WO2020110370A1 - 屈曲樹脂管の製造方法 - Google Patents

屈曲樹脂管の製造方法 Download PDF

Info

Publication number
WO2020110370A1
WO2020110370A1 PCT/JP2019/029451 JP2019029451W WO2020110370A1 WO 2020110370 A1 WO2020110370 A1 WO 2020110370A1 JP 2019029451 W JP2019029451 W JP 2019029451W WO 2020110370 A1 WO2020110370 A1 WO 2020110370A1
Authority
WO
WIPO (PCT)
Prior art keywords
bent
cavity
resin
rib
resin pipe
Prior art date
Application number
PCT/JP2019/029451
Other languages
English (en)
French (fr)
Inventor
栗林 延全
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2020110370A1 publication Critical patent/WO2020110370A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles

Definitions

  • the present invention relates to a method for manufacturing a bent resin pipe, and more specifically, when manufacturing a bent resin pipe by resin injection molding using an assist material such as a gas assist molding method, a bent inner portion of the bent resin pipe is reinforced.
  • the present invention relates to a method for manufacturing a bent resin pipe capable of reliably improving pressure resistance.
  • a gas-assisted molding method in which, when a resin pipe is molded by resin injection molding, a molten resin is injected into a mold and then a high pressure gas such as nitrogen gas is injected into the mold (for example, refer to Patent Document 1). ..
  • a high pressure gas such as nitrogen gas
  • water, metal balls, or resin balls may be injected into the mold at high pressure as an assist material.
  • the assist material injected into the mold cavity will pass through the cavity by the shortest route within the range where the bent portion of the bent resin pipe is molded.
  • the injected assist material passes so as to be unevenly distributed inside the bent portion of the cavity. Therefore, the injected resin is easily scraped by the assist material in the inside of the bend, and the thickness of the resin is smaller than that in the outside of the bend. Along with this, it is difficult to ensure the pressure resistance of the manufactured bent resin tube to withstand the preset target internal pressure, and there is room for improvement.
  • An object of the present invention is to reliably improve the pressure resistance by reinforcing the bent inner portion of the bent resin pipe when manufacturing the bent resin pipe by resin injection molding using an assist material such as a gas assist molding method. It is an object of the present invention to provide a method of manufacturing a bendable resin tube which is possible.
  • the method for producing a bent resin pipe of the present invention is such that after the molten resin is injected into a bending and extending cavity formed in a mold, an assist material is injected into this cavity and the injection is performed.
  • a method of manufacturing a bent resin tube for curing a resin to manufacture a bent resin tube a rib molding portion projecting from the bent inner portion is communicated with the cavity on a bent inner portion of a preselected bent portion of the cavity. It is characterized in that it is formed in the mold in such a state that the molten resin is injected into the cavity and the rib molding portion.
  • the rib molding portion is formed in the bending inner portion of the preselected bending portion of the cavity, and the molten resin is injected into the cavity and the rib molding portion.
  • Resin tubes can be manufactured. Then, due to the reinforcing effect of the formed ribs, it becomes possible to surely improve the pressure resistance of the bent inner portion.
  • FIG. 1 is an explanatory view illustrating a bent resin pipe manufactured according to the present invention in a plan view.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 3 is a sectional view taken along the line AA of FIG.
  • FIG. 4 is an explanatory view showing a modified example of the rib in a cross-sectional view of a bent resin pipe.
  • FIG. 5 is an explanatory view illustrating another modified example of the rib in a plan view of the bent resin pipe.
  • FIG. 6 is a sectional view taken along line BB of FIG.
  • FIG. 7 is an explanatory view showing a modified example of the lateral ribs in a plan view.
  • FIG. 8 is an explanatory view illustrating a molding device for manufacturing a bent resin pipe.
  • FIG. 1 is an explanatory view illustrating a bent resin pipe manufactured according to the present invention in a plan view.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 3 is
  • FIG. 9 is an explanatory view illustrating the mold of FIG. 8 in plan view.
  • FIG. 10 is a sectional view taken along line CC of FIG.
  • FIG. 11 is an explanatory diagram schematically illustrating, in plan view at a parting line, the flow of the injected assist material inside the bent portion of the cavity of FIG. 9 after the injection of the molten resin.
  • a bent resin pipe 1 manufactured according to the present invention is a tubular body having bent portions 4 (4A, 4B) and 5 and extending in this embodiment.
  • the bent resin pipe 1 also has a straight portion 3. Openings 2 are formed at both longitudinal ends of the hollow conduit 1a of the bent resin pipe 1.
  • An alternate long and short dash line CL in the drawing indicates a center line passing through the center of the cross section of the conduit 1a.
  • the wall thickness of the bent resin tube 1 is set to a predetermined reference value tm, but since the assist material 18 is used for molding as will be described later, in the bent portion 4, the wall thickness of the bent inner portion 6a is set.
  • t1 is smaller than the reference value tm and the thickness t2 of the wall surface of the bent outer portion 6b (t1 ⁇ tm ⁇ t2).
  • the thickness of the wall surface of the bent inner portion 6a is smaller than the thickness of the wall surface of the bent outer portion 6b, but the reference value tm or more.
  • the wall thickness of the straight line portion 3 is within the allowable range of the reference value tm or more.
  • ribs 7 (lateral ribs described later) that improve pressure resistance with respect to the bent portion 4 in which the wall thickness of the bent inner portion 6a is less than the reference value tm. 7a, vertical ribs 7b, all-round ribs 7c, etc.) are formed. Since the thickness of the wall surface of the bent portion 5 is equal to or larger than the reference value tm, the bent portion 5 is not subject to the reinforcement by the rib 7.
  • the bent resin pipe 1 Since the shape of the bent resin pipe 1 is determined by the space restrictions such as the installation place, the bent resin pipe 1 may not have the straight line portion 3 and the number of the bent portions 4 and 5 is not limited. However, the bent resin pipe 1 has at least one bent portion 4 to be reinforced by the rib 7. The bent resin pipe 1 illustrated in FIG. 1 has two bent portions 4A and 4B to be reinforced by the ribs 7.
  • the rib 7 is formed on the bent inner portion 6a of the bent portion 4. More specifically, as illustrated in FIGS. 2 and 3, a rib 7 projecting from the bent inner portion 6a to the radially outer side of the bent resin pipe 1 is formed on the bent inner portion 6a of the bent portion 4A.
  • a lateral rib 7a extending in the extending direction of the bent resin pipe 1 and a vertical rib 7b extending in the circumferential direction of the bent resin pipe 1 are formed.
  • the lateral rib 7a is formed on the bent inner portion 6a so as to cover the range where the wall thickness is less than the reference value tm.
  • the horizontal rib 7a is formed so as to linearly connect the boundary points P that are separated from each other in the extending direction of the bent resin tube 1.
  • the lateral rib 7a is formed so as to connect the positions where the wall thickness is slightly thicker than the reference value tm.
  • the vertical rib 7b extends in a direction intersecting with the horizontal rib 7a. As shown in FIG. 3, the vertical rib 7b has a substantially triangular shape extending from the tip of the horizontal rib 7a so as to be in contact with the outer peripheral surface of the bent resin pipe 1 in a cross-sectional view of the bent resin pipe 1.
  • a plurality of vertical ribs 7b are arranged radially toward the bent inner portion 6a in a plan view.
  • the arrangement pitch of the plurality of vertical ribs 7b and the like are determined in consideration of necessary reinforcement strength and the like.
  • the vertical rib 7b may be one, as in the other bent portion 4B illustrated in FIG.
  • the difference in the rib reinforcing structure between the bent portion 4A and the bent portion 4B is only the number of the vertical ribs 7b, and the other configurations are the same.
  • the vertical rib 7b has a shape (substantially quadrangular) extending toward the tip of the horizontal rib 7a at the height of the outer diameter of the bent resin tube 1 in the cross-sectional view of the bent resin tube 1. You can also
  • the full-circumferential rib 7c is a kind of the vertical rib 7b extending in the circumferential direction of the bent resin pipe 1, but extends not only in the bent inner portion 6a of the bent portion 4 but also in the bent outer portion 6b and extends in the circumferential direction. It is continuous all around.
  • Each of the ribs 7 (7a, 7b, 7c) is set to have a substantially constant thickness, for example, and is set to have a size capable of obtaining a sufficient reinforcing effect.
  • the thickness ta of the lateral rib 7a is set to, for example, the reference value tm minus the minimum value t1n or more. That is, it is set to about (tm-t1n) ⁇ ta ⁇ (tm-t1n) ⁇ 1.2.
  • the thickness tb of the vertical rib 7b is set to, for example, 40% or more and 60% or less of the reference value tm.
  • the thickness tc of the circumferential rib 7c is set to, for example, 40% or more and 60% or less of the reference value tm.
  • a radial projection amount Pc of the circumferential rib 7c from the outer peripheral surface of the bent resin pipe 1 is set to be equal to or larger than the reference value tm-the minimum value t1n, like the thickness ta of the lateral rib 7a. ((Tm-t1n) ⁇ Pc ⁇ (tm-t1n) ⁇ 1.2).
  • the vertical ribs 7b and the circumferential ribs 7c are preferably arranged so as to cover the positions where the wall thickness t1 becomes the minimum value t1n.
  • the lateral rib 7a is not limited to the specification formed so as to connect the starting points P in a straight line in a plan view as illustrated in FIGS. 2 and 5. Like the lateral rib 7a illustrated in FIG. 7, the starting points P may be bent and connected in the same direction as the bent portion 4A in a plan view.
  • the horizontal rib 7a having the shape illustrated in FIG. 7 it becomes possible to install the bent resin pipe 1 at a predetermined position while avoiding other parts or the like arranged around the bent inner portion 6a.
  • the bent resin tube 1 is manufactured using the molding device 8 illustrated in FIG.
  • the molding device 8 includes a cylinder 9 a that injects the molten resin 17 into the mold 10, and an assist material injection portion 9 b that injects the assist material 18 into the mold 10.
  • a suitable type of resin 17 is selected from various injectable resins 17 according to the performance required for the bent resin tube 1.
  • the resin 17 for example, polyamide, polyphenylene sulfide or the like is used.
  • the assist material 18 may be a known material, and an appropriate material is selected from gases such as nitrogen gas, liquids such as water, and solids such as metal spheres and resin spheres.
  • the assist material injection unit 9b employs a known appropriate mechanism according to the type of the assist material 18.
  • the mold 10 is composed of one mold 10a to be assembled and the other mold 10b.
  • the molds 10a and 10b are joined and separated with the parting line PL as a boundary.
  • the mold 10 has a cavity 11 formed therein.
  • the cavity 11 is bent and extends in a shape similar to that of the bent resin tube 1 to be manufactured.
  • the mold 10 is provided with a runner 16a connected to the cavity 11 via a gate 16b.
  • the runner 16 a is connected to the nozzle of the molding device 8 via a sprue formed on the mold 10.
  • the mold 10 is also provided with a discharge portion for the assist material 18 injected into the cavity 11.
  • a rib molding portion 15 (a lateral rib molding portion 15a, which will be described later, a vertical rib molding portion 15b, etc.) protruding from the bending inner portion 14a communicates with the cavity 11 in the bending inner portion 14a of the preselected bending portion 12 of the cavity 11. It is formed on the mold 10 in this state.
  • portions corresponding to the bent portions 4 (4A, 4B) and 5 of the bent resin tube 1 are formed as bent portions 12 (12A and 12B) and 13 of the cavity 11, respectively. Further, the portions corresponding to the ribs 7 (7a, 7b) of the bent resin pipe 1 become the rib molding portions 15 (15a, 15b), respectively.
  • the bent portion 12A of the cavity 11 is provided with a horizontal rib molding portion 15a having a recess in the shape of the horizontal rib 7a of the bent portion 4A of the bent resin tube 1, and a vertical rib molding portion 15b having a recess in the shape of a vertical rib 7b. ing. That is, the horizontal rib molding portion 15 a extends in the extending direction of the cavity 11, and the vertical rib molding portion 15 b extends in the circumferential direction of the cavity 11.
  • a horizontal rib molding portion 15a having a recess in the shape of the horizontal rib 7a of the bent portion 4B of the bent resin tube 1 and a vertical rib molding portion 15b having a recess in the shape of a vertical rib 7b. is provided.
  • the entire circumference rib molding portion that continuously extends along the entire circumference in the circumferential direction of the cavity 11 is formed on the mold 10 in a state of communicating with the cavity 11. .
  • the molten resin 17 is injected from the cylinder 9a to the mold 10.
  • the injected resin 17 passes through the sprue formed on the mold 10, the runner 16a, and the gate 16b and is injected into the cavity 11 and the rib molding portion 15.
  • the rib molding portion 15 is filled with the molten resin 17, and the wall surface of the cavity 11 is covered with the molten resin 17.
  • the assist material 18 is injected into the mold 10 from the assist material injection portion 9b at a predetermined high pressure.
  • the injected assist material 18 passes through the inside of the cavity 11 in which the molten resin 17 is injected at a high pressure along the extending direction thereof.
  • the assist material 18 injected at high pressure tries to pass biasedly toward the inner side of the bend, which is the shortest route of the cavity 11. Therefore, the resin 17 of the bent inner portion 14a of the bent portion 12A is more scraped by the assist material 18 that passes under high pressure. As a result, the thickness t1 of the resin 17 on the wall surface of the bent inner portion 14a becomes smaller than the thickness t2 of the resin 17 of the bent outer portion 14b, and becomes thinner than the reference value tm.
  • the assist material 18 also passes through the other bent portions 12B and 13 as described above. Therefore, in the bent portion 12B as well, the thickness t1 of the resin 17 on the wall surface of the bent inner portion 14a becomes smaller than the reference value tm.
  • the bent portion 13 has a relatively large radius of curvature, it is difficult for the resin 17 on the wall surface of the bent inner portion 14a to be scraped by the assist material 18 that passes under high pressure. As a result, since the thickness of the resin 17 on the wall surface of the bent inner portion 14a of the bent portion 13 can be secured to the reference value tm or more, the rib molding portion 15 is provided only in the bent portions 12A and 12B.
  • the rib molding portion 15 is provided, for example, molding is performed using the molding device 8 in the state where the rib molding portion 15 is not provided in the cavity 11 of FIG. 1 is manufactured.
  • the thickness of the resin 17 on the wall surface of the bent inner portion of the bent portion of the bent resin tube 1 is measured to confirm whether or not the reference value tm or more.
  • the bent portion where the measured thickness of the resin 17 is less than the reference value tm is specified as the bent portion 4 forming the rib 7.
  • the rib molding portion 15 is provided on the bent portion 12 of the cavity 11 corresponding to the specified bent portion 4.
  • the thickness of the rib 7 and the like can be set based on the thickness of the resin 17 on the wall surface of the bent inner portion measured at this time.
  • the resin pipe and the rib 7 along the cavity 11 are molded by hardening the injected resin 17. That is, the bent resin pipe 1 in which the ribs 7 are integrated is manufactured.
  • the thickness t1 of the resin 17 on the wall surface of the bent inner portion 6a is smaller than the reference value tm, but it is reinforced by the molded rib 7. .. Therefore, even if a preset target internal pressure acts on the bent resin tube 1, it becomes possible to withstand.
  • this manufacturing method by providing the ribs 7 having appropriate specifications, it is possible to reliably improve the pressure resistance of the desired bent inner portion 6a of the bent resin tube 1 due to the reinforcing effect of the ribs 7.
  • the manufacturing method it is possible to mass-produce even the bent resin pipe 1 having a complicated shape.
  • the manufactured bent resin tube 1 it is possible to secure necessary pressure resistance while reducing the weight as compared with the metal tube.
  • the bending inner portion 6a to be reinforced may be reinforced with only one of the horizontal ribs 7a, the vertical ribs 7b, and the circumferential ribs 7c, but in order to ensure the necessary pressure resistance more reliably. It is desirable to manufacture the bent resin pipe 1 integrally formed by combining the horizontal ribs 7a and the vertical ribs 7b, or by combining the horizontal ribs 7a and the circumferential ribs 7c. If the amount of protrusion of the horizontal ribs 7a and the vertical ribs 7b from the outer peripheral surface of the bent resin pipe 1 cannot be set to a large amount due to the restriction of the installation space of the bent resin pipe 1, it is preferable to use the entire circumference rib 7c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

アシスト材を用いた樹脂射出成形により製造される屈曲樹脂管の所望の屈曲内側部分の耐圧性を確実に向上させる屈曲樹脂管の製造方法を提供する。モールド10に形成された屈曲して延在するキャビティ11の予め選択された屈曲部12A、12Bの屈曲内側部分14aに、その屈曲内側部分14aから突出する横リブ成型部15aおよび縦リブ成型部15bをキャビティ11に連通させた状態でモールド10に形成しておき、溶融した樹脂17をキャビティ11とともに横リブ成型部15aおよび縦リブ成型部15bに射出した後、このキャビティ11にアシスト材18を注入し、溶融した樹脂17が硬化することにより、製造された屈曲樹脂管1の屈曲部4A、4Bの屈曲内側部分6aに横リブ7aおよび縦リブ7bが一体成形される。

Description

屈曲樹脂管の製造方法
 本発明は、屈曲樹脂管の製造方法に関し、さらに詳しくは、ガスアシスト成形方法などのアシスト材を用いた樹脂射出成形により屈曲樹脂管を製造する際に、屈曲樹脂管の屈曲内側部分を補強して耐圧性を確実に向上させることが可能な屈曲樹脂管の製造方法に関するものである。
 樹脂射出成形により樹脂管を成形する際に、溶融した樹脂をモールドに射出した後に、窒素ガスなどの高圧ガスをモールドに注入するガスアシスト成形方法が知られている(例えば、特許文献1参照)。高圧ガスに代わって、水や金属球、樹脂球をアシスト材としてモールドに高圧で注入することもある。
 このようにアシスト材を用いて樹脂射出成形によって屈曲樹脂管を製造する場合、モールドのキャビティに注入されたアシスト材は、屈曲樹脂管の屈曲部を成形する範囲では、最短ルートでキャビティを通過しようとする特性がある。即ち、モールドに形成されたキャビティの屈曲部では、注入されたアシスト材は、キャビティの屈曲内側に偏在するように通過する。そのため、この屈曲内側部分では射出された樹脂がアシスト材によって削られ易くなり、屈曲外側部分に比して樹脂の厚さが薄くなる。これに伴って、製造された屈曲樹脂管は、予め設定された目標内圧に耐える耐圧性を確保し難くなるため改善の余地がある。
日本国特開2003-181868号公報
 本発明の目的は、ガスアシスト成形方法などのアシスト材を用いた樹脂射出成形により屈曲樹脂管を製造する際に、屈曲樹脂管の屈曲内側部分を補強して耐圧性を確実に向上させることが可能な屈曲樹脂管の製造方法を提供することにある。
 上記目的を達成するため本発明の屈曲樹脂管の製造方法は、モールドに形成された屈曲して延在するキャビティに溶融した樹脂を射出した後、このキャビティにアシスト材を注入し、射出した前記樹脂を硬化させて屈曲樹脂管を製造する屈曲樹脂管の製造方法において、前記キャビティの予め選択された屈曲部の屈曲内側部分に、その屈曲内側部分から突出するリブ成型部を前記キャビティに連通させた状態で前記モールドに形成しておき、溶融した前記樹脂を前記キャビティおよび前記リブ成型部に射出することを特徴とする。
 本発明によれば、キャビティの予め選択された屈曲部の屈曲内側部分に前記リブ成型部を形成しておき、このキャビティおよびリブ成型部に溶融した樹脂を射出するので、リブを一体化した屈曲樹脂管を製造することができる。そして、成形されたリブによる補強効果によって、この屈曲内側部分の耐圧性を確実に向上させることが可能になる。
図1は本発明により製造された屈曲樹脂管を平面視で例示する説明図である。 図2は図1の一部拡大図である。 図3は図2のA-A断面図である。 図4はリブの変形例を屈曲樹脂管の横断面視で示す説明図である。 図5はリブの別の変形例を屈曲樹脂管の平面視で例示する説明図である。 図6は図5のB-B断面図である。 図7は横リブの変形例を平面視で示す説明図である。 図8は屈曲樹脂管を製造する成形装置を例示する説明図である。 図9は図8のモールドを平面視で例示する説明図である。 図10は図9のC-C断面図である。 図11は溶融した樹脂の射出後、注入したアシスト材の図9のキャビティの屈曲部の内部での流れをパーティングラインでの平面視で模式的に例示する説明図である。
 以下、本発明の屈曲樹脂管の製造方法を、図に示した実施形態に基づいて説明する。
 図1~図3に例示するように、本発明により製造される屈曲樹脂管1は、屈曲部4(4A、4B)、5を有して延在する筒状体であり、この実施形態では、屈曲樹脂管1は直線部3も有している。屈曲樹脂管1の中空の管路1aの長手方向両端は開口部2になっている。図中の一点鎖線CLは、管路1aの横断面中心を通過する中心線を示している。
 屈曲樹脂管1の壁面の厚さは所定の基準値tmに設定されているが、後述するようにアシスト材18を用いて成形するため、屈曲部4では、屈曲内側部分6aの壁面の厚さt1が、基準値tmおよび屈曲外側部分6bの壁面の厚さt2よりも薄くなっている(t1<tm<t2)。屈曲部5では、屈曲内側部分6aの壁面の厚さが、屈曲外側部分6bの壁面の厚さよりも薄くなっているが基準値tm以上になっている。直線部3の壁面の厚さは基準値tm以上の許容範囲内になっている。
 そのため、この実施形態では複数の屈曲部4、5のうち、屈曲内側部分6aの壁面の厚さが基準値tm未満である屈曲部4に対して耐圧性を向上させるリブ7(後述する横リブ7a、縦リブ7b、全周リブ7cなど)が形成される。屈曲部5は、その壁面の厚さが基準値tm以上であるため、リブ7による補強対象外となる。
 屈曲樹脂管1の形状は、設置場所等のスペースの制約によって決定されるので、直線部3を有していない場合もあり、屈曲部4、5の数も限定されない。ただし、屈曲樹脂管1は、リブ7による補強対象となる屈曲部4を少なくとも1つ有している。図1に例示する屈曲樹脂管1は、リブ7による補強対象となる2つの屈曲部4A、4Bを有している。
 リブ7は、屈曲部4の屈曲内側部分6aに形成されている。詳述すると、図2、図3に例示するように、屈曲部4Aの屈曲内側部分6aに、この屈曲内側部分6aから屈曲樹脂管1の半径方向外側に突出するリブ7が形成されている。この屈曲樹脂管1では、屈曲樹脂管1の延在方向に延びる横リブ7aと、屈曲樹脂管1の周方向に延在する縦リブ7bとが形成されている。
 横リブ7aは、壁面の厚さが基準値tm未満の範囲を網羅するように屈曲内側部分6aに形成される。屈曲部4の屈曲内側部分6aには、壁面の厚さが基準値tmと基準値tm未満となる境界点Pが存在している。そこで、図2に例示するように横リブ7aは、屈曲樹脂管1の延在方向に離間している境界点Pどうしを直線状に結ぶように形成されている。或いは、基準値tmよりも壁面の厚さが若干厚い位置どうしを結ぶように横リブ7aが形成される。
 縦リブ7bは、横リブ7aに対して交差する方向に延在している。この縦リブ7bは図3に例示するように、屈曲樹脂管1の横断面視では、横リブ7aの先端から屈曲樹脂管1の外周面に接するように延びる略三角形状になっている。
 図2に例示する屈曲部4Aでは、複数本の縦リブ7bが平面視で屈曲内側部分6aに向かって放射状に配置されている。基準値tm未満となる起点Pどうしの離間距離が大きい場合は、十分な補強効果を得るために、このように複数本の縦リブ7bを設けるとよい。複数本の縦リブ7bの配置ピッチなどは必要な補強強度等を考慮して決定される。基準値tm未満となる起点Pどうしの離間距離が比較的小さい場合は、図1に例示する他方の屈曲部4Bのように、縦リブ7bを1本にすることもできる。尚、屈曲部4Aと屈曲部4Bとでのリブ補強構造の相違点は、縦リブ7bの本数のみであり、その他の構成は同じである。
 リブ7には様々な形状を採用することができる。図4に例示するように縦リブ7bは、屈曲樹脂管1の横断面視で、横リブ7aの先端に向かって屈曲樹脂管1の外径の高さで延びる形状(略四角形状)にすることもできる。
 図5、図6に例示するように、全周リブ7cを採用することもできる。全周リブ7cは、屈曲樹脂管1の周方向に延在する縦リブ7bの一種であるが、屈曲部4の屈曲内側部分6aだけでなく、屈曲外側部分6bにも延在して周方向全周に連続している。
 それぞれのリブ7(7a、7b、7c)は、例えば実質的に一定の厚さに設定され、十分な補強効果が得られる寸法に設定される。屈曲内側部分6aでの壁面の厚さt1の最小値がt1nの場合は、横リブ7aの厚さtaは例えば、基準値tm―最小値t1nと同じかそれ以上に設定される。即ち、(tm-t1n)≦ta≦(tm-t1n)×1.2程度に設定される。縦リブ7bの厚さtbは例えば、基準値tmの40%以上60%以下に設定される。全周リブ7cの厚さtcも縦リブ7bの厚さtbと同様に例えば、基準値tmの40%以上60%以下に設定される。全周リブ7cの屈曲樹脂管1の外周面からの半径方向の突出量Pcは例えば、横リブ7aの厚さtaと同様に、基準値tm―最小値t1nと同じかそれ以上に設定される((tm-t1n)≦Pc≦(tm-t1n)×1.2程度)。縦リブ7b、全周リブ7cは、壁面の厚さt1が最小値t1nになる位置を覆うように配置するとよい。
 横リブ7aは図2、図5に例示したように、平面視で起点Pどうしを直線状に結ぶように形成される仕様に限らない。図7に例示する横リブ7aのように、平面視で起点Pどうしを屈曲部4Aと同じ方向に屈曲させて結ぶようにして形成することもできる。図7に例示する形状の横リブ7aにすることで、屈曲内側部分6aの周辺に配置される他の部品等を避けて屈曲樹脂管1を所定位置に設置することが可能になる。
 この屈曲樹脂管1は、図8に例示する成形装置8を用いて製造される。成形装置8は、溶融した樹脂17をモールド10に射出するシリンダ9aと、アシスト材18をモールド10に注入するアシスト材注入部9bとを備えている。
 射出可能な様々な樹脂17の中から、屈曲樹脂管1に要求される性能等に応じて適切な種類の樹脂17が選択される。例えば、自動車に搭載されるエアコンディショナー用の屈曲樹脂管1を製造する場合には、樹脂17としては例えば、ポリアミド、ポリフェニレンサルファイド等が使用される。
 アシスト材18は公知のものでよく、窒素ガスなどの気体、水などの液体、金属球や樹脂球などの固体から適切な材料が選択される。アシスト材注入部9bは、アシスト材18の種類に応じて公知の適切な機構が採用される。
 図9、図10に例示するようにモールド10は、組み付けられる一方のモールド10aと他方のモールド10bとで構成されている。互いのモールド10a、10bはパーティングラインPLを境界にして接合および分離する。
 モールド10には、空洞であるキャビティ11が形成されている。このキャビティ11は、製造される屈曲樹脂管1と同様の形状で屈曲して延在している。モールド10には、キャビティ11に対してゲート16bを介して接続するランナー16aが形成されている。このランナー16aは、モールド10に形成されたスプルーを介して、成形装置8のノズルに接続される。モールド10にはキャビティ11に注入されたアシスト材18の排出部も設けられている。
 キャビティ11の予め選択された屈曲部12の屈曲内側部分14aに、その屈曲内側部分14aから突出するリブ成型部15(後述する横リブ成型部15a、縦リブ成型部15bなど)がキャビティ11に連通した状態でモールド10に形成されている。屈曲樹脂管1の屈曲部4(4A、4B)、5に相当する部分がそれぞれ、モールド10では、キャビティ11の屈曲部12(12A、12B)、13として形成されている。また、屈曲樹脂管1のリブ7(7a、7b)に相当する部分がそれぞれ、リブ成型部15(15a、15b)となる。
 キャビティ11の屈曲部12Aには、屈曲樹脂管1の屈曲部4Aの横リブ7aの形状の窪みを有する横リブ成型部15a、縦リブ7bの形状の窪みを有する縦リブ成型部15bが設けられている。即ち、横リブ成型部15aはキャビティ11の延在方向に延在していて、縦リブ成型部15bはキャビティ11の周方向に延在している。同様に、キャビティ11の屈曲部12Bには、屈曲樹脂管1の屈曲部4Bの横リブ7aの形状の窪みを有する横リブ成型部15a、縦リブ7bの形状の窪みを有する縦リブ成型部15bが設けられている。屈曲樹脂管1に全周リブ7cを一体形成する場合には、キャビティ11の周方向全周に連続して延在する全周リブ成型部がキャビティ11に連通した状態でモールド10に形成される。
 次に、本発明の屈曲樹脂管の製造方法の手順の一例を説明する。
 図8~10に例示するようにモールド10a、10bを互いに組み付けて型閉めした状態で、溶融した樹脂17をシリンダ9aからモールド10に射出する。射出された樹脂17は、モールド10に形成されたスプルー、ランナー16a、ゲート16bを通過してキャビティ11およびリブ成型部15に注入される。リブ成型部15には溶融した樹脂17が充填された状態になり、キャビティ11の壁面は溶融した樹脂17で覆われた状態になる。
 次いで、アシスト材注入部9bからアシスト材18をモールド10に所定の高圧で注入する。注入されたアシスト材18は、溶融した樹脂17が注入されているキャビティ11の内部をその延在方向に沿って高圧で通過する。
 図11に例示するようにキャビティ11の屈曲部12Aでは、高圧で注入されたアシスト材18は、キャビティ11の最短ルートになる屈曲内側に偏って通過しようとする。そのため、屈曲部12Aの屈曲内側部分14aの樹脂17が高圧で通過するアシスト材18によってより多く削られる。これにより、屈曲内側部分14aの壁面の樹脂17の厚さt1は、屈曲外側部分14bの樹脂17の厚さt2に比して薄くなり、基準値tmよりも薄くなる。
 他の屈曲部12B、13においても、アシスト材18は上記と同様に通過する。そのため、屈曲部12Bでも屈曲内側部分14aの壁面の樹脂17の厚さt1は、基準値tmよりも小さくなる。一方、屈曲部13は曲率半径が比較的大きいため、屈曲内側部分14aの壁面の樹脂17が高圧で通過するアシスト材18によって削られ難い。その結果、屈曲部13の屈曲内側部分14aの壁面の樹脂17の厚さは、基準値tm以上を確保できるので、リブ成型部15は屈曲部12A、12Bだけに設けられている。
 リブ成型部15を設ける屈曲部を選択するには、例えば、図9のキャビティ11にリブ成型部15を設けない状態で、成形装置8を用いて成形を行って、リブ7がない屈曲樹脂管1を製造する。この屈曲樹脂管1の屈曲部の屈曲内側部分の壁面の樹脂17の厚さを測定して、基準値tm以上か否か確認する。測定した樹脂17の厚さが基準値tm未満である屈曲部を、リブ7を形成する屈曲部4として特定する。そして、特定した屈曲部4に対応するキャビティ11の屈曲部12にリブ成型部15を設ける。この時に測定した屈曲内側部分の壁面の樹脂17の厚さに基づいて、リブ7の厚さ等を設定することができる。
 このような測定データをある程度、蓄積している場合は、蓄積したデータを用いた成形シミュレーション解析によって、それぞれの屈曲部の屈曲内側部分の壁面の樹脂17の厚さを算出することもできる。そして、算出した樹脂17の厚さに基づいて、リブ成型部15を設ける屈曲部12を決定することもできる。
 モールド10では、射出した樹脂17が硬化することで、キャビティ11に沿った樹脂管およびリブ7が成形される。即ち、リブ7が一体化した屈曲樹脂管1が製造される。屈曲樹脂管1の屈曲部4(4A、4B)では、屈曲内側部分6aの壁面の樹脂17の厚さt1が基準値tmよりも薄くなっているが、成形されたリブ7によって補強されている。そのため、屈曲樹脂管1に予め設定された目標内圧が作用しても、耐えることが可能になる。この製造方法によれば、適切な仕様のリブ7を設けることで、リブ7の補強効果によって、屈曲樹脂管1の所望の屈曲内側部分6aの耐圧性を確実に向上させることが可能になる。
 また、この製造方法によれば、複雑な形状の屈曲樹脂管1であっても大量生産することもできる。製造した屈曲樹脂管1によれば、金属管に比して軽量化を図りつつ、必要な耐圧性を確保することができる。例えば、使用内圧が5MPa以上で内径10mm以上20mm以下程度の屈曲樹脂管1を製造することもできる。低圧の配管としても使用できるので、汎用的な屈曲金属管をこの屈曲樹脂管1に置き換えることで大幅に軽量化を図ることも可能になる。
 補強対象となる屈曲内側部分6aを、横リブ7a、縦リブ7b、全周リブ7cのいずれか一種だけで補強した構造にすることもできるが、必要な耐圧性をより確実に確保するには、横リブ7aと縦リブ7bとを組み合わせて、或いは、横リブ7aと全周リブ7cとを組み合わせて一体的に成形した屈曲樹脂管1を製造することが望ましい。屈曲樹脂管1の設置スペースの制約によって、横リブ7aや縦リブ7bの屈曲樹脂管1の外周面からの突出量を大きく設定できない場合は、全周リブ7cを用いるとよい。
1 屈曲樹脂管
1a 管路
2 開口部
3 直線部
4(4A、4B) 屈曲部
5 屈曲部
6a 屈曲内側部分
6b 屈曲外側部分
7(7a、7b、7c) リブ
8 成形装置
9a シリンダ
9b アシスト材注入部
10(10a、10b) モールド
11 キャビティ
12(12A、12B) 屈曲部
13 屈曲部
14a 屈曲内側部分
14b 屈曲外側部分
15(15a、15b) リブ成型部
16a ランナー
16b ゲート
17 樹脂
18 アシスト材

Claims (4)

  1.  モールドに形成された屈曲して延在するキャビティに溶融した樹脂を射出した後、このキャビティにアシスト材を注入し、射出した前記樹脂を硬化させて屈曲樹脂管を製造する屈曲樹脂管の製造方法において、
     前記キャビティの予め選択された屈曲部の屈曲内側部分に、その屈曲内側部分から突出するリブ成型部を前記キャビティに連通させた状態で前記モールドに形成しておき、溶融した前記樹脂を前記キャビティおよび前記リブ成型部に射出することを特徴とする屈曲樹脂管の製造方法。
  2.  前記リブ成型部が、前記キャビティの延在方向に延在する横リブ成型部と、前記キャビティの周方向に延在する縦リブ成型部とを有する請求項1に記載の屈曲樹脂管の製造方法。
  3.  前記縦リブ成型部が、前記キャビティの周方向全周に連続して延在する請求項2に記載の屈曲樹脂管の製造方法。
  4.  前記縦リブ成型部が、前記キャビティの延在方向に離間して複数配置されている請求項2または3に記載の屈曲樹脂管の製造方法。
PCT/JP2019/029451 2018-11-29 2019-07-26 屈曲樹脂管の製造方法 WO2020110370A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-224007 2018-11-29
JP2018224007A JP7131338B2 (ja) 2018-11-29 2018-11-29 屈曲樹脂管の製造方法

Publications (1)

Publication Number Publication Date
WO2020110370A1 true WO2020110370A1 (ja) 2020-06-04

Family

ID=70853000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029451 WO2020110370A1 (ja) 2018-11-29 2019-07-26 屈曲樹脂管の製造方法

Country Status (2)

Country Link
JP (1) JP7131338B2 (ja)
WO (1) WO2020110370A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393692U (ja) * 1990-01-12 1991-09-25
JPH07299838A (ja) * 1994-04-29 1995-11-14 Toyoda Gosei Co Ltd 棒状中空成形品の製造方法及びその成形品
JP2009148970A (ja) * 2007-12-20 2009-07-09 Rp Topla Ltd 二層中空成形品の成形方法
JP2010052327A (ja) * 2008-08-29 2010-03-11 Rp Topla Ltd 樹脂成形体及びその製造方法
JP2012025090A (ja) * 2010-07-27 2012-02-09 Nissan Motor Co Ltd ウエザーストリップにおける型成形部の成形方法
JP2017154477A (ja) * 2016-03-05 2017-09-07 ジヤトコ株式会社 中空管の作製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393692U (ja) * 1990-01-12 1991-09-25
JPH07299838A (ja) * 1994-04-29 1995-11-14 Toyoda Gosei Co Ltd 棒状中空成形品の製造方法及びその成形品
JP2009148970A (ja) * 2007-12-20 2009-07-09 Rp Topla Ltd 二層中空成形品の成形方法
JP2010052327A (ja) * 2008-08-29 2010-03-11 Rp Topla Ltd 樹脂成形体及びその製造方法
JP2012025090A (ja) * 2010-07-27 2012-02-09 Nissan Motor Co Ltd ウエザーストリップにおける型成形部の成形方法
JP2017154477A (ja) * 2016-03-05 2017-09-07 ジヤトコ株式会社 中空管の作製方法

Also Published As

Publication number Publication date
JP2020082621A (ja) 2020-06-04
JP7131338B2 (ja) 2022-09-06

Similar Documents

Publication Publication Date Title
US6537484B2 (en) Method for manufacturing a multi-layer plastic pipe
JP2019509914A (ja) 給気管を製造する方法
JP6526664B2 (ja) 蓄圧器を製造する方法
US7303714B2 (en) Cross member and manufacturing method thereof
CN102414450A (zh) 径流式压缩机的塑料外壳
GB2264450A (en) A plastic intake pipe and a method for forming same
JP2010052327A5 (ja)
JP2001509449A (ja) プラスチック容器及びプラスチック容器を製造する方法
WO2020110370A1 (ja) 屈曲樹脂管の製造方法
WO2020110371A1 (ja) 屈曲樹脂管の製造方法
CN113508022B (zh) 树脂管的制造方法
JP7147514B2 (ja) 樹脂管の製造方法
WO2020116083A1 (ja) 樹脂管の製造方法
KR20190114613A (ko) 파이프 강성 보강재 및 이를 이용한 파이프 강성 보강 방법
JP4902408B2 (ja) ヘリカルアンテナの製造方法、及び、ヘリカルアンテナの一次成形品
WO2023058279A1 (ja) 金属フランジと樹脂管とのアッセンブリ品およびこのアッセンブリ品の製造方法
JP4902407B2 (ja) ヘリカルアンテナの製造方法およびヘリカルアンテナの一次成形品
EP2788165B1 (en) A manufacturing method for bellow pipes
KR20010021535A (ko) 플라스틱 용기 및 그 제조 방법
KR101095653B1 (ko) 보강 구조를 갖는 프로파일 및 이를 이용한 다층 벽 하수관
JP2023103007A (ja) 屈曲樹脂管の製造方法および装置
JP6602219B2 (ja) 合成樹脂製パイプの製造方法
CN104895711A (zh) 进气装置和进气装置的制造方法
JP2017166543A (ja) 圧力容器
JP2007260922A (ja) 分岐ホースの製造方法と分岐ホース製造用のマンドレルおよび分岐ホース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889251

Country of ref document: EP

Kind code of ref document: A1