WO2020110392A1 - 鋼の製造方法及びスラグの塩基度低減方法 - Google Patents

鋼の製造方法及びスラグの塩基度低減方法 Download PDF

Info

Publication number
WO2020110392A1
WO2020110392A1 PCT/JP2019/033574 JP2019033574W WO2020110392A1 WO 2020110392 A1 WO2020110392 A1 WO 2020110392A1 JP 2019033574 W JP2019033574 W JP 2019033574W WO 2020110392 A1 WO2020110392 A1 WO 2020110392A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace body
slag
converter
basicity
silica
Prior art date
Application number
PCT/JP2019/033574
Other languages
English (en)
French (fr)
Inventor
哲之 今井
貴史 則竹
勲 下田
山内 崇
上原 博英
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020217015964A priority Critical patent/KR102535289B1/ko
Priority to JP2020514773A priority patent/JP6888741B2/ja
Publication of WO2020110392A1 publication Critical patent/WO2020110392A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2250/00Specific additives; Means for adding material different from burners or lances
    • C21C2250/02Hot oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/40Production or processing of lime, e.g. limestone regeneration of lime in pulp and sugar mills

Definitions

  • the present invention relates to a steel manufacturing method and a slag basicity reducing method.
  • an oxidative refining process (decarburization process) is performed in the converter to add molten oxygen to the hot metal to produce molten steel.
  • slag is generated due to the oxidation reaction of the added auxiliary material and the impurity components in the hot metal. After being collected, this slag is reused as a raw material for various purposes.
  • slag generated in a converter is roadbed materials.
  • the water immersion expansion coefficient needs to meet the quality standard defined by JIS or the like, and for example, the JIS standard needs to be 1.5% or less.
  • JIS the quality standard defined by JIS or the like
  • the basicity of the slag the ratio of the SiO 2 content to the CaO content of the slag ((%CaO)/(% It is important to reduce SiO 2 )
  • the oxidation refining treatment in the converter generally, only the amount according to the target slag composition determined according to the blowing components such as the target components and target temperature of the molten iron after the oxidation refining treatment, the efficiency of the refining reaction, At the beginning of the oxidative refining process, auxiliary materials such as silica stone and lime are added. However, it was difficult to reduce the basicity of the slag during the oxidative refining treatment from the viewpoint of promoting the dephosphorization reaction.
  • Patent Document 1 a substance containing one or more kinds of SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , and P 2 O 5 in a steelmaking slag (hereinafter, referred to as “improved” It also discloses a method of modifying the slag by adding a material to which slag is added) and then performing heat treatment for 10 minutes or less at a temperature equal to or higher than the melting temperature.
  • the present invention has been made by paying attention to the above problems, it is possible to reduce the basicity of the slag, it is possible to suppress the decrease in production efficiency, steel manufacturing method and the basicity of the slag
  • the purpose is to provide a reduction method.
  • a method for producing a molten steel by subjecting the hot metal to an oxidative refining treatment wherein the hot metal contains at least oxygen gas containing oxygen gas.
  • a refining treatment step in which the molten pig iron is converted to the molten steel by adding a source and performing an oxidative refining treatment, and after the refining treatment step, the molten steel contained in the furnace body of the converter contains at least SiO 2 .
  • a method for producing steel comprising: an addition step of adding a silica-containing substance; and a tapping step of tilting the furnace body and discharging the molten steel from the furnace body after the addition step.
  • the basicity of slag that is reduced when producing molten steel by subjecting molten pig iron to an oxidative refining treatment is reduced.
  • an oxygen source containing at least oxygen gas is added to the molten pig iron, and a refining treatment step is performed by subjecting the molten pig iron to the molten steel by performing an oxidation refining treatment, and after the refining treatment step, a furnace for the converter.
  • the method for reducing the basicity of slag is provided.
  • a steel manufacturing method and a slag basicity reducing method capable of reducing the basicity of slag and suppressing a decrease in production efficiency.
  • a steel manufacturing method and a slag basicity reducing method capable of reducing the basicity of slag and suppressing a decrease in production efficiency.
  • the molten steel 6 is produced by subjecting the molten iron 6 to an oxidative refining process using the upper-bottom blown type converter 1.
  • the converter 1 includes a furnace body 2, a plurality of bottom blowing tuyere 3, an upper blowing lance 4, and a chute 5.
  • the furnace body 2 is a refining container in which a refractory material is applied.
  • the furnace body 2 has an opening called a furnace port 21 in the upper portion in the state shown in FIG. Further, the furnace body 2 is configured to be tiltable about a pair of trunnion shafts 22 provided on the side surfaces.
  • the plurality of bottom blowing tuyeres 3 are tuyeres of double tubes provided at the bottom of the furnace body 2.
  • the plurality of bottom blowing tuyeres 3 are configured to blow at least oxygen gas from the inner tube and hydrocarbon gas from the outer tube into the furnace body 2, respectively.
  • the upper blowing lance 4 is a lance that can be inserted into the furnace body 2 from above the furnace body 2 through the furnace port 21.
  • the upper blowing lance 4 is configured to be able to inject at least oxygen gas from a lance hole formed at the lower tip.
  • the chute 5 is a device provided above the furnace body 2.
  • the tip of the chute 5 is arranged toward the furnace port 21.
  • the chute 5 conveys auxiliary materials such as a refining agent and a slag forming agent cut out from a hopper (not shown) and inputs the auxiliary raw material into the furnace body 2.
  • molten steel tapped from the blast furnace is housed in the furnace body 2 and subjected to oxidative refining treatment to manufacture molten steel.
  • molten pig iron and molten steel are collectively referred to as molten iron 6.
  • the hot metal subjected to the oxidative refining treatment may be previously subjected to hot metal pretreatment such as desiliconization treatment, dephosphorization treatment, and desulfurization treatment in another refining facility.
  • molten iron 6 which is hot metal is charged into the furnace body 2, and then oxygen gas and hydrocarbon gas are blown into the molten iron 6 from a plurality of bottom blowing tuyere 3 and oxygen gas is blown from the upper blowing lance 4.
  • the oxidative refining treatment is a treatment in which an oxygen source is added to the hot metal to oxidize and remove impurities such as carbon and phosphorus in the hot metal.
  • a decarburization reaction in which at least carbon in the molten iron 6 is removed and a phosphorus removal reaction in which phosphorus in the molten iron 6 is removed proceed by the oxidative refining process.
  • oxygen gas oxygen source
  • blowing addition of oxygen gas (oxygen source) to molten iron 6 by blowing oxygen gas from a plurality of bottom blowing tuyere 3 and injecting oxygen gas from top blowing lance 4 is also referred to as blowing.
  • the carbon in the molten iron 6 is oxidized and removed by the progress of the decarburization reaction, and molten steel having a low carbon concentration is manufactured.
  • auxiliary materials such as a slag forming agent are put into the furnace body 2 in order to accelerate the dephosphorization reaction.
  • a plurality of types of slag forming agents having different component compositions are added in an amount corresponding to the target slag composition.
  • Auxiliary materials such as smelting agents are determined in advance according to various blowing conditions such as the composition and temperature of the molten iron 6 before the oxidation refining treatment, the target composition and target temperature of the molten iron 6 after the oxidation refining treatment, and the efficiency of the refining reaction.
  • the determined input amount is input in the initial stage of the oxidative refining process.
  • the ratio of the CaO concentration (mass%) to the SiO 2 concentration (mass%) ((%CaO)/(%SiO 2 )) is called basicity.
  • the estimated basicity of the slag after the oxidative refining treatment is also calculated as the basicity based on the mass balance of the auxiliary raw materials and the components of the molten iron 6 to be charged, the planned amount of the oxygen source to be charged and the like.
  • the calculated basicity is usually 4.0 or more in the upper-bottom blowing converter 1.
  • the auxiliary raw materials are introduced and the refining process is performed, and the components and temperature of the molten iron 6 are set to target values, whereby the oxidation refining process is completed.
  • an addition step of adding a silica-containing substance containing at least SiO 2 to the molten iron 6 that is the molten steel housed in the furnace body 2 via the chute 5 is performed.
  • the operating procedure of the addition step is not particularly specified, but the following operating procedure is desirable because it promotes melting of the silica-containing substance.
  • the converter 1 When the converter 1 is a top-blown or top-bottom-blended converter having a top-blown lance, after the refining process, the top-blown lance is in a standby position while injecting oxygen gas to prevent nozzle clogging.
  • the addition of the silica-containing substance to the molten steel may be started during the period of increasing the temperature to In this case, when the necessary refining operation is completed, the operator (operator) operates the operation panel to send a refining end command. Immediately after sending this command, the required amount of silica-containing substance is cut out from the bunker into the hopper, and the gate of the hopper is opened.
  • the silica-containing substance is added to the molten steel bath surface in the furnace through the chute after the top blowing lance starts to move to the standby position.
  • the upper blowing lance has a lower flow rate than during the oxidative refining process, but the oxygen injection is continued during the rising.
  • the molten steel is stirred by the blown oxygen gas (stirring effect).
  • the oxygen gas blown oxidizes the molten steel and produces FeO, which promotes slag slag formation (slag formation effect). Therefore, the melting effect of the silica-containing substance is promoted by the stirring effect and the slagging effect of the oxygen gas.
  • the planned amount of silica-containing substance is cut out from the bunker at the end of the refining process and stored in the hopper in an addable state,
  • the operation of opening the gate of the hopper may be performed immediately after sending the refining end command.
  • the silica-containing substance may be added to the molten steel during the period from when the condition for tilting the furnace body is switched to when the tilting of the furnace body is started. In this case, immediately after the operator operates the operation panel to send the refining end command, the necessary amount of the silica-containing substance is cut out from the bunker into the hopper and the gate of the hopper is opened.
  • a refining end command is sent, in the case of a bottom-blown or bottom-blown converter that allows bottom blowing of oxygen gas, inert gas, or a mixed gas of oxygen gas and inert gas, it is blown from the bottom blowing tuyere.
  • the conditions for blowing the bottom-blown gas are switched from the conditions in the refining process step to the conditions for tilting the furnace body in the tapping step to be described later. Specifically, under the blowing conditions when tilting the furnace body for tapping, the type of bottom blowing gas is switched to the inert gas, and the flow rate of bottom blowing gas causes blockage of the bottom blowing tuyere during tapping. The flow rate is set to a low level.
  • the silica-containing substance is a molten steel bath in the furnace from the hopper via the chute 5 during a period from immediately after the bottom blowing gas is blown into the furnace body to when the furnace body is tilted until the tilting of the furnace body is started. Will be added on the surface.
  • the furnace body is preferably in an upright state while the silica-containing substance is added. With such an operating procedure, melting of the silica-containing substance is promoted by the stirring effect of the molten steel by the bottom-blown gas.
  • the amount of silica-containing substance to be added is cut out from the bunker at the end of the refining process and added to the hopper in a state where it can be added. It may be stored and only the operation of opening the gate of the hopper may be performed immediately after sending the refining end command.
  • Silica-containing material but may be any those containing SiO 2, preferably the majority of the components are SiO 2, it is preferably SiO 2 content higher.
  • silica-containing substance silica stone containing mainly SiO 2 can be used.
  • silica-containing substance it is preferable to use, among the slag-forming agents used in the refining treatment step, those mainly containing SiO 2 from the viewpoint of the restriction of storage equipment such as a hopper. Since silica stone is generally used as a slag forming agent, it is preferable to use silica stone also from this viewpoint.
  • the particle size of silica stone is set to 5 mm or more and 40 mm or less.
  • the smaller the particle size of the silica-containing substance the easier the melting.
  • the particle size of the silica-containing substance is too small, the input yield may be reduced due to scattering.
  • a fine powdery silica-containing substance is used by air, it may not be possible to secure a sufficient amount for continuous treatment due to restrictions of storage facilities and transportation facilities.
  • the particle size of the silica-containing substance is preferably 5 mm or more and 40 mm or less.
  • the input amount of the silica-containing substance is determined according to the calculated basicity after the slag 7 refining treatment step and the target basicity set from the water immersion expansion coefficient of the slag. Specifically, the slag amount is estimated to calculate basicity after refining process slag 7, SiO 2 amount required for slag 7 becomes the target basicity is determined, the SiO 2 amount min The amount of the silica-containing substance is the input amount.
  • the water immersion expansion coefficient of the slag is F. It is a value determined by the content of CaO (Free-CaO), and increases as the basicity of the slag increases.
  • the JIS stipulates that the water immersion expansion coefficient is 1.5% or less, and in this embodiment, the slag water expansion expansion coefficient is set to 0.
  • the target is 5% or less.
  • the target basicity is less than 3.8 in the case of the top-bottom blowing converter as in the present embodiment, and the target basicity is 3.6 or less. Is more preferable.
  • the target basicity is preferably 3.0 or more.
  • the target basicity that is, the calculated basicity of the slag 7 after adding the silica-containing substance is less than 3.0, the phosphorus distribution ratio of the slag decreases, and the phosphorus in the slag returns to the molten steel, thereby Re-phosphorus, which increases the phosphorus concentration, may occur. For this reason, it may be a problem in steel types with a strict upper limit of phosphorus concentration.
  • the addition step it is judged whether or not the calculated basicity of the slag 7 after the refining step is 3.8 or more, and the silica is calculated only when the calculated basicity of the slag 7 after the refining step is 3.8 or more.
  • the contained substance may be added. In this case, if the calculated basicity of the slag 7 after the refining step is less than 3.8, the silica-containing substance is not added and the tapping step described below is performed.
  • the silica-containing substance added in the adding step is added from the chute 5 into the high temperature furnace body 2 to be added to the slag 7 floating above the molten iron 6. Then, the charged silica-containing substance is melted by the hot molten iron 6 and the slag 7 and becomes a part of the melted slag 7.
  • a steel tapping process of tilting the furnace body 2 and discharging the molten iron 6 from the furnace body 2 is performed.
  • the furnace body 2 is tilted about the pair of trunnion shafts 22 and the molten iron 6 is discharged from a tap hole (not shown) provided in the side wall portion of the furnace body 2.
  • the discharged molten iron 6 is stored in a ladle (not shown) arranged below the furnace body 2 and sent to the next step.
  • the molten iron 6 and the slag 7 flow inside the furnace body 2 due to the tilting of the furnace body 2, thereby further promoting the melting of the silica-containing substance charged in the addition step.
  • the slag 7 remains in the furnace body 2. Then, the slag 7 remaining in the furnace body 2 is discharged downward from the furnace port 21 when the furnace body 2 is tilted to the side opposite to the steel tapping process. The discharged slag 7 is collected in a slag pot arranged below the furnace body 2 and then reused after undergoing an appropriate treatment such as aging treatment and magnetic separation treatment.
  • Molten iron 6 stored in a ladle (not shown) after the tapping process is appropriately subjected to secondary refining according to the target composition of the steel type to be manufactured, and then cast in a casting facility such as a continuous casting machine. Then, it becomes a cast piece.
  • the obtained slab is subjected to rolling and heat treatment so that the dimension, shape, and characteristics satisfy the specifications of the shipped product, and becomes the product steel.
  • the converter 1 is a top-bottom blow type converter, but the present invention is not limited to such an example.
  • the converter 1 may be a top-blowing converter that injects oxygen gas only from the top-blowing lance 4 or a bottom-blowing converter that injects oxygen gas only from the bottom-blowing tuyere 3.
  • the converter 1 when the converter 1 is a top-bottom blowing converter, it is a converter capable of bottom-blowing oxygen gas as in the above embodiment, and a bottom-blown converter capable of blowing only inert gas. Good.
  • a lance hole different from oxygen gas is provided in the upper blowing lance 4, and an auxiliary material such as lime can be injected (projected) to the molten iron 6 together with the carrier gas from the lance hole. Good.
  • the target basicity is set to be less than 3.8, more preferably 3.6 or less, but the present invention is not limited to this example. Further, in the adding step, it may be judged whether or not the silica-containing substance is added in the adding step, based on the judgment result of whether or not the calculated basicity of the slag 7 after the refining step is 3.8 or more. However, the present invention is not limited to such an example.
  • the above target basicity and threshold value are 0.5% or less in a top-blown or bottom-blown converter, which is a converter-type refining in which the oxygen gas is blown from at least a plurality of bottom-blown tuyeres. It is suitable for achieving the water immersion expansion coefficient.
  • the target basicity and the threshold value can be changed according to the target water immersion expansion rate and the difference in the blowing mode of the converter.
  • the oxidative refining process is performed by adding oxygen gas as the oxygen source, but the present invention is not limited to this example.
  • the oxygen source a solid oxygen source such as iron oxide may be used in addition to the oxygen gas.
  • a method for producing steel according to an aspect of the present invention is a method for producing molten steel by subjecting molten iron to an oxidative refining treatment in a converter 1, which comprises: An oxygen source containing at least oxygen gas, and subjecting it to oxidation refining treatment to a refining treatment step in which molten iron is used as molten steel, and after the refining treatment step, at least the furnace body 2 of the converter 1 containing molten steel is An addition step of adding a silica-containing substance containing SiO 2 from above and a tapping step of tilting the furnace body 2 to discharge molten steel from the furnace body 2 after the addition step are provided.
  • the silica-containing substance is added while the high-temperature molten steel, which is the molten iron 6, is housed inside the furnace body 2, the silica-containing substance is easily melted. Further, in the tapping process, the molten iron 6 and the slag 7 flow inside the furnace body 2 due to the tilting of the furnace body 2, whereby the melting of the silica-containing substance is further promoted. Therefore, the added silica-containing substance can be sufficiently melted, and the basicity of the slag 7 can be accurately reduced. Further, in the configuration of (1) above, the silica-containing substance is easily dissolved, so that a silica-containing substance having a larger particle size can be used. Thereby, the production efficiency can be improved and the manufacturing cost can be reduced.
  • the configuration of (1) above it is not necessary to lower the basicity of the slag 7 in the refining treatment process.
  • the slag 7 may be formed.
  • the slag 7 is ejected from the furnace body 2 due to forming, it causes a decrease in yield and a collapse of the ladle wire under the furnace, which makes stable operation impossible.
  • the occurrence frequency of forming of the slag 7 is suppressed, and stable operation can be performed.
  • the phosphorus distribution ratio of the slag 7 becomes low, so that dephosphorization cannot be performed sufficiently or the CaO-containing slag forming agent is added to increase the amount of slag 7.
  • the input amount of may increase.
  • the period during which the basicity of the slag 7 decreases is a short period from the addition process to the tapping process, and the amount of reconstitution phosphorus due to the decrease in the phosphorus distribution ratio is extremely small. It will be From this, it is possible to minimize the influence of the decrease in the phosphorus distribution ratio, and it is possible to further reduce the manufacturing cost.
  • the effect of the molten iron 6 on the composition of components is so small that the amount of re-phosphorus is extremely small, the product characteristics and the like are the same as conventional steel.
  • the converter 1 has a bottom blowing tuyere 3 provided at the bottom of the furnace body 2, and in the refining treatment step, at least the bottom is used as oxygen gas contained in the oxygen source. Oxidation refining treatment is performed by blowing oxygen gas into the hot metal from the blowing tuyere 3. According to the configuration of (2) above, even in a bottom-blown or top-bottomed converter in which it is difficult to reduce the basicity of the slag as compared to the top-blown converter due to the difference in the blowing mode, Since the basicity of the slag can be reduced, the reuse of the slag can be promoted.
  • the converter 1 has an upper blowing lance 4, and in the adding step, after the refining process step, while injecting oxygen gas to prevent nozzle clogging, During the period in which the upper blowing lance 4 is raised to the standby position, the addition of the silica-containing substance to the molten steel is started. According to the configuration of (3) above, the melting of the silica-containing substance is promoted by the stirring effect and the slagging effect of the blown oxygen gas.
  • the converter 1 has a bottom blowing tuyere 3 provided at the bottom of the furnace body 2, and the addition step includes a refining treatment step. Thereafter, during the period from when the blowing condition of the bottom blowing gas blown from the bottom blowing tuyere 3 is switched to the condition when the furnace body 2 is tilted until when the tilting of the furnace body 2 is started, the molten steel contains silica. Add substance. With configuration (4) above, the molten steel is agitated by the bottom-blown gas blown from the bottom-blown gas even in the addition step, and the melting of the silica-containing substance is promoted.
  • the slag 7 in the adding step when the calculated basicity of the slag 7 in the furnace body 2 after the refining treatment step is 3.8 or more, the slag The amount of the silica-containing substance added is determined so that the calculated basicity of 7 is 3.6 or less.
  • the water immersion expansion coefficient of the slag 7 can be set to 0.5% or less.
  • the amount of the silica-containing substance added is adjusted so that the calculated basicity of the slag 7 in the furnace body 2 becomes 3.0 or more. To decide. According to the above configuration (6), the amount of rephosphorization can be sufficiently suppressed, and the manufacturing cost can be further reduced.
  • a method for reducing the basicity of slag according to one aspect of the present invention is to reduce the basicity of slag 7 generated when molten steel is produced by subjecting molten iron to oxidative refining treatment in a converter 1.
  • an adding step of adding a silica-containing substance containing at least SiO 2 to the molten steel housed in the furnace body 2 of the converter 1, and after the adding step, the furnace body 2 is tilted to discharge the molten steel from the furnace body. And a tapping process.
  • the same effect as that of (1) above can be obtained.
  • the converter 1 has the upper blowing lance 4, and in the adding step, the upper blowing lance 4 is injected after the refining treatment step while injecting oxygen gas to prevent nozzle clogging. During the period in which the steel is raised to the standby position, the addition of the silica-containing substance to the molten steel is started. With the configuration (8), the same effect as that of the configuration (3) can be obtained.
  • the converter 1 has a bottom blowing tuyere 3 provided at the bottom of the furnace body 2, and in the adding step, bottom blowing is performed after the refining treatment step.
  • a silica-containing substance is added to molten steel during a period from when the bottom blowing gas blown from the tuyere 3 is switched to a condition for tilting the furnace body 2 until the tilting of the furnace body 2 is started. ..
  • the configuration (9) With the configuration (9), the same effect as that of the configuration (4) can be obtained.
  • the molten steel 6 was refined in the converter 1 to reduce the basicity of the slag by using the steel manufacturing method similar to the above-described embodiment. Specifically, in the example, molten steel was manufactured by subjecting the hot metal to an oxidative refining treatment in the top-bottom blowing converter 1 in the refining treatment step. In the refining process step, the oxidative refining process of the molten iron 6 was performed under the condition that the calculated basicity was 4 or more. Next, in the adding step, silica was added as a silica-containing substance with a target basicity of 3.6 (Example 1) or 3.2 (Example 2).
  • the tapping process when the molten iron 6 is discharged from the furnace body 2, the slag 7 in the furnace body 2 is sampled, and the CaO concentration and the SiO 2 concentration are measured to determine the basicity (also referred to as “actual basicity”). It was measured.
  • FIG. 2 shows the relationship between the calculated basicity and the actual basicity in Examples and Comparative Examples.
  • the plot shows the average value of a plurality of data, and the bars extending vertically and horizontally show the standard deviation ( ⁇ ). As shown in FIG.
  • the basicity of the conventional slags shown in Comparative Examples 1 to 4 was a correlation between the calculated basicity and the actual basicity.
  • the calculated basicity is calculated from the mass balance under the preliminarily predicted blowing conditions such as the amount of hot metal components and various auxiliary raw materials input, the amount of oxygen source containing oxygen gas, in the oxidative refining process. It is a thing. Therefore, due to factors such as actual reaction efficiency, the actual basicity tends to be lower than the calculated basicity by a certain amount.
  • the slag 7 treated in the same manner as in the above example 1 was discharged from the furnace body 2 and recovered, and then the basicity analysis and the water immersion expansion coefficient were measured.
  • the basicity was determined from the ratio of CaO concentration (mass%) and SiO 2 concentration (mass%) by performing fluorescent X-ray analysis on the analytical sample of slag 7.
  • the water immersion expansion coefficient was measured according to Japanese Industrial Standard JISA5015 Annex B. As a result, it was confirmed that the basicity of the slag was 2.7 and the water immersion expansion coefficient was 0.5% or less.
  • the slag treated by the same method as in the comparative example and having a calculated basicity of 4.0 or more was also analyzed for basicity and the water immersion expansion coefficient was measured after recovery.
  • analysis and measurement were carried out in the same manner as in the above-mentioned examples. As a result, it was confirmed that the basicity of the slag was 3.5 and the water immersion expansion coefficient was 1.5% or more, and the target quality could not be satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

スラグの塩基度を低減させることができ、生産効率の低下を抑制することができる、鋼の製造方法及びスラグの塩基度低減方法を提供する。転炉(1)にて、溶銑に酸化精錬処理を施すことで溶鋼を製造する鋼の製造方法であって、転炉(1)にて、溶銑に少なくとも酸素ガスを含む酸素源を加え、酸化精錬処理を施すことで、溶銑を溶鋼とする精錬処理工程と、精錬処理工程の後、溶鋼が収容された転炉(1)の炉体(2)に、少なくともSiOを含むシリカ含有物質を上方から添加する添加工程と、添加工程の後、炉体(2)を傾動させて炉体(2)から溶鋼を排出する出鋼工程と、を備える。

Description

鋼の製造方法及びスラグの塩基度低減方法
 本発明は、鋼の製造方法及びスラグの塩基度低減方法に関する。
 製鉄所の製鋼工程では、転炉にて、溶銑に酸素ガス等の酸素源を加えることで、溶鋼を製造する酸化精錬処理(脱炭処理)が行われる。この酸化精錬処理では、添加される副原料や溶銑中の不純物成分等の酸化反応によって、スラグが発生する。このスラグは、回収された後、様々な用途の原材料として再利用される。
 転炉で発生したスラグの用途の一つとしては、路盤材がある。スラグを路盤材として利用する場合、水浸膨張率が、JIS等の基準で定められた品質基準を満たす必要があり、例えば、JISの基準では1.5%以下とする必要がある。スラグの水浸膨張率を低減させるためには、スラグ中の遊離石灰量を減らす必要があり、スラグの塩基度(スラグのCaO含有量に対するSiO含有量の比((%CaO)/(%SiO)))を低減させることが肝要となる。
 しかしながら、転炉での酸化精錬処理においては、スラグの塩基度が低くなると、処理中に発生するCOガス等によってスラグが膨張するフォーミングが起こり易くなり、脱燐効率も低くなる。このため、酸化精錬処理におけるスラグの塩基度の低下は、操業トラブルの原因となり、生産効率を低下させることとなる。また、転炉での酸化精錬処理では一般的に、酸化精錬処理後の溶鉄の目標成分や目標温度、精錬反応の効率といった吹錬条件に応じて決定される目標スラグ組成に応じた量だけ、酸化精錬処理の初期に珪石や石灰といった副原料をそれぞれ投入する。しかし、脱燐反応の促進などの観点から、酸化精錬処理中のスラグの塩基度を低くすることは困難であった。
 このような問題に対して、例えば特許文献1には、製鋼スラグにSiO、Al、FeO、Fe、Pの1種以上を含有する物質(以下、「改質剤」ともいう。)を添加した物を添加した後、溶融温度以上の温度で10分以下熱処理することで、スラグを改質する方法が開示されている。
特許第4571818号公報
 ところで、特許文献1に記載の方法では、転炉でスラグの改質を行う場合、転炉にスラグのみが収容された状態で改質剤を添加、または空の転炉に改質剤を入れ置きした後にスラグを添加することとなる。このため、特許文献1の記載の方法では、酸化精錬処理を行う一連の操業プロセスとは別に、改質に伴う処理を設ける必要があることから、生産効率が低下することが問題であった。
 そこで、本発明は、上記の課題に着目してなされたものであり、スラグの塩基度を低減させることができ、生産効率の低下を抑制することができる、鋼の製造方法及びスラグの塩基度低減方法を提供することを目的としている。
 本発明の一態様によれば、転炉にて、溶銑に酸化精錬処理を施すことで溶鋼を製造する鋼の製造方法であって、上記転炉にて、上記溶銑に少なくとも酸素ガスを含む酸素源を加え、酸化精錬処理を施すことで、上記溶銑を上記溶鋼とする精錬処理工程と、上記精錬処理工程の後、上記転炉の炉体に収容された上記溶鋼に、少なくともSiOを含むシリカ含有物質を添加する添加工程と、上記添加工程の後、上記炉体を傾動させて上記炉体から上記溶鋼を排出する出鋼工程と、を備える、鋼の製造方法が提供される。
 本発明の一態様によれば、転炉にて、溶銑に酸化精錬処理を施すことで溶鋼を製造する際に生じるスラグの塩基度を低減される、スラグの塩基度低減方法であって、上記転炉にて、上記溶銑に少なくとも酸素ガスを含む酸素源を加え、酸化精錬処理を施すことで、上記溶銑を上記溶鋼とする精錬処理工程と、上記精錬処理工程の後、上記転炉の炉体に収容された上記溶鋼に、少なくともSiOを含むシリカ含有物質を添加する添加工程と、上記添加工程の後、上記炉体を傾動させて上記炉体から上記溶鋼を排出する出鋼工程と、を備える、スラグの塩基度低減方法が提供される。
 本発明の一態様によれば、スラグの塩基度を低減させることができ、生産効率の低下を抑制することができる、鋼の製造方法及びスラグの塩基度低減方法が提供される。
 本発明の一態様によれば、スラグの塩基度を低減させることができ、生産効率の低下を抑制することができる、鋼の製造方法及びスラグの塩基度低減方法が提供される。
転炉の設備構成を示す模式図である。 実施例及び比較例における計算塩基度と実塩基度との関係を示すグラフである。
 以下の詳細な説明では、本発明の完全な理解を提供するように、本発明の実施形態を例示して多くの特定の細部について説明する。しかしながら、かかる特定の細部の説明がなくても1つ以上の実施態様が実施できることは明らかである。また、図面は、簡潔にするために、周知の構造及び装置が略図で示されている。
 <鋼の製造方法>
 図1を参照して、本発明の一実施形態に係る鋼の製造方法について説明する。本実施形態では、上底吹き型の転炉1を用いて、溶鉄6を酸化精錬処理することで、溶銑から溶鋼を製造する。転炉1は、図1に示すように、炉体2と、複数の底吹き羽口3と、上吹きランス4と、シュート5とを備える。
 炉体2は、内側に耐火物が施工された精錬容器である。炉体2は、図1に示す状態において上部に炉口21とよばれる開口部を有する。また、炉体2は、側面に設けられた一対のトラニオン軸22を中心として傾動可能に構成される。
 複数の底吹き羽口3は、炉体2の底部に設けられる二重管の羽口である。複数の底吹き羽口3は、内側の管から少なくとも酸素ガス、外側の管から炭化水素ガスを、炉体2の内部にそれぞれ吹き込むように構成される。
 上吹きランス4は、炉体2の上方から炉口21を通じて炉体2の内部に挿入可能に構成されるランスである。上吹きランス4は、下側の先端に形成されたランス孔から少なくとも酸素ガスを噴射可能に構成される。
 シュート5は、炉体2の上方に設けられる装置である。シュート5は、先端が炉口21に向けて配される。シュート5は、不図示のホッパーから切り出された精錬剤や造滓剤等の副原料を搬送して、炉体2の内部に投入する。
 本実施形態に係る鋼の製造方法では、高炉から出銑された溶銑を、炉体2に収容し、酸化精錬処理することで、溶鋼を製造する。なお、以下では、溶銑及び溶鋼を総称して溶鉄6ともいう。酸化精錬処理される溶銑は、予め、脱珪処理や脱燐処理、脱硫処理といった溶銑予備処理が、他の精錬設備にて施されてもよい。
 本実施形態では、まず、炉体2に溶銑である溶鉄6を装入した後、複数の底吹き羽口3から酸素ガスと炭化水素ガスを溶鉄6に吹き込み、上吹きランス4から酸素ガスを溶鉄6に噴射することで、酸化精錬処理をする精錬処理工程が行われる。酸化精錬処理は、溶銑に酸素源を加え、溶銑中の炭素や燐といった不純物成分を酸化除去する処理である。本実施形態では、酸化精錬処理によって、少なくとも溶鉄6中の炭素が除去される脱炭反応と溶鉄6中の燐が除去される脱燐反応とが進行する。なお、以下では、複数の底吹き羽口3からの酸素ガスの吹き込み、及び上吹きランス4からの酸素ガスの噴射による、酸素ガス(酸素源)の溶鉄6への添加を吹錬ともいう。
 精錬処理工程では、脱炭反応が進行することで、溶鉄6中の炭素が酸化除去され、炭素濃度の低い溶鋼が製造される。また、精錬処理工程では、脱燐反応を促進させるために、造滓剤等の副原料が炉体2の内部に投入される。この際、成分組成の異なる複数種の造滓剤が、目標とするスラグ組成に応じた量だけそれぞれ添加される。造滓剤等の副原料は、酸化精錬処理前の溶鉄6の成分や温度、酸化精錬処理後の溶鉄6の目標成分や目標温度、精錬反応の効率といった様々な吹錬条件に応じて予め決定されるものであり、決定された投入量が酸化精錬処理の初期に投入される。なお、スラグの組成において、SiO濃度(mass%)に対するCaO濃度(mass%)の比((%CaO)/(%SiO))を塩基度という。また、投入される副原料や溶鉄6の成分、酸素源の投入予定量等のマスバランスによって、酸化精錬処理前に予め計算される、酸化精錬処理後のスラグの推定塩基度を計算塩基度ともいう。一般的な鋼種を溶製する場合、上底吹き型の転炉1では、通常、計算塩基度は4.0以上となる。精錬処理工程では、副原料の投入、そして吹錬処理が行われ、溶鉄6の成分及び温度が目標のものとなることで、酸化精錬処理が終了する。
 精錬処理工程の後、炉体2に収容された溶鋼である溶鉄6に、シュート5を介して、少なくともSiOを含むシリカ含有物質を添加する、添加工程を行う。
 添加工程の操業手順は特に規定しないが、以下の操業手順をとるとシリカ含有物質の融解が促進されるので望ましい。
 転炉1が上吹きランスを有する転炉である上吹き型または上底吹き型の転炉の場合、精錬工程の後、ノズル詰まり防止のために酸素ガスを噴射させながら上吹きランスを待機位置まで上昇させる期間中に、溶鋼へのシリカ含有物質の添加を開始してもよい。この場合、作業者(オペレータ)は必要な精錬操作が終了すると、操作盤を操作して精錬終了指令を送る。そして、この指令を送った直後にシリカ含有物質の必要量をバンカーからホッパーに切り出し、ホッパーのゲートを開く操作を行なう。この操作が行われると、上吹きランスが待機位置への上昇を開始した後、シリカ含有物質がシュートを介して炉内の溶鋼浴面上に添加されることになる。上吹きランスはノズル詰まりを避けるため、酸化精錬処理時に比べ流量は低いものの、上昇中も酸素の噴射が続けられる。このとき、吹き付けられる酸素ガスによって溶鋼が攪拌される(撹拌効果)。また、吹き付けられる酸素ガスによって溶鋼が酸化され、FeOが生成することによってスラグの滓化が促される(滓化効果)。このため、酸素ガスによる撹拌効果と滓化効果によって、シリカ含有物質の融解が促進される。なお、添加のタイミング及び炉傾動(出鋼)開始をより早めるため、添加予定量のシリカ含有物質を、精錬処理工程の末期にバンカーから切り出して、添加可能な状態でホッパーに貯留しておき、精錬終了指令を送った直後にホッパーのゲートを開く操作を行なっても良い。
 また、転炉が底吹き羽口を有する転炉である上底吹き型または底吹き型の転炉の場合、精錬処理工程の後、底吹き羽口から吹き込まれる底吹きガスの吹き込み条件を、炉体を傾動させるときの条件に切り替えてから、炉体の傾動を開始するまでの期間中に、溶鋼にシリカ含有物質を添加してもよい。この場合、オペレータが操作盤を操作して精錬終了指令を送った直後に、シリカ含有物質の必要量をバンカーからホッパーに切り出し、ホッパーのゲートを開く操作を行なう。精錬終了指令を送ると、酸素ガスや不活性ガス、酸素ガスと不活性ガスとの混合ガスなどの底吹きが可能な上底吹き型または底吹き型の転炉では、底吹き羽口から吹き込まれる底吹きガスの吹き込み条件が、精錬処理工程における条件から、後述する出鋼工程において炉体を傾動させるときの条件に切り替わる。具体的には、炉体を傾動させて出鋼させるときの吹き込み条件では、底吹きガスの種類が不活性ガスに切り替わり、底吹きガスの流量が出鋼中に底吹き羽口の閉塞が起こらない程度に低い流量に設定される。シリカ含有物質は、底吹きガスの吹き込み条件が炉体を傾動させる時のものに切り替わった直後から、炉体の傾動を開始するまでの期間中にホッパーからシュート5を介して炉内の溶鋼浴面上に添加されることになる。なお、シリカ含有物質が添加される間は、炉体は直立した状態となることが好ましい。このような操業手順とすると、底吹きガスによる溶鋼の攪拌効果でシリカ含有物質の融解が促進される。なお、添加のタイミング及び炉体の傾動(出鋼)を開始するタイミングをより早めるために、添加予定量のシリカ含有物質を、精錬処理工程の末期にバンカーから切り出して添加可能な状態でホッパーに貯留しておき、精錬終了指令を送った直後にホッパーのゲートを開く操作のみを行なっても良い。
 シリカ含有物質は、SiOを含むものであれば何でもよいが、成分の大半がSiOであることが好ましく、SiO含有量がより多いことが好ましい。例えば、シリカ含有物質としては、SiOが主に含まれる珪石を用いることができる。また、シリカ含有物質として、精錬処理工程にて用いられる造滓剤のうち、主にSiOを含有するものを用いることが、ホッパー等の貯蔵設備の制約の観点から好ましい。なお、珪石は造滓剤として一般的に用いられるものであることから、この観点からも珪石を用いることが好ましい。さらに、本実施形態では、一例として、シリカ含有物質として珪石を用いる場合において、珪石の粒径を5mm以上40mm以下とする。シリカ含有物質の粒径は、より小さい方が、融解し易くなる。しかし、シリカ含有物質の粒径は、小さすぎると飛散による投入歩留りの低下を招く可能性がある。また、微粉状のシリカ含有物質を気送して使用する場合には、貯蔵設備や搬送設備の制約から連続して処理する場合に十分な投入量を確保できない可能性がある。一方、シリカ含有物質の粒径が大きい場合、粒径が小さい場合における上記の問題は生じないものの、投入されたシリカ含有物質が充分に融解しない可能性がある。このため、シリカ含有物質の粒径は、5mm以上40mm以下とすることが好ましい。
 添加工程では、スラグ7の精錬処理工程後の計算塩基度と、スラグの水浸膨張率から設定される目標塩基度とに応じて、シリカ含有物質の投入量が決定される。具体的には、スラグ7の精錬処理工程後の計算塩基度と推定されるスラグ量とから、スラグ7が目標塩基度となるために必要なSiO量が求められ、このSiO量分のシリカ含有物質の量が投入量となる。スラグの水浸膨張率は、スラグ中のF.CaO(Free-CaO)の含有量によって決まる値であり、スラグの塩基度が高くなるほど大きくなる。路盤材に用いられるスラグの場合、JISでは水浸膨張率が1.5%以下となるように定められており、本実施形態ではそれよりも厳格な基準としてスラグの水浸膨張率を0.5%以下とすることを目標とする。0.5%の水浸膨張率を満足するためには、本実施形態のように上底吹き形の転炉の場合、目標塩基度を3.8未満とすることが好ましく、3.6以下とすることがより好ましい。目標塩基度、つまりシリカ含有物質を添加した後のスラグの計算塩基度を3.8未満、好ましくは3.6以下とすることで、スラグ中のF.CaOの含有量を十分に低減することができ、水浸膨張率≦0.5%の基準を満足することができる。また、添加工程において、目標塩基度は、3.0以上とすることが好ましい。目標塩基度、つまりシリカ含有物質を添加した後のスラグ7の計算塩基度が3.0未満となる場合、スラグの燐分配比が低下し、スラグ中の燐が溶鋼へと戻ることで溶鋼の燐濃度が増加する復燐が発生する可能性がある。このため、燐濃度の上限が厳格な鋼種においては問題となる場合がある。
 また、添加工程では、精錬工程後のスラグ7の計算塩基度が3.8以上であるか否かを判断し、精錬工程後のスラグ7の計算塩基度が3.8以上の場合にのみシリカ含有物質を添加するようにしてもよい。この場合、精錬工程後のスラグ7の計算塩基度が3.8未満の場合には、シリカ含有物質の添加は行われず、後述する出鋼工程が行われることとなる。
 添加工程にて添加されたシリカ含有物質は、シュート5から高温の炉体2の内部に投入されことで、溶鉄6の上方に浮上しているスラグ7へと添加される。そして、投入されたシリカ含有物質は、高温の溶鉄6やスラグ7によって融解し、溶融したスラグ7の一部となる。
 添加工程の後、炉体2を傾動させて炉体2から溶鉄6を排出する出鋼工程を行う。出鋼工程では、一対のトラニオン軸22を中心として炉体2を傾動させて、炉体2の側壁部に設けられた出湯孔(不図示)から溶鉄6を排出する。排出された溶鉄6は、炉体2の下方に配された取鍋(不図示)へ収容され、次工程へと送られる。出鋼工程では、炉体2が傾動によって、炉体2の内部で溶鉄6やスラグ7が流動することで、添加工程にて投入されたシリカ含有物質の溶融がさらに促進される。
 出鋼工程の後、炉体2にはスラグ7が残った状態となる。そして、炉体2に残ったスラグ7は、炉体2が出鋼工程とは逆側へと傾動されることで、炉口21から下方へと排出される。排出されたスラグ7は、炉体2の下方に配されたスラグ鍋へと回収され、その後、エージング処理や磁選処理等の適切な処理を経て再利用される。
 出鋼工程を経て、取鍋(不図示)へ収容された溶鉄6は、製造すべき鋼種の目標成分組成に応じて適宜2次精錬を施された後、連続鋳造機などの鋳造設備で鋳造され、鋳片となる。得られた鋳片は、寸法形状や特性などが出荷製品の規格を満足するよう圧延や熱処理を施されて製品の鋼となる。
 <変形例>
 以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
 例えば、上記実施形態では、転炉1は上底吹き型の転炉であるとしたが、本発明はかかる例に限定されない。例えば、転炉1は、酸素ガスを上吹きランス4のみから噴射する上吹き型の転炉や、酸素ガスを底吹き羽口3からのみ噴射する底吹き型の転炉であってもよい。さらに、転炉1が上底吹き型の転炉である場合、上記実施形態のように酸素ガスを底吹き可能な転炉の他、不活性ガスのみの底吹きが可能な転炉であってもよい。また、転炉1は、上吹きランス4に酸素ガスとは別のランス孔が設けられ、このランス孔から搬送ガスと共に石灰等の副原料を溶鉄6に噴射(投射)可能なものであってもよい。
 また、上記実施形態では、目標塩基度を3.8未満、より好ましくは3.6以下とすることがよいとしたが、本発明はかかる例に限定されない。さらに、添加工程では精錬工程後のスラグ7の計算塩基度が3.8以上であるか否かの判断結果から、添加工程においてシリカ含有物質の添加を行うか否かを判断してもよいとしたが、本発明はかかる例に限定されない。上記の目標塩基度及び閾値は、酸素ガスを少なくとも複数の底吹き羽口から吹き込む吹錬形態の転炉型精錬である上底吹き型または底吹き型の転炉において、0.5%以下の水浸膨張率を達成するのに好適なものである。つまり、目標とする水浸膨張率や、転炉の吹錬形態の違いに応じて、上記の目標塩基度や閾値を変更することができる。
 さらに、上記実施形態では、酸素源として酸素ガスを添加することで酸化精錬処理を行うとしたが、本発明はかかる例に限定されない。例えば、酸素源として、酸素ガスの他に酸化鉄等の固体酸素源がさらに用いられてもよい。
 <実施形態の効果>
 (1)本発明の一態様に係る鋼の製造方法は、転炉1にて、溶銑に酸化精錬処理を施すことで溶鋼を製造する鋼の製造方法であって、転炉1にて、溶銑に少なくとも酸素ガスを含む酸素源を加え、酸化精錬処理を施すことで、溶銑を溶鋼とする精錬処理工程と、精錬処理工程の後、溶鋼が収容された転炉1の炉体2に、少なくともSiOを含むシリカ含有物質を上方から添加する添加工程と、添加工程の後、炉体2を傾動させて炉体2から溶鋼を排出する出鋼工程と、を備える。
 上記(1)の構成によれば、溶鉄6である高温の溶鋼が炉体2の内部に収容された状態で、シリカ含有物質が添加されるため、シリカ含有物質が融解し易くなる。また、出鋼工程において、炉体2の傾動によって、溶鉄6やスラグ7が炉体2の内部で流動することで、シリカ含有物質の融解がより促進される。このため、添加したシリカ含有物質を十分に融解させることができ、スラグ7の塩基度を精度よく低減させることができる。また、上記(1)の構成では、シリカ含有物質が溶け易くなるため、より大きな粒径のシリカ含有物質を用いることができる。これにより、生産効率を向上させることができ、製造コストも低減することができる。
 また、上記(1)の構成では、精錬処理工程においては、スラグ7の塩基度を低くする必要がない。精錬処理工程においてスラグ7の塩基度が低くなると、スラグ7のフォーミングが発生する可能性がある。フォーミングにより炉体2からスラグ7が噴出すると、歩留り低下や炉下のノロ鍋線の陥没などを引き起こし、安定した操業が行えなくなる。これに対して、上記(1)の構成では、スラグ7のフォーミングの発生頻度が抑制されて、安定した操業を行うことができる。さらに、精錬処理工程においてスラグ7の塩基度が低くなると、スラグ7の燐分配比が低くなるため、脱燐が十分にできなかったり、スラグ7の量を増加させるためにCaOを含む造滓剤の投入量が増加したりする場合がある。これに対して、上記(1)の構成では、スラグ7の塩基度が低下する期間は、添加工程から出鋼工程までの短い間となり、燐分配比の低下に伴う復燐の量も極めてわずかなものとなる。このことから、燐分配比の低下による影響を最小限に抑えることができ、製造コストをより低減することができる。また、復燐の量が極めてわずかであるなど、溶鉄6の成分組成への影響は無視できるほど小さいので、製品特性等は従来通りの鋼となる。
 (2)上記(1)の構成において、転炉1は、炉体2の底部に設けられた底吹き羽口3を有し、精錬処理工程では、酸素源に含まれる酸素ガスとして、少なくとも底吹き羽口3から酸素ガスを溶銑に吹き込むことで、酸化精錬処理を施す。
 上記(2)の構成によれば、吹錬形態の違いから上吹き型の転炉に比べて、スラグの塩基度を低くすることが難しい底吹き型や上底吹き型の転炉においても、スラグの塩基度を低減することができることから、スラグの再利用を促進することができる。
 (3)上記(1)または(2)の構成において、転炉1は、上吹きランス4を有し、添加工程では、精錬処理工程の後、ノズル詰まり防止のために酸素ガスを噴射させながら上吹きランス4を待機位置まで上昇させる期間中に、溶鋼へのシリカ含有物質の添加を開始する。
 上記(3)の構成によれば、吹き付けられる酸素ガスによる撹拌効果と滓化効果によって、シリカ含有物質の融解が促進される。
 (4)上記(1)~(3)のいずれか一つの構成において、転炉1は、炉体2の底部に設けられた底吹き羽口3を有し、添加工程では、精錬処理工程の後、底吹き羽口3から吹き込まれる底吹きガスの吹き込み条件を、炉体2を傾動させるときの条件に切り替えてから、炉体2の傾動を開始するまでの期間中に、溶鋼にシリカ含有物質を添加する。
 上記(4)の構成によれば、添加工程においても底吹きガスから吹き込まれる底吹きガスによって、溶鋼が攪拌され、シリカ含有物質の融解が促進される。
 (5)上記(1)~(4)のいずれか一つの構成において、添加工程では、精錬処理工程後の炉体2内のスラグ7の計算塩基度が3.8以上となる場合に、スラグ7の計算塩基度が3.6以下となるように、シリカ含有物質の投入量を決定する。
 上記(5)の構成によれば、上記(2)の構成の転炉1において、スラグ7の水浸膨張率を0.5%以下にすることができる。
 (6)上記(1)~(5)のいずれか一つの構成において、添加工程では、炉体2内のスラグ7の計算塩基度が3.0以上となるように、シリカ含有物質の投入量を決定する。
 上記(6)の構成によれば、復燐の量を十分に抑えることができ、製造コストをより低減することができる。
 (7)本発明の一態様に係るスラグの塩基度低減方法は、転炉1にて、溶銑に酸化精錬処理を施すことで溶鋼を製造する際に生じるスラグ7の塩基度を低減する、スラグ7の塩基度低減方法であって、転炉1にて、溶銑に少なくとも酸素ガスを含む酸素源を加え、酸化精錬処理を施すことで、溶銑を溶鋼とする精錬処理工程と、精錬処理工程の後、転炉1の炉体2に収容された溶鋼に、少なくともSiOを含むシリカ含有物質を添加する添加工程と、添加工程の後、炉体2を傾動させて炉体から溶鋼を排出する出鋼工程と、を備える。
 上記(7)の構成によれば、上記(1)と同様な効果を得ることができる。
 (8)上記(7)の構成において、転炉1は、上吹きランス4を有し、添加工程では、精錬処理工程の後、ノズル詰まり防止のために酸素ガスを噴射させながら上吹きランス4を待機位置まで上昇させる期間中に、溶鋼へのシリカ含有物質の添加を開始する。
 上記(8)の構成によれば、上記(3)の構成と同様な効果が得られる。
 (9)上記(7)または(8)の構成において、転炉1は、炉体2の底部に設けられた底吹き羽口3を有し、添加工程では、精錬処理工程の後、底吹き羽口3から吹き込まれる底吹きガスの吹き込み条件を、炉体2を傾動させるときの条件に切り替えてから、炉体2の傾動を開始するまでの期間中に、溶鋼にシリカ含有物質を添加する。
 上記(9)の構成によれば、上記(4)の構成と同様な効果が得られる。
 本発明者らが行った実施例について説明する。実施例では、上記実施形態と同様な鋼の製造方法を用いて、転炉1にて溶鉄6の精錬処理を行い、スラグの塩基度を低減させた。具体的には、実施例では、精錬処理工程にて、上底吹き型の転炉1にて溶銑に酸化精錬処理を施すことで溶鋼を製造した。精錬処理工程では、計算塩基度を4以上とした条件で、溶鉄6の酸化精錬処理を行った。次いで、添加工程では、目標塩基度を3.6(実施例1)または3.2(実施例2)として、シリカ含有物質として珪石を添加した。さらに、出鋼工程では、溶鉄6を炉体2から排出する際に、炉体2内のスラグ7を採取し、CaO濃度及びSiO濃度を測定することで塩基度(「実塩基度」ともいう)を測定した。
 また、実施例では、比較として、精錬工程の後に、添加工程を行わずに出鋼工程を行う従来の方法での鋼の製造を行った(比較例)。比較例においても、実施例と同様に、出鋼工程においてスラグ7を採取し、実塩基度を測定した。また、比較例では、計算塩基度が異なる複数の条件(比較例1~4)において、実塩基度の測定を行い、計算塩基度と実塩基度との関係を調査した。
 図2に、実施例及び比較例における、計算塩基度と実塩基度との関係を示す。図2に示す比較例のプロットにおいて、比較例1は計算塩基度が3.49以下(N(サンプル数)=42)、比較例2は計算塩基度が3.50以上3.99以下(N=182)、比較例3は計算塩基度が4.00以上4.49以下(N=467)、比較例4は計算塩基度が4.50以上(N=722)となる条件をそれぞれ示す。なお、図2において、プロットは複数データの平均値を示し、縦横に延びるバーは標準偏差(σ)を示す。図2に示すように、比較例1~4に示す従来のスラグの塩基度は、計算塩基度に対して、実塩基度が相関を示すものであることが確認できた。ここで、計算塩基度は、酸化精錬処理における、溶銑の成分や各種副原料の投入量、酸素ガスを含む酸素源の量等の予め予想される吹錬条件での、マスバランスから計算されるものである。このため、実際の反応効率等の要因から、計算塩基度に対して実塩基度の方が一定分だけ低くなる傾向がある。
 さらに、図2に示すように、目標塩基度を3.6とした実施例1(N=423)、及び目標塩基度を3.2とした実施例2(N=36)では、目標塩基度に対して実塩基度が充分に低くなることが確認でき、添加したシリカ含有物質がスラグ中で溶解していることが確認できた。
 また、実施例では、上記の実施例1と同様に処理したスラグ7について、炉体2から排出されて回収された後に、塩基度の分析及び水浸膨張率を測定した。塩基度は、スラグ7の分析用試料に対し蛍光X線分析を行ない、CaO濃度(mass%)およびSiO濃度(mass%)を定量し、これらの比から求めた。水浸膨張率の測定は、日本工業規格JISA5015附属書Bに準拠して実施した。その結果、スラグの塩基度は2.7であり、水浸膨張率が0.5%以下となることが確認できた。これに対して、比較例と同様な方法で処理された、計算塩基度が4.0以上のスラグについても回収後に塩基度の分析及び水浸膨張率を測定した。この際、分析と測定は上述の実施例と同様の方法で実施した。その結果、スラグの塩基度は3.5であり、水浸膨張率が1.5%以上となり、目標とする品質を満足できないことが確認できた。
 1 転炉
 2 炉体
 21 炉口
 22 トラニオン軸
 3 底吹き羽口
 4 上吹きランス
 5 シュート
 6 溶鉄
 7 スラグ

Claims (9)

  1.  転炉にて、溶銑に酸化精錬処理を施すことで溶鋼を製造する鋼の製造方法であって、
     前記転炉にて、前記溶銑に少なくとも酸素ガスを含む酸素源を加え、酸化精錬処理を施すことで、前記溶銑を前記溶鋼とする精錬処理工程と、
     前記精錬処理工程の後、前記転炉の炉体に収容された前記溶鋼に、少なくともSiOを含むシリカ含有物質を添加する添加工程と、
     前記添加工程の後、前記炉体を傾動させて前記炉体から前記溶鋼を排出する出鋼工程と、
     を備える、鋼の製造方法。
  2.  前記転炉は、前記炉体の底部に設けられた底吹き羽口を有し、
     前記精錬処理工程では、前記酸素源に含まれる前記酸素ガスとして、少なくとも前記底吹き羽口から酸素ガスを前記溶銑に吹き込むことで、前記酸化精錬処理を施す、請求項1に記載の鋼の製造方法。
  3.  前記転炉は、上吹きランスを有し、
     前記添加工程では、前記精錬処理工程の後、ノズル詰まり防止のために前記酸素ガスを噴射させながら前記上吹きランスを待機位置まで上昇させる期間中に、前記溶鋼への前記シリカ含有物質の添加を開始する、請求項1または2に記載の鋼の製造方法。
  4.  前記転炉は、前記炉体の底部に設けられた底吹き羽口を有し、
     前記添加工程では、前記精錬処理工程の後、前記底吹き羽口から吹き込まれる底吹きガスの吹き込み条件を、前記炉体を傾動させるときの条件に切り替えてから、前記炉体の傾動を開始するまでの期間中に、前記溶鋼に前記前記シリカ含有物質を添加する、請求項1~3のいずれか1項に記載の鋼の製造方法。
  5.  前記添加工程では、前記精錬処理工程後の前記炉体内のスラグの計算塩基度が3.8以上となる場合に、前記スラグの計算塩基度が3.6以下となるように、前記シリカ含有物質の投入量を決定する、請求項1~4のいずれか1項に記載の鋼の製造方法。
  6.  前記添加工程では、前記炉体内のスラグの計算塩基度が3.0以上となるように、前記シリカ含有物質の投入量を決定する、請求項1~5のいずれか1項に記載の鋼の製造方法。
  7.  転炉にて、溶銑に酸化精錬処理を施すことで溶鋼を製造する際に生じるスラグの塩基度を低減される、スラグの塩基度低減方法であって、
     前記転炉にて、前記溶銑に少なくとも酸素ガスを含む酸素源を加え、酸化精錬処理を施すことで、前記溶銑を前記溶鋼とする精錬処理工程と、
     前記精錬処理工程の後、前記転炉の炉体に収容された前記溶鋼に、少なくともSiOを含むシリカ含有物質を添加する添加工程と、
     前記添加工程の後、前記炉体を傾動させて前記炉体から前記溶鋼を排出する出鋼工程と、
     を備える、スラグの塩基度低減方法。
  8.  前記転炉は、上吹きランスを有し、
     前記添加工程では、前記精錬処理工程の後、ノズル詰まり防止のために前記酸素ガスを噴射させながら前記上吹きランスを待機位置まで上昇させる期間中に、前記溶鋼への前記シリカ含有物質の添加を開始する、請求項7に記載のスラグの塩基度低減方法。
  9.  前記転炉は、前記炉体の底部に設けられた底吹き羽口を有し、
     前記添加工程では、前記精錬処理工程の後、前記底吹き羽口から吹き込まれる底吹きガスの吹き込み条件を、前記炉体を傾動させるときの条件に切り替えてから、前記炉体の傾動を開始するまでの期間中に、前記溶鋼に前記シリカ含有物質を添加する、請求項7または8に記載のスラグの塩基度低減方法。
PCT/JP2019/033574 2018-11-27 2019-08-27 鋼の製造方法及びスラグの塩基度低減方法 WO2020110392A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217015964A KR102535289B1 (ko) 2018-11-27 2019-08-27 강의 제조 방법 및 슬래그의 염기도 저감 방법
JP2020514773A JP6888741B2 (ja) 2018-11-27 2019-08-27 鋼の製造方法及びスラグの塩基度低減方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-221656 2018-11-27
JP2018221656 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020110392A1 true WO2020110392A1 (ja) 2020-06-04

Family

ID=70852778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033574 WO2020110392A1 (ja) 2018-11-27 2019-08-27 鋼の製造方法及びスラグの塩基度低減方法

Country Status (4)

Country Link
JP (1) JP6888741B2 (ja)
KR (1) KR102535289B1 (ja)
TW (1) TWI722622B (ja)
WO (1) WO2020110392A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945120A (ja) * 1972-09-06 1974-04-30
JPH05271740A (ja) * 1992-03-30 1993-10-19 Sumitomo Metal Ind Ltd 転炉スラグの改質方法
JPH0711322A (ja) * 1993-06-28 1995-01-13 Kawasaki Steel Corp 有効利用が可能な転炉スラグの製造方法
JP2001192721A (ja) * 2000-01-12 2001-07-17 Nippon Steel Corp 製鋼工程で発生するスラグおよびスラグの処理方法
JP2003105416A (ja) * 2001-09-27 2003-04-09 Nippon Steel Corp 溶銑脱燐スラグの改質方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571818B2 (ja) 2004-04-21 2010-10-27 新日本製鐵株式会社 製鋼スラグの改質方法
JP4734167B2 (ja) * 2006-05-08 2011-07-27 新日本製鐵株式会社 製鋼スラグの処理方法
CN109073575B (zh) * 2016-04-13 2021-05-28 杰富意钢铁株式会社 炉渣的分析方法和熔融铁的精炼方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945120A (ja) * 1972-09-06 1974-04-30
JPH05271740A (ja) * 1992-03-30 1993-10-19 Sumitomo Metal Ind Ltd 転炉スラグの改質方法
JPH0711322A (ja) * 1993-06-28 1995-01-13 Kawasaki Steel Corp 有効利用が可能な転炉スラグの製造方法
JP2001192721A (ja) * 2000-01-12 2001-07-17 Nippon Steel Corp 製鋼工程で発生するスラグおよびスラグの処理方法
JP2003105416A (ja) * 2001-09-27 2003-04-09 Nippon Steel Corp 溶銑脱燐スラグの改質方法

Also Published As

Publication number Publication date
JP6888741B2 (ja) 2021-06-16
KR102535289B1 (ko) 2023-05-26
KR20210084563A (ko) 2021-07-07
TWI722622B (zh) 2021-03-21
TW202020166A (zh) 2020-06-01
JPWO2020110392A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
US9315875B2 (en) Method of refining molten iron
WO1995001458A1 (fr) Procede de production et d'acier au moyen d'un convertisseur
JP6693536B2 (ja) 転炉製鋼方法
JP2000160233A (ja) ステンレス鋼の脱硫精錬方法
JP6665884B2 (ja) 転炉製鋼方法
TWI685577B (zh) 高錳鋼的冶煉方法
WO2020110392A1 (ja) 鋼の製造方法及びスラグの塩基度低減方法
JP3885499B2 (ja) 転炉製鋼方法
JP2003239009A (ja) 溶銑の脱りん精錬方法
JP2007270238A (ja) 溶銑の脱燐処理方法
JP2001192720A (ja) 転炉製鋼法
JPH09235611A (ja) 清浄性の高い極低硫純鉄の製造方法
JPH08104911A (ja) 含燐鋼の溶製方法
JP3333339B2 (ja) 脱炭滓をリサイクルする転炉製鋼法
JP2016079462A (ja) 溶銑の精錬方法
KR900002710B1 (ko) 급속탈탄 제강공정
JPH08311519A (ja) 転炉製鋼法
KR101526447B1 (ko) 용선의 정련 방법
WO2024106086A1 (ja) 鋼の溶製方法
WO2022154024A1 (ja) 転炉精錬方法
JP2009052070A (ja) 溶銑脱りん処理方法
JP2882236B2 (ja) ステンレス製造法
JP2005325389A (ja) 溶銑の精錬方法
JP2004307941A (ja) 転炉型容器を用いた溶銑の脱燐方法
JP2000328121A (ja) 溶銑の脱燐方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020514773

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217015964

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889668

Country of ref document: EP

Kind code of ref document: A1