これにより、断熱材が高温に曝された場合であっても、繊維シートが多孔質材を担持した状態を維持することができる。
 熱伝導抑制部26の耐熱性を枠部24の耐熱性よりも高くすることで、蓄電装置2の発熱により枠部24が溶融した場合であっても、熱伝導抑制部26を残存させることができる。このため、枠部24が溶融した場合であっても、熱伝導抑制部26により蓄電装置2間の絶縁を維持することができる。また、隣り合う蓄電装置2間の熱伝導が抑制された状態を、より長期間維持することができる。
 並設された複数の蓄電装置2および複数のセパレータ4は、一対のエンドプレート6で第1方向Xに挟まれる。一対のエンドプレート6と、第1方向Xにおける両端に位置する蓄電装置2との間には、一例として熱伝導抑制部26を組み付けていないセパレータが配置される。これにより、蓄電装置2とエンドプレート6との間を電気的に絶縁するとともに、エンドプレート6を介した蓄電装置2の放熱が妨げられることを回避することができる。なお、このセパレータは、好ましくは後述する離間領域48を有する。エンドプレート6は、例えば金属板からなる。エンドプレート6における外装缶10の長側面10bと対向する面には、ねじ40が螺合するねじ穴(図示せず)が設けられる。
 一対の拘束部材8は、バインドバーとも呼ばれ、第1方向Xを長手方向とする長尺状の部材である。一対の拘束部材8は、一対の出力端子18が並ぶ第2方向Yにおいて、互いに向かい合うように配列される。一対の拘束部材8の間には、複数の蓄電装置2、複数のセパレータ4および一対のエンドプレート6が介在する。各拘束部材8は、蓄電装置2の短側面と平行に延びる矩形状の平面部8aと、平面部8aの各端辺から蓄電装置2側に突出する4つの庇部8bと、を有する。第1方向Xにおいて互いに対向する2つの庇部8bには、ねじ40が挿通される貫通孔(図示せず)が設けられる。
 複数の蓄電装置2と複数のセパレータ4とが交互に配列されるとともに一対のエンドプレート6で第1方向Xに挟まれた状態で、これらが一対の拘束部材8で第2方向Yに挟まれる。各拘束部材8は、庇部8bの貫通孔がエンドプレート6のねじ穴と重なるように位置合わせされる。そして、ねじ40が貫通孔に挿通され、ねじ穴に螺合される。このように、一対の拘束部材8が一対のエンドプレート6に係合されることで、複数の蓄電装置2が拘束される。複数の蓄電装置2および複数のセパレータ4は、第1方向Xに所定の圧力がかけられた状態で拘束部材8により締結される。
 複数の蓄電装置2は、拘束部材8によって第1方向Xに締め付けられることで、第1方向Xの位置決めがなされる。また、複数の蓄電装置2の上面および底面は、上面および底面が並ぶ第3方向Zにおいて互いに対向する2つの庇部8bに、セパレータ4の壁部28を介して当接する。これにより、複数の蓄電装置2は、第3方向Zの位置決めがなされる。一例として、これらの位置決めが完了した後に、各蓄電装置2の出力端子18にバスバーが取り付けられて、複数の蓄電装置2の出力端子18どうしが電気的に接続される。例えばバスバーは、溶接により出力端子18に固定される。
 複数の蓄電装置2の上面は、カバー部材(図示せず)で覆われる。カバー部材は、突出壁部32によって支持される。カバー部材により、蓄電装置2の出力端子18、バスバー、安全弁22等への結露水や塵埃等の接触が防止される。カバー部材は、例えば絶縁性を有する樹脂からなる。
 図3は、セパレータの斜視図である。図4は、セパレータの一部分を拡大して示す斜視図である。図5は、蓄電モジュールの一部分の断面図である。図6は、蓄電モジュールの上部の一部分を拡大して示す断面図である。図7は、蓄電モジュールの下部の一部分を拡大して示す断面図である。図3および図4では、熱伝導抑制部26の図示を省略している。図5~図7では、蓄電モジュール1の一部分として、任意の2つの蓄電装置2とこれらの間に配置されるセパレータ4を図示している。また、蓄電装置2の内部構造を模式的に図示している。
 上述のとおり、セパレータ4は、枠部24および熱伝導抑制部26を有する。枠部24の係止部27は、隣接する2つの蓄電装置2の間に介在するとともに、当該2つの蓄電装置2の間に拡がる孔42を有する。また、枠部24は、蓄電装置2が並ぶ第1方向Xから見て、外装缶10の周縁部に沿って延在する。したがって、孔42は、第1方向Xから見て外装缶10の中央部と重なる。言い換えれば、孔42は、セパレータ4を第1方向Xに貫通する貫通孔である。
 熱伝導抑制部26は、孔42を塞ぐように配置される。枠部24の係止部27は第1方向Xに所定の厚みを有し、枠部24の孔42側を向く内周面に溝部44を有する。溝部44は、孔42の全周にわたって延在する。熱伝導抑制部26は、周縁部が溝部44に嵌め込まれることで、枠部24に支持される。なお、溝部44は、孔42の全周にわたり延在しなくてもよい。例えば、溝部44は、熱伝導抑制部26の両端のみに形成されて、熱伝導抑制部26の両端を把持してもよい。
 枠部24に熱伝導抑制部26を設置する方法、言い換えればセパレータ4の組み立て方法としては、以下の方法が例示される。例えば、枠部24は、第2方向Yまたは第3方向Zに、複数(例えば2つ)に分割されている。そして、分割された各部分を熱伝導抑制部26を挟んで配置し、各部分の溝部44に熱伝導抑制部26の端部を位置合わせした後、各部分を互いに近づけていく。各部分が突き当たった後、例えば接着などによりこれらを固定する。これにより、熱伝導抑制部26は、周縁部が溝部44に挿入されて、枠部24に支持される。あるいは、熱伝導抑制部26を孔42に挿入するためのスリットが枠部24に設けられ、このスリットを介して熱伝導抑制部26を枠部24に差し込んでもよい。また、枠部24が第1方向Xに分割されており、各部分で熱伝導抑制部26を第1方向Xに挟み込むことで、セパレータ4が組み立てられてもよい。また、枠部24と熱伝導抑制部26との一体成形によりセパレータ4を形成してもよい。
 また、セパレータ4は、当接領域46と、離間領域48と、を有する。本実施の形態では、当接領域46および離間領域48は、枠部24に配置される。より具体的には、当接領域46および離間領域48は、枠部24の係止部27における蓄電装置2が並ぶ第1方向Xを向く両側面に配置される。当接領域46は、各外装缶10における第1方向Xを向く表面、つまり長側面10bに当たる。これにより、各蓄電装置2は、第1方向Xについて位置決めされる。また、外装缶10の膨張が押さえ込まれる。本実施の形態の当接領域46は、長側面10bにおける底面10aに隣接する縁部と、一対の短側面に隣接する縁部との3つの縁部に当接する。したがって、当接領域46は、第1方向Xから見て略U字状である。
 離間領域48は、当接領域46よりも外装缶10から離れる方向に凹んだ形状を有する。そして、離間領域48は、第1方向Xから見て接合部20と重なるように配置される。本実施の形態の長側面10bは矩形状であり、当接領域46は、第1方向Xを向く長側面10bの4つの端辺のうち3つの端辺と重なり、離間領域48は、4つの端辺のうち残りの端辺と重なる。
 枠部24の離間領域48と外装缶10の長側面10bとの間には、空隙50が設けられる。枠部24が離間領域48を有することで、蓄電モジュール1の組み立て時に、接合部20が枠部24で押圧されることを回避することができる。これにより、蓄電モジュール1の組み立て時に、セパレータ4からの押圧によって接合部20にかかる負荷を軽減することができる。なお、離間領域48は、第2方向Yや第3方向Zに断続的に延びるように設けられてもよい。
 また、外装缶10の膨張初期において、外装缶10における接合部20の近傍領域は、枠部24に押圧されることなく膨張する。外装缶10が所定量だけ膨張すると、外装缶10が離間領域48に当接し、外装缶10のさらなる膨張が抑制される。これにより、接合部20の過度の変形が抑制される。この結果、当該変形によって接合部20にかかる負荷を軽減することができる。
 また、本実施の形態の離間領域48は、封口板16の延びる第2方向Yにおける係止部27の全体に延在する。つまり、第2方向Yにおける離間領域48の両端部は、蓄電装置2の短側面に対し平行に延びる壁部28に接する。したがって、離間領域48は、第1方向Xから見て封口板16の延びる第2方向Yにおける接合部20の全体と重なる。これにより、接合部20にかかる負荷をより確実に軽減することができる。なお、離間領域48の第2方向Yにおける両端部は、当接領域46の第3方向Zに延びる部分に接続されてもよい。この場合、枠部24の機械的強度が高まり蓄電装置2の保持に関する信頼性が高まる。
 また、離間領域48は、封口板16の厚み方向、つまり第3方向Zにおける接合部20の全体と重なる。言い換えれば、離間領域48は、封口板16における蓄電装置2の外側を向く面から蓄電装置2の内部空間側を向く面にかけて延在する。これにより、接合部20にかかる負荷をより確実に軽減することができる。さらに、離間領域48は、封口板16よりも、外装缶10の封口板16と対向する面側に、すなわち底面10a側に突出する。つまり、離間領域48は、封口板16における蓄電装置2の内部空間側を向く面よりも底面10a側に延びている。これによっても、接合部20にかかる負荷をより確実に軽減することができる。
 さらに、本実施の形態では、枠部24のうち接合部20に沿って延びる部分、すなわち離間領域48が配置される部分は、第1方向Xから見て電極体14の外側に配置される。外装缶10の膨張は、主に電極体14の膨張によって引き起こされる。したがって、枠部24の当該部分を電極体14の外側に配置することで、離間領域48が電極体14と重ならず、接合部20にかかる負荷をより確実に軽減することができる。
 また、熱伝導抑制部26の周縁部は、枠部24の溝部44に嵌め込まれている。つまり、枠部24は、熱伝導抑制部26の周縁部を第1方向Xに挟み込むことで、熱伝導抑制部26を支持している。このため、熱伝導抑制部26の周縁部と外装缶10の長側面10bの周縁部との間には、枠部24の一部が介在することになる。これにより、熱伝導抑制部26の中央部と長側面10bの中央部との間には、空隙52が形成される。
 空隙52が設けられることで、少なくとも外装缶10の膨張初期において、外装缶10の中央部は熱伝導抑制部26に当たることなく膨張する。つまり、空隙52は、外装缶10の所定量の膨張を許容する空間として機能する。これにより、外装缶10の膨張による熱伝導抑制部26の変形、言い換えれば第1方向Xの圧縮を抑制することができる。この結果、熱伝導抑制部26の断熱性能の低下を抑制することができる。また、エンドプレート6や拘束部材8にかかる負荷も軽減することができる。よって、蓄電装置2の膨張量の増大への対策としてエンドプレート6や拘束部材8の強度を高めることを回避することができる。この結果、蓄電モジュール1のコスト増加や、エンドプレート6および拘束部材8の加工性の低下を抑制することができる。空隙52の第1方向Xにおける大きさは、空隙50の第1方向Xにおける大きさと同等またはそれ以上であってもよい。この構成により、離間領域48を設けつつ、外装缶10が膨張するスペースを確保することができる。
 以上説明したように、本実施の形態に係る蓄電モジュール1は、複数の蓄電装置2と、隣接する2つの蓄電装置2の間に配置されて、当該2つの蓄電装置2間を絶縁するセパレータと4、を備える。蓄電装置2は、開口12を有する外装缶10と、開口12を塞ぐ封口板16と、外装缶10および封口板16の接合部20と、を有する。セパレータ4は、外装缶10における蓄電装置2が並ぶ第1方向Xを向く表面に当たる当接領域46と、第1方向Xから見て接合部20と重なり、当接領域46よりも外装缶10から離れる方向に凹んだ離間領域48と、を有する。
 セパレータ4が離間領域48を有することで、蓄電モジュール1の組み立て時、複数の蓄電装置2および複数のセパレータ4を第1方向Xに圧縮して拘束部材8で拘束する際に、接合部20にかかる負荷を軽減することができる。また、外装缶10の膨張時に繰り返し接合部20にかかる負荷を軽減することができる。また、外装缶10が所定の大きさまで膨張すると外装缶10が離間領域48に当接し、外装缶10のさらなる膨張が抑制される。これにより、接合部20の過度の変形を抑制することができ、当該変形により接合部20にかかる負荷を軽減することができる。
 以上より、本実施の形態に係る蓄電モジュール1によれば、外装缶10と封口板16との接合部20が破損するおそれを低減できるため、蓄電装置2ひいては蓄電モジュール1の信頼性を高めることができる。また、蓄電モジュール1の信頼性を維持しながら、蓄電モジュール1の高容量化を図ることができる。
 また、離間領域48は、第1方向Xから見て封口板16の延びる第2方向Yにおける接合部20の全体と重なる。また、離間領域48は、封口板16の厚み方向における接合部20の全体と重なる。さらに、離間領域48は、封口板16よりも外装缶10の底面10a側に突出する。これらにより、外装缶10が膨張した際や、拘束部材8で蓄電装置2を締結する際に接合部20にかかる負荷を、より確実に軽減することができる。
 また、本実施の形態のセパレータ4は、枠部24と、熱伝導抑制部26と、を有する。枠部24は、隣接する2つの蓄電装置2の間に介在するとともに、この2つの蓄電装置2の間に拡がる孔42を画成する。また、熱伝導抑制部26は、孔42を塞ぐように配置される。そして、当接領域46および離間領域48は、枠部24に配置される。隣接する2つの蓄電装置2間に熱伝導抑制部26を介在させることで、蓄電モジュール1の使用中に任意の蓄電装置2の温度が過度に上昇しても、その熱が隣接する蓄電装置2に伝達することを抑制することができる。したがって、過熱の連鎖を抑制することができる。
(実施の形態2)
 実施の形態2は、枠部24の形状を除き、実施の形態1と共通の構成を有する。以下、本実施の形態について実施の形態1と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。図8は、実施の形態2に係る蓄電モジュールの上部の一部分を拡大して示す断面図である。図8では、蓄電装置2の内部構造を模式的に図示している。
 本実施の形態に係る蓄電モジュール1が備えるセパレータ4は、実施の形態1と同様に当接領域46および離間領域48を有する。本実施の形態においても、当接領域46および離間領域48は、枠部24に配置されている。
 本実施の形態に係る離間領域48は、傾斜面48aを有する。傾斜面48aは、封口板16側から、外装缶10の封口板16と対向する底面10a側に向かうにつれて、外装缶10から離れるように傾斜する。傾斜面48aは、枠部24の接合部20に沿って延びる部分における、孔42側の端部に配置される。したがって、枠部24の接合部20に沿って延びる部分は、蓄電モジュール1の外側から中心側に向かって厚み(第1方向Xの大きさ)が薄くなるテーパー形状部を有する。
 したがって、離間領域48と長側面10bとの間に設けられる空隙50は、傾斜面48aが延在する領域において、蓄電モジュール1の外側から中心側に向かって徐々に拡がる。外装缶10は、周縁部に比べて中央部の方が膨張量が大きい。これに対し、離間領域48が傾斜面48aを有することで、外装缶10の膨張をより確実に許容することができる。よって、接合部20にかかる負荷をより確実に軽減することができる。また、外装缶10に枠部24が押し付けられて、外装缶10や外装缶10の外表面を覆う絶縁テープ等に窪み等の損傷が生じるおそれを低減することができる。なお、傾斜面48aは、第3方向Zにおける離間領域48の全体に延在してもよい。
(実施の形態3)
 蓄電装置の膨張量が増大すると、隣接する蓄電装置間に熱伝導抑制部を配置した従来の蓄電モジュールでは、熱伝導抑制部が蓄電装置の配列方向に過度に圧縮されて当該配列方向における寸法が小さくなると、配列方向の伝熱経路が短くなるため断熱性能が低下するおそれがあった。熱伝導抑制部の断熱性能の低下は、蓄電モジュールの信頼性の低下につながるため、回避することが望まれる。
 図9は、実施の形態3に係る蓄電モジュールの斜視図である。図10は、蓄電装置とセパレータの分解斜視図である。蓄電モジュール1は、複数の蓄電装置2と、複数のセパレータ4と、一対のエンドプレート6と、一対の拘束部材8と、を備える。
 各蓄電装置2は、例えば、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。蓄電装置2は、いわゆる角形電池であり、扁平な直方体形状の外装缶10を有する。外装缶10は一面に長方形状の開口12(図13参照)を有し、開口12を介して外装缶10に正極および負極を含む電極体14(図13参照)や電解液等が収容される。開口12には、開口12を塞いで外装缶10を封止する封口板16が設けられる。封口板16は、例えば長方形状の板である。
 外装缶10は、封口板16と対向する底面10aを有する。また、外装缶10は、開口12および底面10aをつなぐ4つの側面を有する。4つの側面のうち2つは、開口12の対向する2つの長辺に接続される一対の長側面10bである。各長側面10bは、外装缶10が有する面のうち面積の最も大きい面、すなわち主表面である。2つの長側面10bを除いた残り2つの側面は、外装缶10の開口12および底面10aの短辺と接続される一対の短側面である。
 封口板16には、長手方向の一端寄りに電極体14の正極と電気的に接続される出力端子18が設けられ、他端寄りに電極体14の負極と電気的に接続される出力端子18が設けられる。以下では適宜、正極に接続される出力端子18を正極端子18aと称し、負極に接続される出力端子18を負極端子18bと称する。また、出力端子18の極性を区別する必要がない場合、正極端子18aと負極端子18bとをまとめて出力端子18と称する。外装缶10および封口板16は導電体であり、例えばアルミニウム、鉄、ステンレス等の金属で構成される。封口板16と外装缶10とは、例えばレーザーで接合される。したがって、蓄電装置2は、外装缶10および封口板16の接合部20を有する。一例として、接合部20は、封口板16の外周全域に設けられる。なお、封口板16と外装缶10とは、レーザー以外に、摩擦攪拌接合やろう接などで接合されてもよい。
 本実施の形態の説明では、便宜上、封口板16が設けられる側の面を蓄電装置2の上面とする。また、外装缶10の底面10aを蓄電装置2の底面とし、外装缶10の長側面10bを蓄電装置2の長側面とし、外装缶10の短側面を蓄電装置2の短側面とする。また、蓄電モジュール1において、蓄電装置2の上面側の面を蓄電モジュール1の上面とし、蓄電装置2の底面側の面を蓄電モジュール1の底面とし、蓄電装置2の短側面側の面を蓄電モジュール1の側面とする。また、蓄電モジュール1の上面側を鉛直方向上方とし、蓄電モジュール1の底面側を鉛直方向下方とする。これらの方向および位置は、便宜上規定したものである。したがって、例えば、本発明において上面と規定された部分は、底面と規定された部分よりも必ず上方に位置することを意味するものではない。よって、封口板16は、外装缶10の底面10aよりも上方に位置するとは限らない。
 封口板16には、一対の出力端子18の間に安全弁22が設けられる。安全弁22は、外装缶10の内圧が所定値以上に上昇した際に開弁して、外装缶10の内部のガスを放出するように構成される。各蓄電装置2の安全弁22は、ガスダクト(図示せず)に接続され、蓄電装置2内部のガスは安全弁22からガスダクトに排出される。安全弁22は、例えば、封口板16の一部に設けられる他部よりも厚さが薄い薄肉部と、この薄肉部の表面に形成される線状の溝とで構成される。この構成では、外装缶10の内圧が上昇すると、溝を起点に薄肉部が裂けることで安全弁22が開弁する。
 複数の蓄電装置2は、隣り合う蓄電装置2の長側面10bどうしが対向するようにして所定の間隔で並設されて集合体を形成する。本実施の形態では、複数の蓄電装置2が並ぶ方向を第1方向Xとする。また、封口板16が延びる方向を第2方向Yとし、封口板16と底面10aとが並ぶ方向を第3方向Zとする。また、各蓄電装置2の出力端子18は、互いに同じ方向を向くように配置される。本実施の形態では、各蓄電装置2の出力端子18は、便宜上、鉛直方向上方を向くように配置されている。なお、各蓄電装置2の出力端子18は、異なる方向を向くように配置されてもよい。
 隣接する2つの蓄電装置2は、一方の蓄電装置2の正極端子18aと他方の蓄電装置2の負極端子18bとが隣り合うように積層される。正極端子18aと負極端子18bとは、図示しないバスバーを介して直列接続される。なお、隣接する複数個の蓄電装置2における同極性の出力端子18どうしをバスバーで並列接続して蓄電装置ブロックを形成し、蓄電装置ブロックどうしを直列接続してもよい。
 セパレータ4は、絶縁スペーサとも呼ばれ、隣接する2つの蓄電装置2の間に配置されて、当該2つの蓄電装置2間を電気的に絶縁する。本実施の形態のセパレータ4は、枠部24と、熱伝導抑制部26と、を有する。枠部24は、例えば絶縁性を有する樹脂で構成される。枠部24を構成する樹脂としては、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ノリル(登録商標)樹脂(変性PPE)等の熱可塑性樹脂が例示される。
 枠部24は、隣接する2つの蓄電装置2の長側面10b間に介在する係止部27を有する。係止部27の介在により、隣接する2つの蓄電装置2間が絶縁される。枠部24は、長側面10bの形状に対応する多角環状(本実施の形態では四角環状)であり、枠もしくは環の内側がYZ平面における蓄電モジュール1の中心側に対応し、枠もしくは環の外側がYZ平面における蓄電モジュール1の外側に対応する。YZ平面は、第2方向Y且つ第3方向Zに広がる平面である。
 また、枠部24は、壁部28を有する。壁部28は、係止部27の外周面に接続されるとともに第1方向Xに延びて、蓄電装置2の上面、短側面および底面を覆う。これにより、隣り合う蓄電装置2間、あるいは蓄電装置2とエンドプレート6との間の沿面距離を確保することができる。また、蓄電装置2の第2方向Yや第3方向Zにおける位置規制が可能である。また、各蓄電装置2と拘束部材8との間を電気的に絶縁することができる。本実施の形態では、係止部27および壁部28は一体成形されている。
 壁部28の出力端子18に対応する位置には、出力端子18が露出するように切欠部30が設けられる。また、壁部28には、封口板16と底面10aとが並ぶ第3方向Zに突出する一対の突出壁部32が設けられる。一対の突出壁部32は、封口板16が延びる第2方向Y、言い換えれば2つの出力端子18が並ぶ第2方向Yにおいて、切欠部30を挟むように配置される。
 また、壁部28の安全弁22に対応する位置には、安全弁22が露出するように開口部34が設けられる。開口部34の周囲には、壁部28から第3方向Zに突出する筒状のダクト部36が設けられる。ダクト部36は、開口部34の全周を囲う。ダクト部36は、安全弁22とガスダクト(図示せず)とをつなぐ。また、壁部28における外装缶10の底面10aに対応する位置には、底面10aの一部が露出するように切欠部38が設けられる。一例として、蓄電装置2の底面10aには冷却プレートが熱的に接続される。
 熱伝導抑制部26は、隣接する2つの蓄電装置2の長側面10b間に介在して、当該2つの蓄電装置2間の熱伝導を抑制する。これにより、蓄電モジュール1の使用中に任意の蓄電装置2の温度が過度に上昇しても、その熱が隣接する蓄電装置2に伝達することを抑制することができる。したがって、過熱の連鎖(熱暴走の連鎖)を抑制することができる。また、熱伝導抑制部26は、絶縁性を有する。熱伝導抑制部26は、板状もしくはシート状であり、一例として断熱材およびラミネートフィルムで構成される。熱伝導抑制部26の厚さは、例えば1~2mmである。
 断熱材は、シート状であり、不織布等からなる繊維シートの繊維間に、シリカキセロゲル等の多孔質材が担持された構造を有する。シリカキセロゲルは、空気分子の運動を規制するナノサイズの空隙構造を有し、熱伝導率が低い。断熱材の熱伝導率は、約0.018~0.024W/m・Kである。断熱材は、特に狭スペースで使用される断熱材として有用である。断熱材の熱伝導率は、空気の熱伝導率よりも低い。このため、熱伝導抑制部26を設けることで、隣接する2つの蓄電装置2間に空気の層のみが介在する場合よりも、当該蓄電装置2間の熱伝導をより抑制することができる。また、熱伝導抑制部26は、枠部24よりも熱伝導性が低い。
 また、シリカキセロゲルは外部からの押圧に対する構造安定性が比較的高い。このため、断熱材の断熱性能を安定的に維持することができる。したがって、蓄電モジュール1は、熱伝導抑制部26を備えることで、蓄電装置2間の熱伝導をより安定的に抑制することができる。さらに、断熱材は空気よりも熱伝導率が低いため、空気の層に比べてより薄い層厚で同程度の断熱効果を得ることができる。よって、蓄電モジュール1の大型化を抑制することができる。
 ラミネートフィルムは、断熱材の全体を包んで保護するための部材である。ラミネートフィルムにより、断熱材における多孔質材が繊維シートから脱落することを抑制することができる。また、ラミネートフィルムで断熱材を被覆することで、蓄電モジュール1の組み立て時に熱伝導抑制部26を枠部24に嵌め込みやすくすることができる。ラミネートフィルムは、例えばポリエチレンテレフタレート(PET)等からなる。
 熱伝導抑制部26は、枠部24よりも耐熱性が高い。より具体的には、断熱材の耐熱性が枠部24の耐熱性よりも高い。さらに具体的には、繊維シートが枠部24よりも融点が高い繊維を含むか、多孔質材が枠部24よりも融点が高い物質からなるか、あるいはその両方である。例えば、断熱材は、融点が300℃以上である。具体的には、断熱材を構成する繊維シートおよび/または多孔質材の融点が300℃以上である。特に、繊維シートを構成する繊維の融点を300℃以上とすることが好ましい。これにより、断熱材が高温に曝された場合であっても、繊維シートが多孔質材を担持した状態を維持することができる。
 熱伝導抑制部26の耐熱性を枠部24の耐熱性よりも高くすることで、蓄電装置2の発熱により枠部24が溶融した場合であっても、熱伝導抑制部26を残存させることができる。このため、枠部24が溶融した場合であっても、熱伝導抑制部26により蓄電装置2間の絶縁を維持することができる。また、隣り合う蓄電装置2間の熱伝導が抑制された状態を、より長期間維持することができる。
 並設された複数の蓄電装置2および複数のセパレータ4は、一対のエンドプレート6で第1方向Xに挟まれる。一対のエンドプレート6と、第1方向Xにおける両端に位置する蓄電装置2との間には、一例として熱伝導抑制部26を組み付けていないセパレータが配置される。これにより、蓄電装置2とエンドプレート6との間を電気的に絶縁するとともに、エンドプレート6を介した蓄電装置2の放熱が妨げられることを回避することができる。なお、このセパレータは、好ましくは後述する離間領域48を有する。エンドプレート6は、例えば金属板からなる。エンドプレート6における外装缶10の長側面10bと対向する面には、ねじ40が螺合するねじ穴(図示せず)が設けられる。
 一対の拘束部材8は、バインドバーとも呼ばれ、第1方向Xを長手方向とする長尺状の部材である。一対の拘束部材8は、一対の出力端子18が並ぶ第2方向Yにおいて、互いに向かい合うように配列される。一対の拘束部材8の間には、複数の蓄電装置2、複数のセパレータ4および一対のエンドプレート6が介在する。各拘束部材8は、蓄電装置2の短側面と平行に延びる矩形状の平面部8aと、平面部8aの各端辺から蓄電装置2側に突出する4つの庇部8bと、を有する。第1方向Xにおいて互いに対向する2つの庇部8bには、ねじ40が挿通される貫通孔(図示せず)が設けられる。
 複数の蓄電装置2と複数のセパレータ4とが交互に配列されるとともに一対のエンドプレート6で第1方向Xに挟まれた状態で、これらが一対の拘束部材8で第2方向Yに挟まれる。各拘束部材8は、庇部8bの貫通孔がエンドプレート6のねじ穴と重なるように位置合わせされる。そして、ねじ40が貫通孔に挿通され、ねじ穴に螺合される。このように、一対の拘束部材8が一対のエンドプレート6に係合されることで、複数の蓄電装置2が拘束される。複数の蓄電装置2および複数のセパレータ4は、第1方向Xに所定の圧力がかけられた状態で拘束部材8により締結される。
 複数の蓄電装置2は、拘束部材8によって第1方向Xに締め付けられることで、第1方向Xの位置決めがなされる。また、複数の蓄電装置2の上面および底面は、上面および底面が並ぶ第3方向Zにおいて互いに対向する2つの庇部8bに、セパレータ4の壁部28を介して当接する。これにより、複数の蓄電装置2は、第3方向Zの位置決めがなされる。一例として、これらの位置決めが完了した後に、各蓄電装置2の出力端子18にバスバーが取り付けられて、複数の蓄電装置2の出力端子18どうしが電気的に接続される。例えばバスバーは、溶接により出力端子18に固定される。
 複数の蓄電装置2の上面は、カバー部材(図示せず)で覆われる。カバー部材は、突出壁部32によって支持される。カバー部材により、蓄電装置2の出力端子18、バスバー、安全弁22等への結露水や塵埃等の接触が防止される。カバー部材は、例えば絶縁性を有する樹脂からなる。
 図11は、セパレータの斜視図である。図12は、セパレータの一部分を拡大して示す斜視図である。図13は、蓄電モジュールの一部分の断面図である。図14は、蓄電モジュールの上部の一部分を拡大して示す断面図である。図15は、蓄電モジュールの下部の一部分を拡大して示す断面図である。図11および図12では、熱伝導抑制部26の図示を省略している。蓄電モジュール1が備える複数の蓄電装置2は、隣接する第1蓄電装置2aおよび第2蓄電装置2bを含む。図13~図15では、蓄電モジュール1の一部分として、第1蓄電装置2aおよび第2蓄電装置2bと、これらの間に配置されるセパレータ4と、を図示している。以下では適宜、第1蓄電装置2aと第2蓄電装置2bとを区別する必要がない場合、まとめて蓄電装置2と称する。また、図13~図15では、各蓄電装置2の内部構造を模式的に図示している。
 セパレータ4は、第1方向Xに並ぶ第1蓄電装置2aおよび第2蓄電装置2bの間に配置されて、当該2つの蓄電装置2間を絶縁する。また、上述のとおり、セパレータ4は、枠部24および熱伝導抑制部26を有する。枠部24の係止部27は、第1蓄電装置2aおよび第2蓄電装置2bの間に介在するとともに、当該2つの蓄電装置2の間に拡がる孔42を有する。また、枠部24は、蓄電装置2が並ぶ第1方向Xから見て、外装缶10の周縁部に沿って延在する。したがって、孔42は、第1方向Xから見て外装缶10の中央部と重なる。言い換えれば、孔42は、セパレータ4を第1方向Xに貫通する貫通孔である。
 熱伝導抑制部26は、孔42を塞ぐように配置される。枠部24の係止部27は第1方向Xに所定の厚みを有し、枠部24の孔42側を向く内周面に溝部44を有する。溝部44は、孔42の全周にわたって延在する。熱伝導抑制部26は、周縁部が溝部44に嵌め込まれることで、枠部24に支持される。なお、溝部44は、孔42の全周にわたり延在しなくてもよい。例えば、溝部44は、熱伝導抑制部26の両端のみに形成されて、熱伝導抑制部26の両端を把持してもよい。
 本実施の形態の枠部24は、熱伝導抑制部26を係止するための構造として、係止部27を有する。係止部27は、第1部分27aと、第2部分27bと、第3部分27cと、を有する。また、溝部44は、第1部分27a、第2部分27bおよび第3部分27cにより画成される。具体的には、第1部分27a~第3部分27cはそれぞれ枠状であり、第1方向Xにおいて、第2部分27b、第1部分27aおよび第3部分27cがこの順に並ぶ。つまり、第1部分27aは、第1方向Xにおいて第2部分27bおよび第3部分27cに挟まれる。
 また、第2部分27bは第1部分27aと第1蓄電装置2aとの間に配置され、第3部分27cは第1部分27aと第2蓄電装置2bとの間に配置される。本実施の形態では、第1部分27a、第2部分27bおよび第3部分27cは、一体成形されている。また、第1部分27a~第3部分27cの外周面はそれぞれ、壁部28の内周面に接続される。各係止部の壁部28の内周面からの突出高さは、第2部分27bおよび第3部分27cの方が第1部分27aよりも大きい。
 したがって、溝部44の底面は、第1部分27aの内周面54によって構成される。また、溝部44の一方の側面は、第2部分27bの第2蓄電装置2b側を向く側面56における、内周面54よりも枠部24の内側に突出する領域で構成される。また溝部44の他方の側面は、第3部分27cの第1蓄電装置2a側を向く側面58における、内周面54よりも枠部24の内側に突出する領域で構成される。なお、第1部分27aの突出高さは0でもよい。つまり、壁部28の内周面のうち第2部分27bと第3部分27cとで挟まれる領域が第1部分27aを構成してもよい。
 第1部分27aは、熱伝導抑制部26の第1方向Xと交わる方向を向く表面26aに当接する。表面26aは、熱伝導抑制部26における枠部24の外側を向く表面、もしくは熱伝導抑制部26における第1方向Xに延びる表面である。また、第2部分27bは、熱伝導抑制部26と第1蓄電装置2aとの間に介在する。つまり、第2部分27bは、熱伝導抑制部26の周縁部と第1蓄電装置2aの外装缶10の周縁部とで挟まれる。また、第3部分27cは、熱伝導抑制部26と第2蓄電装置2bとの間に介在する。つまり、第3部分27cは、熱伝導抑制部26の周縁部と第2蓄電装置2bの外装缶10の周縁部とで挟まれる。
 このように、熱伝導抑制部26の周縁部と、隣接する各蓄電装置2の外装缶10の周縁部との間に第2部分27bおよび第3部分27cが介在することで、熱伝導抑制部26の中央部と各外装缶10の中央部との間には、空隙52が形成される。空隙52が設けられることで、少なくとも各外装缶10の膨張初期において、各外装缶10の中央部は熱伝導抑制部26に当たることなく膨張する。つまり、空隙52は、各外装缶10の所定量の膨張を許容する空間として機能する。これにより、各外装缶10の膨張による熱伝導抑制部26の第1方向Xにおける圧縮量を低減することができる。この結果、熱伝導抑制部26の断熱性能の低下を抑制することができる。また、外装缶10の膨張した部分がエンドプレート6や拘束部材8を押圧することでエンドプレート6や拘束部材8にかかる負荷も軽減することができる。
 熱伝導抑制部26と、この熱伝導抑制部26に隣接する蓄電装置2との間に、空隙52に代えて弾性体(図示せず)を介在させてもよい。この弾性体は、例えば熱伝導抑制部26よりも弾性率が低い部材である。この場合、蓄電装置2が膨れた際に、熱伝導抑制部26よりも優先的に弾性体が圧縮される。これにより、膨れた蓄電装置2によって熱伝導抑制部26が過度に圧縮され、塑性変形してしまうことを抑制できる。熱伝導抑制部26が2つの蓄電装置2の間に介在する場合は、弾性体もシート状の熱伝導抑制部26を挟むように配置されてもよい。また、弾性体は、熱伝導抑制部26と蓄電装置2との間だけでなく、セパレータ4の当接領域46と蓄電装置2との間に介在してもよい。
 なお、本実施の形態の係止部27は第2部分27bおよび第3部分27cの両方を有するが、後述する変形例1のように、係止部27は第2部分27bのみを有してもよい。係止部27が第2部分27bを有することで、少なくとも熱伝導抑制部26と第1蓄電装置2aの外装缶10との間には空隙52を設けることができる。これにより、第1蓄電装置2aの外装缶10の膨張を空隙52によって許容することができる。また、第2蓄電装置2bの外装缶10が膨張すると、熱伝導抑制部26は第1蓄電装置2a側に押されるが、熱伝導抑制部26は空隙52内を第1蓄電装置2a側に変位することができる。したがって、枠部24が第3部分27cを有しない場合であっても、各外装缶10の膨張による熱伝導抑制部26の圧縮量を低減することができる。
 枠部24に熱伝導抑制部26を設置する方法、言い換えればセパレータ4の組み立て方法としては、以下の方法が例示される。例えば、枠部24は、第2方向Yまたは第3方向Zに、複数(例えば2つ)に分割されている。そして、分割された各部分を熱伝導抑制部26を挟んで配置し、各部分の溝部44に熱伝導抑制部26の端部を位置合わせした後、各部分を互いに近づけていく。各部分が突き当たった後、例えば接着などによりこれらを固定する。これにより、熱伝導抑制部26は、周縁部が溝部44に挿入されて、枠部24に支持される。あるいは、熱伝導抑制部26を孔42に挿入するためのスリットが枠部24に設けられ、このスリットを介して熱伝導抑制部26を枠部24に差し込んでもよい。また、枠部24が第1方向Xに分割されており、各部分で熱伝導抑制部26を第1方向Xに挟み込むことで、セパレータ4が組み立てられてもよい。また、枠部24と熱伝導抑制部26との一体成形によりセパレータ4を形成してもよい。
 また、セパレータ4は、当接領域46と、離間領域48と、を有する。本実施の形態では、当接領域46および離間領域48は、枠部24に配置される。より具体的には、当接領域46および離間領域48は、第2部分27bの第1蓄電装置2a側を向く側面および第3部分27cの第2蓄電装置2b側を向く側面に配置される。当接領域46は、各外装缶10における第1方向Xを向く表面、つまり長側面10bに当たる。これにより、各蓄電装置2は、第1方向Xについて位置決めされる。また、外装缶10の膨張が押さえ込まれる。本実施の形態の当接領域46は、長側面10bにおける底面10aに隣接する縁部と、一対の短側面に隣接する縁部との3つの縁部に当接する。したがって、当接領域46は、第1方向Xから見て略U字状である。
 離間領域48は、当接領域46よりも外装缶10から離れる方向に凹んだ形状を有する。そして、離間領域48は、第1方向Xから見て接合部20と重なるように配置される。本実施の形態の長側面10bは矩形状であり、当接領域46は、第1方向Xを向く長側面10bの4つの端辺のうち3つの端辺と重なり、離間領域48は、4つの端辺のうち残りの端辺と重なる。
 枠部24の離間領域48と外装缶10の長側面10bとの間には、空隙50が設けられる。枠部24が離間領域48を有することで、蓄電モジュール1の組み立て時に、接合部20が枠部24で押圧されることを回避することができる。これにより、蓄電モジュール1の組み立て時に、セパレータ4からの押圧によって接合部20にかかる負荷を軽減することができる。なお、離間領域48は、第2方向Yや第3方向Zに断続的に延びるように設けられてもよい。
 また、外装缶10の膨張初期において、外装缶10における接合部20の近傍領域は、枠部24に押圧されることなく膨張する。外装缶10が所定量だけ膨張すると、外装缶10が離間領域48に当接し、外装缶10のさらなる膨張が抑制される。これにより、接合部20の過度の変形が抑制される。この結果、当該変形によって接合部20にかかる負荷を軽減することができる。
 また、本実施の形態の離間領域48は、封口板16の延びる第2方向Yにおける係止部27の全体に延在する。つまり、第2方向Yにおける離間領域48の両端部は、蓄電装置2の短側面に対し平行に延びる壁部28に接する。したがって、離間領域48は、第1方向Xから見て封口板16の延びる第2方向Yにおける接合部20の全体と重なる。これにより、接合部20にかかる負荷をより確実に軽減することができる。なお、離間領域48の第2方向Yにおける両端部は、当接領域46の第3方向Zに延びる部分に接続されてもよい。この場合、枠部24の機械的強度が高まり蓄電装置2の保持に関する信頼性が高まる。
 また、離間領域48は、封口板16の厚み方向、つまり第3方向Zにおける接合部20の全体と重なる。言い換えれば、離間領域48は、封口板16における蓄電装置2の外側を向く面から蓄電装置2の内部空間側を向く面にかけて延在する。これにより、接合部20にかかる負荷をより確実に軽減することができる。さらに、離間領域48は、封口板16よりも、外装缶10の封口板16と対向する面側に、すなわち底面10a側に突出する。つまり、離間領域48は、封口板16における蓄電装置2の内部空間側を向く面よりも底面10a側に延びている。これによっても、接合部20にかかる負荷をより確実に軽減することができる。
 さらに、本実施の形態では、枠部24のうち接合部20に沿って延びる部分、すなわち離間領域48が配置される部分は、第1方向Xから見て電極体14の外側に配置される。外装缶10の膨張は、主に電極体14の膨張によって引き起こされる。したがって、枠部24の当該部分を電極体14の外側に配置することで、離間領域48が電極体14と重ならず、接合部20にかかる負荷をより確実に軽減することができる。
 以上説明したように、本実施の形態に係る蓄電モジュール1は、第1方向Xに並ぶ第1蓄電装置2aおよび第2蓄電装置2bと、第1蓄電装置2aおよび第2蓄電装置2bの間に配置されて、当該2つの蓄電装置2間を絶縁するセパレータ4と、を備える。セパレータ4は、枠部24と、熱伝導抑制部26と、を有する。枠部24は、第1蓄電装置2aおよび第2蓄電装置2bの間に介在するとともに、2つの蓄電装置2間に拡がる孔42と、熱伝導抑制部26の係止部27と、を有する。熱伝導抑制部26は、孔42を塞ぐように配置されて枠部24に支持される。係止部27は、熱伝導抑制部26の第1方向Xと交わる方向を向く表面26aに当接する第1部分27aと、熱伝導抑制部26と第1蓄電装置2aとの間に介在する第2部分27bと、を有する。
 第2部分27bが熱伝導抑制部26と第1蓄電装置2aとの間に介在することで、熱伝導抑制部26と第1蓄電装置2aとの間に、空隙52を形成することができる。より詳細には、第2部分27bは熱伝導抑制部26の周縁部と第1蓄電装置2aの周縁部との間に差し込まれている。このため、熱伝導抑制部26の中央部と第1蓄電装置2aの中央部との間に空隙52をより確実に形成することができる。
 これにより、セパレータ4に隣接する第1蓄電装置2aおよび/または第2蓄電装置2bの膨張によって熱伝導抑制部26が第1方向Xに圧縮されることを抑制することができる。この結果、第1方向Xにおける熱伝導抑制部26の厚みの変化を小さくすることができるため、熱伝導抑制部26の断熱性能の低下を抑制することができる。以上より、本実施の形態によれば、蓄電モジュール1の信頼性の低下を抑制することができる。また、蓄電モジュール1の信頼性を維持しながら、蓄電モジュール1の高容量化を図ることができる。
 また、空隙52を設けて蓄電装置2の所定量の膨張を許容することで、エンドプレート6や拘束部材8にかかる負荷を軽減することができる。これにより、蓄電装置2の膨張量の増大への対策としてエンドプレート6や拘束部材8の強度を高めることを回避することができる。この結果、蓄電モジュール1のコスト増加や、エンドプレート6や拘束部材8の加工性の低下を抑制することができる。空隙52の第1方向Xにおける大きさは、空隙50の第1方向Xにおける大きさと同等またはそれ以上であってもよい。この構成により、離間領域48を設けつつ、外装缶10が膨張するスペースを確保することができる。
 また、本実施の形態の係止部27は、熱伝導抑制部26と第2蓄電装置2bとの間に介在する第3部分27cを有する。これにより、熱伝導抑制部26と第1蓄電装置2aとの間だけでなく、熱伝導抑制部26と第2蓄電装置2bとの間にも空隙52を形成することができる。より詳細には、第3部分27cは熱伝導抑制部26の周縁部と第2蓄電装置2bの周縁部との間に差し込まれている。このため、熱伝導抑制部26の中央部と第2蓄電装置2bの中央部との間に空隙52をより確実に形成することができる。これにより、第1蓄電装置2aおよび/または第2蓄電装置2bの膨張による熱伝導抑制部26の圧縮をより一層抑制することができる。この結果、蓄電モジュール1の信頼性の低下をより一層抑制することができる。
 また、本実施の形態の蓄電装置2は、開口12を有する外装缶10と、開口12を塞ぐ封口板16と、外装缶10および封口板16の接合部20と、を有する。そして、枠部24は、外装缶10における第1方向Xを向く表面に当たる当接領域46と、第1方向Xから見て接合部20と重なり、当接領域46よりも外装缶10から離れる方向に凹んだ離間領域48と、を有する。
 セパレータ4が離間領域48を有することで、蓄電モジュール1の組み立て時、複数の蓄電装置2および複数のセパレータ4を第1方向Xに圧縮して拘束部材8で拘束する際に、接合部20にかかる負荷を軽減することができる。また、外装缶10の膨張時に繰り返し接合部20にかかる負荷を軽減することができる。
 また、外装缶10が所定の大きさまで膨張すると外装缶10が離間領域48に当接し、外装缶10のさらなる膨張が抑制される。これにより、接合部20の過度の変形を抑制することができ、当該変形により接合部20にかかる負荷を軽減することができる。よって、本実施の形態に係る蓄電モジュール1によれば、外装缶10と封口板16との接合部20が破損するおそれを低減できるため、蓄電装置2ひいては蓄電モジュール1の信頼性を高めることができる。
 また、離間領域48は、第1方向Xから見て封口板16の延びる第2方向Yにおける接合部20の全体と重なる。また、離間領域48は、封口板16の厚み方向における接合部20の全体と重なる。さらに、離間領域48は、封口板16よりも外装缶10の底面10a側に突出する。これらにより、外装缶10が膨張した際や、拘束部材8で蓄電装置2を締結する際に接合部20にかかる負荷を、より確実に軽減することができる。
(実施の形態4)
 実施の形態4は、枠部24の形状を除き、実施の形態3と共通の構成を有する。以下、本実施の形態について実施の形態3と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。図16は、実施の形態4に係る蓄電モジュールの下部の一部分を拡大して示す断面図である。図16では、蓄電装置2の内部構造を模式的に図示している。
 本実施の形態に係る蓄電モジュール1が備えるセパレータ4は、実施の形態3と同様に枠部24と、熱伝導抑制部26と、を有する。枠部24は、第1蓄電装置2aおよび第2蓄電装置2bの間に介在するとともに、当該2つの蓄電装置2間に拡がる孔42と、熱伝導抑制部26の係止部27と、を有する。係止部27は、第1部分27a、第2部分27bおよび第3部分27cを有する。熱伝導抑制部26は、孔42を塞ぐように配置されて枠部24に支持される。第1部分27aは、熱伝導抑制部26の第1方向Xと交わる方向を向く表面26aに当接する。第2部分27bは、熱伝導抑制部26と第1蓄電装置2aとの間に介在する。第3部分27cは、熱伝導抑制部26と第2蓄電装置2bとの間に介在する。
 また、本実施の形態の第2部分27bは、熱伝導抑制部26と対向する側に、つまり第2部分27bの第2蓄電装置2b側を向く側面56に、第1傾斜面60を有する。第1傾斜面60は、枠部24の外側から内側に向かうにつれて熱伝導抑制部26から離れるように傾斜する。第1傾斜面60は、第2部分27bにおける孔42側の端部に配置される。したがって、第2部分27bは、蓄電モジュール1の外側から中心側に向かって厚み(第1方向Xの大きさ)が薄くなるテーパ形状部を有する。
 蓄電装置2は、周縁部に比べて中央部の方が膨張量が大きい。このため、第2蓄電装置2bの膨張により熱伝導抑制部26が第1蓄電装置2a側に押された際に、熱伝導抑制部26が第2部分27bの角部に押し当てられ、熱伝導抑制部26が破損するおそれがある。これに対し、第1傾斜面60を設けることで、熱伝導抑制部26の当該破損を抑制することができる。よって、蓄電モジュール1の信頼性をより一層高めることができる。
 また、本実施の形態の第3部分27cは、熱伝導抑制部26と対向する側に、つまり第3部分27cの第1蓄電装置2a側を向く側面58に、第3傾斜面62を有する。第3傾斜面62は、枠部24の外側から内側に向かうにつれて熱伝導抑制部26から離れるように傾斜する。第3傾斜面62は、第3部分27cにおける孔42側の端部に配置される。したがって、第3部分27cは、蓄電モジュール1の外側から中心側に向かって厚みが薄くなるテーパ形状部を有する。第3傾斜面62を設けることで、第1蓄電装置2aの膨張により熱伝導抑制部26が第3部分27cの角部に押し当てられて破損することを、抑制することができる。よって、蓄電モジュール1の信頼性をより一層高めることができる。
(実施の形態5)
 実施の形態5は、枠部24の形状を除き、実施の形態3と共通の構成を有する。以下、本実施の形態について実施の形態3と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。図17は、実施の形態5に係る蓄電モジュールの下部の一部分を拡大して示す断面図である。図17では、蓄電装置2の内部構造を模式的に図示している。
 本実施の形態に係る蓄電モジュール1が備えるセパレータ4は、実施の形態3と同様に枠部24と、熱伝導抑制部26と、を有する。枠部24は、第1蓄電装置2aおよび第2蓄電装置2bの間に介在するとともに、当該2つの蓄電装置2間に拡がる孔42と、熱伝導抑制部26の係止部27と、を有する。係止部27は、第1部分27a、第2部分27bおよび第3部分27cを有する。熱伝導抑制部26は、孔42を塞ぐように配置されて枠部24に支持される。第1部分27aは、熱伝導抑制部26の第1方向Xと交わる方向を向く表面26aに当接する。第2部分27bは、熱伝導抑制部26と第1蓄電装置2aとの間に介在する。第3部分27cは、熱伝導抑制部26と第2蓄電装置2bとの間に介在する。
 また、本実施の形態の第2部分27bは、第1蓄電装置2aと対向する側に、つまり第2部分27bの第1蓄電装置2a側を向く側面に、第2傾斜面64を有する。第2傾斜面64は、枠部24の外側から内側に向かうにつれて第1蓄電装置2aから離れるように傾斜する。第2傾斜面64は、第2部分27bにおける孔42側の端部に配置される。したがって、第2部分27bは、蓄電モジュール1の外側から中心側に向かって厚みが薄くなるテーパ形状部を有する。
 第2部分27bに第2傾斜面64を設けることで、第1蓄電装置2aの膨張により第1蓄電装置2aの外装缶10が第2部分27bの角部に押し当てられることを回避することができる。これにより、外装缶10や外装缶10の外表面を覆う絶縁テープ等に窪み等の損傷が生じるおそれを低減することができる。したがって、蓄電モジュール1の信頼性をより一層高めることができる。
 また、本実施の形態の第3部分27cは、第2蓄電装置2bと対向する側に、つまり第3部分27cの第2蓄電装置2b側を向く側面に、第4傾斜面66を有する。第4傾斜面66は、枠部24の外側から内側に向かうにつれて第2蓄電装置2bから離れるように傾斜する。第4傾斜面66は、第3部分27cにおける孔42側の端部に配置される。したがって、第3部分27cは、蓄電モジュール1の外側から中心側に向かって厚みが薄くなるテーパ形状部を有する。
 第3部分27cに第4傾斜面66を設けることで、第2蓄電装置2bの膨張により第2蓄電装置2bの外装缶10が第3部分27cの角部に押し当てられることを回避することができる。これにより、外装缶10や外装缶10の外表面を覆う絶縁テープ等に窪み等の損傷が生じるおそれを低減することができる。したがって、蓄電モジュール1の信頼性をより一層高めることができる。
 以上、本発明の実施の形態について詳細に説明した。前述した実施の形態は、本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。また、各実施の形態に含まれる構成要素の任意の組み合わせも、本発明の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。
 実施の形態1および2の蓄電モジュール1において、セパレータ4は、熱伝導抑制部26を備えなくてもよい。つまり、セパレータ4は、枠部24のみであってもよい。また、セパレータ4は、枠部24に代えて、孔42を有しない平板部を備えてもよい。この場合、離間領域48は、平板部のうち第1方向Xから見て接合部20と重なる領域に配置される。また、平板部は、離間領域48を除く全ての領域が当接領域46を構成してもよいが、第1方向Xから見て長側面10bの周縁部と重なる領域のみが当接領域46を構成することが好ましい。つまり、第1方向Xから見て電極体14と重なる領域には、空隙52が形成されることが好ましい。また、セパレータ4は、壁部28を備えなくてもよい。
 蓄電モジュール1が備える蓄電装置2の数は特に限定されない。セパレータ4の壁部28の形状やエンドプレート6と拘束部材8との締結構造を含む、蓄電モジュール1の各部の構造は特に限定されない。蓄電モジュール1は、バスバープレートを備えてもよい。バスバープレートは、複数の蓄電装置2の上面と対向するように配置され、上面を覆う板状の部材である。外装缶10の開口12の形状は、正方形などの四角形状や、四角形以外の多角形状等であってもよい。
 実施の形態3~5の蓄電モジュール1には、以下の変形例1を挙げることができる。(変形例1)
 図18は、変形例1に係る蓄電モジュールの下部の一部分を拡大して示す断面図である。図18では、蓄電装置2の内部構造を模式的に図示している。変形例1の係止部27は、第1部分27aおよび第2部分27bを有し、第3部分27cを有しない。第3部分27cを有しない場合であっても、熱伝導抑制部26と第1蓄電装置2aとの間に空隙52を設けることができるため、実施の形態3で説明したとおり、各外装缶10の膨張による熱伝導抑制部26の圧縮量を低減することができる。
 なお、図18には、第1傾斜面60を有する第2部分27bが図示されているが(実施の形態4で第3部分27cを省いた構造に相当)、特にこの構造に限定されない。第2部分27bは、第2傾斜面64を有してもよいし(実施の形態5で第3部分27cを省いた構造に相当)、第1傾斜面60および第2傾斜面64を有しなくてもよい(実施の形態3で第3部分27cを省いた構造に相当)。
(その他)
 第2部分27bは、第1傾斜面60および第2傾斜面64の両方を備えてもよい。同様に、第3部分27cは、第3傾斜面62および第4傾斜面66の両方を備えてもよい。また、第1傾斜面60~第4傾斜面66は、任意に組み合わせることができる。第2部分27bおよび/または第3部分27cは、枠部24の全周に設けられていなくてもよい。つまり、第2部分27bおよび/または第3部分27cは、孔42の周囲に間欠的に設けられてもよい。同様に、第1傾斜面60~第4傾斜面66も、孔42の周囲に間欠的に設けられてもよい。また、第1部分27a~第3部分27cは、一体でなくてもよく、互いに所定の距離だけ離間していてもよい。
 実施の形態3~5および変形例1において、第1蓄電装置2aおよび第2蓄電装置2bは、複数の蓄電装置2における任意の2つの蓄電装置2である。また、蓄電モジュール1が備える全てのセパレータ4が各実施の形態もしくは変形例1で説明した構造を有することが好ましいが、少なくとも1つのセパレータ4が当該構造を備えていればよい。
 蓄電モジュール1が備える蓄電装置2の数は特に限定されない。セパレータ4の壁部28の形状やエンドプレート6と拘束部材8との締結構造を含む、蓄電モジュール1の各部の構造は特に限定されない。蓄電モジュール1は、バスバープレートを備えてもよい。バスバープレートは、複数の蓄電装置2の上面と対向するように配置され、上面を覆う板状の部材である。外装缶10の開口12の形状は、正方形などの四角形状や、四角形以外の多角形状等であってもよい。
 本発明は、蓄電モジュールに利用することができる。
 1 蓄電モジュール、 2 蓄電装置、 2a 第1蓄電装置、 2b 第2蓄電装置、 4 セパレータ、 10 外装缶、 12 開口、 16 封口板、 20 接合部、 24 枠部、 26 熱伝導抑制部、 27 係止部、 27a 第1部分、 27b 第2部分、 27c 第3部分、 42 孔、 46 当接領域、 48 離間領域、 48a 傾斜面、 60 第1傾斜面、 62 第3傾斜面、 64 第2傾斜面、 66 第4傾斜面。

Claims (18)

  1.  第1方向に並ぶ複数の蓄電装置と、
     隣接する2つの前記蓄電装置の間に配置されて、当該2つの蓄電装置間を絶縁するセパレータと、を備え、
     前記蓄電装置は、開口を有する外装缶と、前記開口を塞ぐ封口板と、前記外装缶および前記封口板の接合部と、を有し、
     前記セパレータは、前記外装缶における前記第1方向を向く表面に当たる当接領域と、前記第1方向から見て前記接合部と重なり、前記当接領域よりも前記外装缶から離れる方向に凹んだ離間領域と、を有することを特徴とする、
    蓄電モジュール。
  2.  前記離間領域は、前記第1方向から見て前記封口板の延びる第2方向における前記接合部の全体と重なる、
    請求項1に記載の蓄電モジュール。
  3.  前記離間領域は、前記封口板の厚み方向における前記接合部の全体と重なる、
    請求項1または2に記載の蓄電モジュール。
  4.  前記離間領域は、前記封口板よりも前記外装缶の前記封口板と対向する面側に延在する、
    請求項1乃至3のいずれか1項に記載の蓄電モジュール。
  5.  前記セパレータは、枠部を有し、
     前記枠部は、隣接する2つの前記蓄電装置の間に介在するとともに、当該2つの前記蓄電装置の間に拡がる孔を有し、
     前記当接領域および前記離間領域は、前記枠部に配置される、
    請求項1乃至4のいずれか1項に記載の蓄電モジュール。
  6.  前記セパレータは、熱伝導抑制部を有し、
     前記熱伝導抑制部は、前記孔を塞ぐように配置される、
    請求項5に記載の蓄電モジュール。
  7.  前記離間領域は、前記封口板側から、前記外装缶の前記封口板と対向する面側に向かうにつれて、前記外装缶から離れるように傾斜する傾斜面を有する、
    請求項1乃至6のいずれか1項に記載の蓄電モジュール。
  8.  前記外装缶の前記第1方向を向く表面は矩形状であり、
     前記当接領域は、前記第1方向を向く表面の4つの端辺のうち3つの端辺と重なり、
     前記離間領域は、前記4つの端辺のうち残りの端辺と重なる、
    請求項5に記載の蓄電モジュール。
  9.  前記蓄電装置は、第1方向に並ぶ第1蓄電装置および第2蓄電装置を含み、
     前記セパレータは、前記第1蓄電装置および前記第2蓄電装置の間に配置されて、当該2つの蓄電装置間を絶縁し、
     前記セパレータは、枠部と、熱伝導抑制部と、を有し、
     前記枠部は、前記第1蓄電装置および前記第2蓄電装置の間に介在するとともに、当該2つの蓄電装置間に拡がる孔と、前記熱伝導抑制部の係止部と、を有し、
     前記熱伝導抑制部は、前記孔を塞ぐように配置されて前記枠部に支持され、
     前記係止部は、前記熱伝導抑制部の前記第1方向と交わる方向を向く表面に当接する第1部分と、前記熱伝導抑制部と前記第1蓄電装置との間に介在する第2部分と、を有する、
    請求項1に記載の蓄電モジュール。
  10.  前記第2部分は、前記熱伝導抑制部と対向する側に、前記枠部の外側から内側に向かうにつれて前記熱伝導抑制部から離れるように傾斜する第1傾斜面を有する、
    請求項9に記載の蓄電モジュール。
  11.  前記第2部分は、前記第1蓄電装置と対向する側に、前記枠部の外側から内側に向かうにつれて前記第1蓄電装置から離れるように傾斜する第2傾斜面を有する、
    請求項9または10に記載の蓄電モジュール。
  12.  前記係止部は、前記熱伝導抑制部と前記第2蓄電装置との間に介在する第3部分を有する、
    請求項9乃至11のいずれか1項に記載の蓄電モジュール。
  13.  前記第3部分は、前記熱伝導抑制部と対向する側に、前記枠部の外側から内側に向かうにつれて前記熱伝導抑制部から離れるように傾斜する第3傾斜面を有する、
    請求項12に記載の蓄電モジュール。
  14.  前記第3部分は、前記第2蓄電装置と対向する側に、前記枠部の外側から内側に向かうにつれて前記第2蓄電装置から離れるように傾斜する第4傾斜面を有する、
    請求項12または13に記載の蓄電モジュール。
  15.  前記枠部は、前記当接領域と、前記離間領域と、を有する、
    請求項9乃至14のいずれか1項に記載の蓄電モジュール。
  16.  前記離間領域は、前記第1方向から見て前記封口板の延びる第2方向における前記接合部の全体と重なる、
    請求項15に記載の蓄電モジュール。
  17.  前記離間領域は、前記封口板の厚み方向における前記接合部の全体と重なる、
    請求項15または16に記載の蓄電モジュール。
  18.  前記離間領域は、前記封口板よりも前記外装缶の前記封口板と対向する面側に突出する、
    請求項15乃至17のいずれか1項に記載の蓄電モジュール。
PCT/JP2019/046104 2018-11-29 2019-11-26 蓄電モジュール WO2020111042A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/297,393 US20220006138A1 (en) 2018-11-29 2019-11-26 Power storage module
JP2020557728A JP7373753B2 (ja) 2018-11-29 2019-11-26 蓄電モジュール
CN201980076916.6A CN113169390A (zh) 2018-11-29 2019-11-26 蓄电模块
JP2023176927A JP2023174808A (ja) 2018-11-29 2023-10-12 蓄電モジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-223543 2018-11-29
JP2018-223544 2018-11-29
JP2018223543 2018-11-29
JP2018223544 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111042A1 true WO2020111042A1 (ja) 2020-06-04

Family

ID=70854009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046104 WO2020111042A1 (ja) 2018-11-29 2019-11-26 蓄電モジュール

Country Status (4)

Country Link
US (1) US20220006138A1 (ja)
JP (2) JP7373753B2 (ja)
CN (1) CN113169390A (ja)
WO (1) WO2020111042A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584791A (zh) * 2020-06-22 2020-08-25 昆山宝创新能源科技有限公司 电池模组
WO2022154107A1 (ja) * 2021-01-18 2022-07-21 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
WO2022154108A1 (ja) * 2021-01-18 2022-07-21 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
WO2022154106A1 (ja) * 2021-01-18 2022-07-21 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
CN115084761A (zh) * 2022-07-19 2022-09-20 广东首航智慧新能源科技有限公司 一种电芯支架及电池模组
JP2022544420A (ja) * 2019-12-05 2022-10-18 エルジー エナジー ソリューション リミテッド 熱拡散防止部材を含む電池パック
WO2023190713A1 (ja) * 2022-03-31 2023-10-05 株式会社Gsユアサ 蓄電装置
JP7453162B2 (ja) 2021-01-18 2024-03-19 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
JP7453163B2 (ja) 2021-01-18 2024-03-19 イビデン株式会社 組電池用熱伝達抑制シート及び組電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD945360S1 (en) * 2021-04-15 2022-03-08 Zhongrui Green Energy Technology (Shenzhen) Co. Ltd Battery box
EP4376169A1 (fr) * 2022-11-25 2024-05-29 Automotive Cells Company SE Ensemble comprenant une pluralité de cellules électrochimiques et dispositif électrique comprenant un tel ensemble

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010983A (ja) * 2012-06-28 2014-01-20 Sanyo Electric Co Ltd 電源装置及びこの電源装置を備える車両並びに蓄電装置
WO2014103007A1 (ja) * 2012-12-28 2014-07-03 日立ビークルエナジー株式会社 組電池
WO2015097875A1 (ja) * 2013-12-27 2015-07-02 日立オートモティブシステムズ株式会社 組電池
JP2015201288A (ja) * 2014-04-07 2015-11-12 株式会社Gsユアサ 蓄電装置、ホルダ及び蓄電装置の組立方法
JP2016103378A (ja) * 2014-11-27 2016-06-02 三洋電機株式会社 組電池
JP2016225166A (ja) * 2015-06-01 2016-12-28 株式会社豊田自動織機 蓄電装置モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752649B (zh) * 2013-12-31 2017-10-31 比亚迪股份有限公司 用于动力电池模组的隔板、电池容纳组件和动力电池模组
JP6299513B2 (ja) * 2014-07-31 2018-03-28 株式会社Gsユアサ 電源パック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010983A (ja) * 2012-06-28 2014-01-20 Sanyo Electric Co Ltd 電源装置及びこの電源装置を備える車両並びに蓄電装置
WO2014103007A1 (ja) * 2012-12-28 2014-07-03 日立ビークルエナジー株式会社 組電池
WO2015097875A1 (ja) * 2013-12-27 2015-07-02 日立オートモティブシステムズ株式会社 組電池
JP2015201288A (ja) * 2014-04-07 2015-11-12 株式会社Gsユアサ 蓄電装置、ホルダ及び蓄電装置の組立方法
JP2016103378A (ja) * 2014-11-27 2016-06-02 三洋電機株式会社 組電池
JP2016225166A (ja) * 2015-06-01 2016-12-28 株式会社豊田自動織機 蓄電装置モジュール

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262665B2 (ja) 2019-12-05 2023-04-21 エルジー エナジー ソリューション リミテッド 熱拡散防止部材を含む電池パック
JP2022544420A (ja) * 2019-12-05 2022-10-18 エルジー エナジー ソリューション リミテッド 熱拡散防止部材を含む電池パック
CN111584791A (zh) * 2020-06-22 2020-08-25 昆山宝创新能源科技有限公司 电池模组
WO2022154106A1 (ja) * 2021-01-18 2022-07-21 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
JP2022110559A (ja) * 2021-01-18 2022-07-29 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
WO2022154108A1 (ja) * 2021-01-18 2022-07-21 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
JP7203870B2 (ja) 2021-01-18 2023-01-13 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
WO2022154107A1 (ja) * 2021-01-18 2022-07-21 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
JP7453162B2 (ja) 2021-01-18 2024-03-19 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
JP7453163B2 (ja) 2021-01-18 2024-03-19 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
JP7488202B2 (ja) 2021-01-18 2024-05-21 イビデン株式会社 組電池用熱伝達抑制シート及び組電池
WO2023190713A1 (ja) * 2022-03-31 2023-10-05 株式会社Gsユアサ 蓄電装置
CN115084761A (zh) * 2022-07-19 2022-09-20 广东首航智慧新能源科技有限公司 一种电芯支架及电池模组

Also Published As

Publication number Publication date
JP2023174808A (ja) 2023-12-08
JPWO2020111042A1 (ja) 2021-10-14
CN113169390A (zh) 2021-07-23
US20220006138A1 (en) 2022-01-06
JP7373753B2 (ja) 2023-11-06

Similar Documents

Publication Publication Date Title
WO2020111042A1 (ja) 蓄電モジュール
KR100870457B1 (ko) 전지모듈
JP7054867B2 (ja) 電池モジュール
KR100896131B1 (ko) 중대형 전지모듈
JP7418410B2 (ja) 電池モジュール
JP7438147B2 (ja) 電池モジュール
KR101277250B1 (ko) 결합부를 포함한 단위모듈 제조용 모듈 하우징 및 이를 포함하는 전지모듈
EP2299511A1 (en) Rechargeable battery and battery module
KR101326182B1 (ko) 외장부재와 카트리지를 포함하는 단위모듈에 기반한 전지모듈
WO2020174804A1 (ja) 電池モジュール
JP7307086B2 (ja) 電池モジュール
US20220294070A1 (en) Buffer member, electrical storage module, and method for manufacturing buffer member
JP7325442B2 (ja) 電池モジュール
WO2020110448A1 (ja) 電池モジュール
JP7466151B2 (ja) 蓄電装置および蓄電モジュール
WO2020235279A1 (ja) バスバープレート
WO2020218222A1 (ja) 支持プレートおよび電圧検出線モジュール
US12009496B2 (en) Battery module
WO2021106516A1 (ja) 蓄電モジュール
WO2021241419A1 (ja) 蓄電モジュール
JP7445864B2 (ja) 蓄電装置
JP2023008499A (ja) 蓄電モジュールおよび蓄電パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891343

Country of ref document: EP

Kind code of ref document: A1